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tions are considered in more detail, in which case further results are obtained.
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1. Introduction

On the interval [a, b] we consider the two-dimensional differential system

(1.1)

where p,g: C([a,b]; R) — L([a,b]; R) are bounded linear operators and ¢, ¢, €
L([a,b]; R). By a solution of the system (1.1) we understand a pair (u,v) of abso-
lutely continuous on [a, b] functions satisfying (1.1) almost everywhere on [a, b].

We shall study the system (1.1) in the case where either p or g is a monotone
operator. Thus, we shall assume in the sequel that

peyaby (12)

where Z,;, denotes the set of nondecreasing operators (see Definition 2.1).
It is well known that the theorems on differential inequalities play very impor-
tant role in the theory of differential equations. Therefore, the question on the
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validity of the theorems on differential inequalities is studied by many authors
(sec, e.g., [24], [4], [25], [17], [9], [27], [13], [18], [19], [11], [20], [22], [1], [S], [2],
[26], [6], [7], [10]). Although for ordinary differential equations and their systems
the question indicated is studied in detail (see, e.g., [9], [3], [27], [13], [1], [2], [10],
[26] and references therein), for functional differential systems, and even for the
rather simple system (1.1), there is still a broad field for further investigations.

We have investigated the n-dimensional systems of functional differential in-
equalities in [24]. In the present paper, new results in this line, namely, the so-
called weak theorems on differential inequalities, are established for the system
(1.1). In other words, we obtain efficient conditions for the operators p and g
which guarantee that a certain maximum principle holds for the system (I1.1).
All results are finally applied in the case where (1.1) is the differential system
with argument deviations

u'(1) = f()o(u(0) +qi(r),  0'(1) = h(Du(e(r)) + q2(0), (1.3)

in which £, h,q1,q> € L([a, b]; R) and p, 7 : [a, b] — [a, b] are measurable functions.
It should be noted that the second order functional differential equation

u" (1) = £ (u)(1) + q(2), (1.4)

where /7 : C([a,b];R) — L([a,b];R) is a linear bounded operator and
q € L([a,b]; R), can also be regarded as a particular case of (1.1). Some of the

results stated below correspond to those obtained in [25], [17] for the equation
(1.4).

2. Notation and definitions

We use the following notation throughout the paper.

R is the set of all the real numbers, Ry = [0, +o0];

C([a, b]; R) is the Banach space of continuous functions u : [¢,b] — R equipped
with the norm

[ull¢ = max{lu(r)]| 7 € [a, b]};

C(la,b]; R,) = {u e C([a,b]; R) |u(¢) = 0 for ¢ € [a,b]};

Cioc([a, b[; R) is the set of continuous functions u : [a, b[ — R.

C([a, b]; R) is the set of absolutely continuous functions u : [a, 5] — R;

Cioc([a, b[; R) is the set of functions u : [a,b[ — R such that u € C([a, f]; R) for
every f§ € |a,bl;
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L([a,b]; R) is the Banach space of Lebesgue integrable functions 4 : [a,b] — R
equipped with the norm

b
Il :j ()| d

a

L([a,b); R.) = {h € L(la,b]; R) | h(¢) = 0 for a.a. t € [a,b]};
Zup 1s the set of linear bounded operators ¢ : C([a, b]; R) — L([a, b]; R).

Definition 2.1. An operator / € %, is said to be nondecreasing if it maps the set
C([a,b]; R;) to the set L([a,b]; R;). The class of nondecreasing operators is de-

noted by Z,,. We say that an operator / € ¥ is nonincreasing if —¢ € Py.

Example 2.1. Let / € %, be the operator defined by the formula
/(2)(t) = h(t)z(z(r))  fort € [a,b], z € C([a,b]; R), (2.1)

where /1 € L([a,b]; R) and 7 : [a, b] — [a, b] is a measurable function. Then / € Z,,
if and only if

h(t) =0 fora.e.teabl.

Definition 2.2. We say that / € %, is an a-Volterra operator if, for arbitrary
by € |a,b] and z € C([a, b]; R) with the property

z(t) =0  for ¢ € [a, by,
we have
/(z)(t)y=0 fora.e.te€ |a,by.

Example 2.2. The operator 7/ € %, given by (2.1) is an a-Volterra operator if
and only if

|h(t)|(z(1) —1) <0 fora.e. 1€ [a,b].

Definition 2.3. Let / € %, and by € |a,b]. The operator /,, : C([a,by]; R) —
L([a,by]; R) defined by the equality

lany(2)(1) = £(2)(¢) forae. t € [a,bo], z € C([a, bol; R),

where



160 J. Sremr

~ [z(t) fortela,b,
(1) {z(bo) for 7 € [o, b].

is called the restriction of the operator / to the space C([a, by]; R).
If by < by < band z € C([a,b1]; R), then we write /4, (z) instead of Zu, (2], 4,))-

Remark 2.1. If 7 is an a-Volterra operator then it is clear that, for every
by € la,b[ and z € C([a, b]; R), the condition

lan,(2)(1) = £(z)(¢)  for a.e. t € [a, by]
is satisfied.

Along with the system (1.1), we consider the corresponding homogeneous
system

u'(1) = p(o)(1),  v'(1) = g(u)(1). (1.10)

The following statement is well known from the general theory of functional
differential equations (see, e.g., [23], [15], [16], [8]).

Proposition 2.1. The Cauchy problem
ula) =cy, vla)=ac (2.2)

Sor the system (1.1) is uniquely solvable for arbitrary qi,q> € L([a,b]; R) and
c1, ¢ € R if'and only if the corresponding homogeneous problem

u(a)=0, wv(a)=0 (2.29)

Jor the system (1.1¢) has only the trivial solution.

3. Main Results
We give some definitions and remarks before we formulate the main results.

Definition 3.1 ([24], Definition 3.1). A pair (p,g) € Zu» X Ly 1s said to belong to
the set 2 (a) if, for any u, v € C([a, b]; R) such that

u'(t) = p(v)(1), v'(t) = g(u)(t) forae. e [a,b] (3.1)

and
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the relations
u(t)=0, v(t)=0 forte [a,b] (3.3)

are satisfied.
If (p,g) € 92 (a) then we say that the theorem on differential inequalities holds
for the system (1.1).

In [24], efficient conditions are found for the validity of the inclusion
(p,9) € $2(a), provided that p,g € 2. The question of obtaining such condi-
tions is still open for the cases where at least one of the operators p and g is not
nondecreasing.

On the other hand it is well known that for the ordinary differential system

u'=f(o+aqit), v =hOu+ g (1),
where f,h,q1,q2 € L([a, b]; R), the theorem on differential inequalities holds if
f(t)=0, h(t)>0 fora.e.te€[a,bl. (3.4)

In other words, the condition (3.4) is sufficient for the validity of the inclusion
(p,9) € ¥3(a), where

pz)(t) = f(0)z(1), g(2)(t) = h(t)z(r) forae.te€[a,b], ze C(la,b];R).

If f,h e C([a,b]; R) then the condition (3.4) is not only sufficient but also neces-
sary (see, e.g., [14], §1.7).

Therefore, the requirement of the validity of the condition (3.3) in Definition
3.1 seems to be too restrictive in the case where the operators p and g are not
both nondecreasing. We shall weaken the condition (3.3) in the following way.

Definition 3.2. A pair (p,g) € Lup x Lo is said to belong to the set F2 (a) if, for
any u,v € C([a, b]; R) satisfying (3.1) and (3.2), the relation

u(t) =0 fort e la,b] (3.5)

is fulfilled.
If (p,g) € 902,7(a) then we say that the weak theorem on differential inequalities
holds for the system (1.1).

Remark 3.1. It follows immediately from Definition 3.2 that
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() (0,9) € Z3(a) for every g € Lu;

(b) %2 (a) is a proper subset of F2 (a);
(

a) N (cfab X ,@ab) = <Va2b(a) N (gab X «Jab), i.e.,

) &

a

(p,9) € F5(a) <= (p.g) € S5(a) forevery pe Lu, g € Puy;

(d) (p,g) € Z5(a) <= (g.p) € L3 (a) for every p,g € Pu.

Remark 3.2. It is clear that the homogeneous problem (1.1), (2.2¢) has only the
trivial solution under the assumption (p,g) € gazb(a). Therefore, according to
Proposition 2.1, the Cauchy problem (1.1), (2.2) has a unique solution for all
q1,q2 € L(ja,b); R) and ¢;,c; € R. However, the inclusion (p,g) € &2 (a) (resp.
(p,9) € %2 (a)) guarantees that, in addition, the solution (u,v) of this problem
satisfies (3.5) (resp. (3.3)) whenever ¢, ¢> and ¢j, ¢, are such that

gr(t) =0 forae. tea,b], ¢=0(k=12).

As has been indicated above, we investigate the system (1.1) in the case where
the condition (1.2) is satisfied. Let us now formulate the main results, namely, ef-
ficient conditions for the operators p and g guaranteeing the validity of the inclu-
sion (p,g) € #2(a). The proofs are given later in Section 4.

The following statement describes a characteristic property of the set yazb(a).

Theorem 3.1. Let p € 2 and g = go — g1 with go, g1 € P. If

(p.g0) € Fy(a)  and  (p,—g1) € L y(a) (3.6)
then (p,g) € F3(a).

It is proved in [12], Ch.VII, §1.2, that g € ¥, admits the representation
g = go — g1 with go, g1 € Z, if and only if the operator g is strongly bounded,
i.e., if there exists # € L([a, b]; R.) such that

lg(z)()] < n(t)||z||o for a.e. € [a,b] and every z € C([a, b]; R).

Consequently, due to the results given in Sections 3.1 and 3.2, Theorem 3.1
allows one to obtain several efficient conditions for the validity of the inclusion
(p,9) € %2 (a) for every nondecreasing p and strongly bounded g.

3.1. The case g € Z,;. We first consider the case where both operators p and ¢
are nondecreasing. In this case, we have
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(p,9) € Zu(a) = (p,9) € L4(a)

(see Remark 3.1(c)). As mentioned above, properties of the set 2 (a) are studied
in [24]. For the sake of completeness, we formulate here a general result (see The-
orem 3.2) and one of its corollaries. Then we derive two new corollaries of this
general theorem, which are not contained in the paper mentioned.

Theorem 3.2 ([24], Theorem 3.2). Let p,g € Zup. Then (p,g) € 2 (a) if and only
if there exist functions y,,y, € C([a,b]; R) such that

n(@) >0, 9(t)>0 fortelabl, (3.7)
and

n@ = pr)@0),  y)Zg()@)  forae telab]. (3.8)

Corollary 3.1 ([24], Corollary 3.5). Let p,g € Py and let there exist operators
P, g € Py such that the inequalities

p(o(gw)) (1) = p()()p(9(w)) (1) < p(w)(r) ~ for a.e. t € [a,b],
g(p(p(W))) (1) = g()(D)p(p() (1) < Gw)(1)  for a.e. t € [a,b]

hold on the set C([a,b]; Ry), where

o(h) (1) & Jth(s) ds fortelab), heL(ab);R). (3.9)

a

Let, moreover,

max{;, L} < 1, (3.10)

A = Jb cosh(rw(f)df)ﬁ(l)(s) ds + Jb sinh wa(é)df)g(l)(s) ds, (3.11)

a

/N

b b

b = Jb cosh(wa(f) dé) G(1)(s) ds +J sinh

N a

(&) de)p(1)(s)ds,  (3.12)

/N
—_—

w(t) € max{p(1)(1),g()(t)}  for ace. t € [a,b]. (3.13)

Then (p,g) € S2(a).
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Remark 3.3. The strict inequality (3.10) in the previous corollary cannot be re-
placed by the nonstrict one (see [24], Example 5.3).

We introduce a simple notation.

Notation 3.1. For any / € %, we put
b; =inf./(/),

where ./ (/) is the set of all ¢ € [, b] for which the implication

ze C([a,b];R), z(&)=0forlela,t] = /(v)()=0fora.a.felab
is true.
Remark 3.4. It is easy to verify that b} € 2/(/), i.e

ze C([a,b;R), z(&)=0forelab)] = /(z)(¢) =0fora.a. ¢ e [a,b].
The following statements can also be derived from Theorem 3.2.

Corollary 3.2. Let p,g € P, be such that

by
J ' p((p(g(l)))(s) ds <1, (3.14)

a

where the operator ¢ is given by (3.9) and the number b, is defined in Notation 3.1.
Then (p,g) € (a).

The next proposition can be regarded as a complement of the previous corol-
lary.

Proposition 3.1. Let p,g € 2, be such that

by
| ploan) s as=1, (3.15)

where the operator ¢ is given by (3.9) and the number b, is defined in Notation 3.1.
Then (p,g) € S2(a) if and only if the homogeneous problem (1.1¢), (2.20) has only
the trivial solution.

In view of Remark 3.1(d), Corollary 3.2 and Proposition 3.1 immediately yield

Corollary 3.2". Let p,g € Py be such that
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b,
JQWQMD®%<L

a

where the operator ¢ is given by (3.9) and the number b, is defined in Notation 3.1.
Then (p,g) € %2 (a).

Proposition 3.1’. Let p,g € Z,;, be such that

where the operator ¢ is given by (3.9) and the number b} is defined in Notation 3.1,
Then (p,g) € %3 (a) if and only if the homogeneous problem (1.1y), (2.29) has only
the trivial solution.

Example 3.1. On the interval [0, /4], we consider the differential system

/2
u'(t) = d sin IJ sv(s/2)ds + qi(1),

o (3.16)
v'(t) = dp cos(21) Jo cos(2s)u(t(s)) ds + qa(1),

where 7 : [0,7/4] — [0,7/4] is a measurable function, ¢, ¢, € L([0,7/4]; R), and
dy,d, € R, are such that
212

didy < .
T a1+ 2v2) - 21 +v2) — 24

It is clear that (3.16) is a particular case of (1.1) in whicha =0, b = /4, and p, g
are given by formulae

/2
p(2)(1) = d, sintJO sz(s/2) ds,
. (3.17)

g(2)(t) = d> cos(2t) Jo cos(2s)z(z(s)) ds

for a.e. 1 €[0,7/4] and all z € C([0,7/4];R). It is not difficult to verify that
b, = ess sup{z() |t € [0,7/4]} (see Notation 3.1) and

t t s

p(g(1))(1) = J cos(2&) dé ds = % (1 — cos(41))

0

o)) ds = |

. dy cos(2s) J

0

for ¢ € [0,7/4]. Consequently, we have
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/4 s/2 d2
:J d sinsJ éﬁ(l — cos(2¢)) dé ds
0

dyd,

=5 (4n(1+2v2) — (14 V2) - 24) < L.

Therefore, according to Corollary 3.2, Remark 3.1(c), and Remark 3.2, the
Cauchy problem

u(0)=c;, v(0)=c (3.18)

for the system (3.16) has a unique solution for arbitrary ¢, ¢> € L([0,7/4]; R) and
¢1,c3 € R. Moreover, if ¢, ¢> and ¢, ¢, fulfil the additional condition

gr(t) =0 forae. te[0,n/4], ¢ =0(k=1,2) (3.19)
then the unique solution (u,v) of this problem satisfies the relation
u(t) =0, v(t)=0 forte0,7n/4].

Example 3.2. On the interval [0, 1], we consider the Cauchy problem

gy =9 u(rs)) s u(0) = ¢, u'(0) = ¢
. (t)_a_z)ljou_s)id T, u0)=cr W (0) = (3.20)

where 1 < 1,0<d < (3—-24)(2—4), 7:[0,1] — [0,1] is a measurable function,
g€ L([0,1];R) and ¢, ¢; € R.

It is clear that (3.20) is a particular case of (1.1), (2.2) in which ¢ =0, b = 1,
q1 =0, ¢ =¢q, and p, g are given by formulae

. A(f) — d " z(z(s)) )
P =20, g0 =] T (321)

for a.e. 1€0,1] and all ze C([0,1];R). It is not difficult to verify that
b, = ess sup{z(7) | € [0, 1]} (see Notation 3.1) and
b*

g

1

by
j "p(o(e(1)(s) ds=j (1 - 5)g(1)(s) ds < j (1~ 5)g(1)(s) ds

0 0 0

_ ! 12 boodé . d
‘dL“ ) La_f)lds‘(s—zﬂ)(z—x)'
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Therefore, according to Corollary 3.2, Remark 3.1(c), and Remark 3.2, the
problem (3.20) has a unique solution for arbitrary ¢ € L([0, 1]; R) and ¢, ¢, € R.
Moreover, if ¢ and ¢y, ¢; fulfil the additional condition

q(t) >0 forae. te[0,1], ¢ =0,c =0, (3.22)
then the unique solution u of this problem satisfies the relation
u(t) >0, u'(t)>=0 forze0,1].

3.2. The case —g € 2°,;. Now we consider the case where the operators p and
¢ are nondecreasing and nonincreasing, respectively. Here we have a sufficient
and necessary condition for the validity of the inclusion (p, g) € &2 (a), provided
that p, g are a-Volterra operators.

Theorem 3.3. Let —g,p € %y and let p, g be a-Volterra operators.  Then
(p,9) € L2 (a) if and only if there exist functions y,,7, € Cioc(|a, b[;R) such that
71 € C([a7 b]a R))

210 < p(y)(t)  forae.telab], ! (3.23)
75(1) < g(y))(t)  forae.telab], (3.24)
() =0 fort € [a,b], (3.25)
7 (a) >0, y,(a) <0, (3.26)
and
(@O + ()] #0  fort € la,bl. (3.27)

Remark 3.5. The condition (3.23) of the previous theorem is understood in the
sense that, for any by € |a, b, the relation

21(1) < pan,(72)(t)  forae. t € [a,bo) (3.28)
holds, where pg, is the restriction of the operator p to the space C([a, bo]; R).
Remark 3.6. Observe that the function p, in Theorem 3.3 necessarily satisfies
7,(t) <0  fortelabl. (3.29)

Theorem 3.3 yields the following statement.

ISee Remark 3.5.
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Corollary 3.3. Let —g, p € 2, and let p, g be a-Volterra operators. If, moreover,

b
J 1p(0(9(1)))(s)]ds < 1, (3.30)

where the operator ¢ is defined by (3.9), then (p,g) € yai(a).

Remark 3.7. The inequality (3.30) of the previous corollary cannot be replaced
by the inequality

b
J 1p(0(g(1)))(s)|ds < 1+, (3.31)

no matter how small ¢ > 0 would be (see Example 6.1).

Example 3.3. On the interval [0, 7/4], we consider the differential system (3.16),
where 7 : [0,7/4] — [0,7/4] is a measurable function, 7(¢) <t for a.e. ¢ € [0,7/4],
q1,q2 € L([0,7/4]; R), and d; > 0, d» < 0 are such that

212

dy|dy| < .
e 47(1+2v2) — 22(1 +v/2) — 24

It is clear that (3.16) is a particular case of (1.1) in whicha =0, b = n/4, and p, g
are given by formulae (3.17). Analogously to Example 3.1, we get the relation

/4
| ool 0 d = T2 a1 +2v3) - w1+ V2 - 24) < 1.

Therefore, according to Corollary 3.3 and Remark 3.2, the problem (3.16),
(2.2) has a unique solution for arbitrary ¢qi,¢> € L([0,7/4];R) and ¢, ¢; € R.
Moreover, if ¢, ¢> and ¢y, ¢, fulfil the additional condition (3.19), then the unique
solution (u, v) of this problem satisfies the relation u(¢) > 0 for 7 € [0, /4].

Example 3.4. On the interval [0, 1] we consider the problem (3.20), where 4 < 1,
d=<0,|d <(3-21)(2-4), t:[0,1] = [0,1] is a measurable function, () <t
fora.e. t €0,1], ¢ € L([0,1]; R), and ¢}, ¢z € R.

It is clear that (3.20) is a particular case of (1.1), (2.2) in which ¢ =0, b =1,
q1 =0, ¢ =¢q, and p, g are given by formulae (3.21). Analogously to Example
3.2, we get the relation

‘ d
[ Iptolan) ol as = s — <.
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Therefore, according to Corollary 3.3 and Remark 3.2, the problem (3.20) has
a unique solution for arbitrary ¢ € L([0, 1]; R) and ¢, ¢; € R. Moreover, if ¢ and
¢y, ¢, fulfil the additional condition (3.22) then the unique solution u of the this
problem satisfies the relation u(z) > 0 for z € [0, 1].

4. Proofs of the main results

Proof of Theorem 3.1. Let the functions u, v € C([a, b]; R) satisfy (3.1) and (3.2).
We will show that the function u is nonnegative. Put

[u(®)]_ = % (Ju(r)| — u(z))  for ¢ € [a,b].

According to the inclusion (p, —g;) € ?az},(a) and Remark 3.2, the problem

o (1) = p(B)(D),  B(1) = —g1()(1) + go([] )(1), (4.1)
a(a) =0, pla)=0 4.2

has a unique solution (o, ) and
o(t) =0 fort e [a,bl. (4.3)
In view (3.1), (3.2), (4.1), (4.2) and the assumption gy € %, we get

(
o' (1) +u' (1) = p(B+v)(t) forae. tea,b],
B'(0) +0'(6) = —gi (e +u) (@) + go(u + [u] )(2)
> —gi(a+u)(t) fora.e.tela,bl,

and
o(a) +u(a) =0, fla)+v(a) =0.
Consequently, the inclusion (p, —g1) € %2 (a) yields
a(t)+u(t) >0 fortela,b]. (4.4)
Now (4.3) and (4.4) imply
[u(r)]_ <a(r) forte[a,b]. (4.5)

On the other hand, by virtue of (4.1), (4.3), (4.5), and the assumptions
do, g1 € Py, We obtain that

o (1) = p(B)(1), B'(1) <go(x)(t) forae. e a,b].
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Hence the inclusion (p, go) € &2 (a), in view of (4.2), implies that
o(t) <0 fort e [a,b],
which, together with (4.4), guarantees (3.5). O

Proof of Corollary 3.2. According to (3.14) and the assumption p € 2, there
exists ¢ > 0 such that

o(1+ fp(l)(s) ds) + Jj;p((p(g(l)))(s) ds <1, (4.6)

Put
p(0)=e+ [ o) forie fab) @)
N0 =e+ [ s forielas (43)

It is clear that y,,7, € C([a, b]; R) satisfy (3.7) because the operators p and g are
supposed to be nondecreasing. Put

. () fortelabyl.
nin = {y:(b;‘) for 1 € b, b]. (49)

Then (4.6)—(4.8) yield

b
7(0) < pi(b;) = 8+J e+ 9(9(1))) () ds

a

b

*
bL/ g

= 8(1 + L‘ p(1)(s) ds) —|—J p(e(g(1)))(s)ds <1 (4.10)

for ¢ € [a,b]. On the other hand, in view of relations (4.9), (4.10), the assumption
g € P, and Remark 3.4, it follows from (4.7) and (4.8) that

1@ =pa)0), (1) =9(1)(1) = g(71) (1) = g(n)(1)  forae. € [a,b],

i.e., the inequalities (3.8) are fulfilled. Consequently, using Theorem 3.2, we get
(p:9) € Sip(a). O

Proof of Proposition 3.1. Suppose that (3.15) holds and the problem (1.1p), (2.20)
has only the trivial solution. We will show that (p,g) € #2(a). According to
Proposition 2.1, the problem
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@) =p(a) 0, 73(0) =9g(1) (), (4.11)
n@ =1, pl@=1 (4.12)

has a unique solution (y,y,). Put
m = min{y,(¢) [ € [a,b;]} (4.13)

and choose 1, € [a, b,] such that y,(t,) = m.
Assume that

m < 0. (4.14)

By virtue of (4.13) and the assumption g € %, the relations (4.11) and (4.12) yield

t t

amwﬁzmjmuwﬁ:mmm»m for 1 & [a,b].

a

p=1+|

a

Consequently, in view of (4.14) and the assumption p € %, the relations (4.11)
and (4.12) imply

tn by

ple(g(1)))(s)ds = 1 +mJ p(p(9(1)))(s) ds.

a

tm

m:1+J

a

mhxwwzl+mj

a

Using (3.15) in the last relation, we get the contradiction m > m + 1.
The contradiction obtained proves that m > 0, i.e.,

n(6) >0 fortelaby] (4.15)

Now we define the function y, by (4.9). Obviously, 7,(z) > 0 for ¢ € [a,b] and
therefore, by virtue of the assumption g € %, and Remark 3.4, (4.11) yields

12(t) = g(n) () = g(71)(1) =0 forae. € [a,b].

Since y,(a) > 0, the last relation yields that y,(z) > 0 for 7 € [a,b]. Now (4.11) im-
plies that

71(6) = p(yy)(t) =0  fora.e. 1€ [a,b],

which, together with (4.15), gives that y,(¢) > 0 for ¢ € [a,b]. Consequently, The-
orem 3.2 guarantees (p,g) € L2 (a).

Now suppose that (p,g) € %2 (a). If (u,v) is a solution of the homogeneous
problem (1.1¢), (2.29), then the inclusion (p,g) € ¥ (a) yields that u = 0. Con-
sequently, v = 0 as well, and thus the problem (1.1y), (2.29) has only the trivial
solution. |
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To prove Theorem 3.3 we need the following lemma.
Lemma 4.1. Let —g,p € Zu, and let p, g be a-Volterra operators. Assume that
there exist functions y,7, € Cioc([a,b[; R) satisfying y, € C([a,b]; R) and (3.23)-
(3.26). Then, for any u,v € C([a, b]; R) fulfilling (3.1) and (3.2), the condition
u(t) =0  fortela,b) (4.16)

holds, where

by = sup{x € |a,b]|y,(¢) > 0 for t € [a,x]}. (4.17)

Proof. Let the functions u, v € C([a, b]; R) satisfy (3.1) and (3.2). Define the num-
ber by by (4.17). Itis clear that by > « and

(1) >0 forte[a, byl (4.18)

Assume that, on the contrary, the relation (4.16) is not true. Then there exists
to € ]a, bo[ such that

u(to) < 0. (4.19)
Put
u(?) }
A=maxs —=|t € la,ty ;. 4.20
e 420
It is clear that
0< A< +o0. (4.21)

Define the functions w; and w; by setting
wi(t) = Ay (6) —u(t), wa(t) = 2p,(¢t) —v(t) fortelaty). (4.22)

Since p, g are a-Volterra operators, using (3.1), (3.23), (3.24), (4.21), and Remark
3.5, we get

wi (1) = Ap1(2) — u' (1) < pai,(Ap — 0)(1) = par,(w2) (1)  forae. € [a,ty] (4.23)
and
wi () = Ap5(t) — 0'(1) < Gary(Ap1 — u)(2) = gay(w1) (1) forace. 1 € [a, 1], (4.24)

where pu,, gar, are the restrictions of the operators p, g to the space C([a, t]; R).
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On the other hand, by virtue of (4.20), it is clear that
wi(t) =0 fort e [a,t) (4.25)
and there exists ¢ € [a, [ such that
wi(t1) = 0. (4.26)

Since we suppose that —g € Z,;,, we get from (3.2), (3.26), (4.21), (4.22), (4.24),
and (4.25) that

wy (1) < gar,(w1)(1) <0 forawe. t € la,t), wa(a)=Ap,(a)—v(a) <O.
Hence we obtain
wa(t) <0 fort € [a, ). (4.27)
However, we suppose that p € 2, and thus we get from (4.23) and (4.27) that
wi (1) < pa,(w2)(t) <0 fora.e. 1€ [a, ). (4.28)
Finally, by virtue of (3.25), (4.21), and (4.26), the relation (4.28) yields that
0 =wi(tr) = wi(to) = 21 (t0) — u(to) = —u(to),

which contradicts (4.19).
The contradiction obtained proves the relation (4.16). O

Proof of Theorem 3.3. First suppose that (p,g) € ,?azb(a). According to Remark
3.2, the system (4.11) has a unique solution (y,,y,) satisfying the initial conditions

n@) =1,  p(a) =0, (4.29)
and, moreover, the relation
y1(t) =0 fort e [a,b] (4.30)

holds. It is clear that y,,y, € C([a, b]; R) satisfy (3.23)—(3.26). We will show that
(3.27) holds. Assume that, on the contrary, the relation (3.27) is not satisfied.
Then there exists #y € |a, b[ such that y,(zy) = 0 and

71(t0) = 0. (4.31)
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By virtue of (4.30) and the assumption —g € %, the conditions (3.24), (4.29), and
y2(t0) = 0 imply p,(7) = 0 for ¢ € [a, ty]. Since we suppose that p is an a-Volterra
operator, (4.11) implies that

71(1)=0 fora.e. € [a,t).
This relation, together with the condition y,(a) = 1, yields that y,(z) = 1, which
contradicts (4.31). This proves the relation (3.27). .
Now suppose that there exist functions p;,7, € Cioc([a, bA[; R) satisfying
71 € C([a,b];R) and (3.23)-(3.27). We will show that (p,g) € 2 (a). Let the
functions u,v € C([a, b]; R) satisfy (3.1) and (3.2). By virtue of Lemma 4.1, the
relation (4.16) is true, where the number b, is defined by (4.17).
If by = b then the proof is complete. Assume that by < b and let b, € )by, b| be
arbitrary but fixed. We will show that
u(t) =0 fort e la,by]. (4.32)
It follows from (3.25) and (4.17) that (4.18) holds and
(1) =0  for ¢t € [by,b]. (4.33)

Consequently, by virtue of the assumptions (3.27) and (3.29), there exist
ap € la,bo[ and 2, € R, such that

o(t) = Aiy,(2)  for t € [ag, by]. (4.34)
On the other hand, in view of (4.18), there exist 1, € R, such that
u(t) < Aoy (1)  for t € [a, ap). (4.35)

Since the nonincreasing operator ¢ is an a-Volterra one, using (3.1), (3.24), and
(4.35), we get

V(1) = 2295(8) = Gaay( — A21)(1) =0 for a.e. ¢ € [a, ag]. (4.36)
However, the functions v and y, satisfy (3.2) and (3.26), and thus (4.36) yields that
v(t) = Aay,(t)  fort € [a,ap).
Therefore, if we put 2 = max{4;,1,} then, in view of (3.29), we get

v(t) = Ay,(t)  for t € [a,by). (4.37)
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Since we suppose that p is a nondecreasing a-Volterra operator, the inequal-
ities (3.23) and (3.29) imply that

P1(2) < pap, (7,)(1) <0 forae. t € [a,b],

where p,p, is the restriction of the operator p to the space C([a, b,]; R). The func-
tion y; vanishes on the interval [bg, b], and thus we have

Dab, (72)(1) =0 for a.e. t € [by, by]. (4.38)
Now (4.37) and (4.38) imply that
Dab, (0)(2) = Apap, (72)(1) =0 for a.e. t € [by, by],
which, together with (3.1) and (4.16), results in (4.32). Since the point b; was

chosen arbitrarily, we have proved that the function u is nonnegative on [a, b].
Consequently, (p,g) € %2 (a). O

Proof of Corollary 3.3. Put
7 () =1 —J ’p(gp(g(l)))(s)’ ds forte[a,b), (4.39)
yo(f) = th(l)(s) s forteab. (4.40)
In view of (3.30), it is clear that the conditions (3.25) and (3.26) are satisfied and
yn() <1 fortelab. (4.41)
Since we suppose —g, p € %y, we get from (4.39)—(4.41) that

11(1) = p(e(9(1))) (1) = p(n)(r)  forae. 1€ la,b]

and
ya(t) = g(1)(1) < g(y)(2) forae. 1€ a,b],

i.e., the functions y;, y, satisfy (3.23) and (3.24).
We will show that the condition (3.27) holds. Assume that, on the contrary,
the relation (3.27) is not true. Then there exists 7y € ]a, b[ such that y,(zy) = 0 and

y(t) =0. (4.42)
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Therefore, (4.40) yields that
g()(r)=0 fora.e. € [a,t).
Supposing that p is an a-Volterra operator, the last relation gives

p(p(g9(1)))(t) =0 forae. € [a, .

Hence (4.39) implies y,(#) = 1, which contradicts (4.42). The contradiction ob-
tained proves the condition (3.27).
Consequently, using Theorem 3.3, we get (p,g) € ¥ (a). ]

5. Corollaries for operators with argument deviations

In this section we give efficient conditions under which the weak theorem on dif-
ferential inequalities holds for the system with argument deviations (1.3). More
precisely, some corollaries of the main results are established for the case where
the operators p, g € %, are defined by the formulae

p(2)(2) dgf(t)z(,u(t)) for a.e. t € [a,b], z € C([a,b]; R), (5.1)

g(2)(t) = ho(1)z(0(2)) fora.e. t € [a,b], z € C([a,b]; R), (5.2)
g0 E —h()z(ni(1))  forae. t€ab], ze C(la,b];R),  (5.3)

g(2)(t) = ho(0)z(zo(2)) — h(0)z(t1(r))  forae. t e [a,b], ze C([a,b];R), (5.4)
where f',hy,h € L([a,b]; R;) and u, 70,7 : [a,b] — [a,b] are measurable func-

tions.
Throughout this section, the following notation is used:

u* =esssup{u(t)|telabl}, 15 =esssup{ro(?)|t€ [a,b]}, (5.5)
and
b* = max{u*, 1}

All the statements are formulated in Section 5.1, the proofs are given later in
Section 5.2.
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5.1. Formulation of the results. The next statement can be derived from Theo-
rem 3.2.

Theorem 5.1 ([24], Theorem 4.2). Let p and g be the operators defined by (5.1)
and (5.2), respectively. Put

def

o(t) = max{f (), ho(t)} forae.tela,bl, (5.6)

and assume that « # 0 on [a,b*],
(1)
ess sup{J w(s)ds|t € [a, b}} <n7,
t
and

7o(7)

ess sup{L o(s)ds|t € [a, b]} <",

x>0}.

where

n' = sup{l In (x—i— o >
x exp(f w(s)ds) — 1

Then the pair (p,g) belongs to the set #2(a).
Corollary 3.1 yields

Theorem 5.2 ([24], Corollary 4.5). Let p and g be the operators defined by (5.1)
and (5.2), respectively. Assume that the condition (3.10) is satisfied, where

S

= jb cosh(jb w(€)d¢) /(s)o (s)(J”“

a N

ho(€) ¢ ) ds

J sinh wa df ho(s ()(JTO(S)f(f)df> ds, (5.7)

S

_J cosh( J () dE ) (s ()(JW) £(&)de) ds

A

o [ romo

S

u(s)
ho(&) d& ) ds, (5.8)

the function o is defined by (5.6), and
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o1(t) == (1 +sgn(u(t) — 1)) forae. 1€ la,bl, (5.9)

l\JIP—‘ Nl’—‘

o(t) == (1 +sgn(zo(t) — 1))  forae. 1€ a,b]. (5.10)

Then the pair (p,g) belongs to the set #2(a).

Remark 5.1. The strict inequality (3.10) in the previous corollary cannot be re-
placed by the nonstrict one (see [24], Example 5.3).

For the operator g given by (5.2), according to Notation 3.1, we have b} < 7.
It is however easy to see that the equality b; = 7§ is not true in general. On the
other hand, it is clear that the number 7 is ea51er to compute than b;. Therefore,
the results obtained below by using Corollary 3.2 and Proposition 3 1 are formu-
lated in terms of the number 7 instead of b;.

Theorem 5.3. Let p and g be the operators defined by (5.1) and (5.2), respectively.
If

Jrgf(s)(r(s) ho(f)dé) ds < 1, (5.11)

then the pair (p, g) belongs to the set ?fh(a).
The next theorem can be regarded as a complement of the previous one.

Theorem 5.4. Let p and g be the operators defined by (5.1) and (5.2), respectively,

and let
% uls)
L f(s)(L ho (&) dcf) ds = 1. (5.12)
Then (p,g) € S2(a) if and only if
ff(S) ( J:m ho(&)x(7o(¢)) dé) ds < 1, (5.13)
where
(1) = JZ f(s)(J:(S) ho(&)de) ds  for t € [a,b). (5.14)

In view of Remark 3.1(d), Theorems 5.3 and 5.4 immediately yield
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Theorem 5.3'. Let p and g be the operators defined by (5.1) and (5.2), respectively.
If

[ ([ reerag)as <1,

a a

then the pair (p,g) belongs to the set ,Qazb(a)

Theorem 5.4'. Let p and g be the operators defined by (5.1) and (5.2), respectively,
and let

r ho(s) JTO(S)f(f) de)ds=1.

a a

Then (p,g) € S2(a) if and only if

[ i ([ reeowtucer) ) as <1

a a

where

o) = Jtho(s)(JTO(S)f(é) d)ds  for t & fa,b].

a a

The next statement follows from Corollary 3.3.

Theorem 5.5. Let p and g be the operators defined by (5.1) and (5.3), respectively.
I

F@)(u(@)—1) <0,  h()(n()—1) <0  forae.telab], (5.15)

and

Jbﬂs)( rm (@) de) ds < 1 (5.16)

a a

then the pair (p, g) belongs to the set 2 (a).

Remark 5.2. The inequality (5.16) in the previous theorem cannot be replaced by
the inequality

Jb_f(s)(r(S)hl(é)dé) ds<1+e, (5.17)

a a

no matter how small ¢ > 0 would be (see Example 6.1).
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The next statement contains the so-called Vallée-Poussin type conditions.

Theorem 5.6. Let p and g be the operators defined by (5.1) and (5.3), respectively,
and let the condition (5.15) hold.  Assume that there exist numbers oy,0, € Ry,
o3 > 0,4 €0,1], and v € [0, 2] such that

[} o = 519
(b= 0" (1) < a3 |1+ o3(2) J;m <b L ; fzs);) ds] forae. te [a,g].,l )
(b—0)""h(1) <oy forae. teabl, (5.20)
and
w3(b— 1)y () (= 11()) < o2 + (b—+)l forae. telab], (521)
where
o3(1) = % (1+sen(t—u(0)) forae. telabl. (5.22)

Then the pair (p,g) belongs to the set #2(a).

Remark 5.3. The inequality (5.18) in the previous theorem cannot be replaced by
the inequality

A ds (b—a)'™
_— l—¢g)—F—— 2
Jo o + o8 + o382 2 (1-¢) 1-41 7 (5-23)

no matter how small ¢ > 0 would be (see Example 6.2).

Theorem 5.7. Let p and g be the operators defined by (5.1) and (5.4), respectively.
Assume that the functions f, u, ho, to satisfy the assumptions of one of Theorems
5.1-5.4, whereas the functions f, u, hi, 71 satisfy the assumptions of Theorem 5.5
or 5.6. Then the pair (p,g) belongs to the set #2(a).

5.2. Proofs. Now we prove the statements formulated above.

Proof of Theorem 5.3. It is clear that p,g € #,. According to Notation 3.1,
we get by < 7i. Therefore, the validity of the theorem follows immediately from
Corollary 3.2. O
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For the sake of clarity, we give the following lemma before we prove Theorem
5.4.

Lemma 5.1. Let f,hy € L([a,b]; Ry) and u, 1o : [a,b] — [a, b] be measurable func-
tions such that the condition (5.12) holds. Then the homogeneous problem

. 0'(0) = ho(D)u(zo(2)), (5.24)
u(a) =0, v(a)=0 (5.25)

has only the trivial solution if and only if the inequality (5.13) is satisfied, where the
Sfunction x is defined by (5.14).

Proof. Let (u,v) be a solution of the problem (5.24), (5.25). We first show that
the function u does not change its sign on the interval [a,7}]. Assume that, on
the contrary, u changes its sign on [a, 7;]. Put

M =max{u(t)|t € [a,75]}, m=—min{u(t)|t € [a,14]}, (5.26)
and choose ty, 1,y € [a, ;] such that
u(ty) =M,  u(ty) =—m. (5.27)
Obviously,
M>0, m>0, (5.28)

and we can assume without loss of generality that #,, < t3;. By virtue of (5.26), it
follows from (5.25) and the second equation in (5.24) that

o(t) = Jtho(s)u(ro(s)) ds < thho(s) ds  forteah] (5.29)

a a

Therefore, the integration of the first equation in (5.24) from ¢, to ¢y, in view of
(5.12), (5.27), and (5.29), yields that

57}

soplu)ds < m [ 160 r(s) (&) de) ds < M,

Im

M+m:J

tm

which contradicts (5.28).
The contradiction obtained proves that the function u does not change its sign
on the interval [a, 7j]. Therefore, we can assume without loss of generality that

u(t)=0 forte [a,zg]. (5.30)
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It follows from (5.24) and (5.25) that

u(t) = Jlf(s)<rm ho(&)u(to(8)) dé) ds for 1€ [a,b]. (5.31)

a a

Since 7¢(#) < 7 for a.a. t € [a, b] and the function u is nonnegative on [a, 7j], the
last relation implies that

u(to(1)) <u(zy) forae. te[a,b]. (5.32)

Therefore, in view of (5.14), it follows from the representation (5.31) that

ro(]

a

t

2(s)

u(?) < u(‘[a‘)J ho(&) dé) ds = u(ty)x(t) fortela,b], (533)

a

and

u(zl) — ult) = J £(s) ( JM ho(&)u(z0(€)) df) ds

<ut) |16

Using (5.12) and (5.14) in the relation (5.34), we obtain

w(s)
ho(f)dé) ds fortefat]. (5.34)

7y u(s)

et =uzp) (1= | 16|

a

ho(&) dé) ds) <u(r) fortelaz),
which, together with (5.33), gives
u(t) = u(zy)x(t) forte [a, gl (5.35)

Finally, (5.31) and (5.35) result in

ro(]

a

t

us)

u(t) = u(ra‘)J ho(&)x(70(2)) dé) ds fortelab], (536)

a

whence we obtain

u(ff{)[l —J

a

*

6 ( Jm ho(&)x(x0(€)) ) ds| = 0. (5.37)

a

We have proved that every solution (u, v) of the problem (5.24), (5.25) satisfies
(5.36), where u(z;) fulfils (5.37). Consequently, if (5.13) holds, then the homoge-
neous problem (5.24), (5.25) has only the trivial solution.
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It remains to show that if (5.13) is not satisfied, i.e.,
7 u(s)
J f(s)(J ho(&)x(20(&)) df) ds=1, (5.38)

then the homogeneous problem (5.24), (5.25) has a nontrivial solution. Indeed, in
view of (5.12), from (5.14) we obtain that

x(t0(t)) < x(z5) =1 forae. 1€ [a,b].

Therefore, using (5.38), it is easy to verify that

o< [ ([ m@D - @] ) as

a

< ["ro([" @ - (@) ) @
. J 76)( J:(S) ho(€)x(x0(8)) d) ds =0 for & [a,73].

Hence we get

x(1) = Jt f(s)(rm W(@)x((@) de)ds forrefaz]. (539

Put
t

u(t) = J ho(s)x(zo(s)) ds,  u(r) = J F(s)v(u(s))ds  fort e [a,b].

a a

By virtue of (5.39), it is clear that u(z) = x(¢) for ¢ € [a, 7;], and thus
13
v(1) = J ho(s)u(to(s)) ds ~ for t € [a,b].

Consequently, (u,v) is a nontrivial solution of the problem (5.24), (5.25). O
Now we can prove Theorem 5.4.

Proof of Theorem 5.4. 1t is clear that p,g € Z,.

First suppose that (p,g) € %2 (a). In view of Remark 3.2, the homogeneous
problem (5.24), (5.25) has only the trivial solution. Thus Lemma 5.1 guarantees
that the inequality (5.13) is satisfied.
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Now suppose that the inequality (5.13) is fulfilled. According to Notation 3.1,
we have by < 75. If

[ ([ mieya)as <1,

a a

Corollary 3.2 implies that (p,g) € S2(a). If
by u(s)
["ro (] meac)as—1

then, by virtue of Lemma 5.1, the homogeneous problem (5.24), (5.25) has only
the trivial solution. Consequently, using Proposition 3.1, we get (p,g) € %2 (a)
as well. ]

Proof of Theorem 5.5. 1t is clear that p € 2, and —g € . Moreover, (5.15)
guarantees that p and g are a-Volterra operators. Therefore, the validity of the
theorem follows immediately from Corollary 3.3. ]

To prove Theorem 5.6 we need the following lemma.

Lemma 5.2. Let the numbers oy, 02 € Ry, 03 > 0, and 1 € [0, 1] be such that

= . (5.40)

J“C ds (b—a)'™*
0o ol FopsHozs? 1 —4

Then, for any v € [0, 1], there exist y; € C([a,b]; R) and y, € Cioc([a, b[; R) such that
7171572 € Cioc([a, b[; R),

y1(6) >0  fortelabl, (5.41)
7(a) =0, p(t) <0  fortelab, (5.42)
ﬁm—@{kﬁmnfme% (5:43)
%@—nhgmm®+Qiﬁw?N>N)ﬁwem% (5.44)

and
(1) <0 fortela,bl (5.45)

Proof. Define the function ¢ : [a,b] — R, by setting
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+00 _ -2
J ds 5= (b=9 for ¢ € [a, b].

o(t) 1+ 028 + 038 1—-4

In view of (5.40), we get
o(a)=0, o(t)>0 fortelab, (5.46)
and
2
Q/(t) _ o + O‘2Q(t) +)OC3Q (t) fort e [Cl,b[.
(b—1)"

Put

t

(1) = eXP(—J % ds), 72(1) = — = Z)tv for t € [a, bl.

It is not difficult to verify that y,, 7, € Cioc([a, b[; R) and the conditions (5.43) and
(5.44) are satisfied. Therefore, y{, 7} € Cioc([a, b[; R), as well. Moreover, in view
of (5.46), it is clear that (5.41) and (5.42) are fulfilled. Consequently, by direct
calculation we can check that y{ € Cioc([a, b[; R) and (5.45) is satisfied. Since the
function p, is positive and nonincreasing on [a,b[, there exists a finite limit
lim,_,_ y,(#). Therefore, y, € C([a,b]; R) when we put p,(b) = lim,_p_y,(z). O

Now we are in position to prove Theorem 5.6.

Proof of Theorem 5.6. 1t is clear that p € 2 and —g € #,;,. Moreover, (5.15)
guarantees that p and g are a-Volterra operators. According to (5.18) and (5.20),
the number o) can be increased such that the equality (5.40) is satisfied instead of
the inequality (5.18), and the condition (5.20) is still true. Then, by virtue of
Lemma 5.2, there exist functions y, € C([a,b];R) and y, € Cioc([a, b[; R) such
that y{, 77,75 € Cioc([a, b[; R), and the conditions (5.41)—(5.45) are satisfied. Obvi-
ously, 71,7, € Cioc([a, b[; R). Using (5.41)—(5.44), we get

71(1) <0, (1) <0 forte[a,b| (5.47)
Put
A={telab]|f(1)>0}, B=1{relab]|h)>0}.

If we take (5.15) into account, by direct calculation we obtain
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vV 2%
wn|b=5 (b—s)"

] P2 (s) ds

! + e i]a’s fora.e. t € A,

and
—n(u() =-n@) +J " y1(s)ds = =y, (1) + 91 (1) (1 = 11 (1))

# (t—71(2))p,(tr) forae.reB.

By virtue of (5.19), (5.20), (5.21), and (5.41)—(5.44), we get from the last relations
a3

f() _
SO (u(0) = T 0= G s =i

bs)’

=-n()+

for a.e. t € 4, and
~hi (01 (11(2)) = —hi ()9, (1) +

—#71@ + (b i t+ﬁ>72(0

=75(t) forae. € B,

which, together with (5.47), guarantees

710 < (O (u(0), 730 < =)y, (11(2))  forae. t€ [a,b],

i.e., y; and y, satisfies (3.23) and (3.24). Consequently, using Theorem 3.3, we get

(p,9) € Zu(a). O
Proof of Theorem 5.7. The validity of the theorem follows immediately from The-
orem 3.1 and Theorems 5.1-5.6. O

6. Counter-examples

Example 6.1. Let the operators p and ¢ be defined by (5.1) and (5.3), respectively,
where 7, = a. Then the condition (3.30) (i.e., (5.16)) is not only sufficient but also

necessary for the validity of the inclusion (p, g) € %2 (a).
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Indeed, let (p,g) € ,Q’azb (a). Then, according to Remark 3.2, the problem

u' (1) = f(u(u(®), ') = —h(t)u(a), (6.1)
u(a)=1, v(a)=0 (6.2)

has a unique solution (u,v) and, moreover, (3.5) is satisfied. It follows from (6.1)
and (6.2) that

u(t) = 1 +J’f'(s)v(u(s)) ds = 1 —J f(s)(Jﬂ(S)hl(f)dé) ds forte a,b].

Hence we get

b

1o ([ e ae) as

a

ulb) =1- J
which, together with (3.5), guarantees (5.16).

This example shows that the inequalities (3.30) and (5.16) in Corollary 3.3 and
Theorem 5.5 cannot be replaced by the inequalities (3.31) and (5.17), respectively,
no matter how small ¢ > 0 would be.

Example 6.2. Lete >0, o = ST A0 and let the operators p and g be defined
by (5.1) and (5.3), respectively, where f = o, iy =, and u(t) =1t, 7,(t) =t for
t € [a,b]. Ttis clear that the conditions (5.15), (5.19)—(5.21), and (5.23) are fulfilled

with oy = o3 = o, 2p = 0, and A = v = 0. On the other hand, the functions
u(t) =cosa(t—a), v(t)=—sinoa(t—a) forte la,b]

fulfils (3.1) and (3.2). However, the function u is not nonnegative on the entire
interval [a, b], and thus (p,g) ¢ S (a).

This example shows that the inequality (5.18) cannot be replaced by the in-
equality (5.23), no matter how small ¢ > 0 would be.
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