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Abstract. Let A be a reduced abelian p-group with a nice subgroup G. It is proved that if
A=G is simply presented, then A is simply presented precisely when G is strongly simply
presented in A. Moreover, the same type theorem for the class of @1-S-cyclic p-groups is
also established without the niceness of G in A. Some analogous assertions for other exotic
sorts of abelian groups are also considered.

The results obtained strengthen previous results due to J. A. Dieudonné (Portugal.
Math., 1952), P. D. Hill (Trends in Math., 1999), and some other authors.

Mathematics Subject Classification (2000). 20 K10.

Keywords. Simply presented p-groups, Cl-p-groups, pillared p-groups, @1-S-cyclic p-
groups, torsion-complete p-groups, thick p-groups, (weakly) o1-separable p-groups, Q-p-
groups, p-groups with a nice basis.

I. Introduction

Throughout the present paper, A always denotes an abelian p-group, written ad-

ditively, and G is a subgroup of A.

In [12] Jean Dieudonné generalized the classical Kulikov criterion for an abe-

lian p-group to be a direct sum of cyclic groups proved in [22]. This generalization

has numerous applications; for instance it leads to the first example of a separable

poþ1-projective group which is not a direct sum of cyclic groups. This is because

it ensures a connection between a property of the whole group and the same prop-

erty for a certain subgroup combined with the factor group modulo this subgroup.

We refer to this result by Dieudonné as Dieudonné’s criterion. It has many

refinements; see e.g. [3], [4], [5], [8], [9]. In [3] we prove it for the class of s-

summable p-groups. In [8] we extend Dieudonné’s criterion to summable groups

of countable lengths, totally projective groups of countable lengths, and S-groups,

respectively. For the valuated version of these three group classes the interested

reader may consult [4], [5] and [9]. In addition, in [6] we consider the situation

for poþn-projective p-groups when n a N.



Recently, in [17] Hill generalized Kulikov’s criterion (see also the joint paper

[19] with Ullery) to primary simply presented groups of arbitrary length by giving

a description in terms of height-finite subgroups similar to that of Kulikov. We

denote this result of Hill’s Hill’s criterion. In the sequel, we shall refine Hill’s nec-

essary and su‰cient condition in the sense of Dieudonné.

The purpose of this article is to continue the work in [8] by investigating

for which classes of torsion abelian groups a Dieudonné-type theorem can be

obtained. In addition, we shall also consider concrete examples of some other

exotic group classes for which this type of result is not preserved in general.

Therefore we shall present only su‰cient conditions in this case.

The significance of Dieudonné-type results is amply illustrated by their valu-

able applications with respect to the inner structure of the abelian groups; see,

e.g., [13].

The notation is standard and follows essentially [13] or the works cited in the

bibliography. For instance, for an arbitrary element a from A, the symbol jajA
will always denote the height of a in A.

II. Main results

1. Simply presented p-groups

The definition of a p-torsion simply presented group can be found in [13], vol. II,

p. 95; see also [17]. For the reader’s convenience we shall list the following neces-

sary and su‰cient condition due to Hill [17]; before doing that we need some

conventions.

Definition 1.1 (Hill). Two subgroups C and H of the abelian p-group A are

called compatible in A if each x a C þH can be written as x ¼ cþ h, where

c a C and h a H such that jcjA ¼ jhjA ¼ jcþ hjA, i.e., in other words, the elements

c and h have as much height in A as the sum cþ h.

Definition 1.2 (Hill). A family of subgroups fAigi A I of A is said to be compatible

in A if for each pair of subsets J and M of the index set I , the subgroups 3Aj4j A J
and 3Am4m AM are compatible in A.

Now we come to the crucial

Criterion (Hill, 1999). An abelian p-group A is simply presented if and only if

A ¼ 6
i A I Ai, where fAigi A I is a compatible family of height-finite (in A) subgroups.

In this way, the subgroup G of A is known to be strongly simply presented in A

provided that G ¼ 6
i A I Gi, where fGigi A I is a compatible family in A of height-
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finite (in A) subgroups, or, equivalently, in the reduced case there exists a compo-

sition series from 1 to G consisting of nice subgroups of A.

Note that if G is strongly simply presented in A, it is not necessarily itself sim-

ply presented; however when it is an isotype subgroup this is true.

We can now prove the following result.

Theorem 1.1. Let A be an abelian reduced p-group with a nice subgroup G so that

A=G is simply presented. Then A is simply presented if and only if G is strongly

simply presented in A.

Proof. ): By the above criterion we write A ¼ 6
i A I Ai, where fAigi A I is a com-

patible family of subgroups height-finite in A. Therefore G ¼ 6
i A I ðAi BGÞ ¼

6
i A I Gi where we put Gi ¼ Ai BG. It is easy to see that Gi is height-finite in A for

each index i a I . That fGigi A I is a compatible family in A follows easily from the

definition and the fact that fAigi A I is a compatible family in A.

(: First of all, since A=G is simply presented, by virtue of [13], vol. II, ‘‘Char-

acteristic Theorem’’, pp. 99–100, there is a nice composition series from 1 to A=G,

1 ¼ A0=G; . . . ;Aa=G; . . . ;Al=G ¼ A=G

where Aaþ1=G=Aa=GGAaþ1=Aa is cyclic of order p and Aa=G is nice in A=G for

all a < l, and Al ¼ A. Since G is nice in A, it follows from [13], vol. II, Lemma

79.3, p. 74, that all Aa are nice in A.

Thus, we extract a nice composition series in A from G to A, namely

G ¼ A0; . . . ;Aa; . . . ;Al ¼ A:

On the other hand, since G is strongly simply presented in A, it follows that

there exists a nice composition series in A from 1 to G,

1 ¼ G0; . . . ;Gb; . . . ;Gm ¼ G;

where Gbþ1=Gb is cyclic of order p and Gb is nice in A for all bam; we put

Gmþ1 ¼ A1, etc.

Finally, we obtain a smooth well-ordered ascending tower of nice subgroups

of A,

1 ¼ C0; . . . ;Cn; . . . ;Cl ¼ A;

such that Cnþ1=Cn is cyclic of order p for all n < l. Therefore A is simply pre-

sented, as claimed. r

As a direct consequence, we obtain the following assertion regardless of the

lengths both of A and G. (Compare with [8] for groups with countable length.)
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Corollary ([8]). Let A be an abelian reduced p-group with a nice subgroup G so

that A=G is simply presented. If G ¼ 6
n<o

Gn, where Gn JGnþ1aG is height-

finite in A for each nb 1 (in particular, if G is countable), then A is simply

presented.

When A possesses countable length, the converse implication is also satisfied.

2. Cl-p-groups, l an ordinal

Following Megibben [23] an abelian p-group A is said to be a Cl-group provided

that A=paA is simply presented (i.e., totally projective) for each a < l.

Similarly the subgroup G of A is called a strongly Cl-subgroup of A if G=paG is

strongly simply presented (i.e., strongly totally projective) in A=paG for all a < l.

The following technicality is folklore, but for the sake of completeness we in-

clude a proof.

Lemma 2.1. Assume that G is a balanced (i.e., nice and isotype) subgroup of the

abelian p-group A. Then, for each ordinal number a, the following hold:

(a) ðpaAþ GÞ=paA is balanced in A=paA;

(b) paG is nice in A;

(c) G=paG is balanced in A=paG.

Proof. (a) First we show that the isotypeness of G in A implies the same property

for ðpaAþ GÞ=paA in A=paA.

For each ordinal d < a, it follows from the modular law that

½ðpaAþ GÞ=paA�B pdðA=paAÞ ¼ ½ðpaAþ GÞ=paA�B ðpdA=paAÞ

¼ ½ðpaAþ GÞB pdA�=paA

¼ ðpaAþ GB pdAÞ=paA

¼ ðpaAþ pdGÞ=paA

J
�
paAþ pdðG þ paAÞ

�
=paA

J pd
�
ðpaAþ GÞ=paA

�
;

whence the desired equality.

Secondly, concerning the niceness, it is equivalent to show by [13], vol. II,

Lemma 79.3, that paAþ G is nice in A. For any limit ordinal number b, we dis-

tinguish two cases.

Case 1. ba a: then 7
t<b

ðpaAþ G þ ptAÞ ¼ 7
t<b

ðG þ ptAÞ ¼ G þ pbA ¼
paAþ G þ pbA.
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Case 2. b > a: then 7
t<b

ðpaAþ G þ ptAÞ ¼ 7
t<a

ðptAþ GÞB
7

aat<b
ðpaAþ GÞ ¼ 7

t<a
ðptAþGÞB ðpaAþGÞ ¼ paAþ G ¼ paAþGþ pbA,

as required.

(b) The niceness of G in A ensures that 7
t<b

ðG þ ptAÞ ¼ G þ pbA for each

limit ordinal b. Thus, by the modular law, for each limit ordinal b > a we have

7
t<b

ðpaG þ ptAÞ ¼ 7
t<a

ðpaG þ ptAÞ B 7
aat<b

ðpaG þ ptAÞ J ðG þ pbAÞ B
paA ¼ pbAþ ðGB paAÞ ¼ pbAþ paG, as required. For ba a we have

7
t<b

ðpaG þ ptAÞ ¼ 7
t<b

ptA ¼ pbA ¼ pbAþ paG. That is why, in both cases,

7
t<b

ðpaG þ ptAÞ ¼ pbAþ ptG, as required.

By applying the same technique, one can show that if C is a nice subgroup of

the balanced subgroup G of A, then C is nice in A; note that paG is always nice

in G.

(c) The niceness follows directly from [13], vol. II, Lemma 79.3. As for the

isotypeness, for every ordinal d, by the modular law together with (b), it follows

that ðG=paGÞB pdðA=paGÞ ¼ ½GB ðpdAþ paGÞ�=paG ¼ ðpaG þ pdGÞ=paG ¼
pdðG=paGÞ, as required.

Notice that (c) follows also directly from [13], vol. II, property (c), p. 78. r

It is worth noting that pnAþ G is always nice in A for each n a N, in-

dependent of the subgroup G of A. Indeed, for each limit ordinal b,

7
t<b

ðpnAþ G þ ptAÞ ¼ 7
nat<b

ðpnAþ GÞ ¼ pnAþ G ¼ pnAþ G þ pbA.

Now we prove the following result.

Theorem 2.1. Let G be a balanced subgroup of the abelian p-group A so that A=G

is a Cl-group. Then A is a Cl-group if and only if G is a Cl-group.

Proof. Observe that ðpaAþ GÞ=paAGG=ðGB paAÞ ¼ G=paG. Moreover,

A=G=paðA=GÞ ¼ A=G=ðpaAþ GÞ=GGA=ðpaAþ GÞGA=paA=ðpaAþ GÞ=paA

is simply presented. But, by Lemma 2.1, ðpaAþ GÞ=paA is balanced in A=paA

for all ordinals a. Furthermore, it is well known that

A=paAG ½G=paG�a ½A=G=paðA=GÞ�:

Consequently, A=paA must be totally projective for all a < l provided that so is

G=paG. Thus A is a Cl-group.

Conversely, if A=paA is simply presented, then so is G=paG as an isomorphic

copy of its direct summand (see, e.g., [13], vol. II, Lemma 81.5, p. 84, and ‘‘Char-

acteristic Theorem’’, pp. 99–100). r

Note. Since it is well known that any p-group is a s-summable Cl-group only

when it is totally projective of length cofinal with o, one may derive, in accor-

dance with [3] and Theorem 2.1, once again Theorem 1.1 for length cofinal with o.
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3. Pillared p-groups

The notion of ‘‘pillared groups’’ was introduced, to my knowledge, by P. Hill; see

[14], Definition 3.4, p. 261. These are abelian p-groups whose first Ulm factor is

S-cyclic (i.e., a direct sum of cyclic groups).

Definition 3.1. The abelian p-group A is called pillared if A=poA is S-cyclic.

Moreover, the subgroup G of an abelian p-group A is called strongly pillared in

A provided that G=poG is strongly S-cyclic in A=poG (for the terminology see [3]

and [8]).

It is well known that the following inclusions hold:

fsimply presented p-groupsgJ fCl-groups; l > og
J fpillared groups ¼ Coþ1-groupsg
J fS-groupsg:

Theorem 3.1. Let A be an abelian p-group with a nice subgroup G such that A=G

is pillared. If G is strongly pillared in A, then A is pillared. The converse holds pro-

vided that GB poA ¼ poG.

In particular, when G is in addition pure in A, the group A is pillared if and only

if the group G is pillared.

Proof. Observe that A=G=poðA=GÞ ¼ A=G=ðpoAþ GÞ=GGA=ðpoAþ GÞG
A=poA=ðpoAþ GÞ=poA is S-cyclic. By hypothesis, G=poG ¼ 6

i<o
ðGi=p

oGÞ
so that poGJGi JGiþ1aG and, for every ib 1, Gi B piA ¼ poG. Conse-

quently, G ¼ 6
i<o

Gi and so ðpoAþ GÞ=poA ¼ 6
i<o

½ðpoAþ GiÞ=poA�. More-

over, by modularity, we have ½ðpoAþ GiÞ=poA�B piðA=poAÞ ¼ ½ðpoAþ GiÞ=
poA� B ðpiA=poAÞ ¼ ½ðpoAþ GiÞB piA�=poA ¼ ðpoAþ Gi B piAÞ=poA ¼ 0.

Thus ðpoAþ GÞ=poA is strongly S-cyclic in A=poA. Hence, the aforementioned

criterion of Dieudonné in [12] works to conclude that A=poA is S-cyclic, as

asserted.

Let now A=poA be S-cyclic. Then, being a subgroup, A=poAK ðG þ poAÞ=
poA is strongly S-cyclic in A=poA. Thus ðG þ poAÞ=poA ¼ 6

i<o
ðCi=p

oAÞ,
where poAJCi JCiþ1aG þ poA and Ci B piA ¼ poA for each ib 1. Hence

G ¼ 6
i<o

ðCi BGÞ. On the other hand, ðG þ poAÞ=poAGG=ðGB poAÞ ¼
G=poG are valuated isomorphic, thus preserve heights, and G=poG ¼
6

i<o
½ðCi BGÞ=poG�. Hence it follows that Ci BGB piA ¼ poABG ¼ poG.

Thus G=poG is strongly S-cyclic in A=poG, as claimed.

The final assertion of the theorem is an elementary consequence of the first two

statements. r
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4. e1-S-cyclic p-groups

The abelian p-group A is called @1-S-cyclic if each of its countable subgroups is

S-cyclic. Obviously such a group is reduced since the divisible groups ZðplÞ are
countable.

The subgroup G of A is said to be strongly @1-S-cyclic in A if every countable

subgroup of G is strongly S-cyclic in A. Because a strongly S-cyclic subgroup is

S-cyclic, it is clear that a strongly @1-S-cyclic subgroup is itself @1-S-cyclic.

It is also known for a long time that, in virtue of the second theorem due to

Prüfer (see e.g. [13], vol. I, Theorem 17.3, p. 88), each S-cyclic p-group is @1-S-

cyclic, while the converse is wrong. In fact, let A ¼ 6
a<W

Aa, Aa JAaþ1aA,

where Aa is a countable separable p-group for all a < W. Then, by Prüfer’s second

theorem, Aa is a S-cyclic group. Clearly, jAj ¼ jWj ¼ @1 and for each HaA with

jHj ¼ @0 there is an index g < W such that HJAg, whence H is S-cyclic, as

required. Nevertheless A need not be S-cyclic although it is even separable (i.e.,

without elements of infinite heights , poA ¼ 0) when almost all subgroups Aa are

not pure and nice in A, hence it is not S-cyclic, as expected, which proves our

claim (see also [13] for more details). Similar constructions were considered in [15].

An abelian p-group A is called an m-group if jAj ¼ m and, for every HaA,

the inequality jHj < m implies that H is S-cyclic. The first example of a separable

m-group which is not S-cyclic was constructed by Nunke; see [25], where m ¼ @n

for n a N. Hill showed in [16] that the limitation on n cannot be ignored by prov-

ing that each @o-group is indeed S-cyclic. In the literature there also appear the

so-called m-S-cyclic groups, i.e., groups which are not S-cyclic, but any subgroup

of cardinal strictly less than m is S-cyclic. It is immediate that each @k-S-cyclic

group is @n-S-cyclic whenever kb n. Notice that @1-S-cyclic p-groups are precisely

the separable ones.

We are now in a position to show the following result.

Theorem 4.1. Suppose that A is an abelian p-group with a subgroup G so that

A=G is @1-S-cyclic. Then A is @1-S-cyclic if and only if G is strongly @1-S-cyclic

in A.

Proof. The necessity is obvious since a subgroup of a S-cyclic group is strongly S-

cyclic in it.

To prove su‰ciency, take BaA with jBj ¼ @0. Since ðBþ GÞ=GGB=ðBBGÞ
we distinguish two cases.

Case 1. B=ðBBGÞ is finite. Then jBj ¼ jBBGj and so G being @1-S-cyclic

assures that BBG is S-cyclic. Then so is B by [13], vol. I, Proposition 18.3, p. 92.

Case 2. B=ðBBGÞ is countable. The hypothesis on A=G ensures that

B=ðBBGÞ is S-cyclic. If BBG is countable, the conditions on G force BBG to

be strongly S-cyclic in A, whence in B. Otherwise, if BBG is finite, then it can

be imbedded in a countable subgroup of G and so in a subgroup which is strongly
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S-cyclic in A. Thus it follows that BBG is strongly S-cyclic in A, hence in B.

Finally, Dieudonné’s criterion implies that B is S-cyclic, as required. r

As a direct consequence we obtain the following result.

Corollary 4.1. Let A be an abelian p-group with a subgroup G such that A=G is

bounded. Then A is @1-S-cyclic if and only if G is @1-S-cyclic.

Proof. It is trivial to check that subgroups of @1-S-cyclic groups are themselves

@1-S-cyclic, so the necessity follows.

To establish su‰ciency, observe that pnAJG for some n a N, hence poA ¼
poG. Now everything follows from the proof of the previous theorem.

Let us, however, give the following independent confirmation. Let B be a

countable subgroup of A. Then ðBþ GÞ=GGB=ðBBGÞ is bounded. Being a

subgroup of G, BBG is separable (finite or infinite countable) and so it follows

easily that B is separable as well. Hence B is a direct sum of cyclic groups by

Prüfer’s second theorem. r

In closing this section, we emphasize that if GaA is a nice subgroup of the

abelian p-group A, then A is separable if and only if G is strongly separable in A

(i.e., GB poA ¼ 0) and A=G is separable; in particular, when G is a pure and nice

subgroup, A is separable if and only if both G and A=G are separable. If A=G is

taken to be separable a priori, the condition on niceness follows as a corollary.

5. Torsion-complete p-groups

For the definition of a torsion-complete p-group see [13], vol. II, p. 15. We need

the following criterion due to Kulikov [22] and Papp [26]; see also [13], vol. II,

Theorem 68.4, p. 17.

Theorem (Kulikov, 1941; Papp, 1958). Let A be a reduced abelian p-group. Then

A is torsion-complete if and only if A is a direct summand of each abelian p-group in

which it is a pure subgroup.

Before proving the main result of this section, we briefly sketch the history.

Fuchs asked whether a separable abelian p-group A is torsion-complete if it

contains a torsion-complete subgroup G such that A=G is torsion-complete (see

[13], vol. II, Problem 54, p. 55). Almost thirty years ago, Hill and Megibben [18]

answered this question in the negative. In other words, a separable extension of

a torsion-complete group by another torsion-complete group need not be again

torsion-complete. By imposing restrictions one can, however, obtain a positive

answer to Fuchs’ question. We show in the sequel that if the subgroup is chosen
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to be pure, then Fuchs’ problem has a positive solution: if G is a pure subgroup of

an abelian p-group A and G and A=G are torsion-complete, then so is A.

We mention some further results in this direction. If GaA with G torsion-

complete and A=G bounded, then A is torsion-complete. This is mainly due to

D. O. Cutler; see also [13], vol. II, Ex. 8(b), p. 20. Moreover, if A is separable

containing a bounded subgroup G such that A=G is torsion-complete, then A is

torsion-complete (see [28], Lemma 2, and [1], Theorem 4.1). This is in contrast

to S-cyclic groups by an example due to Dieudonné given in [12]. It was also

shown in [1] that if G is a bounded and closed subgroup of the separable p-group

A (thus A=G is separable), then A is torsion-complete if and only if A=G is torsion-

complete. It is worth noting that the necessity was preliminary known; see [20],

Lemma 4.23. Here it is shown that if G is bounded and A is torsion-complete

such that A=G is separable, then A=G is torsion-complete. So Theorem 4.1 in [1]

has a predecessor, but the proof given there is of some interest.

It is well known that a nice subgroup of a torsion-complete p-group is torsion-

complete as well. This is perhaps not true in general for direct sums of torsion-

complete p-groups, but it is correct for fully invariant (i.e., completely char-

acteristic) subgroups. In fact, a nice fully invariant subgroup of a direct sum of

torsion-complete p-groups is a direct sum of torsion-complete p-groups. Indeed,

write G ¼ 0
i A I Gi, where all Gi are torsion-complete, and let N be nice in G.

Then N ¼ 0
i A I Ni, where Ni ¼ NBGi. Now it is well known that N is nice in

G if and only if Ni is nice in Gi for each i a I . Thus every Ni is torsion-complete,

hence N is a direct sum of torsion-complete groups.

Theorem 5.1. Suppose that A is an abelian p-group which contains a pure and nice

subgroup G. Then A is torsion-complete if and only if both G and A=G are torsion-

complete.

Proof. First we prove the necessity. It is well known that a nice subgroup of a

torsion-complete group is again torsion-complete, which is actually a consequence

of [20], Lemma 4.22, or [13], vol. II, Corollary 68.7, p. 18. Thus G is torsion-

complete if A is torsion-complete. Since G is pure in the torsion-complete group

A, A=G must be a direct sum of a divisible group and a torsion-complete group by

[20] or [13], vol. II, Proposition 68.8, p. 19. But G being nice in the reduced group

A assures that A=G is reduced, hence A=G is torsion-complete.

To prove su‰ciency, we first note that A is reduced since G and A=G are re-

duced (this is true even without G being nice and pure in A). Furthermore, assume

that A is a pure subgroup of the abelian p-group K . Then A=G is pure in K=G,

and by Kulikov–Papp’s result together with the hypothesis on A=G we obtain that

K=G ¼ ðA=GÞa ðL=GÞ for some subgroup L of K containing G. Thus it is a

routine matter to see that K ¼ Aþ L with ABL ¼ G. But since G is pure in A,

the transitivity of the pureness implies that G is pure in K , hence in L. Conse-
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quently, the hypothesis on G combined with the Kulikov–Papp criterion yields

that L ¼ GaL1 for some L1aL. Furthermore, K ¼ AaL1 since ABL1 ¼
ABLBL1 ¼ GBL1 ¼ 0. Finally, we again impose the theorem of Kulikov–

Papp to deduce that A is torsion-complete, as required. r

We recall that the abelian p-group A is semi-complete if it is the direct sum of a

torsion-complete group and a direct sum of cyclic groups.

As an immediate consequence, we have the following.

Corollary 5.1. Let A be an abelian p-group with a pure subgroup G such that A=G

is semi-complete. If G is torsion-complete, then A is semi-complete.

Proof. Write A=G ¼ ðT=GÞa ðC=GÞ, where the first factor is torsion-complete

and the second one is S-cyclic. Then A ¼ T þ C with T BC ¼ G. Since G is

pure in A, it follows that G is pure both in T and C. Thus, as in the proof of the

su‰ciency in Theorem 5.1, one shows that T is torsion-complete.

On the other hand, referring to a theorem of Kulikov [22] (see also [13],

vol. I, Theorem 28.2, p. 120), we may write C ¼ GaC1 where C1 GC=G is

S-cyclic. Finally, we conclude that A ¼ T aC1 because T BC1 ¼ T BCBC1 ¼
GBC1 ¼ 0. So A is semi-complete. r

Problem 5.1. Determine whether or not A is a semi-complete p-group if it con-

tains a pure, semi-complete subgroup G such that A=G is semi-complete.

Problem 5.2. Decide whether or not A is a semi-complete p-group if it contains a

pure subgroup G such that G is S-cyclic and A=G is torsion-complete. (Notice

that if G is bounded, by a theorem of Prüfer–Kulikov (see [22] or [13], vol. I, The-

orem 27.5, p. 118), AGGaA=G is torsion-complete, hence semi-complete.)

We now show that Problem 5.1 has a positive answer if Problem 5.2 can be

answered in the a‰rmative.

Indeed, as in the proof of Corollary 5.1, A ¼ T aC1, where C1 is S-cyclic. It

is enough to show that T is semi-complete if T=G is torsion-complete and G

is semi-complete. Write G ¼ U aV , where U is torsion-complete and V is S-

cyclic. Since T=GGT=U=G=U is torsion-complete, G=U is pure in T=U because

G is pure in A, whence in T , and G=U GV is S-cyclic. By our assumption that

Problem 5.2 has a positive solution we conclude that T=U is semi-complete.

Write T=U ¼ ðX=UÞa ðY=UÞ, where the first summand is torsion-complete and

the latter one is S-cyclic. As above, T ¼ X þ Y with X BY ¼ U . Moreover, U

being pure in G implies that it is pure in A, hence in Y . As above, Y ¼ U aY1,

where Y1 is S-cyclic, whence Y is semi-complete. Thus T ¼ X aY1 since

X BY1 ¼ X BY BY1 ¼ U BY1 ¼ 0. Now Theorem 5.1 ensures that X is

torsion-complete since U , being pure in A, is pure in X . Thus T is semi-complete,

and we are done.
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6. Thick p-groups and essentially finitely indecomposable p-groups

For the definition of such groups we refer to [1]. We recollect the following nec-

essary and su‰cient condition from [1].

Criterion (Benabdallah–Wilson, 1978). The abelian p-group A is thick if and only

if there exists m a N such that ðpmAÞ½p�JK for all KaA with A=K is S-cyclic.

Analogously the subgroup G of the abelian p-group A is called strongly thick

in A if and only if there exists t a N such that ðptAÞ½p�JK for all KaG with

G=K is S-cyclic.

It is an easy exercise to show that strongly thick subgroups are thick.

It is well known that the class of all thick groups properly contains the torsion-

complete groups (see [1], Corollary 3.4). Also the divisible p-groups are thick, and

the S-cyclic groups are thick precisely when they are bounded.

The following statement is our major tool.

Proposition 6.1. Assume that A is a thick abelian p-group with a pure subgroup G.

Then A=G is thick.

Proof. Choose a subgroup M=G of A=G such that A=G=M=GGA=M is

S-cyclic. Then, by the hypothesis on A and the Benabdallah–Wilson cri-

terion, there is m a N such that ðpmAÞ½p�JM. Therefore ðpmAÞ½p� þ GJM

or, equivalently,
�
ðpmAÞ½p� þ G

�
=GJM=G. Since G is pure in A it follows

that ðpmAþ GÞ½ p� ¼ ðpmAÞ½p� þ G½ p�, hence
�
ðpmAþ GÞ½p� þ G

�
=GJM=G.

Moreover, G being pure in pmAþ GJA gives that
�
pmðA=GÞ

�
½ p� ¼�

ðpmAþ GÞ=G
�
½p� ¼

�
ðpmAþ GÞ½p� þ G

�
=G. Hence

�
pmðA=GÞ

�
½p�JM=G,

and by the Benabdallah–Wilson criterion the assertion follows. r

We note that if G is bounded, the converse holds. For in view of [13], vol. I,

Theorem 27.5, we may write AGGaA=G, so Proposition 6.3 below will work.

We now show the following result (for the special case when A=G is bounded a

priori, see [10]).

Proposition 6.2. Suppose that A is an abelian p-group with a pure subgroup G such

that A=G is S-cyclic. Then the following conditions are equivalent:

(a) A is thick;

(b) G is strongly thick in A;

(c) G is thick and A=G is bounded.

Proof. (a) ) (b): Let G=H be S-cyclic for an arbitrary subgroup H of G. Since

G=H is obviously pure in A=H, it is strongly S-cyclic in it. On the other hand,
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A=GGA=H=G=H is also S-cyclic. Thus, by Dieudonné’s criterion, A=H is S-

cyclic, and a result due to Kulikov [22] (see [13], vol. I, Theorem 28.2) is applicable

to deduce that A=HG ðG=HÞa ðA=GÞ is S-cyclic. By the hypothesis on A this

implies that ðpmAÞ½p�JH for some natural number m. Finally, ðpmGÞ½p�JH.

(b) ) (a): Let A=H be S-cyclic for some arbitrary but fixed HaA. Then

ðG þHÞ=HGG=ðGBHÞ is S-cyclic as well. The hypothesis on G then yields

that there exists a positive integer t such that ðptAÞ½p�JGBHJH.

(b) , (c): To check the second equivalence, we first observe by Proposition

6.1 that A thick implies that A=G is thick, hence the limitation on this quotient

to be S-cyclic implies that it is bounded. Moreover, if A=G is bounded there is

t a N so that ptAJG. Hence it is easy to show that the strong thickness of G

in A and the ordinary thickness of G are, really, equivalent.

Finally, what remains to prove is that G strongly thick in A implies that A=G

must be bounded if G is pure in A. Indeed, since G=GG 1 is always a S-cyclic

group, there exists a natural number t such that ðptAÞ½p�JG. But the purity of

G in A ensures that ðptAÞ½p� ¼ ðptGÞ½p�. Since ptG is a pure subgroup of ptA, it

follows that ptA ¼ ptG, hence ptAJG and so A=G is bounded, as required. r

Remark 6.1. Since A=G is S-cyclic and G is pure in A, it follows by a result of

Kulikov [22] (see [13], vol. I, Theorem 28.2) that AGGaA=G. Thus, if G is

thick then A is the direct sum of a thick group and a S-cyclic group; however A

need not be thick or, in other words, the direct sum of a thick group and a S-cyclic

group is not necessarily thick; for S-cyclic groups are thick if and only if they are

bounded.

Moreover, we note that if A is thick and A=G is S-cyclic, then there is t a N so

that ðptAÞ½p�JG. Thus, as shown above, the purity of G in A gives that A=G

must be bounded. This is another confirmation of the above result.

By analogy with the case of torsion-complete groups, we state the following.

Problem 6.1. Let A be an abelian p-group with a pure (and/or nice) subgroup

G such that A=G is thick. Does it follow that A is thick if and only if G is

thick?

In accordance with Proposition 6.1, the necessity of the problem can be refor-

mulated as whether a pure (and/or nice) subgroup of a thick group is again thick.

In fact, the condition on A=G to be thick does not give any extra information

since it follows from the thickness of A whenever G is pure in A. We conjecture

that the question has a negative answer. In this direction we note that it follows

from [27], Theorem 5.7, that thick groups are closed under pure extensions of

thick groups by thick groups, i.e., if G is pure in A such that both G and A=G

are thick, then A is thick. Thus the su‰ciency holds.
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By definition, an abelian p-group is essentially finitely indecomposable (abbre-

viated to e.f.i.) if it has no unbounded S-cyclic direct summand. It is a well-known

fact and an elementary matter to verify that all thick groups are e.f.i. Irwin con-

jectured that the converse holds as well; however, these two classes of groups do

not coincide. But by a result of Irwin (see [1], Corollary 3.3) pure-complete e.f.i.

groups are thick. In this light, it is straightforward that direct summands of e.f.i.

groups are again e.f.i. and finite direct sums of e.f.i. groups are also e.f.i. (see e.g.

[20], Theorem 4.3). These two assertions have the corresponding analogue for

thick groups.

Proposition 6.3. Finite direct sums of thick p-groups are thick p-groups.

Proof. It is su‰cient to consider the sum of two thick p-groups, B and C, and the

proof that A ¼ BaC is thick. The statement then follows by induction.

Let A=K be S-cyclic for some KaA. Then ðBþ KÞ=KGB=ðBBKÞ and

ðC þ KÞ=KGC=ðCBKÞ are both S-cyclic as being subgroups of A=K . Thus

the hypotheses on B and C combined with the Benabdallah–Wilson criterion

imply that there are integers r and s such that ðprBÞ½p�JBBK JK and

ðpsCÞ½p�JCBKJK . Therefore ðptAÞ½p� ¼ ðptBÞ½p�a ðptCÞ½p�J ðprBÞ½p�a
ðpsCÞ½p�JK where t ¼ maxðr; sÞ. By invoking again the Benabdallah–Wilson

criterion the claim follows. r

Notice that Proposition 6.3 fails for infinite direct sums: the unbounded

S-cyclic groups provide a counterexample.

Proposition 6.4. A direct summand of a thick p-group is a thick p-group.

Proof. Write A ¼ BaC where A is thick. By the Benabdallah–Wilson criterion

it su‰ces to prove that there exists a positive integer t such that ðptBÞ½p�JK

whenever B=K is a S-cyclic group. If B=K is S-cyclic, then so is A=ðKaCÞ ¼
ðBaCÞ=ðKaCÞGB=K . Hence, by the Benabdallah–Wilson criterion, there

is t a N such that ðptAÞ½p�JKaC. Thus by modularity we obtain that

ðptBÞ½p�J ðKaCÞBB ¼ Ka ðBBCÞ ¼ K , as required. r

Note that there exist subgroups of thick p-groups which are not necessarily di-

rect summands, but which are thick groups too. In fact, if P is a pure subgroup of

the thick p-group T such that T=ðPþ T 1Þ is S-cyclic, then it is thick. For it is

clear that ðPþ T 1Þ=T 1 is pure in T=T 1 with T=T 1=ðPþ T 1Þ=T 1 GT=ðPþ T 1Þ
S-cyclic. By Kulikov’s theorem [22] (see also [13], vol. I, Theorem 28.2) we have

T=T 1 G ðPþ T 1Þ=T 1aT=ðPþ T 1ÞG ðP=P1Þa
�
T=ðPþ T 1Þ

�
. We know that

a p-group M is thick if and only if M=M 1 is thick. So it follows from Proposition

6.4 that P is thick.
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Question 6.1. Are the balanced subgroups of thick p-groups thick as well?

We now show the validity of the corresponding analogue of Proposition 6.1.

Proposition 6.5. Suppose that A is an e.f.i. abelian p-group with a pure subgroup

G. Then A=G is e.f.i.

Proof. Write A=G ¼ ðM=GÞa ðL=GÞ where L=G is S-cyclic. Then A ¼ M þ L

and MBL ¼ G. From G being pure in A, whence in L, it follows by Kulikov’s

theorem [22] or [13], vol. I, Theorem 28.2, that L ¼ GaL1. Thus A ¼ MaL1

for MBL1 ¼ MB ðLBL1Þ ¼ ðMBLÞBL1 ¼ GBL1 ¼ 0. Since L1 GL=G is

S-cyclic, it follows that it is bounded. r

Notice that when G is bounded, the converse is true. In fact, applying [13],

vol. I, Theorem 27.5, one can write AGGaA=G and so [20], Theorem 4.3,

works.

We are now concerned with the following assertion which is parallel to Propo-

sition 6.2.

Proposition 6.6. Let A be an abelian p-group with a pure subgroup G such that

A=G is S-cyclic. Then A is e.f.i. if and only if G is e.f.i. and A=G is bounded.

Proof. By virtue to Kulikov’s theorem [22] or [13], vol. I, Theorem 28.2, one can

write that AGGaA=G. Furthermore, Proposition 6.5 ensures that A=G is e.f.i.

S-cyclic, hence bounded. Then apply that finite direct sums of e.f.i. groups are

e.f.i. and a direct summand of e.f.i. groups is again e.f.i. r

We can replace the condition of pureness with full invariance.

Proposition 6.7. Suppose G is an e.f.i. fully invariant subgroup of the abelian p-

group A. If A=G is e.f.i., then A is e.f.i.

Proof. Write A ¼ KaP ¼ Ka0l
n¼0 0an

3pn4 where P ¼ 0l
n¼0 0an

3pn4 is

S-cyclic and an is a cardinal. Then G ¼ ðGBKÞa ðGBPÞ ¼ ðGBKÞa
0l

n¼0
0

an
ðGB 3pn4Þ. Thus GBP ¼ 0l

n¼0
0

an
ðGB3pn4Þ and ðPþ GÞ=G

GP=ðPBGÞ ¼ 0l
n¼0 0an

3pn4=0l
n¼0 0an

ðGB3pn4Þ G 0l
n¼0 0an

½3pn4=ðGB
3pn4Þ� are S-cyclic too. Now A=G ¼ ½ðK þ GÞ=G�a ½ðPþ GÞ=G� since by modu-

larity ðK þ GÞB ðPþ GÞ ¼ G þ KB ðPþ GÞ ¼ G þ KB ðPþ GBKÞ ¼ Gþ
GBK þ KBP ¼ G. But ðPþ GÞ=G being S-cyclic implies that it is bounded,

hence so is P since PBG is bounded. r

Problem 6.2. Prove the same result for thick groups. Moroever, if G is a fully

invariant thick (respectively a fully invariant e.f.i.) subgroup of A, does it follow
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that A is thick (respectively e.f.i.) if and only if A=G is thick (respectively e.f.i.)?

Are e.f.i. groups closed under pure extensions?

We also mention the following result which is of independent interest.

Proposition 6.8. Any thick (respectively e.f.i.) abelian p-group is semi-complete if

only if it is torsion-complete.

Proof. Recall that thick groups are e.f.i. Since e.f.i. groups have only bounded di-

rect summands which are S-cyclic groups, the torsion-completeness follows with

the aid of [20] or [13], vol. II, Corollary 68.6, p. 18, or Exercise 8(b), p. 20. r

To end this section, we state the following weaker version of the above-

mentioned Irwin conjecture.

Problem 6.3. Are the weakly o1-separable e.f.i. p-groups thick and, in particular,

bounded?

In this direction, we note that it is a result by Eklof–Mekler that under

ðMAþ sCHÞ any unbounded weakly o1-separable p-group of cardinality @1 is

C-decomposable, i.e., it possesses an unbounded direct summand of cyclic groups

of final rank equal to that of the whole group; thus it is not e.f.i.

(For the class of weakly o1-separable p-groups, see the next section.)

7. (Weakly) o1-separable p-groups

The precise definition of a p-primary weakly o1-separable group is given in [24].

They are necessarily separable. For convenience of the reader and for further

use, we shall quote the following necessary and su‰cient condition due to Megib-

ben [24].

Criterion (Megibben, 1987). Let A be a separable abelian p-group A. Then the

following conditions are equivalent:

(a) A is weakly o1-separable;

(b) for all CaA: if jCj ¼ @0 then j7
i<o

ðpiAþ CÞj ¼ @0;

(c) jpoðA=CÞja@0 whenever CaA with jCj ¼ @0.

The following statement contrasts [11] where G is weakly o1-separable while

A=G is countable.

Theorem 7.1. Suppose that G is a countable nice subgroup of the separable p-group

A. Then A is weakly o1-separable if and only if A=G is weakly o1-separable.
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Proof. ): First observe that A=G is separable since G is nice in the separable

group A. Let T=GaA=G with jT=Gj ¼ @0. Then jT j ¼ @0 and Megibben’s cri-

terion gives that j7
i<o

ðpiAþ TÞj ¼ @0. But @0 ¼ jT=Gja
��7

i<o

�
piðA=GÞþ

T=G
��� ¼ j7

i<o
½ðpiAþ TÞ=G�j ¼ j½7

i<o
ðpiAþ TÞ�=T ja j7

i<o
ðpiAþ TÞj ¼ @0.

Consequently,
��7

i<o

�
piðA=GÞ þ T=G

��� ¼ @0. By Megibben’s criterion A=G is

weakly o1-separable.

(: Let C be a countable subgroup of A. Since A=G is separable, G is nice in

A and poAJG. We consider two basic cases:

Case 1. ðC þ GÞ=G is finite. Then it is nice in A=G and because of the niceness

of G in A (see [13], vol. II, Lemma 79.3) we infer that C þ G is nice in A. Thus

7
i<o

ðpiAþ C þ GÞ ¼ poAþ C þ G ¼ C þ G, whence j7
i<o

ðpiAþ C þ GÞj ¼
jC þ Gj ¼ @0 and so j7

i<o
ðpiAþ CÞj ¼ @0 since CJ7

i<o
ðpiAþ CÞ, as re-

quired.

Case 2. ðC þ GÞ=G is countable. Then by Megibben’s criterion, it fol-

lows that j7
i<o

½piðA=GÞ þ ðC þ GÞ=G�j ¼ j7
i<o

½ðpiAþ GÞ=G þ ðC þ GÞ=G�j
¼ j7

i<o
½ðpiAþ C þ GÞ=G�j ¼ j½7

i<o
ðpiAþ C þ GÞ�=Gj ¼ @0 and so

j7
i<o

ðpiAþ C þ GÞj ¼ jGj. Since CJ7
i<o

ðpiAþ CÞ and jCj ¼ jGj ¼ @0, it

follows that j7
i<o

ðpiAþ CÞj ¼ @0.

Finally in both situations, we employ again Megibben’s criterion to obtain the

desired statement. r

Problem 7.1. Let A be an abelian separable p-group with a subgroup G so that

A=G is weakly o1-separable. Then A is weakly o1-separable , G is strongly o1-

separable in A , for all HaG : jHj ¼ @0 ) j7
i<o

ðpiAþHÞj ¼ @0.

Note that if G is strongly o1-separable in A, it is weakly o1-separable since

j7
i<o

ðpiAþHÞj ¼ @0 and jHj ¼ @0 force that j7i<o
ðpiG þHÞj ¼ @0.

The following criterion is of independent interest; it is a connection between

Sections 5 and 7.

Proposition 7.1. Any weakly o1-separable torsion-complete p-group with a count-

able basic subgroup is countably bounded. In particular, the weakly o1-separable p-

groups are direct sums of torsion-complete groups with components each of which

possesses a countable basic subgroup only when they are direct sums of cyclic

groups.

Proof. Denote by B a basic subgroup of such a group A. Since A=B is always

divisible and jBj ¼ @0, by Megibben’s criterion A=B is also countable. Thus it

is obvious that A must be countable. So supposing that A is unbounded, by

[13], vol. II, Exercise 7, p. 20, we find that jAj ¼ jBj@0 ¼ @@0

0 > @0, which is a

contradiction. Therefore, A is bounded.
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As for second part, it is well-known (see [24]) that a subgroup of a weakly o1-

separable p-group is a weakly o1-separable p-group. Thus the claim follows from

the first part of the proposition. r

Conjecture 7.1. We conjecture that Proposition 7.1 does not hold true in general,

i.e., the limitation on the countability of the basic subgroup cannot be generally

removed. Nevertheless, we believe that it is consistent in (ZFC), with (CH) even-

tually, that every torsion-complete p-group of cardinal @1 is weakly o1-separable

precisely when it is bounded; for cardinalities strictly greater @1 the result probably

fails. Notice that with (sCH) each torsion-complete group of cardinalitya@1

is bounded; compare with the proof of Proposition 7.1. (See also the above-

mentioned result by Eklof–Mekler in ðMAþ sCHÞ.)

The abelian p-group A is said to be o1-separable if each of its countable sub-

groups is contained in a countable S-cyclic direct summand of A. Such a group

is necessarily separable. In other words, by Prüfer’s second theorem, an abelian

separable p-group A is o1-separable if and only if its countable subgroups can be

embedded in countable direct summands of A.

Proposition 7.2. Let G be a countable nice subgroup of the abelian p-group A. If

A is o1-separable, then A=G is o1-separable.

Proof. Since A is separable, it follows easily that A=G is separable. Choose

K=GaA=G with jK=Gj ¼ @0. Then jK j ¼ @0 and thus K JP such that

jPj ¼ @0 and A ¼ PaA1. Consequently, A=G ¼ ðP=GÞa
�
ðA1 þ GÞ=G

�
since

by modularity we have PB ðA1 þ GÞ ¼ G þ ðPBA1Þ ¼ G. But K=GJP=G and

jP=Gj ¼ @0 because @0 ¼ jK=Gja jP=Gja jPj ¼ @0. That P=G is S-cyclic fol-

lows from Prüfer’s second theorem. r

We note that if G is a pure and bounded subgroup of the abelian p-group

A, then A=G being o1-separable implies that A is o1-separable. In fact, by [13],

vol. I, Theorem 27.5, one may write AGGaA=G.

The following question arises naturally.

Problem 7.2. Assume that G is a countable subgroup of the separable abelian

p-group A. If A=G is o1-separable, does it follow that A is o1-separable?

The next Wallace-type problem is also of interest (for more details see [11]).

Problem 7.3. Assume that G is a subgroup of the separable abelian p-group A

so that A=G is at most countable. If G is o1-separable, does it follow that A is

o1-separable?
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8. Q-p-groups

For completeness we recollect the definition of a p-group to be a Q-group which is

stated in [21] in all generality for arbitrary groups.

Definition (Irwin–Richman, 1965). The separable abelian p-group A is said to be

a Q-group if for each infinite subgroup C of A the equality j7
i<o

ðpiAþ CÞj ¼ jCj
holds.

It is self-evident that every Q-group is weakly o1-separable and that every

weakly o1-separable group of cardinality @1 is a Q-group. So for groups of cardi-

nality @1 these two classes of groups coincide.

The following result is dual to [11] where G is a Q-group and A=G is countable.

Theorem 8.1. Suppose that G is a countable nice subgroup of the separable p-group

A. Then A is a Q-group if and only if A=G is a Q-group.

Proof. ): First we see that A being separable with a nice subgroup G

implies that A=G is separable as well. Take T=GaA=G with jT=Gjb@0. Thus

jT j ¼ jT=Gjb@0 and by definition j7
i<o

ðpiAþ TÞj ¼ jT j. On the other hand,

jT=Gja
��7

i<o

�
piðA=GÞ þT=G

��� ¼ j7
i<o

½ðpiAþTÞ=G�j ¼ j½7
i<o

ðpiAþTÞ�=T j
a j7

i<o
ðpiAþTÞj ¼ jT j ¼ jT=Gj. Therefore,

��7
i<o

�
piðA=GÞþT=G

���¼ jT=Gj.
Now, by definition, A=G is a Q-group.

(: The separability of A=G yields that G is nice in A and that poAJG.

Take an arbitrary infinite subgroup C of A. We distinguish two cases.

Case 1. ðC þ GÞ=G is finite. Then ðC þ GÞ=G is nice in A=G and thus C þ G

is nice in A. Furthermore, 7
i<o

ðpiAþ C þ GÞ ¼ poAþ C þ G ¼ C þ G,

whence jCja j7
i<o

ðpiAþ CÞja j7
i<o

ðpiAþ C þ GÞj ¼ jC þ Gj ¼ jCj and

thus j7
i<o

ðpiAþ CÞj ¼ jCj, as required.
Case 2. ðC þ GÞ=GGC=ðCBGÞ is infinite. Consequently, j7

i<o
½piðA=GÞþ

ðC þ GÞ=G�j ¼ j7
i<o

½ðpiAþGÞ=G þ ðC þGÞ=G�j ¼ j7
i<o

½ðpiAþ G þ CÞ=G�j ¼
j½7

i<o
ðpiAþ G þ CÞ�=Gj ¼ jðC þ GÞ=Gj ¼ jC=ðCBGÞj ¼ jCj. Therefore

j7
i<o

ðpiAþ G þ CÞj ¼ jCj and so j7
i<o

ðpiAþ CÞj ¼ jCj.
The assertion now follows from the definition. r

Problem 8.1. Let A be an abelian separable p-group with a subgroup G such that

A=G is a Q-group. Does the following hold: A is a Q-group , G is a strong Q-

group in A , for all HaG : jHjb@0 ) j7
i<o

ðpiAþHÞj ¼ jHj?

Notice that if G is a strong Q-group in A, it must be a Q-group itself.
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9. p-groups with a nice basis

These groups were defined in [2]. We recall the definition and some basic facts

obtained in [7].

Definition 9.1. The abelian p-group A is said to have a nice basis if it can be

represented as a countable ascending union of nice S-cyclic subgroups. More

precisely, A ¼ 6
n<o

An, An JAnþ1aA and, for each nb 1, An is nice in A and

is S-cyclic.

This class of groups is quite large and properly contains the separable p-

groups, the simply presented p-groups (in particular the direct sums of countable

p-groups), and the poþn-projective p-groups for any natural n.

In [7] it was established that if G has a nice basis and is balanced in A such that

A=G is at most countable, then A has a nice basis as well. Moreover, it was shown

there that A possesses a nice basis only if its large subgroup possesses a nice basis.

The following classical statement from [12] is of interest.

Theorem (Dieudonné, 1952). Let G be a strongly S-cyclic subgroup in A and let

A=G be S-cyclic. Then A is S-cyclic.

Since every S-cyclic group possesses a nice basis (see, e.g., [7]), we present the

following generalization.

Proposition 9.1. Let A be an abelian p-group with a nice subgroup G so that A=G

has a nice basis. If G is strongly S-cyclic in A, then A has a nice basis.

Proof. Write A=G ¼ 6
m<o

ðAm=GÞ, where Am=GJAmþ1=GaA=G are nice S-

cyclic subgroups in A=G. Then A ¼ 6
m<o

Am, Am JAmþ1aA. Moreover, by

[13], vol. II, Lemma 79.3, we deduce that Am is nice in A for all mb 1.

Next we show that each Am is S-cyclic. Consider Am=G for an arbitrary but

fixed natural number m. Since G ¼ 6
i<o

Gi, Gi JGiþ1aG and, for every ib 1,

Gi B piA ¼ 0, we obtain that Gi B piAm ¼ 0, whence G is strongly S-cyclic in Am.

From Am=G being S-cyclic we obtain by Dieudonné’s criterion that each Am is

S-cyclic, as requested. r

The next consequences are immediate.

Corollary 9.1. Suppose that G is a nice and pure subgroup of the abelian p-group

A such that A=G has a nice basis. If G is S-cyclic, then A has a nice basis.

Proof. Since G is S-cyclic and is pure in A, it easily follows that it is strongly

S-cyclic in A. r
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The condition on G to be pure can be removed when we impose additional

restrictions on A=G.

Proposition 9.2. Suppose that A is an abelian p-group with a subgroup G such that

A=G is separable. If G is S-cyclic, then A has a nice basis.

Proof. Since A=G is separable, we can write A=G ¼ 6
n<o

An=G where AnJ
Anþ1aA and, for each nb 1, An=G is nice in A=G and bounded. Since G is

nice in A, it follows from [13], vol. II, Lemma 79.3, that An is nice in A. By [13],

vol. I, Proposition 18.3, G being S-cyclic implies the same property for An, and

hence we are done. r

Observe that since poAJG we have that poA is also S-cyclic. Thus Proposi-

tion 9.2 follows from [7], Proposition 3, as well.

Problem 9.1. Assume that A is an abelian p-group with a nice subgroup G such

that A=G has a nice basis. Does it follow that A has a nice basis if and only if G

has a nice basis in A, or equivalently G ¼ 6
i<o

Gi, Gi JGiþ1aG and all Gi are

nice in A S-cyclic subgroups?

We conjecture that the answer is negative. This is motivated by the ob-

servation that if N is a nice subgroup of A, then NBG need not be nice

neither in G nor in A even when G is nice and isotype in A. Nevertheless, under

some additional assumptions on G this is so; for instance let ðG þNÞB
paA ¼ ðGB paAÞ þ ðNB paAÞ. Then, for each limit ordinal a, we have

7
t<a

ðNBG þ ptAÞJ7
t<a

ðG þ ptAÞ ¼ G þ paA and 7
t<a

ðNBG þ ptAÞJ
7

t<a
ðN þ ptAÞ ¼ N þ paA. Furthermore, by modularity we deduce

that 7
t<a

ðNBG þ ptAÞJ ðN þ paAÞB ðG þ paAÞ ¼ paAþNB ðG þ paAÞ ¼
paAþ GB ðN þ paAÞ. Since ðG þNÞB paA ¼ ðGB paAÞ þ ðNB paAÞ we ob-

tain that GB ðN þ paAÞJGBN þ paA, which implies that 7
t<a

ðNBG þ ptAÞ
¼ NBG þ paA.

So we conclude that some extra requirements on G are necessary for answering

the above question in the a‰rmative.

Problem 9.2. Decide whether or not there are p-groups with a nice basis which

are precisely the separable p-groups.

We finish with a general question.

Problem 9.3. Find other classes of primary abelian groups for which the

Dieudonné-type theorems hold. In particular, find out whether such theorems

hold for the classes of quasi-complete p-groups, pure-complete p-groups, and

direct sums of torsion-complete p-groups.
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We recall that an abelian p-group A is known to be quasi-complete if poðA=HÞ
is divisible whenever H is a pure subgroup of A. We note the simple fact that

a balanced subgroup of a quasi-complete p-group is again quasi-complete and

the factor group of a quasi-complete p-group modulo its pure subgroup is quasi-

complete too.
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[3] P. V. Danchev, Generalized Dieudonné criterion. Acta Math. Univ. Comenian. (N.S.)
74 (2005), 15–24. Zbl 1111.20045 MR 2154393

[4] P. V. Danchev, The generalized criterion of Dieudonné for valuated abelian groups.
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