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Abstract. Let A be a reduced abelian p-group with a nice subgroup G. It is proved that if
A/G is simply presented, then A4 is simply presented precisely when G is strongly simply
presented in 4. Moreover, the same type theorem for the class of W;-Z-cyclic p-groups is
also established without the niceness of G in 4. Some analogous assertions for other exotic
sorts of abelian groups are also considered.

The results obtained strengthen previous results due to J. A. Dieudonné (Portugal.
Math., 1952), P. D. Hill (Trends in Math., 1999), and some other authors.
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I. Introduction

Throughout the present paper, 4 always denotes an abelian p-group, written ad-
ditively, and G is a subgroup of A.

In [12] Jean Dieudonné generalized the classical Kulikov criterion for an abe-
lian p-group to be a direct sum of cyclic groups proved in [22]. This generalization
has numerous applications; for instance it leads to the first example of a separable
p@*lprojective group which is not a direct sum of cyclic groups. This is because
it ensures a connection between a property of the whole group and the same prop-
erty for a certain subgroup combined with the factor group modulo this subgroup.

We refer to this result by Dieudonné as Dieudonné’s criterion. It has many
refinements; see e.g. [3], [4], [5], [8], [9]- In [3] we prove it for the class of o-
summable p-groups. In [8] we extend Dieudonné’s criterion to summable groups
of countable lengths, totally projective groups of countable lengths, and X-groups,
respectively. For the valuated version of these three group classes the interested
reader may consult [4], [5] and [9]. In addition, in [6] we consider the situation
for p®*-projective p-groups when n € N.



122 P. V. Danchev

Recently, in [17] Hill generalized Kulikov’s criterion (see also the joint paper
[19] with Ullery) to primary simply presented groups of arbitrary length by giving
a description in terms of height-finite subgroups similar to that of Kulikov. We
denote this result of Hill’s Hill’s criterion. In the sequel, we shall refine Hill’s nec-
essary and sufficient condition in the sense of Dieudonné.

The purpose of this article is to continue the work in [8] by investigating
for which classes of torsion abelian groups a Dieudonné-type theorem can be
obtained. In addition, we shall also consider concrete examples of some other
exotic group classes for which this type of result is not preserved in general.
Therefore we shall present only sufficient conditions in this case.

The significance of Dieudonné-type results is amply illustrated by their valu-
able applications with respect to the inner structure of the abelian groups; see,
e.g., [13].

The notation is standard and follows essentially [13] or the works cited in the
bibliography. For instance, for an arbitrary element a from A, the symbol |a|,
will always denote the height of ¢ in 4.

II. Main results
1. Simply presented p-groups

The definition of a p-torsion simply presented group can be found in [13], vol. II,
p- 95; see also [17]. For the reader’s convenience we shall list the following neces-
sary and sufficient condition due to Hill [17]; before doing that we need some
conventions.

Definition 1.1 (Hill). Two subgroups C and H of the abelian p-group A are
called compatible in A if each x € C+ H can be written as x = ¢+ h, where
ce Cand h € H such that |c|, = |h| , = |c + h| , 1.e., in other words, the elements
¢ and & have as much height in 4 as the sum ¢ + 4.

Definition 1.2 (Hill). A family of subgroups {4;},., of 4 is said to be compatible
in A4 if for each pair of subsets J and M of the index set I, the subgroups <{4;);,
and <{A,, ),y are compatible in 4.

Now we come to the crucial

Criterion (Hill, 1999). An abelian p-group A is simply presented if and only if
A=\, Ai, where {A;},_, is a compatible family of height-finite (in A) subgroups.

In this way, the subgroup G of A4 is known to be strongly simply presented in A
provided that G = ( J,_, G, where {G;},., is a compatible family in 4 of height-

iel
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finite (in 4) subgroups, or, equivalently, in the reduced case there exists a compo-
sition series from 1 to G consisting of nice subgroups of 4.

Note that if G is strongly simply presented in A, it is not necessarily itself sim-
ply presented; however when it is an isotype subgroup this is true.

We can now prove the following result.

Theorem 1.1. Let A be an abelian reduced p-group with a nice subgroup G so that
A/G is simply presented. Then A is simply presented if and only if G is strongly
simply presented in A.

Proof. = By the above criterion we write 4 = ( J,_, 4;, where {4,},_, is a com-
patible family of subgroups height-finite in 4. Therefore G = UI.E [(4inG) =
\,; Gi where we put G; = 4; 0 G. It is easy to see that G is height-finite in A for
each index i € I. That {G;},, is a compatible family in A follows easily from the
definition and the fact that {4;},_; is a compatible family in A.

<: First of all, since A/G is simply presented, by virtue of [13], vol. II, “Char-
acteristic Theorem”, pp. 99-100, there is a nice composition series from 1 to 4/ G,

1=A4/G,...,4,/G, ..., A,/G=A/G

where A,.1/G/A,/G = A1/ A, is cyclic of order p and A4,/G is nice in A/G for
all « < 2, and 4, = A. Since G is nice in 4, it follows from [13], vol. I, Lemma
79.3, p. 74, that all A, are nice in A.

Thus, we extract a nice composition series in 4 from G to 4, namely

G=Ay,...,Ay,...,A; = A

On the other hand, since G is strongly simply presented in A, it follows that
there exists a nice composition series in 4 from 1 to G,

1=Go,...,Gp...,G, =G,

where Gpy1/Gg is cyclic of order p and Gy is nice in A for all f < u; we put
G,u+1 = A, etc.

Finally, we obtain a smooth well-ordered ascending tower of nice subgroups
of A4,

1=Co,...,Cy,...,C; = A,

such that C,;/C, is cyclic of order p for all v < 4. Therefore A4 is simply pre-
sented, as claimed. |

As a direct consequence, we obtain the following assertion regardless of the
lengths both of 4 and G. (Compare with [8] for groups with countable length.)
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Corollary ([8]). Let A be an abelian reduced p-group with a nice subgroup G so
that A/ G is simply presented. If G = Un<w s Where G, = G, < G is height-
finite in A for each n>1 (in particular, if G is countable), then A is simply
presented.

When A possesses countable length, the converse implication is also satisfied.

2. C;-p-groups, 4 an ordinal

Following Megibben [23] an abelian p-group A4 is said to be a C;-group provided
that A/p*A is simply presented (i.e., totally projective) for each o < /.
Similarly the subgroup G of 4 is called a strongly C;-subgroup of A if G/p*G is
strongly simply presented (i.e., strongly totally projective) in 4/p*G for all o« < /.
The following technicality is folklore, but for the sake of completeness we in-
clude a proof.

Lemma 2.1. Assume that G is a balanced (i.e., nice and isotype) subgroup of the
abelian p-group A. Then, for each ordinal number o, the following hold:

(@) (p*A+ G)/p*A is balanced in A/ p*A;
(b) p*G is nice in A;
(c) G/p*G is balanced in A/ p*G.

Proof. (a) First we show that the isotypeness of G in 4 implies the same property
for (p*4+ G)/p*Ain A/ p*A.
For each ordinal 6 < «, it follows from the modular law that

[(p*4+G)/p* A 0 p°(4/p*A) = [(p*A + G)/p*A] " (p°4/p*A)
=[(p"4+ G)np°Ad]/p*4
— (p*A+ G A pA) [ piA
= (p*A+p°G)/p*4
< (p*A+ p°(G + p*A))/p*4
< p’((p*4+G)/p*4),
whence the desired equality.
Secondly, concerning the niceness, it is equivalent to show by [13], vol. 11,
Lemma 79.3, that p*4 + G is nice in A. For any limit ordinal number S, we dis-
tinguish two cases.

Case 1. B < a: then ()

PA+G+pid) = () _4(G+pd)=G+pld=
p*A+ G+ pPA.

1<ﬂ(
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Case 2. p>o:then () _,(p*A+ G+ p'd)=()_,(p'A+G)n
NuzeeyP?A+G) =), (p7A+G) " (p"A+G) = p"A+ G = p"A+ G+ p'4,
as required.

(b) The niceness of G in A ensures that ﬂKﬂ(G + p*A4) = G+ pP4 for each
limit ordinal . Thus, by the modular law, for each limit ordinal f > « we have
ﬂKﬁ(p“G +p'A4) =), (p*G+p'4) n ﬂmgKﬂ(p“G +p'A) = (G+ pPAa) n
p*A=pPA+ (G p*A) = pPA+ p*G, as required. For <o we have
ﬂKﬁ(p“G +ptA) = ﬂKﬁpTA = pPA = pPA4 + p*G. Thatis why, in both cases,
(Veep(p*G+pTA) = pPA+ pTG, as required.

By applying the same technique, one can show that if C is a nice subgroup of
the balanced subgroup G of A4, then C is nice in A4; note that p*G is always nice
in G.

(c) The niceness follows directly from [13], vol. II, Lemma 79.3. As for the
isotypeness, for every ordinal J, by the modular law together with (b), it follows
that  (G/p*G) N p°(4/p*G) =[G (p°A + p*G)]/p*G = (p*G + p°G)/p*G =
p°(G/p*G), as required.

Notice that (c) follows also directly from [13], vol. II, property (c), p. 78. [

It is worth noting that p"A4 + G is always nice in A for each n e N, in-
dependent of the subgroup G of 4. Indeed, for each limit ordinal p,
Neep(P"A+ G+ pA) = (), . y(p"A+ G) = p"A+ G = p"A + G+ p A.

Now we prove the following result.

Theorem 2.1. Let G be a balanced subgroup of the abelian p-group A so that A/ G
is a Cy-group. Then A is a Cy-group if and only if G is a C;-group.

Proof. Observe that (p*4+ G)/p*A=G/(Gnp*A)=G/p*G.  Moreover,
A/G/p*(4/G) = A/G/(p*A+ G)]G = A/ (p*A + G) = A/ p*A[(p*A + G)/ p*A
is simply presented. But, by Lemma 2.1, (p*4 + G)/p*A is balanced in 4/p*A
for all ordinals . Furthermore, it is well known that

A/p*A=[G/p*Gl ®[4/G/p*(4/G)].

Consequently, 4/p*4 must be totally projective for all « < A provided that so is
G/p*G. Thus A is a C;-group.

Conversely, if A/p*A is simply presented, then so is G/p*G as an isomorphic
copy of its direct summand (see, e.g., [13], vol. II, Lemma 81.5, p. 84, and “Char-
acteristic Theorem”, pp. 99-100). O

Note. Since it is well known that any p-group is a g-summable C;-group only
when it is totally projective of length cofinal with @, one may derive, in accor-
dance with [3] and Theorem 2.1, once again Theorem 1.1 for length cofinal with w.
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3. Pillared p-groups

The notion of “pillared groups™ was introduced, to my knowledge, by P. Hill; see
[14], Definition 3.4, p. 261. These are abelian p-groups whose first Ulm factor is
Y-cyclic (i.e., a direct sum of cyclic groups).

Definition 3.1. The abelian p-group 4 is called pillared if A/p®A is Z-cyclic.

Moreover, the subgroup G of an abelian p-group A4 is called strongly pillared in
A provided that G/p®G is strongly Z-cyclic in A/ p®G (for the terminology see [3]
and [8]).

It is well known that the following inclusions hold:

{simply presented p-groups} = {Cj-groups, 1 > w}
< {pillared groups = C,,,-groups}
< {Z-groups}.

Theorem 3.1. Let A be an abelian p-group with a nice subgroup G such that A/ G
is pillared. If G is strongly pillared in A, then A is pillared. The converse holds pro-
vided that G N p“A = p“G.

In particular, when G is in addition pure in A, the group A is pillared if and only
if the group G is pillared.

Proof. Observe that A/G/p®(A/G)=A/G/(p“A+ G)/G=A/(p“A+ G) =
A/p®A4/(p°A+ G)/p”A is E-cyclic. By hypothesis, G/p°G = J,_,(Gi/p”G)
so that p?G = G; = Gy < G and, for every i > 1, G;np'A = p®“G. Conse-
quently, G = | J,_, G and so (p“4 + G)/p®4 = J,_ [(p”4 + G;)/ p®A]. More-
over, by modularity, we have [(p“A + G;)/p“A]np'(A/p“A) = [(p“A+ G;)/
pPA] n (p'A/p»A) = [(p"A+ G;) 0 p'A]/p?A = (p®A+ Gin p'd)/p®4 = 0.
Thus (p®A4 + G)/p®A is strongly Z-cyclic in 4/p®A. Hence, the aforementioned
criterion of Dieudonné in [12] works to conclude that 4/p“A is Z-cyclic, as
asserted.

Let now A/p®A be X-cyclic. Then, being a subgroup, A/p®A4 2 (G + p©A4)/
p@A is strongly Z-cyclic in A4/p®A. Thus (G+ p»4)/p°A =), ,(Ci/p”A),
where p?4 < C; < Ciy) < G+ p®Aand C;n p'A = p”A for each i > 1. Hence
G=1J,_,(CinG). On the other hand, (G+ p“4)/p®A=G/(Gn p®A)=
G/p®G are valuated isomorphic, thus preserve heights, and G/p®G =
U,-,[(CinG)/p”G]. Hence it follows that C;n G N p'd = p®?An G = p“G.
Thus G/p®G is strongly Z-cyclic in 4/ p®G, as claimed.

The final assertion of the theorem is an elementary consequence of the first two
statements. 0
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4. X;-X-cyclic p-groups

The abelian p-group A is called Ri-X-cyclic if each of its countable subgroups is
Y-cyclic. Obviously such a group is reduced since the divisible groups Z(p*) are
countable.

The subgroup G of A is said to be strongly Nj-X-cyclic in A if every countable
subgroup of G is strongly X-cyclic in 4. Because a strongly Z-cyclic subgroup is
Y-cyclic, it is clear that a strongly N;-X-cyclic subgroup is itself ¥;-X-cyclic.

It is also known for a long time that, in virtue of the second theorem due to
Priifer (see e.g. [13], vol. I, Theorem 17.3, p. 88), each Z-cyclic p-group is N;-Z-
cyclic, while the converse is wrong. In fact, let 4 = Ua coAu Ay = Ay < A4,
where A4, is a countable separable p-group for all « < Q. Then, by Priifer’s second
theorem, A4, is a X-cyclic group. Clearly, |4| = |Q| = X, and for each H < A with
|H| =Ny there is an index y < Q such that H = 4,, whence H is X-cyclic, as
required. Nevertheless 4 need not be X-cyclic although it is even separable (i.e.,
without elements of infinite heights < p”4 = 0) when almost all subgroups 4, are
not pure and nice in A, hence it is not X-cyclic, as expected, which proves our
claim (see also [13] for more details). Similar constructions were considered in [15].

An abelian p-group 4 is called an m-group if |4| = m and, for every H < A,
the inequality |H| < m implies that H is X-cyclic. The first example of a separable
m-group which is not X-cyclic was constructed by Nunke; see [25], where m = R,
for n € N. Hill showed in [16] that the limitation on n cannot be ignored by prov-
ing that each N,-group is indeed X-cyclic. In the literature there also appear the
so-called m-Z-cyclic groups, i.e., groups which are not Z-cyclic, but any subgroup
of cardinal strictly less than m is X-cyclic. It is immediate that each Ni-X-cyclic
group is N,,-X-cyclic whenever k > n. Notice that N;-X-cyclic p-groups are precisely
the separable ones.

We are now in a position to show the following result.

Theorem 4.1. Suppose that A is an abelian p-group with a subgroup G so that
A/G is Ny-Z-cyclic. Then A is R-Z-cyclic if and only if G is strongly N-Z-cyclic
in A.
Proof. The necessity is obvious since a subgroup of a Z-cyclic group is strongly -
cyclic in it.

To prove sufficiency, take B < 4 with |B| = X,. Since (B+ G)/G = B/(Bn G)
we distinguish two cases.

Case 1. B/(Bn @) is finite. Then |B| = |Bn G| and so G being X;-Z-cyclic
assures that B G is Z-cyclic. Then so is B by [13], vol. I, Proposition 18.3, p. 92.

Case 2. B/(Bn G) is countable. The hypothesis on A/G ensures that
B/(Bn G) is Z-cyclic. If B G is countable, the conditions on G force BN G to
be strongly Z-cyclic in 4, whence in B. Otherwise, if B G is finite, then it can
be imbedded in a countable subgroup of G and so in a subgroup which is strongly
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Y-cyclic in A. Thus it follows that Bn G is strongly Z-cyclic in 4, hence in B.
Finally, Dieudonné’s criterion implies that B is X-cyclic, as required. O

As a direct consequence we obtain the following result.

Corollary 4.1. Let A be an abelian p-group with a subgroup G such that A/G is
bounded. Then A is X-Z-cyclic if and only if G is Xj-2-cyclic.

Proof. 1t is trivial to check that subgroups of W;-X-cyclic groups are themselves
N -X-cyclic, so the necessity follows.

To establish sufficiency, observe that p”4 = G for some n € N, hence p“4 =
p“G. Now everything follows from the proof of the previous theorem.

Let us, however, give the following independent confirmation. Let B be a
countable subgroup of 4. Then (B+ G)/G = B/(Bn G) is bounded. Being a
subgroup of G, B G is separable (finite or infinite countable) and so it follows
easily that B is separable as well. Hence B is a direct sum of cyclic groups by
Priifer’s second theorem. 0

In closing this section, we emphasize that if G < A4 is a nice subgroup of the
abelian p-group A, then A is separable if and only if G is strongly separable in A
(i.e., Gn p®A =0) and 4/G is separable; in particular, when G is a pure and nice
subgroup, A4 is separable if and only if both G and A/G are separable. If 4/G is
taken to be separable a priori, the condition on niceness follows as a corollary.

5. Torsion-complete p-groups

For the definition of a torsion-complete p-group see [13], vol. 11, p. 15. We need
the following criterion due to Kulikov [22] and Papp [26]; see also [13], vol. 11,
Theorem 68.4, p. 17.

Theorem (Kulikov, 1941; Papp, 1958). Let A be a reduced abelian p-group. Then
A is torsion-complete if and only if A is a direct summand of each abelian p-group in
which it is a pure subgroup.

Before proving the main result of this section, we briefly sketch the history.

Fuchs asked whether a separable abelian p-group 4 is torsion-complete if it
contains a torsion-complete subgroup G such that 4/G is torsion-complete (see
[13], vol. II, Problem 54, p. 55). Almost thirty years ago, Hill and Megibben [18]
answered this question in the negative. In other words, a separable extension of
a torsion-complete group by another torsion-complete group need not be again
torsion-complete. By imposing restrictions one can, however, obtain a positive
answer to Fuchs’ question. We show in the sequel that if the subgroup is chosen
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to be pure, then Fuchs’ problem has a positive solution: if G is a pure subgroup of
an abelian p-group A4 and G and 4/G are torsion-complete, then so is 4.

We mention some further results in this direction. If G < A4 with G torsion-
complete and A/G bounded, then A is torsion-complete. This is mainly due to
D. O. Cutler; see also [13], vol. II, Ex. 8(b), p. 20. Moreover, if A is separable
containing a bounded subgroup G such that 4/G is torsion-complete, then 4 is
torsion-complete (see [28], Lemma 2, and [1], Theorem 4.1). This is in contrast
to Z-cyclic groups by an example due to Dieudonné given in [12]. It was also
shown in [1] that if G is a bounded and closed subgroup of the separable p-group
A (thus A/G is separable), then A is torsion-complete if and only if 4/G is torsion-
complete. It is worth noting that the necessity was preliminary known; see [20],
Lemma 4.23. Here it is shown that if G is bounded and A is torsion-complete
such that 4/G is separable, then 4/G is torsion-complete. So Theorem 4.1 in [1]
has a predecessor, but the proof given there is of some interest.

It is well known that a nice subgroup of a torsion-complete p-group is torsion-
complete as well. This is perhaps not true in general for direct sums of torsion-
complete p-groups, but it is correct for fully invariant (i.e., completely char-
acteristic) subgroups. In fact, a nice fully invariant subgroup of a direct sum of
torsion-complete p-groups is a direct sum of torsion-complete p-groups. Indeed,
write G = EI—)I. .; Gi, where all G; are torsion-complete, and let N be nice in G.
Then N = (—Biel N;, where N; = N n G;. Now it is well known that N is nice in
G if and only if &; is nice in G; for each i € I. Thus every N; is torsion-complete,
hence N is a direct sum of torsion-complete groups.

Theorem 5.1. Suppose that A is an abelian p-group which contains a pure and nice
subgroup G. Then A is torsion-complete if and only if both G and A/ G are torsion-
complete.

Proof. First we prove the necessity. It is well known that a nice subgroup of a
torsion-complete group is again torsion-complete, which is actually a consequence
of [20], Lemma 4.22, or [13], vol. II, Corollary 68.7, p. 18. Thus G is torsion-
complete if A4 is torsion-complete. Since G is pure in the torsion-complete group
A, A/G must be a direct sum of a divisible group and a torsion-complete group by
[20] or [13], vol. II, Proposition 68.8, p. 19. But G being nice in the reduced group
A assures that A/G is reduced, hence A/G is torsion-complete.

To prove sufficiency, we first note that 4 is reduced since G and A/G are re-
duced (this is true even without G being nice and pure in 4). Furthermore, assume
that A is a pure subgroup of the abelian p-group K. Then A/G is pure in K/G,
and by Kulikov—Papp’s result together with the hypothesis on 4/G we obtain that
K/G=(A4/G)® (L/G) for some subgroup L of K containing G. Thus it is a
routine matter to see that K = A4 + L with A n L = G. But since G is pure in 4,
the transitivity of the pureness implies that G is pure in K, hence in L. Conse-
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quently, the hypothesis on G combined with the Kulikov—Papp criterion yields
that L=G@® L; for some L; < L. Furthermore, K =A@® L; since AnL; =
AnLnLy=GnL; =0. Finally, we again impose the theorem of Kulikov—
Papp to deduce that A is torsion-complete, as required. O

We recall that the abelian p-group A4 is semi-complete if it is the direct sum of a
torsion-complete group and a direct sum of cyclic groups.
As an immediate consequence, we have the following.

Corollary 5.1. Let A be an abelian p-group with a pure subgroup G such that A/ G
is semi-complete. If G is torsion-complete, then A is semi-complete.

Proof. Write 4/G = (T/G) ® (C/G), where the first factor is torsion-complete
and the second one is Z-cyclic. Then 4 =T+ C with Tn C = G. Since G is
pure in A, it follows that G is pure both in 7 and C. Thus, as in the proof of the
sufficiency in Theorem 5.1, one shows that T is torsion-complete.

On the other hand, referring to a theorem of Kulikov [22] (see also [13],
vol. I, Theorem 28.2, p. 120), we may write C = G@® C| where C; =~ C/G is
Y-cyclic. Finally, we conclude that A = T @ C; because TN C,=TnCn C| =
Gn Cp=0. So A4 is semi-complete. O

Problem 5.1. Determine whether or not 4 is a semi-complete p-group if it con-
tains a pure, semi-complete subgroup G such that 4/G is semi-complete.

Problem 5.2. Decide whether or not A4 is a semi-complete p-group if it contains a
pure subgroup G such that G is -cyclic and 4/G is torsion-complete. (Notice
that if G is bounded, by a theorem of Priifer—Kulikov (see [22] or [13], vol. I, The-
orem 27.5, p. 118), A =~ G @ 4/G is torsion-complete, hence semi-complete.)

We now show that Problem 5.1 has a positive answer if Problem 5.2 can be
answered in the affirmative.

Indeed, as in the proof of Corollary 5.1, 4 = T @ Cy, where Cj is Z-cyclic. It
is enough to show that T is semi-complete if 7//G is torsion-complete and G
is semi-complete. Write G = U @ V/, where U is torsion-complete and V' is X-
cyclic. Since T/G =~ T/U/G/U is torsion-complete, G/ U is pure in T/ U because
G is pure in A4, whence in T, and G/U =~ V is E-cyclic. By our assumption that
Problem 5.2 has a positive solution we conclude that 7/U is semi-complete.
Write T/U = (X/U) @ (Y/U), where the first summand is torsion-complete and
the latter one is Z-cyclic. As above, T = X + Y with X n Y = U. Moreover, U
being pure in G implies that it is pure in 4, hence in Y. As above, Y = U @ Y,
where Y; is X-cyclic, whence Y is semi-complete. Thus 7= X @ Y; since
XnY i =XnYnY =UnY =0. Now Theorem 5.1 ensures that X is
torsion-complete since U, being pure in 4, is pure in X. Thus 7T is semi-complete,
and we are done.
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6. Thick p-groups and essentially finitely indecomposable p-groups

For the definition of such groups we refer to [1]. We recollect the following nec-
essary and sufficient condition from [1].

Criterion (Benabdallah—Wilson, 1978). The abelian p-group A is thick if and only
if there exists m € N such that (p" A)[p] = K for all K < A with A/K is Z-cyclic.

Analogously the subgroup G of the abelian p-group A4 is called strongly thick
in A4 if and only if there exists 7 € N such that (p’4)[p] = K for all K < G with
G/K is X-cyclic.

It is an easy exercise to show that strongly thick subgroups are thick.

It is well known that the class of all thick groups properly contains the torsion-
complete groups (see [1], Corollary 3.4). Also the divisible p-groups are thick, and
the 2-cyclic groups are thick precisely when they are bounded.

The following statement is our major tool.

Proposition 6.1. Assume that A is a thick abelian p-group with a pure subgroup G.
Then A/G is thick.

Proof. Choose a subgroup M/G of A/G such that A/G/M/G = A/M is
Y-cyclic. Then, by the hypothesis on A4 and the Benabdallah—Wilson cri-
terion, there is m € N such that (p™A4)[p] =€ M. Therefore (p”"A)[p]+ G<= M
or, equivalently, ((p"A4)[p]+ G)/G <= M/G. Since G is pure in A it follows
that (p™A+ G)[p] = (p"A)[p] + G[p], hence ((p"A+ G)[p]+ G)/G<=M/G.
Moreover, G being pure in p"A+G< A gives that (p"(4/G))[p] =
((P"4+G)/G)[p] = ((p"A+ G)[p| + G)/G.  Hence (p"(4/G))[p] <= M/G,
and by the Benabdallah—Wilson criterion the assertion follows. |

We note that if G is bounded, the converse holds. For in view of [13], vol. I,
Theorem 27.5, we may write 4 =~ G @ A/G, so Proposition 6.3 below will work.

We now show the following result (for the special case when 4/G is bounded a
priori, see [10]).

Proposition 6.2. Suppose that A is an abelian p-group with a pure subgroup G such
that A/ G is Z-cyclic. Then the following conditions are equivalent:

(a) A is thick;

(b) G is strongly thick in A;

(¢) G is thick and A/ G is bounded.

Proof. (a) = (b): Let G/H be X-cyclic for an arbitrary subgroup H of G. Since
G/H is obviously pure in A/H, it is strongly Z-cyclic in it. On the other hand,
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A/G =~ A/H/G/H is also Z-cyclic. Thus, by Dieudonné’s criterion, A/H is X-
cyclic, and a result due to Kulikov [22] (see [13], vol. I, Theorem 28.2) is applicable
to deduce that A/H =~ (G/H) ® (4/G) is E-cyclic. By the hypothesis on A4 this
implies that (p”A4)[p] = H for some natural number m. Finally, (p"'G)[p] = H.

(b) = (a): Let A/H be X-cyclic for some arbitrary but fixed H < 4. Then
(G+H)/H = G/(Gn H) is Z-cyclic as well. The hypothesis on G then yields
that there exists a positive integer ¢ such that (p’4)[p) = GNnH < H.

(b) & (c): To check the second equivalence, we first observe by Proposition
6.1 that A thick implies that 4/G is thick, hence the limitation on this quotient
to be Z-cyclic implies that it is bounded. Moreover, if A/G is bounded there is
t € N so that p’4 = G. Hence it is easy to show that the strong thickness of G
in A and the ordinary thickness of G are, really, equivalent.

Finally, what remains to prove is that G strongly thick in 4 implies that 4/G
must be bounded if G is pure in 4. Indeed, since G/G = 1 is always a Z-cyclic
group, there exists a natural number ¢ such that (p’4)[p] = G. But the purity of
G in A ensures that (p’A)[p] = (p'G)[p]. Since p'G is a pure subgroup of p'4, it
follows that p’A = p'G, hence p'4 = G and so A/G is bounded, as required. []

Remark 6.1. Since 4/G is Z-cyclic and G is pure in A4, it follows by a result of
Kulikov [22] (see [13], vol. I, Theorem 28.2) that A =~ G® A/G. Thus, if G is
thick then A is the direct sum of a thick group and a Z-cyclic group; however A
need not be thick or, in other words, the direct sum of a thick group and a X-cyclic
group is not necessarily thick; for X-cyclic groups are thick if and only if they are
bounded.

Moreover, we note that if 4 is thick and 4/G is 2-cyclic, then there is € N so
that (p’d)[p] = G. Thus, as shown above, the purity of G in A4 gives that 4/G
must be bounded. This is another confirmation of the above result.

By analogy with the case of torsion-complete groups, we state the following.

Problem 6.1. Let 4 be an abelian p-group with a pure (and/or nice) subgroup
G such that 4/G is thick. Does it follow that A is thick if and only if G is
thick?

In accordance with Proposition 6.1, the necessity of the problem can be refor-
mulated as whether a pure (and/or nice) subgroup of a thick group is again thick.
In fact, the condition on A/G to be thick does not give any extra information
since it follows from the thickness of 4 whenever G is pure in A. We conjecture
that the question has a negative answer. In this direction we note that it follows
from [27], Theorem 5.7, that thick groups are closed under pure extensions of
thick groups by thick groups, i.e., if G is pure in 4 such that both G and 4/G
are thick, then A4 is thick. Thus the sufficiency holds.



Generalized Dieudonné and Hill criteria 133

By definition, an abelian p-group is essentially finitely indecomposable (abbre-
viated to e.f.i.) if it has no unbounded 2-cyclic direct summand. It is a well-known
fact and an elementary matter to verify that all thick groups are e.f.i. Irwin con-
jectured that the converse holds as well; however, these two classes of groups do
not coincide. But by a result of Irwin (see [1], Corollary 3.3) pure-complete e.f.i.
groups are thick. In this light, it is straightforward that direct summands of e.f.i.
groups are again e.f.i. and finite direct sums of e.f.i. groups are also e.f.i. (see e.g.
[20], Theorem 4.3). These two assertions have the corresponding analogue for
thick groups.

Proposition 6.3. Finite direct sums of thick p-groups are thick p-groups.

Proof. 1t is sufficient to consider the sum of two thick p-groups, B and C, and the
proof that A = B@® C is thick. The statement then follows by induction.

Let A/K be X-cyclic for some K < A. Then (B+ K)/K =~ B/(BnK) and
(C+K)/K = C/(CnK) are both X-cyclic as being subgroups of 4/K. Thus
the hypotheses on B and C combined with the Benabdallah—Wilson criterion
imply that there are integers r and s such that (p’B)[p] <= BnK = K and
(p*C)[p] = CnK = K. Therefore (p'd)[p] = (p'B)[p]@® (p'C)[p| = (p"B)[p] ®
(p°C)[p] = K where t = max(r,s). By invoking again the Benabdallah—Wilson
criterion the claim follows. (I

Notice that Proposition 6.3 fails for infinite direct sums: the unbounded
Y-cyclic groups provide a counterexample.

Proposition 6.4. A direct summand of a thick p-group is a thick p-group.

Proof. Write A = B@® C where 4 is thick. By the Benabdallah—Wilson criterion
it suffices to prove that there exists a positive integer ¢ such that (p'B)[p] = K
whenever B/K is a Z-cyclic group. If B/K is Z-cyclic, then so is 4/(K @ C) =
(B®C)/(K® C)~ B/K. Hence, by the Benabdallah—Wilson criterion, there
is e N such that (p’d)[p] = K@® C. Thus by modularity we obtain that
(p'B)[p) = (K®C)nB=K® (BnC) =K, as required. O

Note that there exist subgroups of thick p-groups which are not necessarily di-
rect summands, but which are thick groups too. In fact, if P is a pure subgroup of
the thick p-group T such that 7/(P + T') is Z-cyclic, then it is thick. For it is
clear that (P+ T")/T" is pure in T/T" with T/T'/(P+T"/T' =~ T/(P+T")
2-cyclic. By Kulikov’s theorem [22] (see also [13], vol. I, Theorem 28.2) we have
T/T'=P+T"Y/T'®@T/(P+T") = (P/P")® (T/(P+T")). We know that
a p-group M is thick if and only if M /M is thick. So it follows from Proposition
6.4 that P is thick.
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Question 6.1. Are the balanced subgroups of thick p-groups thick as well?
We now show the validity of the corresponding analogue of Proposition 6.1.

Proposition 6.5. Suppose that A is an e.f.i. abelian p-group with a pure subgroup
G. Then A/G is e.f.i.

Proof. Write A/G = (M/G)@® (L/G) where L/G is X-cyclic. Then 4 =M + L
and M nL = G. From G being pure in A, whence in L, it follows by Kulikov’s
theorem [22] or [13], vol. I, Theorem 28.2, that L=G® L;. Thus 4 =M @ L,
for MNnLi=Mn(LnL)=(MnL)NnL i =GnL; =0. Since L} = L/G is
Y-cyclic, it follows that it is bounded. O

Notice that when G is bounded, the converse is true. In fact, applying [13],
vol. I, Theorem 27.5, one can write 4 ¥ G® 4/G and so [20], Theorem 4.3,
works.

We are now concerned with the following assertion which is parallel to Propo-
sition 6.2.

Proposition 6.6. Let A be an abelian p-group with a pure subgroup G such that
A/ G is E-cyclic. Then A is e.f.i. if and only if G is e.f.i. and A/ G is bounded.

Proof. By virtue to Kulikov’s theorem [22] or [13], vol. I, Theorem 28.2, one can
write that 4 =~ G @ A/G. Furthermore, Proposition 6.5 ensures that 4/G is e.f.i.
Y-cyclic, hence bounded. Then apply that finite direct sums of e.f.i. groups are
e.f.i. and a direct summand of e.f.i. groups is again e.f.i. ]

We can replace the condition of pureness with full invariance.

Proposition 6.7. Suppose G is an e.f.i. fully invariant subgroup of the abelian p-
group A. If A/G is e.f.i., then A is e.f.i.

Proof. Write A=K®P=K®@P,_, @, <{p") where P=3P,, @, <p"> is
Y-cyclic and o, is a cardinal. Then G=(GNnK)®(GNnP)=(GNnK)®
P, 0@ (GA{p™y). Thus GNP = (—Dn 0@ (Gn{p"™y) and (P+G)/G

= P/(PNG) = D, D, P /Py D, (G p™) = B, B, K"/ (G
{p"y)] are E-cyclic too. NowA/G [(K+ G)/Gl® [(P—i— G)/G] since by modu-

larity K+G)n(P+G)=G+Kn(P+G)=G+Kn(P+GnK)=G+
GNnK+KnP=G. But (P+ G)/G being Z-cyclic implies that it is bounded,
hence so is P since P N G is bounded. O]

Problem 6.2. Prove the same result for thick groups. Moroever, if G is a fully
invariant thick (respectively a fully invariant e.f.i.) subgroup of A, does it follow
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that A is thick (respectively e.f.i.) if and only if 4/G is thick (respectively e.f.i.)?
Are e.f.i. groups closed under pure extensions?

We also mention the following result which is of independent interest.

Proposition 6.8. Any thick (respectively e.f.i.) abelian p-group is semi-complete if
only if it is torsion-complete.

Proof. Recall that thick groups are e.f.i. Since e.f.i. groups have only bounded di-
rect summands which are X-cyclic groups, the torsion-completeness follows with
the aid of [20] or [13], vol. II, Corollary 68.6, p. 18, or Exercise 8(b), p. 20. O

To end this section, we state the following weaker version of the above-
mentioned Irwin conjecture.

Problem 6.3. Are the weakly w;-separable e.f.i. p-groups thick and, in particular,
bounded?

In this direction, we note that it is a result by Eklof-Mekler that under
(MA + —CH) any unbounded weakly w-separable p-group of cardinality N; is
C-decomposable, i.e., it possesses an unbounded direct summand of cyclic groups
of final rank equal to that of the whole group; thus it is not e.f.i.

(For the class of weakly w;-separable p-groups, see the next section.)

7. (Weakly) wq-separable p-groups

The precise definition of a p-primary weakly w;-separable group is given in [24].
They are necessarily separable. For convenience of the reader and for further
use, we shall quote the following necessary and sufficient condition due to Megib-
ben [24].

Criterion (Megibben, 1987). Let A be a separable abelian p-group A. Then the
following conditions are equivalent:

(@) A is weakly w;-separable;

(b) forall C < A: if |C| =Ry then |(),_,(p'A + C)| = Ry,

(c) [p®(A/C)| < Ny whenever C < A with |C| = N,.

The following statement contrasts [11] where G is weakly w;-separable while
A/G is countable.

Theorem 7.1. Suppose that G is a countable nice subgroup of the separable p-group
A. Then A is weakly wi-separable if and only if A/ G is weakly w;-separable.
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Proof. =: First observe that A/G is separable since G is nice in the separable
group A. Let T/G < A/G with |T/G| = Xy. Then |T| =¥, and Megibben’s cri-
terion gives that |ﬂi<w(piA +T)|=Rp. But X =|T/G| < ‘ﬂKw( (4/G)+
T/G)| =N (P 4+ T) /Gl = [, (p'A + T)/T| < |, (P4 + T)| = o
Consequently, |(),_,(p'(4/G)+ T/G)| =No. By Megibben’s criterion A/G is
weakly w;-separable.

<: Let C be a countable subgroup of A. Since A/G is separable, G is nice in
A and p®A = G. We consider two basic cases:

Case 1. (C + G)/G is finite. Then it is nice in 4/G and because of the niceness
of G in A (see [13], vol. II, Lemma 79.3) we infer that C + G is nice in 4. Thus
Nico(P'A+C+G)=p?4+C+G=C+G, whence |(),_, (p'A+C+G)| =

|C+ G| =% and so |ﬂ,<w "4+ C)| =X since C=(),_,(p'4+C), as re-
quired.
Case 2. C+ G)/ G is countable. Then by Megibben’s criterion, it fol-
lows that |ﬂ PI(A/G)+(C+G)/Gll =, l(p'4+ G)/G+ (C+ G)/G]|
= Nizul ’A+C+G)/G]|—|[ﬂl<w( ’A+C+G)]/G|:N0 and S0

NP A+ C+ G)|=|G|. Since C <),

<w

(p'A+ C) and |C| = |G| =N, it

follows that |(),_ (p'4+ C)| = Ro.
Finally in both situations, we employ again Megibben’s criterion to obtain the
desired statement. O

Problem 7.1. Let 4 be an abelian separable p-group with a subgroup G so that
A/G is weakly w;-separable. Then A is weakly w;-separable < G is strongly -
separable in A < forall H < G : [H| =R = |(),_,(p'A + H)| = X,.

Note that if G is strongly wi-separable in A, it is weakly w;-separable since
|(V;2p(P'A+ H)| = Rg and |[H| = X, force that |ﬂ (p'G+ H)| = ,.

The following criterion is of independent 1nterest it is a connection between
Sections 5 and 7.

Proposition 7.1. Any weakly wi-separable torsion-complete p-group with a count-
able basic subgroup is countably bounded. In particular, the weakly w,-separable p-
groups are direct sums of torsion-complete groups with components each of which
possesses a countable basic subgroup only when they are direct sums of cyclic
groups.

Proof. Denote by B a basic subgroup of such a group A. Since A/B is always
divisible and |B| = Nj, by Megibben’s criterion 4/B is also countable. Thus it
is obvious that 4 must be countable. So supposing that 4 is unbounded, by
[13], vol. II, Exercise 7, p. 20, we find that |4| = |B™ = Ng" > Ny, which is a
contradiction. Therefore, A4 is bounded.
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As for second part, it is well-known (see [24]) that a subgroup of a weakly w;-
separable p-group is a weakly w;-separable p-group. Thus the claim follows from
the first part of the proposition. O

Conjecture 7.1. We conjecture that Proposition 7.1 does not hold true in general,
i.e., the limitation on the countability of the basic subgroup cannot be generally
removed. Nevertheless, we believe that it is consistent in (ZFC), with (CH) even-
tually, that every torsion-complete p-group of cardinal V| is weakly w;-separable
precisely when it is bounded; for cardinalities strictly greater X; the result probably
fails. Notice that with (mWCH) each torsion-complete group of cardinality < &,
is bounded; compare with the proof of Proposition 7.1. (See also the above-
mentioned result by Eklof—~Mekler in (MA + —CH).)

The abelian p-group A is said to be w;-separable if each of its countable sub-
groups is contained in a countable Z-cyclic direct summand of 4. Such a group
is necessarily separable. In other words, by Priifer’s second theorem, an abelian
separable p-group A is w;-separable if and only if its countable subgroups can be
embedded in countable direct summands of 4.

Proposition 7.2. Let G be a countable nice subgroup of the abelian p-group A. If
A is wi-separable, then A/G is w;-separable.

Proof. Since A is separable, it follows easily that A/G is separable. Choose
K/G<A/G with |K/G|=1%,. Then |[K|=2Y¥; and thus K < P such that
|P| =R and 4 =P @ A4,. Consequently, 4/G = (P/G)® ((4, + G)/G) since
by modularity we have Pn (4, + G) =G+ (PnA4;) =G. But K/G = P/G and
|P/G| =Ny because Ry = |K/G| < |P/G| < |P| =%y. That P/G is Z-cyclic fol-
lows from Priifer’s second theorem. O

We note that if G is a pure and bounded subgroup of the abelian p-group
A, then A/G being w;-separable implies that 4 is w;-separable. In fact, by [13],
vol. I, Theorem 27.5, one may write A =~ G ® A/G.

The following question arises naturally.

Problem 7.2. Assume that G is a countable subgroup of the separable abelian
p-group A. If A/G is w;-separable, does it follow that A is w;-separable?

The next Wallace-type problem is also of interest (for more details see [11]).

Problem 7.3. Assume that G is a subgroup of the separable abelian p-group A4
so that A/G is at most countable. If G is w;-separable, does it follow that 4 is
wi-separable?
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8. O-p-groups

For completeness we recollect the definition of a p-group to be a Q-group which is
stated in [21] in all generality for arbitrary groups.

Definition (Irwin—Richman, 1965). The separable abelian p- group A is said to be
a Q-group if for each infinite subgroup C of 4 the equality |(),_ (p'A + C)| = |C|
holds.

l<w

It is self-evident that every Q-group is weakly w;-separable and that every
weakly w;-separable group of cardinality X, is a Q-group. So for groups of cardi-
nality N, these two classes of groups coincide.

The following result is dual to [11] where G is a Q-group and A/ G is countable.

Theorem 8.1. Suppose that G is a countable nice subgroup of the separable p-group
A. Then A is a Q-group if and only if A/ G is a Q-group.

Proof. =: First we see that 4 being separable with a nice subgroup G
implies that A/G is separable as well. Take T/G < A/G with |T/G| > Ry. Thus
|T| = |T/G| = R and by definition |(),_, (p'dA + T)| = |T|. On the other hand,
I7/61 < | Ny (P(4/G) + T/G)| = N [(pP4 + T)/ G| = [ (P"A + T))/ T
<|Nie (P A+ T)|=|T|=|T/G|. Therefore |Nieo (P'(A/G)+T/G)| =|T/G|.
Now, by definition, 4/G is a Q-group.

«<: The separability of 4/G yields that G is nice in 4 and that p”4 = G.
Take an arbitrary infinite subgroup C of 4. We distinguish two cases.

Case 1. (C+ G)/G is finite. Then (C + G)/G is nice in 4/G and thus C + G
is nice in A.  Furthermore, (),_ (p'A+C+G)=p“Ad+C+G=C+QG,
whence |C| < |(),_,(p'A+O) <), (p'A+C+G)|=|C+G|=|C| and
thus |(),_,(p'd+ C)| = |C], as required.

Case 2. (C+ G) / G C/(C N G) is infinite. Consequently, |(),_, [p'(4/G)+
(C+6)/G = N, [(P'4+ G)/G+(C+G)/G]| = |, [(p'A+G + C)/G]] =

I<(U

|[ﬂl<w( A+ G+ C)]/G|—|(C+ G)/G|=|C/(Cn G)|—|C|. Therefore
|Niey(P'A+ G+ C)|=|C|and so |, (p'4+ C)| =|C|.
The assertion now follows from the definition. O

Problem 8.1. Let 4 be an abelian separable p-group with a subgroup G such that
A/G is a Q-group. Does the following hold: A4 is a Q-group < G is a strong Q-
groupin A < forall H < G: |H| =Ry = |(),_,(p' A+ H)| = |H|?

i<w

Notice that if G is a strong Q-group in A, it must be a Q-group itself.
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9. p-groups with a nice basis

These groups were defined in [2]. We recall the definition and some basic facts
obtained in [7].

Definition 9.1. The abelian p-group A is said to have a nice basis if it can be
represented as a countable ascending union of nice X-cyclic subgroups. More
precisely, 4 = {J,_, An, Ay S Apy1 < A4 and, for each n > 1, 4, is nice in 4 and
is Z-cyclic.

This class of groups is quite large and properly contains the separable p-
groups, the simply presented p-groups (in particular the direct sums of countable
p-groups), and the p®*"-projective p-groups for any natural 7.

In [7] it was established that if G has a nice basis and is balanced in 4 such that
A/G is at most countable, then 4 has a nice basis as well. Moreover, it was shown
there that 4 possesses a nice basis only if its large subgroup possesses a nice basis.

The following classical statement from [12] is of interest.

Theorem (Dieudonné, 1952). Let G be a strongly Z-cyclic subgroup in A and let
A/G be T-cyclic. Then A is T-cyclic.

Since every X-cyclic group possesses a nice basis (see, e.g., [7]), we present the
following generalization.

Proposition 9.1. Let A be an abelian p-group with a nice subgroup G so that A/G
has a nice basis. If G is strongly X-cyclic in A, then A has a nice basis.

Proof. Write A/G =,,_,(An/G), where A,,/G < Ayyy1/G < A/G are nice X-
cyclic subgroups in 4/G. Then 4 = Um<w Am, Ap S Ay < A. Moreover, by
[13], vol. II, Lemma 79.3, we deduce that 4,, is nice in A for all m > 1.

Next we show that each A4,, is Z-cyclic. Consider 4,,/G for an arbitrary but
fixed natural number m. Since G = Ui 0 Gi» Gi = Giy) < G and, forevery i > 1,
G;n p'A =0, we obtain that G; n p'4,, = 0, whence G is strongly X-cyclic in A4,,.
From A4,,/G being X-cyclic we obtain by Dieudonné’s criterion that each 4,, is
Y-cyclic, as requested. O

The next consequences are immediate.

Corollary 9.1. Suppose that G is a nice and pure subgroup of the abelian p-group
A such that A/ G has a nice basis. If G is Z-cyclic, then A has a nice basis.

Proof. Since G is X-cyclic and is pure in A, it easily follows that it is strongly
Y-cyclic in A. O
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The condition on G to be pure can be removed when we impose additional
restrictions on 4/G.

Proposition 9.2. Suppose that A is an abelian p-group with a subgroup G such that
A/G is separable. If G is Z-cyclic, then A has a nice basis.

Proof. Since 4/G is separable, we can write 4/G =1|),_, A,/G where 4, =
Ay < A and, for each n > 1, 4,/G is nice in 4/G and bounded. Since G is
nice in A, it follows from [13], vol. II, Lemma 79.3, that 4, is nice in 4. By [13],
vol. I, Proposition 18.3, G being X-cyclic implies the same property for 4,, and
hence we are done. O

Observe that since p”A4 = G we have that p®A4 is also X-cyclic. Thus Proposi-
tion 9.2 follows from [7], Proposition 3, as well.

Problem 9.1. Assume that 4 is an abelian p-group with a nice subgroup G such
that 4/G has a nice basis. Does it follow that 4 has a nice basis if and only if G
has a nice basis in A4, or equivalently G = U G;, G; < Gy < G and all G; are
nice in A X-cyclic subgroups?

i<w

We conjecture that the answer is negative. This is motivated by the ob-
servation that if N is a nice subgroup of A, then N n G need not be nice
neither in G nor in 4 even when G is nice and isotype in A. Nevertheless, under
some additional assumptions on G this is so; for instance let (G+ N)n
p*A=(Gnp*4)+ (Nnp*4). Then, for each limit ordinal «, we have
(Vos NG+ piA) = (),_(G+p"A)=G+p*4 and (| _(NnG+p'd) <
ﬂr 4N +p7d) =N + p*A. Furthermore, by modularity we deduce
that () _ (NNG+p'd) = (N + p*A)n(G+ p*A) = p*A+ N (G+ pA) =
p*A+Gn(N+ p*A). Since (G+ N)np*A4=(Gn p*A)+ (N np*4) we ob-
tain that G n (N + p*4) = G N + p*A, which implies that () __ (N n G+ p*A4)
=NnNnG+ p*A.

So we conclude that some extra requirements on G are necessary for answering
the above question in the affirmative.

real

Problem 9.2. Decide whether or not there are p-groups with a nice basis which
are precisely the separable p-groups.

We finish with a general question.

Problem 9.3. Find other classes of primary abelian groups for which the
Dieudonné-type theorems hold. In particular, find out whether such theorems
hold for the classes of quasi-complete p-groups, pure-complete p-groups, and
direct sums of torsion-complete p-groups.
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We recall that an abelian p-group A4 is known to be quasi-complete if p®(A/H)
is divisible whenever H is a pure subgroup of 4. We note the simple fact that
a balanced subgroup of a quasi-complete p-group is again quasi-complete and
the factor group of a quasi-complete p-group modulo its pure subgroup is quasi-
complete too.
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