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Abstract. New theorems on di¤erential inequalities for two-dimensional systems of linear
functional di¤erential equations are established. Di¤erential systems with argument devia-
tions are considered in more detail, in which case further results are obtained.
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1. Introduction

On the interval ½a; b� we consider the two-dimensional di¤erential system

u 0ðtÞ ¼ pðvÞðtÞ þ q1ðtÞ;
v 0ðtÞ ¼ gðuÞðtÞ þ q2ðtÞ;

ð1:1Þ

where p; g : Cð½a; b�;RÞ ! Lð½a; b�;RÞ are bounded linear operators and q1; q2 a
Lð½a; b�;RÞ. By a solution of the system (1.1) we understand a pair ðu; vÞ of abso-
lutely continuous on ½a; b� functions satisfying (1.1) almost everywhere on ½a; b�.

We shall study the system (1.1) in the case where either p or g is a monotone

operator. Thus, we shall assume in the sequel that

p a Pab; ð1:2Þ

where Pab denotes the set of nondecreasing operators (see Definition 2.1).

It is well known that the theorems on di¤erential inequalities play very impor-

tant role in the theory of di¤erential equations. Therefore, the question on the
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validity of the theorems on di¤erential inequalities is studied by many authors

(see, e.g., [24], [4], [25], [17], [9], [27], [13], [18], [19], [11], [20], [22], [1], [5], [2],

[26], [6], [7], [10]). Although for ordinary di¤erential equations and their systems

the question indicated is studied in detail (see, e.g., [9], [3], [27], [13], [1], [2], [10],

[26] and references therein), for functional di¤erential systems, and even for the

rather simple system (1.1), there is still a broad field for further investigations.

We have investigated the n-dimensional systems of functional di¤erential in-

equalities in [24]. In the present paper, new results in this line, namely, the so-

called weak theorems on di¤erential inequalities, are established for the system

(1.1). In other words, we obtain e‰cient conditions for the operators p and g

which guarantee that a certain maximum principle holds for the system (1.1).

All results are finally applied in the case where (1.1) is the di¤erential system

with argument deviations

u 0ðtÞ ¼ f ðtÞv
�
mðtÞ

�
þ q1ðtÞ; v 0ðtÞ ¼ hðtÞu

�
tðtÞ
�
þ q2ðtÞ; ð1:3Þ

in which f ; h; q1; q2 a Lð½a; b�;RÞ and m; t : ½a; b� ! ½a; b� are measurable functions.

It should be noted that the second order functional di¤erential equation

u 00ðtÞ ¼ lðuÞðtÞ þ qðtÞ; ð1:4Þ

where l : Cð½a; b�;RÞ ! Lð½a; b�;RÞ is a linear bounded operator and

q a Lð½a; b�;RÞ, can also be regarded as a particular case of (1.1). Some of the

results stated below correspond to those obtained in [25], [17] for the equation

(1.4).

2. Notation and definitions

We use the following notation throughout the paper.

R is the set of all the real numbers, Rþ ¼ ½0;þl½;
Cð½a; b�;RÞ is the Banach space of continuous functions u : ½a; b� ! R equipped

with the norm

kukC ¼ maxfjuðtÞj j t a ½a; b�g;

Cð½a; b�;RþÞ ¼ fu a Cð½a; b�;RÞ j uðtÞb 0 for t a ½a; b�g;
Clocð½a; b½;RÞ is the set of continuous functions u : ½a; b½ ! R.
~CCð½a; b�;RÞ is the set of absolutely continuous functions u : ½a; b� ! R;
~CClocð½a; b½;RÞ is the set of functions u : ½a; b½ ! R such that u a ~CCð½a; b�;RÞ for

every b a �a; b½;
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Lð½a; b�;RÞ is the Banach space of Lebesgue integrable functions h : ½a; b� ! R

equipped with the norm

khkL ¼
ð b
a

jhðsÞj ds;

Lð½a; b�;RþÞ ¼ fh a Lð½a; b�;RÞ j hðtÞb 0 for a:a: t a ½a; b�g;
Lab is the set of linear bounded operators l : Cð½a; b�;RÞ ! Lð½a; b�;RÞ.

Definition 2.1. An operator l a Lab is said to be nondecreasing if it maps the set

Cð½a; b�;RþÞ to the set Lð½a; b�;RþÞ. The class of nondecreasing operators is de-

noted by Pab. We say that an operator l a Lab is nonincreasing if �l a Pab.

Example 2.1. Let l a Lab be the operator defined by the formula

lðzÞðtÞ ¼def hðtÞz
�
tðtÞ
�

for t a ½a; b�; z a Cð½a; b�;RÞ; ð2:1Þ

where h a Lð½a; b�;RÞ and t : ½a; b� ! ½a; b� is a measurable function. Then l a Pab

if and only if

hðtÞb 0 for a:e: t a ½a; b�:

Definition 2.2. We say that l a Lab is an a-Volterra operator if, for arbitrary

b0 a �a; b� and z a Cð½a; b�;RÞ with the property

zðtÞ ¼ 0 for t a ½a; b0�;

we have

lðzÞðtÞ ¼ 0 for a:e: t a ½a; b0�:

Example 2.2. The operator l a Lab given by (2.1) is an a-Volterra operator if

and only if

jhðtÞj
�
tðtÞ � t

�
a 0 for a:e: t a ½a; b�:

Definition 2.3. Let l a Lab and b0 a �a; b½. The operator lab0 : Cð½a; b0�;RÞ !
Lð½a; b0�;RÞ defined by the equality

lab0ðzÞðtÞ ¼def lð~zzÞðtÞ for a:e: t a ½a; b0�; z a Cð½a; b0�;RÞ;

where
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~zzðtÞ ¼ zðtÞ for t a ½a; b0½;
zðb0Þ for t a ½b0; b�;

�

is called the restriction of the operator l to the space Cð½a; b0�;RÞ.
If b0 < b1a b and z a Cð½a; b1�;RÞ, then we write lab0ðzÞ instead of lab0ðzj½a;b0�Þ.

Remark 2.1. If l is an a-Volterra operator then it is clear that, for every

b0 a �a; b½ and z a Cð½a; b�;RÞ, the condition

lab0ðzÞðtÞ ¼ lðzÞðtÞ for a:e: t a ½a; b0�

is satisfied.

Along with the system (1.1), we consider the corresponding homogeneous

system

u 0ðtÞ ¼ pðvÞðtÞ; v 0ðtÞ ¼ gðuÞðtÞ: ð1:10Þ

The following statement is well known from the general theory of functional

di¤erential equations (see, e.g., [23], [15], [16], [8]).

Proposition 2.1. The Cauchy problem

uðaÞ ¼ c1; vðaÞ ¼ c2 ð2:2Þ

for the system (1.1) is uniquely solvable for arbitrary q1; q2 a Lð½a; b�;RÞ and

c1; c2 a R if and only if the corresponding homogeneous problem

uðaÞ ¼ 0; vðaÞ ¼ 0 ð2:20Þ

for the system (1.10) has only the trivial solution.

3. Main Results

We give some definitions and remarks before we formulate the main results.

Definition 3.1 ([24], Definition 3.1). A pair ðp; gÞ a Lab �Lab is said to belong to

the set S2
abðaÞ if, for any u; v a ~CCð½a; b�;RÞ such that

u 0ðtÞb pðvÞðtÞ; v 0ðtÞb gðuÞðtÞ for a:e: t a ½a; b� ð3:1Þ

and
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uðaÞb 0; vðaÞb 0; ð3:2Þ

the relations

uðtÞb 0; vðtÞb 0 for t a ½a; b� ð3:3Þ

are satisfied.

If ðp; gÞ a S2
abðaÞ then we say that the theorem on di¤erential inequalities holds

for the system (1.1).

In [24], e‰cient conditions are found for the validity of the inclusion

ðp; gÞ a S2
abðaÞ, provided that p; g a Pab. The question of obtaining such condi-

tions is still open for the cases where at least one of the operators p and g is not

nondecreasing.

On the other hand it is well known that for the ordinary di¤erential system

u 0 ¼ f ðtÞvþ q1ðtÞ; v 0 ¼ hðtÞuþ q2ðtÞ;

where f ; h; q1; q2 a Lð½a; b�;RÞ, the theorem on di¤erential inequalities holds if

f ðtÞb 0; hðtÞb 0 for a:e: t a ½a; b�: ð3:4Þ

In other words, the condition (3.4) is su‰cient for the validity of the inclusion

ðp; gÞ a S2
abðaÞ, where

pðzÞðtÞ ¼def f ðtÞzðtÞ; gðzÞðtÞ ¼def hðtÞzðtÞ for a:e: t a ½a; b�; z a Cð½a; b�;RÞ:

If f ; h a Cð½a; b�;RÞ then the condition (3.4) is not only su‰cient but also neces-

sary (see, e.g., [14], §1.7).

Therefore, the requirement of the validity of the condition (3.3) in Definition

3.1 seems to be too restrictive in the case where the operators p and g are not

both nondecreasing. We shall weaken the condition (3.3) in the following way.

Definition 3.2. A pair ðp; gÞ a Lab �Lab is said to belong to the set ŜS2
abðaÞ if, for

any u; v a ~CCð½a; b�;RÞ satisfying (3.1) and (3.2), the relation

uðtÞb 0 for t a ½a; b� ð3:5Þ

is fulfilled.

If ðp; gÞ a ŜS2
abðaÞ then we say that the weak theorem on di¤erential inequalities

holds for the system (1.1).

Remark 3.1. It follows immediately from Definition 3.2 that
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(a) ð0; gÞ a ŜS2
abðaÞ for every g a Lab;

(b) S2
abðaÞ is a proper subset of ŜS2

abðaÞ;
(c) ŜS2

abðaÞB ðLab �PabÞ ¼ S2
abðaÞB ðLab �PabÞ, i.e.,

ðp; gÞ a ŜS2
abðaÞ () ðp; gÞ a S2

abðaÞ for every p a Lab; g a Pab;

(d) ðp; gÞ a ŜS2
abðaÞ () ðg; pÞ a ŜS2

abðaÞ for every p; g a Pab:

Remark 3.2. It is clear that the homogeneous problem (1.10), (2.20) has only the

trivial solution under the assumption ðp; gÞ a ŜS2
abðaÞ. Therefore, according to

Proposition 2.1, the Cauchy problem (1.1), (2.2) has a unique solution for all

q1; q2 a Lð½a; b�;RÞ and c1; c2 a R. However, the inclusion ðp; gÞ a ŜS2
abðaÞ (resp.

ðp; gÞ a S2
abðaÞ) guarantees that, in addition, the solution ðu; vÞ of this problem

satisfies (3.5) (resp. (3.3)) whenever q1, q2 and c1, c2 are such that

qkðtÞb 0 for a:e: t a ½a; b�; ck b 0 ðk ¼ 1; 2Þ:

As has been indicated above, we investigate the system (1.1) in the case where

the condition (1.2) is satisfied. Let us now formulate the main results, namely, ef-

ficient conditions for the operators p and g guaranteeing the validity of the inclu-

sion ðp; gÞ a ŜS2
abðaÞ. The proofs are given later in Section 4.

The following statement describes a characteristic property of the set ŜS2
abðaÞ.

Theorem 3.1. Let p a Pab and g ¼ g0 � g1 with g0; g1 a Pab. If

ðp; g0Þ a ŜS2
abðaÞ and ðp;�g1Þ a ŜS2

abðaÞ ð3:6Þ

then ðp; gÞ a ŜS2
abðaÞ.

It is proved in [12], Ch.VII, §1.2, that g a Lab admits the representation

g ¼ g0 � g1 with g0; g1 a Pab if and only if the operator g is strongly bounded,

i.e., if there exists h a Lð½a; b�;RþÞ such that

jgðzÞðtÞja hðtÞkzkC for a:e: t a ½a; b� and every z a Cð½a; b�;RÞ:

Consequently, due to the results given in Sections 3.1 and 3.2, Theorem 3.1

allows one to obtain several e‰cient conditions for the validity of the inclusion

ðp; gÞ a ŜS2
abðaÞ for every nondecreasing p and strongly bounded g.

3.1. The case g a Pab. We first consider the case where both operators p and g

are nondecreasing. In this case, we have
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ðp; gÞ a ŜS2
abðaÞ () ðp; gÞ a S2

abðaÞ

(see Remark 3.1(c)). As mentioned above, properties of the set S2
abðaÞ are studied

in [24]. For the sake of completeness, we formulate here a general result (see The-

orem 3.2) and one of its corollaries. Then we derive two new corollaries of this

general theorem, which are not contained in the paper mentioned.

Theorem 3.2 ([24], Theorem 3.2). Let p; g a Pab. Then ðp; gÞ a ŜS2
abðaÞ if and only

if there exist functions g1; g2 a ~CCð½a; b�;RÞ such that

g1ðtÞ > 0; g2ðtÞ > 0 for t a ½a; b�; ð3:7Þ

and

g 01ðtÞb pðg2ÞðtÞ; g 02ðtÞb gðg1ÞðtÞ for a:e: t a ½a; b�: ð3:8Þ

Corollary 3.1 ([24], Corollary 3.5). Let p; g a Pab and let there exist operators

~pp; ~gg a Pab such that the inequalities

p
�
j
�
gðwÞ

��
ðtÞ � pð1ÞðtÞj

�
gðwÞ

�
ðtÞa ~ppðwÞðtÞ for a:e: t a ½a; b�;

g
�
j
�
pðwÞ

��
ðtÞ � gð1ÞðtÞj

�
pðwÞ

�
ðtÞa ~ggðwÞðtÞ for a:e: t a ½a; b�

hold on the set Cð½a; b�;RþÞ, where

jðhÞðtÞ ¼def
ð t
a

hðsÞ ds for t a ½a; b�; h a Lð½a; b�;RÞ: ð3:9Þ

Let, moreover,

maxfl1; l2g < 1; ð3:10Þ

where

l1 ¼
ð b
a

cosh
� ð b

s

oðxÞ dx
�
~ppð1ÞðsÞ dsþ

ð b
a

sinh
� ð b

s

oðxÞ dx
�
~ggð1ÞðsÞ ds; ð3:11Þ

l2 ¼
ð b
a

cosh
� ð b

s

oðxÞ dx
�
~ggð1ÞðsÞ dsþ

ð b
a

sinh
� ð b

s

oðxÞ dx
�
~ppð1ÞðsÞ ds; ð3:12Þ

and

oðtÞ ¼def maxfpð1ÞðtÞ; gð1ÞðtÞg for a:e: t a ½a; b�: ð3:13Þ

Then ðp; gÞ a ŜS2
abðaÞ.
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Remark 3.3. The strict inequality (3.10) in the previous corollary cannot be re-

placed by the nonstrict one (see [24], Example 5.3).

We introduce a simple notation.

Notation 3.1. For any l a Lab, we put

b�
l ¼ inf AðlÞ;

where AðlÞ is the set of all t a ½a; b� for which the implication

z a Cð½a; b�;RÞ; zðxÞ ¼ 0 for x a ½a; t� ¼) lðvÞðxÞ ¼ 0 for a:a: x a ½a; b�

is true.

Remark 3.4. It is easy to verify that b�
l a AðlÞ, i.e.,

z a Cð½a; b�;RÞ; zðxÞ ¼ 0 for x a ½a; b�
l � ¼) lðzÞðxÞ ¼ 0 for a:a: x a ½a; b�:

The following statements can also be derived from Theorem 3.2.

Corollary 3.2. Let p; g a Pab be such that

ð b�
g

a

p
�
j
�
gð1Þ

��
ðsÞ ds < 1; ð3:14Þ

where the operator j is given by (3.9) and the number b�
g is defined in Notation 3.1.

Then ðp; gÞ a ŜS2
abðaÞ.

The next proposition can be regarded as a complement of the previous corol-

lary.

Proposition 3.1. Let p; g a Pab be such that

ð b�
g

a

p
�
j
�
gð1Þ

��
ðsÞ ds ¼ 1; ð3:15Þ

where the operator j is given by (3.9) and the number b�
g is defined in Notation 3.1.

Then ðp; gÞ a ŜS2
abðaÞ if and only if the homogeneous problem (1.10), (2.20) has only

the trivial solution.

In view of Remark 3.1(d), Corollary 3.2 and Proposition 3.1 immediately yield

Corollary 3.2O. Let p; g a Pab be such that
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ð b�
p

a

g
�
j
�
pð1Þ

��
ðsÞ ds < 1;

where the operator j is given by (3.9) and the number b�
p is defined in Notation 3.1.

Then ðp; gÞ a ŜS2
abðaÞ.

Proposition 3.1O. Let p; g a Pab be such that

ð b�
p

a

g
�
j
�
pð1Þ

��
ðsÞ ds ¼ 1;

where the operator j is given by (3.9) and the number b�
p is defined in Notation 3.1.

Then ðp; gÞ a ŜS2
abðaÞ if and only if the homogeneous problem (1.10), (2.20) has only

the trivial solution.

Example 3.1. On the interval ½0; p=4�, we consider the di¤erential system

u 0ðtÞ ¼ d1 sin t

ð t=2
0

svðs=2Þ dsþ q1ðtÞ;

v 0ðtÞ ¼ d2 cosð2tÞ
ð t
0

cosð2sÞu
�
tðsÞ

�
dsþ q2ðtÞ;

ð3:16Þ

where t : ½0; p=4� ! ½0; p=4� is a measurable function, q1; q2 a Lð½0; p=4�;RÞ, and
d1; d2 a Rþ are such that

d1d2 <
212

4pð1þ 2
ffiffiffi
2

p
Þ � p2ð1þ

ffiffiffi
2

p
Þ � 24

:

It is clear that (3.16) is a particular case of (1.1) in which a ¼ 0, b ¼ p=4, and p, g

are given by formulae

pðzÞðtÞ ¼ d1 sin t

ð t=2
0

szðs=2Þ ds;

gðzÞðtÞ ¼ d2 cosð2tÞ
ð t
0

cosð2sÞz
�
tðsÞ

�
ds

ð3:17Þ

for a.e. t a ½0; p=4� and all z a Cð½0; p=4�;RÞ. It is not di‰cult to verify that

b�
g ¼ ess supftðtÞ j t a ½0; p=4�g (see Notation 3.1) and

j
�
gð1Þ

�
ðtÞ ¼

ð t
0

gð1ÞðsÞ ds ¼
ð t
0

d2 cosð2sÞ
ð s
0

cosð2xÞ dx ds ¼ d2

16

�
1� cosð4tÞ

�

for t a ½0; p=4�. Consequently, we have
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ð b�
g

0

p
�
j
�
gð1Þ

��
ðsÞ dsa

ð p=4
0

p
�
j
�
gð1Þ

��
ðsÞ ds

¼
ð p=4
0

d1 sin s

ð s=2
0

x
d2

16

�
1� cosð2xÞ

�
dx ds

¼ d1d2

212
�
4pð1þ 2

ffiffiffi
2

p
Þ � p2ð1þ

ffiffiffi
2

p
Þ � 24

�
< 1:

Therefore, according to Corollary 3.2, Remark 3.1(c), and Remark 3.2, the

Cauchy problem

uð0Þ ¼ c1; vð0Þ ¼ c2 ð3:18Þ

for the system (3.16) has a unique solution for arbitrary q1; q2 a Lð½0; p=4�;RÞ and
c1; c2 a R. Moreover, if q1, q2 and c1, c2 fulfil the additional condition

qkðtÞb 0 for a:e: t a ½0; p=4�; ck b 0 ðk ¼ 1; 2Þ ð3:19Þ

then the unique solution ðu; vÞ of this problem satisfies the relation

uðtÞb 0; vðtÞb 0 for t a ½0; p=4�:

Example 3.2. On the interval ½0; 1�, we consider the Cauchy problem

u 00ðtÞ ¼ d

ð1� tÞl
ð t
0

u
�
tðsÞ

�
ð1� sÞl

dsþ qðtÞ; uð0Þ ¼ c1; u
0ð0Þ ¼ c2; ð3:20Þ

where l < 1, 0a d < ð3� 2lÞð2� lÞ, t : ½0; 1� ! ½0; 1� is a measurable function,

q a Lð½0; 1�;RÞ and c1; c2 a R.

It is clear that (3.20) is a particular case of (1.1), (2.2) in which a ¼ 0, b ¼ 1,

q1C 0, q2C q, and p, g are given by formulae

pðzÞðtÞ ¼ zðtÞ; gðzÞðtÞ ¼ d

ð1� tÞl
ð t
0

z
�
tðsÞ

�
ð1� sÞl

ds ð3:21Þ

for a.e. t a ½0; 1� and all z a Cð½0; 1�;RÞ. It is not di‰cult to verify that

b�
g ¼ ess supftðtÞ j t a ½0; 1�g (see Notation 3.1) and

ð b�
g

0

p
�
j
�
gð1Þ

��
ðsÞ ds ¼

ð b �
g

0

ð1� sÞgð1ÞðsÞ dsa
ð1
0

ð1� sÞgð1ÞðsÞ ds

¼ d

ð1
0

ð1� sÞ1�l

ð s
0

dx

ð1� xÞl
ds ¼ d

ð3� 2lÞð2� lÞ :
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Therefore, according to Corollary 3.2, Remark 3.1(c), and Remark 3.2, the

problem (3.20) has a unique solution for arbitrary q a Lð½0; 1�;RÞ and c1; c2 a R.

Moreover, if q and c1, c2 fulfil the additional condition

qðtÞb 0 for a:e: t a ½0; 1�; c1b 0; c2b 0; ð3:22Þ

then the unique solution u of this problem satisfies the relation

uðtÞb 0; u 0ðtÞb 0 for t a ½0; 1�:

3.2. The case Cg a Pab. Now we consider the case where the operators p and

g are nondecreasing and nonincreasing, respectively. Here we have a su‰cient

and necessary condition for the validity of the inclusion ðp; gÞ a ŜS2
abðaÞ, provided

that p, g are a-Volterra operators.

Theorem 3.3. Let �g; p a Pab and let p, g be a-Volterra operators. Then

ðp; gÞ a ŜS2
abðaÞ if and only if there exist functions g1; g2 a ~CClocð½a; b½;RÞ such that

g1 a Cð½a; b�;RÞ,

g 01ðtÞa pðg2ÞðtÞ for a:e: t a ½a; b�; 1 ð3:23Þ
g 02ðtÞa gðg1ÞðtÞ for a:e: t a ½a; b�; ð3:24Þ
g1ðtÞb 0 for t a ½a; b�; ð3:25Þ
g1ðaÞ > 0; g2ðaÞa 0; ð3:26Þ

and

jg1ðtÞj þ jg2ðtÞjA 0 for t a �a; b½: ð3:27Þ

Remark 3.5. The condition (3.23) of the previous theorem is understood in the

sense that, for any b0 a �a; b½, the relation

g 01ðtÞa pab0ðg2ÞðtÞ for a:e: t a ½a; b0� ð3:28Þ

holds, where pab0 is the restriction of the operator p to the space Cð½a; b0�;RÞ.

Remark 3.6. Observe that the function g2 in Theorem 3.3 necessarily satisfies

g2ðtÞa 0 for t a ½a; b½: ð3:29Þ

Theorem 3.3 yields the following statement.

1See Remark 3.5.
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Corollary 3.3. Let �g; p a Pab and let p, g be a-Volterra operators. If, moreover,

ð b
a

��p�j�gð1Þ��ðsÞ�� dsa 1; ð3:30Þ

where the operator j is defined by (3.9), then ðp; gÞ a ŜS2
abðaÞ.

Remark 3.7. The inequality (3.30) of the previous corollary cannot be replaced

by the inequality

ð b
a

��p�j�gð1Þ��ðsÞ�� dsa 1þ e; ð3:31Þ

no matter how small e > 0 would be (see Example 6.1).

Example 3.3. On the interval ½0; p=4�, we consider the di¤erential system (3.16),

where t : ½0; p=4� ! ½0; p=4� is a measurable function, tðtÞa t for a.e. t a ½0; p=4�,
q1; q2 a Lð½0; p=4�;RÞ, and d1b 0, d2a 0 are such that

d1jd2ja
212

4pð1þ 2
ffiffiffi
2

p
Þ � p2ð1þ

ffiffiffi
2

p
Þ � 24

:

It is clear that (3.16) is a particular case of (1.1) in which a ¼ 0, b ¼ p=4, and p, g

are given by formulae (3.17). Analogously to Example 3.1, we get the relation

ð p=4
0

��p�j�gð1Þ��ðsÞ ds�� ¼ d1jd2j
212

�
4pð1þ 2

ffiffiffi
2

p
Þ � p2ð1þ

ffiffiffi
2

p
Þ � 24

�
a 1:

Therefore, according to Corollary 3.3 and Remark 3.2, the problem (3.16),

(2.2) has a unique solution for arbitrary q1; q2 a Lð½0; p=4�;RÞ and c1; c2 a R.

Moreover, if q1, q2 and c1, c2 fulfil the additional condition (3.19), then the unique

solution ðu; vÞ of this problem satisfies the relation uðtÞb 0 for t a ½0; p=4�.

Example 3.4. On the interval ½0; 1� we consider the problem (3.20), where l < 1,

da 0, jdja ð3� 2lÞð2� lÞ, t : ½0; 1� ! ½0; 1� is a measurable function, tðtÞa t

for a.e. t a ½0; 1�, q a Lð½0; 1�;RÞ, and c1; c2 a R.

It is clear that (3.20) is a particular case of (1.1), (2.2) in which a ¼ 0, b ¼ 1,

q1C 0, q2C q, and p, g are given by formulae (3.21). Analogously to Example

3.2, we get the relation

ð1
0

��p�j�gð1Þ��ðsÞ�� ds ¼ jdj
ð3� 2lÞð2� lÞ a 1:

168 J. Šremr



Therefore, according to Corollary 3.3 and Remark 3.2, the problem (3.20) has

a unique solution for arbitrary q a Lð½0; 1�;RÞ and c1; c2 a R. Moreover, if q and

c1, c2 fulfil the additional condition (3.22) then the unique solution u of the this

problem satisfies the relation uðtÞb 0 for t a ½0; 1�.

4. Proofs of the main results

Proof of Theorem 3.1. Let the functions u; v a ~CCð½a; b�;RÞ satisfy (3.1) and (3.2).

We will show that the function u is nonnegative. Put

½uðtÞ�� ¼ 1

2

�
juðtÞj � uðtÞ

�
for t a ½a; b�:

According to the inclusion ðp;�g1Þ a ŜS2
abðaÞ and Remark 3.2, the problem

a 0ðtÞ ¼ pðbÞðtÞ; b 0ðtÞ ¼ �g1ðaÞðtÞ þ g0ð½u��ÞðtÞ; ð4:1Þ
aðaÞ ¼ 0; bðaÞ ¼ 0 ð4:2Þ

has a unique solution ða; bÞ and

aðtÞb 0 for t a ½a; b�: ð4:3Þ

In view (3.1), (3.2), (4.1), (4.2) and the assumption g0 a Pab, we get

a 0ðtÞ þ u 0ðtÞb pðb þ vÞðtÞ for a:e: t a ½a; b�;
b 0ðtÞ þ v 0ðtÞb�g1ðaþ uÞðtÞ þ g0ðuþ ½u��ÞðtÞ

b�g1ðaþ uÞðtÞ for a:e: t a ½a; b�;

and

aðaÞ þ uðaÞb 0; bðaÞ þ vðaÞb 0:

Consequently, the inclusion ðp;�g1Þ a ŜS2
abðaÞ yields

aðtÞ þ uðtÞb 0 for t a ½a; b�: ð4:4Þ

Now (4.3) and (4.4) imply

½uðtÞ��a aðtÞ for t a ½a; b�: ð4:5Þ

On the other hand, by virtue of (4.1), (4.3), (4.5), and the assumptions

g0; g1 a Pab, we obtain that

a 0ðtÞ ¼ pðbÞðtÞ; b 0ðtÞa g0ðaÞðtÞ for a:e: t a ½a; b�:
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Hence the inclusion ðp; g0Þ a ŜS2
abðaÞ, in view of (4.2), implies that

aðtÞa 0 for t a ½a; b�;

which, together with (4.4), guarantees (3.5). r

Proof of Corollary 3.2. According to (3.14) and the assumption p a Pab, there

exists e > 0 such that

e
�
1þ

ð b �
g

a

pð1ÞðsÞ ds
�
þ
ð b �

g

a

p
�
j
�
gð1Þ

��
ðsÞ dsa 1: ð4:6Þ

Put

g2ðtÞ ¼ eþ
ð t
a

gð1ÞðsÞ ds for t a ½a; b�; ð4:7Þ

g1ðtÞ ¼ eþ
ð t
a

pðg2ÞðsÞ ds for t a ½a; b�: ð4:8Þ

It is clear that g1; g2 a ~CCð½a; b�;RÞ satisfy (3.7) because the operators p and g are

supposed to be nondecreasing. Put

~gg1ðtÞ ¼
g1ðtÞ for t a ½a; b�

g ½:
g1ðb�

g Þ for t a ½b�
g ; b�:

�
ð4:9Þ

Then (4.6)–(4.8) yield

~gg1ðtÞa g1ðb�
g Þ ¼ eþ

ð b�
g

a

p
�
eþ j

�
gð1Þ

��
ðsÞ ds

¼ e
�
1þ

ð b�
g

a

pð1ÞðsÞ ds
�
þ
ð b�

g

a

p
�
j
�
gð1Þ

��
ðsÞ dsa 1 ð4:10Þ

for t a ½a; b�. On the other hand, in view of relations (4.9), (4.10), the assumption

g a Pab, and Remark 3.4, it follows from (4.7) and (4.8) that

g 01ðtÞ ¼ pðg2ÞðtÞ; g 02ðtÞ ¼ gð1ÞðtÞb gð~gg1ÞðtÞ ¼ gðg1ÞðtÞ for a:e: t a ½a; b�;

i.e., the inequalities (3.8) are fulfilled. Consequently, using Theorem 3.2, we get

ðp; gÞ a ŜS2
abðaÞ. r

Proof of Proposition 3.1. Suppose that (3.15) holds and the problem (1.10), (2.20)

has only the trivial solution. We will show that ðp; gÞ a ŜS2
abðaÞ. According to

Proposition 2.1, the problem
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g 01ðtÞ ¼ pðg2ÞðtÞ; g 02ðtÞ ¼ gðg1ÞðtÞ; ð4:11Þ
g1ðaÞ ¼ 1; g2ðaÞ ¼ 1 ð4:12Þ

has a unique solution ðg1; g2Þ. Put

m ¼ minfg1ðtÞ j t a ½a; b�
g �g ð4:13Þ

and choose tm a ½a; b�
g � such that g1ðtmÞ ¼ m.

Assume that

ma 0: ð4:14Þ

By virtue of (4.13) and the assumption g a Pab, the relations (4.11) and (4.12) yield

g2ðtÞ ¼ 1þ
ð t
a

gðg1ÞðsÞ dsbm

ð t
a

gð1ÞðsÞ ds ¼ mj
�
gð1Þ

�
ðtÞ for t a ½a; b�:

Consequently, in view of (4.14) and the assumption p a Pab, the relations (4.11)

and (4.12) imply

m ¼ 1þ
ð tm
a

pðg2ÞðsÞ dsb 1þm

ð tm
a

p
�
j
�
gð1Þ

��
ðsÞ dsb 1þm

ð b�
g

a

p
�
j
�
gð1Þ

��
ðsÞ ds:

Using (3.15) in the last relation, we get the contradiction mbmþ 1.

The contradiction obtained proves that m > 0, i.e.,

g1ðtÞ > 0 for t a ½a; b�
g �: ð4:15Þ

Now we define the function ~gg1 by (4.9). Obviously, ~gg1ðtÞ > 0 for t a ½a; b� and
therefore, by virtue of the assumption g a Pab and Remark 3.4, (4.11) yields

g 02ðtÞ ¼ gðg1ÞðtÞ ¼ gð~gg1ÞðtÞb 0 for a:e: t a ½a; b�:

Since g2ðaÞ > 0, the last relation yields that g2ðtÞ > 0 for t a ½a; b�. Now (4.11) im-

plies that

g 01ðtÞ ¼ pðg2ÞðtÞb 0 for a:e: t a ½a; b�;

which, together with (4.15), gives that g1ðtÞ > 0 for t a ½a; b�. Consequently, The-

orem 3.2 guarantees ðp; gÞ a ŜS2
abðaÞ.

Now suppose that ðp; gÞ a ŜS2
abðaÞ. If ðu; vÞ is a solution of the homogeneous

problem (1.10), (2.20), then the inclusion ðp; gÞ a ŜS2
abðaÞ yields that uC 0. Con-

sequently, vC 0 as well, and thus the problem (1.10), (2.20) has only the trivial

solution. r

171On two-dimensional functional di¤erential systems



To prove Theorem 3.3 we need the following lemma.

Lemma 4.1. Let �g; p a Pab and let p, g be a-Volterra operators. Assume that

there exist functions g1; g2 a ~CClocð½a; b½;RÞ satisfying g1 a Cð½a; b�;RÞ and (3.23)–

(3.26). Then, for any u; v a ~CCð½a; b�;RÞ fulfilling (3.1) and (3.2), the condition

uðtÞb 0 for t a ½a; b0� ð4:16Þ

holds, where

b0 ¼ supfx a �a; b� j g1ðtÞ > 0 for t a ½a; x�g: ð4:17Þ

Proof. Let the functions u; v a ~CCð½a; b�;RÞ satisfy (3.1) and (3.2). Define the num-

ber b0 by (4.17). It is clear that b0 > a and

g1ðtÞ > 0 for t a ½a; b0½: ð4:18Þ

Assume that, on the contrary, the relation (4.16) is not true. Then there exists

t0 a �a; b0½ such that

uðt0Þ < 0: ð4:19Þ

Put

l ¼ max
uðtÞ
g1ðtÞ

����t a ½a; t0�
� �

: ð4:20Þ

It is clear that

0a l < þl: ð4:21Þ

Define the functions w1 and w2 by setting

w1ðtÞ ¼ lg1ðtÞ � uðtÞ; w2ðtÞ ¼ lg2ðtÞ � vðtÞ for t a ½a; t0�: ð4:22Þ

Since p, g are a-Volterra operators, using (3.1), (3.23), (3.24), (4.21), and Remark

3.5, we get

w 0
1ðtÞ ¼ lg 01ðtÞ � u 0ðtÞa pat0ðlg2 � vÞðtÞ ¼ pat0ðw2ÞðtÞ for a:e: t a ½a; t0� ð4:23Þ

and

w 0
2ðtÞ ¼ lg 02ðtÞ � v 0ðtÞa gat0ðlg1 � uÞðtÞ ¼ gat0ðw1ÞðtÞ for a:e: t a ½a; t0�; ð4:24Þ

where pat0 , gat0 are the restrictions of the operators p, g to the space Cð½a; t0�;RÞ.
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On the other hand, by virtue of (4.20), it is clear that

w1ðtÞb 0 for t a ½a; t0� ð4:25Þ

and there exists t1 a ½a; t0½ such that

w1ðt1Þ ¼ 0: ð4:26Þ

Since we suppose that �g a Pab, we get from (3.2), (3.26), (4.21), (4.22), (4.24),

and (4.25) that

w 0
2ðtÞa gat0ðw1ÞðtÞa 0 for a:e: t a ½a; t0�; w2ðaÞ ¼ lg2ðaÞ � vðaÞa 0:

Hence we obtain

w2ðtÞa 0 for t a ½a; t0�: ð4:27Þ

However, we suppose that p a Pab and thus we get from (4.23) and (4.27) that

w 0
1ðtÞa pat0ðw2ÞðtÞa 0 for a:e: t a ½a; t0�: ð4:28Þ

Finally, by virtue of (3.25), (4.21), and (4.26), the relation (4.28) yields that

0 ¼ w1ðt1Þbw1ðt0Þ ¼ lg1ðt0Þ � uðt0Þb�uðt0Þ;

which contradicts (4.19).

The contradiction obtained proves the relation (4.16). r

Proof of Theorem 3.3. First suppose that ðp; gÞ a ŜS2
abðaÞ. According to Remark

3.2, the system (4.11) has a unique solution ðg1; g2Þ satisfying the initial conditions

g1ðaÞ ¼ 1; g2ðaÞ ¼ 0; ð4:29Þ

and, moreover, the relation

g1ðtÞb 0 for t a ½a; b� ð4:30Þ

holds. It is clear that g1; g2 a ~CCð½a; b�;RÞ satisfy (3.23)–(3.26). We will show that

(3.27) holds. Assume that, on the contrary, the relation (3.27) is not satisfied.

Then there exists t0 a �a; b½ such that g2ðt0Þ ¼ 0 and

g1ðt0Þ ¼ 0: ð4:31Þ
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By virtue of (4.30) and the assumption �g a Pab, the conditions (3.24), (4.29), and

g2ðt0Þ ¼ 0 imply g2ðtÞ ¼ 0 for t a ½a; t0�. Since we suppose that p is an a-Volterra

operator, (4.11) implies that

g 01ðtÞ ¼ 0 for a:e: t a ½a; t0�:

This relation, together with the condition g1ðaÞ ¼ 1, yields that g1ðt0Þ ¼ 1, which

contradicts (4.31). This proves the relation (3.27).

Now suppose that there exist functions g1; g2 a ~CClocð½a; b½;RÞ satisfying

g1 a Cð½a; b�;RÞ and (3.23)–(3.27). We will show that ðp; gÞ a ŜS2
abðaÞ. Let the

functions u; v a ~CCð½a; b�;RÞ satisfy (3.1) and (3.2). By virtue of Lemma 4.1, the

relation (4.16) is true, where the number b0 is defined by (4.17).

If b0 ¼ b then the proof is complete. Assume that b0 < b and let b1 a �b0; b½ be
arbitrary but fixed. We will show that

uðtÞb 0 for t a ½a; b1�: ð4:32Þ

It follows from (3.25) and (4.17) that (4.18) holds and

g1ðtÞ ¼ 0 for t a ½b0; b�: ð4:33Þ

Consequently, by virtue of the assumptions (3.27) and (3.29), there exist

a0 a �a; b0½ and l1 a Rþ such that

vðtÞb l1g2ðtÞ for t a ½a0; b1�: ð4:34Þ

On the other hand, in view of (4.18), there exist l2 a Rþ such that

uðtÞa l2g1ðtÞ for t a ½a; a0�: ð4:35Þ

Since the nonincreasing operator g is an a-Volterra one, using (3.1), (3.24), and

(4.35), we get

v 0ðtÞ � l2g
0
2ðtÞb gaa0ðu� l2g1ÞðtÞb 0 for a:e: t a ½a; a0�: ð4:36Þ

However, the functions v and g2 satisfy (3.2) and (3.26), and thus (4.36) yields that

vðtÞb l2g2ðtÞ for t a ½a; a0�:

Therefore, if we put l ¼ maxfl1; l2g then, in view of (3.29), we get

vðtÞb lg2ðtÞ for t a ½a; b1�: ð4:37Þ
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Since we suppose that p is a nondecreasing a-Volterra operator, the inequal-

ities (3.23) and (3.29) imply that

g 01ðtÞa pab1ðg2ÞðtÞa 0 for a:e: t a ½a; b1�;

where pab1 is the restriction of the operator p to the space Cð½a; b1�;RÞ. The func-

tion g1 vanishes on the interval ½b0; b�, and thus we have

pab1ðg2ÞðtÞ ¼ 0 for a:e: t a ½b0; b1�: ð4:38Þ

Now (4.37) and (4.38) imply that

pab1ðvÞðtÞb lpab1ðg2ÞðtÞ ¼ 0 for a:e: t a ½b0; b1�;

which, together with (3.1) and (4.16), results in (4.32). Since the point b1 was

chosen arbitrarily, we have proved that the function u is nonnegative on ½a; b�.
Consequently, ðp; gÞ a ŜS2

abðaÞ. r

Proof of Corollary 3.3. Put

g1ðtÞ ¼ 1�
ð t
a

��p�j�gð1Þ��ðsÞ�� ds for t a ½a; b�; ð4:39Þ

g2ðtÞ ¼
ð t
a

gð1ÞðsÞ ds for t a ½a; b�: ð4:40Þ

In view of (3.30), it is clear that the conditions (3.25) and (3.26) are satisfied and

g1ðtÞa 1 for t a ½a; b�: ð4:41Þ

Since we suppose �g; p a Pab, we get from (4.39)–(4.41) that

g 01ðtÞ ¼ p
�
j
�
gð1Þ

��
ðtÞ ¼ pðg2ÞðtÞ for a:e: t a ½a; b�

and

g 02ðtÞ ¼ gð1ÞðtÞa gðg1ÞðtÞ for a:e: t a ½a; b�;

i.e., the functions g1, g2 satisfy (3.23) and (3.24).

We will show that the condition (3.27) holds. Assume that, on the contrary,

the relation (3.27) is not true. Then there exists t0 a �a; b½ such that g2ðt0Þ ¼ 0 and

g1ðt0Þ ¼ 0: ð4:42Þ
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Therefore, (4.40) yields that

gð1ÞðtÞ ¼ 0 for a:e: t a ½a; t0�:

Supposing that p is an a-Volterra operator, the last relation gives

p
�
j
�
gð1Þ

��
ðtÞ ¼ 0 for a:e: t a ½a; t0�:

Hence (4.39) implies g1ðt0Þ ¼ 1, which contradicts (4.42). The contradiction ob-

tained proves the condition (3.27).

Consequently, using Theorem 3.3, we get ðp; gÞ a ŜS2
abðaÞ. r

5. Corollaries for operators with argument deviations

In this section we give e‰cient conditions under which the weak theorem on dif-

ferential inequalities holds for the system with argument deviations (1.3). More

precisely, some corollaries of the main results are established for the case where

the operators p; g a Lab are defined by the formulae

pðzÞðtÞ ¼def f ðtÞz
�
mðtÞ

�
for a:e: t a ½a; b�; z a Cð½a; b�;RÞ; ð5:1Þ

gðzÞðtÞ ¼def h0ðtÞz
�
t0ðtÞ

�
for a:e: t a ½a; b�; z a Cð½a; b�;RÞ; ð5:2Þ

gðzÞðtÞ ¼def �h1ðtÞz
�
t1ðtÞ

�
for a:e: t a ½a; b�; z a Cð½a; b�;RÞ; ð5:3Þ

and

gðzÞðtÞ ¼def h0ðtÞz
�
t0ðtÞ

�
� h1ðtÞzðt1ðtÞ

�
for a:e: t a ½a; b�; z a Cð½a; b�;RÞ; ð5:4Þ

where f ; h0; h1 a Lð½a; b�;RþÞ and m; t0; t1 : ½a; b� ! ½a; b� are measurable func-

tions.

Throughout this section, the following notation is used:

m� ¼ ess supfmðtÞ j t a ½a; b�g; t�0 ¼ ess supft0ðtÞ j t a ½a; b�g; ð5:5Þ

and

b� ¼ maxfm�; t�0g:

All the statements are formulated in Section 5.1, the proofs are given later in

Section 5.2.
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5.1. Formulation of the results. The next statement can be derived from Theo-

rem 3.2.

Theorem 5.1 ([24], Theorem 4.2). Let p and g be the operators defined by (5.1)

and (5.2), respectively. Put

oðtÞ ¼def maxf f ðtÞ; h0ðtÞg for a:e: t a ½a; b�; ð5:6Þ

and assume that oD 0 on ½a; b��,

ess sup
nð mðtÞ

t

oðsÞ ds j t a ½a; b�
o
< h�;

and

ess sup
nð t0ðtÞ

t

oðsÞ ds j t a ½a; b�
o
< h�;

where

h� ¼ sup
1

x
ln xþ x

exp
�
x
Ð b�

a
oðsÞ ds

�
� 1

 !����x > 0

( )
:

Then the pair ðp; gÞ belongs to the set ŜS2
abðaÞ.

Corollary 3.1 yields

Theorem 5.2 ([24], Corollary 4.5). Let p and g be the operators defined by (5.1)

and (5.2), respectively. Assume that the condition (3.10) is satisfied, where

l1 ¼
ð b
a

cosh
� ð b

s

oðxÞ dx
�
f ðsÞs1ðsÞ

� ð mðsÞ
s

h0ðxÞ dx
�
ds

þ
ð b
a

sinh
� ð b

s

oðxÞ dx
�
h0ðsÞs2ðsÞ

� ð t0ðsÞ
s

f ðxÞ dx
�
ds; ð5:7Þ

l2 ¼
ð b
a

cosh
� ð b

s

oðxÞ dx
�
h0ðsÞs2ðsÞ

� ð t0ðsÞ
s

f ðxÞ dx
�
ds

þ
ð b
a

sinh
� ð b

s

oðxÞ dx
�
f ðsÞs1ðsÞ

� ð mðsÞ
s

h0ðxÞ dx
�
ds; ð5:8Þ

the function o is defined by (5.6), and
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s1ðtÞ ¼
1

2

�
1þ sgn

�
mðtÞ � t

��
for a:e: t a ½a; b�; ð5:9Þ

s2ðtÞ ¼
1

2

�
1þ sgn

�
t0ðtÞ � t

��
for a:e: t a ½a; b�: ð5:10Þ

Then the pair ðp; gÞ belongs to the set ŜS2
abðaÞ.

Remark 5.1. The strict inequality (3.10) in the previous corollary cannot be re-

placed by the nonstrict one (see [24], Example 5.3).

For the operator g given by (5.2), according to Notation 3.1, we have b�
g a t�0 .

It is however easy to see that the equality b�
g ¼ t�0 is not true in general. On the

other hand, it is clear that the number t�0 is easier to compute than b�
g . Therefore,

the results obtained below by using Corollary 3.2 and Proposition 3.1 are formu-

lated in terms of the number t�0 instead of b�
g .

Theorem 5.3. Let p and g be the operators defined by (5.1) and (5.2), respectively.

If

ð t �
0

a

f ðsÞ
� ð mðsÞ

a

h0ðxÞ dx
�
ds < 1; ð5:11Þ

then the pair ðp; gÞ belongs to the set ŜS2
abðaÞ.

The next theorem can be regarded as a complement of the previous one.

Theorem 5.4. Let p and g be the operators defined by (5.1) and (5.2), respectively,

and let

ð t �
0

a

f ðsÞ
� ð mðsÞ

a

h0ðxÞ dx
�
ds ¼ 1: ð5:12Þ

Then ðp; gÞ a ŜS2
abðaÞ if and only if

ð t�
0

a

f ðsÞ
� ð mðsÞ

a

h0ðxÞx
�
t0ðxÞ

�
dx
�
ds < 1; ð5:13Þ

where

xðtÞ ¼
ð t
a

f ðsÞ
� ð mðsÞ

a

h0ðxÞ dx
�
ds for t a ½a; b�: ð5:14Þ

In view of Remark 3.1(d), Theorems 5.3 and 5.4 immediately yield
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Theorem 5.3O. Let p and g be the operators defined by (5.1) and (5.2), respectively.

If ð m�

a

h0ðsÞ
� ð t0ðsÞ

a

f ðxÞ dx
�
ds < 1;

then the pair ðp; gÞ belongs to the set ŜS2
abðaÞ.

Theorem 5.4O. Let p and g be the operators defined by (5.1) and (5.2), respectively,

and let ð m�

a

h0ðsÞ
� ð t0ðsÞ

a

f ðxÞ dx
�
ds ¼ 1:

Then ðp; gÞ a ŜS2
abðaÞ if and only if

ð m�

a

h0ðsÞ
� ð t0ðsÞ

a

f ðxÞy
�
mðxÞ

�
dx
�
ds < 1;

where

yðtÞ ¼
ð t
a

h0ðsÞ
� ð t0ðsÞ

a

f ðxÞ dx
�
ds for t a ½a; b�:

The next statement follows from Corollary 3.3.

Theorem 5.5. Let p and g be the operators defined by (5.1) and (5.3), respectively.

If

f ðtÞ
�
mðtÞ � t

�
a 0; h1ðtÞ

�
t1ðtÞ � t

�
a 0 for a:e: t a ½a; b�; ð5:15Þ

and ð b
a

f ðsÞ
� ð mðsÞ

a

h1ðxÞ dx
�
dsa 1; ð5:16Þ

then the pair ðp; gÞ belongs to the set ŜS2
abðaÞ.

Remark 5.2. The inequality (5.16) in the previous theorem cannot be replaced by

the inequality ð b
a

f ðsÞ
� ð mðsÞ

a

h1ðxÞ dx
�
dsa 1þ e; ð5:17Þ

no matter how small e > 0 would be (see Example 6.1).
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The next statement contains the so-called Vallée-Poussin type conditions.

Theorem 5.6. Let p and g be the operators defined by (5.1) and (5.3), respectively,

and let the condition (5.15) hold. Assume that there exist numbers a1; a2 a Rþ,
a3 > 0, l a ½0; 1½, and n a ½0; l� such that

ðþl

0

ds

a1 þ a2sþ a3s2
b

ðb� aÞ1�l

1� l
; ð5:18Þ

ðb� tÞl�n
f ðtÞa a3 1þ s3ðtÞ

ð t
mðtÞ

n

b� s
þ a2

ðb� sÞl

 !
ds

" #
for a:e: t a ½a; b�;

ð5:19Þ

ðb� tÞlþn
h1ðtÞa a1 for a:e: t a ½a; b�; ð5:20Þ

and

a3ðb� tÞnh1ðtÞ
�
t� t1ðtÞ

�
a a2 þ

n

ðb� tÞ1�l
for a:e: t a ½a; b�; ð5:21Þ

where

s3ðtÞ ¼
1

2

�
1þ sgn

�
t� mðtÞ

��
for a:e: t a ½a; b�: ð5:22Þ

Then the pair ðp; gÞ belongs to the set ŜS2
abðaÞ.

Remark 5.3. The inequality (5.18) in the previous theorem cannot be replaced by

the inequality

ðþl

0

ds

a1 þ a2sþ a3s2
b ð1� eÞ ðb� aÞ1�l

1� l
; ð5:23Þ

no matter how small e > 0 would be (see Example 6.2).

Theorem 5.7. Let p and g be the operators defined by (5.1) and (5.4), respectively.

Assume that the functions f , m, h0, t0 satisfy the assumptions of one of Theorems

5.1–5.4, whereas the functions f , m, h1, t1 satisfy the assumptions of Theorem 5.5

or 5.6. Then the pair ðp; gÞ belongs to the set ŜS2
abðaÞ.

5.2. Proofs. Now we prove the statements formulated above.

Proof of Theorem 5.3. It is clear that p; g a Pab. According to Notation 3.1,

we get b�
g a t�0 . Therefore, the validity of the theorem follows immediately from

Corollary 3.2. r
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For the sake of clarity, we give the following lemma before we prove Theorem

5.4.

Lemma 5.1. Let f ; h0 a Lð½a; b�;RþÞ and m; t0 : ½a; b� ! ½a; b� be measurable func-

tions such that the condition (5.12) holds. Then the homogeneous problem

u 0ðtÞ ¼ f ðtÞv
�
mðtÞ

�
; v 0ðtÞ ¼ h0ðtÞu

�
t0ðtÞ

�
; ð5:24Þ

uðaÞ ¼ 0; vðaÞ ¼ 0 ð5:25Þ

has only the trivial solution if and only if the inequality (5.13) is satisfied, where the

function x is defined by (5.14).

Proof. Let ðu; vÞ be a solution of the problem (5.24), (5.25). We first show that

the function u does not change its sign on the interval ½a; t�0 �. Assume that, on

the contrary, u changes its sign on ½a; t�0 �. Put

M ¼ maxfuðtÞ j t a ½a; t�0 �g; m ¼ �minfuðtÞ j t a ½a; t�0 �g; ð5:26Þ

and choose tM ; tm a ½a; t�0 � such that

uðtMÞ ¼ M; uðtmÞ ¼ �m: ð5:27Þ

Obviously,

M > 0; m > 0; ð5:28Þ

and we can assume without loss of generality that tm < tM . By virtue of (5.26), it

follows from (5.25) and the second equation in (5.24) that

vðtÞ ¼
ð t
a

h0ðsÞu
�
t0ðsÞ

�
dsaM

ð t
a

h0ðsÞ ds for t a ½a; b�: ð5:29Þ

Therefore, the integration of the first equation in (5.24) from tm to tM , in view of

(5.12), (5.27), and (5.29), yields that

M þm ¼
ð tM
tm

f ðsÞv
�
mðsÞ

�
dsaM

ð tM
tm

f ðsÞ
� ð mðsÞ

a

h0ðxÞ dx
�
dsaM;

which contradicts (5.28).

The contradiction obtained proves that the function u does not change its sign

on the interval ½a; t�0 �. Therefore, we can assume without loss of generality that

uðtÞb 0 for t a ½a; t�0 �: ð5:30Þ
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It follows from (5.24) and (5.25) that

uðtÞ ¼
ð t
a

f ðsÞ
� ð mðsÞ

a

h0ðxÞu
�
t0ðxÞ

�
dx
�
ds for t a ½a; b�: ð5:31Þ

Since t0ðtÞa t�0 for a.a. t a ½a; b� and the function u is nonnegative on ½a; t�0 �, the
last relation implies that

u
�
t0ðtÞ

�
a uðt�0 Þ for a:e: t a ½a; b�: ð5:32Þ

Therefore, in view of (5.14), it follows from the representation (5.31) that

uðtÞa uðt�0 Þ
ð t
a

f ðsÞ
� ð mðsÞ

a

h0ðxÞ dx
�
ds ¼ uðt�0 ÞxðtÞ for t a ½a; b�; ð5:33Þ

and

uðt�0 Þ � uðtÞ ¼
ð t�

0

t

f ðsÞ
� ð mðsÞ

a

h0ðxÞu
�
t0ðxÞ

�
dx
�
ds

a uðt�0 Þ
ð t�

0

t

f ðsÞ
� ð mðsÞ

a

h0ðxÞ dx
�
ds for t a ½a; t�0 �: ð5:34Þ

Using (5.12) and (5.14) in the relation (5.34), we obtain

uðt�0 ÞxðtÞ ¼ uðt�0 Þ
�
1�

ð t�
0

t

f ðsÞ
� ð mðsÞ

a

h0ðxÞ dx
�
ds
�
a uðtÞ for t a ½a; t�0 �;

which, together with (5.33), gives

uðtÞ ¼ uðt�0 ÞxðtÞ for t a ½a; t�0 �: ð5:35Þ

Finally, (5.31) and (5.35) result in

uðtÞ ¼ uðt�0 Þ
ð t
a

f ðsÞ
� ð mðsÞ

a

h0ðxÞx
�
t0ðxÞ

�
dx
�
ds for t a ½a; b�; ð5:36Þ

whence we obtain

uðt�0 Þ
h
1�

ð t �
0

a

f ðsÞ
� ð mðsÞ

a

h0ðxÞx
�
t0ðxÞ

�
dx
�
ds
i
¼ 0: ð5:37Þ

We have proved that every solution ðu; vÞ of the problem (5.24), (5.25) satisfies

(5.36), where uðt�0 Þ fulfils (5.37). Consequently, if (5.13) holds, then the homoge-

neous problem (5.24), (5.25) has only the trivial solution.
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It remains to show that if (5.13) is not satisfied, i.e.,

ð t �
0

a

f ðsÞ
� ð mðsÞ

a

h0ðxÞx
�
t0ðxÞ

�
dx
�
ds ¼ 1; ð5:38Þ

then the homogeneous problem (5.24), (5.25) has a nontrivial solution. Indeed, in

view of (5.12), from (5.14) we obtain that

x
�
t0ðtÞ

�
axðt�0 Þ ¼ 1 for a:e: t a ½a; b�:

Therefore, using (5.38), it is easy to verify that

0a

ð t
a

f ðsÞ
� ð mðsÞ

a

h0ðxÞ
	
1� x

�
t0ðxÞ

�

dx
�
ds

a

ð t�
0

a

f ðsÞ
� ð mðsÞ

a

h0ðxÞ
	
1� x

�
t0ðxÞ

�

dx
�
ds

¼ 1�
ð t �

0

a

f ðsÞ
� ð mðsÞ

a

h0ðxÞx
�
t0ðxÞ

�
dx
�
ds ¼ 0 for t a ½a; t�0 �:

Hence we get

xðtÞ ¼
ð t
a

f ðsÞ
� ð mðsÞ

a

h0ðxÞx
�
t0ðxÞ

�
dx
�
ds for t a ½a; t�0 �: ð5:39Þ

Put

vðtÞ ¼
ð t
a

h0ðsÞx
�
t0ðsÞ

�
ds; uðtÞ ¼

ð t
a

f ðsÞv
�
mðsÞ

�
ds for t a ½a; b�:

By virtue of (5.39), it is clear that uðtÞ ¼ xðtÞ for t a ½a; t�0 �, and thus

vðtÞ ¼
ð t
a

h0ðsÞu
�
t0ðsÞ

�
ds for t a ½a; b�:

Consequently, ðu; vÞ is a nontrivial solution of the problem (5.24), (5.25). r

Now we can prove Theorem 5.4.

Proof of Theorem 5.4. It is clear that p; g a Pab.

First suppose that ðp; gÞ a ŜS2
abðaÞ. In view of Remark 3.2, the homogeneous

problem (5.24), (5.25) has only the trivial solution. Thus Lemma 5.1 guarantees

that the inequality (5.13) is satisfied.
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Now suppose that the inequality (5.13) is fulfilled. According to Notation 3.1,

we have b�
g a t�0 . If

ð b �
g

a

f ðsÞ
� ð mðsÞ

a

h0ðxÞ dx
�
ds < 1;

Corollary 3.2 implies that ðp; gÞ a ŜS2
abðaÞ. If

ð b�
g

a

f ðsÞ
� ð mðsÞ

a

h0ðxÞ dx
�
ds ¼ 1

then, by virtue of Lemma 5.1, the homogeneous problem (5.24), (5.25) has only

the trivial solution. Consequently, using Proposition 3.1, we get ðp; gÞ a ŜS2
abðaÞ

as well. r

Proof of Theorem 5.5. It is clear that p a Pab and �g a Pab. Moreover, (5.15)

guarantees that p and g are a-Volterra operators. Therefore, the validity of the

theorem follows immediately from Corollary 3.3. r

To prove Theorem 5.6 we need the following lemma.

Lemma 5.2. Let the numbers a1; a2 a Rþ, a3 > 0, and l a ½0; 1½ be such that

ðþl

0

ds

a1 þ a2sþ a3s2
¼ ðb� aÞ1�l

1� l
: ð5:40Þ

Then, for any n a ½0; l�, there exist g1 a Cð½a; b�;RÞ and g2 a Clocð½a; b½;RÞ such that

g 01; g
00
1 ; g

0
2 a Clocð½a; b½;RÞ,

g1ðtÞ > 0 for t a ½a; b½; ð5:41Þ
g2ðaÞ ¼ 0; g2ðtÞ < 0 for t a �a; b½; ð5:42Þ

g 01ðtÞ ¼
a3

ðb� tÞl�n
g2ðtÞ for t a ½a; b½; ð5:43Þ

g 02ðtÞ ¼ � a1

ðb� tÞlþn
g1ðtÞ þ

n

b� t
þ a2

ðb� tÞl

 !
g2ðtÞ for t a ½a; b½; ð5:44Þ

and

g 001 ðtÞa 0 for t a ½a; b½: ð5:45Þ

Proof. Define the function % : ½a; b½ ! Rþ by setting
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ðþl

%ðtÞ

ds

a1 þ a2sþ a3s2
¼ ðb� tÞ1�l

1� l
for t a ½a; b½:

In view of (5.40), we get

%ðaÞ ¼ 0; %ðtÞ > 0 for t a �a; b½; ð5:46Þ

and

% 0ðtÞ ¼ a1 þ a2%ðtÞ þ a3%
2ðtÞ

ðb� tÞl
for t a ½a; b½:

Put

g1ðtÞ ¼ exp
�
�
ð t
a

a3%ðsÞ
ðb� sÞl

ds
�
; g2ðtÞ ¼ � %ðtÞg1ðtÞ

ðb� tÞn for t a ½a; b½:

It is not di‰cult to verify that g1; g2 a Clocð½a; b½;RÞ and the conditions (5.43) and

(5.44) are satisfied. Therefore, g 01; g
0
2 a Clocð½a; b½;RÞ, as well. Moreover, in view

of (5.46), it is clear that (5.41) and (5.42) are fulfilled. Consequently, by direct

calculation we can check that g 001 a Clocð½a; b½;RÞ and (5.45) is satisfied. Since the

function g1 is positive and nonincreasing on ½a; b½, there exists a finite limit

limt!b� g1ðtÞ. Therefore, g1 a Cð½a; b�;RÞ when we put g1ðbÞ ¼ limt!b� g1ðtÞ. r

Now we are in position to prove Theorem 5.6.

Proof of Theorem 5.6. It is clear that p a Pab and �g a Pab. Moreover, (5.15)

guarantees that p and g are a-Volterra operators. According to (5.18) and (5.20),

the number a1 can be increased such that the equality (5.40) is satisfied instead of

the inequality (5.18), and the condition (5.20) is still true. Then, by virtue of

Lemma 5.2, there exist functions g1 a Cð½a; b�;RÞ and g2 a Clocð½a; b½;RÞ such

that g 01; g
00
1 ; g

0
2 a Clocð½a; b½;RÞ, and the conditions (5.41)–(5.45) are satisfied. Obvi-

ously, g1; g2 a ~CClocð½a; b½;RÞ. Using (5.41)–(5.44), we get

g 01ðtÞa 0; g 02ðtÞa 0 for t a ½a; b½: ð5:47Þ

Put

A ¼ ft a ½a; b� j f ðtÞ > 0g; B ¼ ft a ½a; b� j h1ðtÞ > 0g:

If we take (5.15) into account, by direct calculation we obtain
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g2
�
mðtÞ

�
¼ g2ðtÞ �

ð t
mðtÞ

g 02ðsÞ ds

¼ g2ðtÞ þ
ð t
mðtÞ

a1

ðb� sÞlþn
g1ðsÞ ds�

ð t
mðtÞ

n

b� s
þ a2

ðb� sÞl

" #
g2ðsÞ ds

b g2ðtÞ � g2
�
mðtÞ

� ð t
mðtÞ

n

b� s
þ a2

ðb� sÞl

" #
ds for a:e: t a A;

and

�g1
�
t1ðtÞ

�
¼ �g1ðtÞ þ

ð t
t1ðtÞ

g 01ðsÞ dsb�g1ðtÞ þ g 01ðtÞ
�
t� t1ðtÞ

�
¼ �g1ðtÞ þ

a3

ðb� tÞl�n

�
t� t1ðtÞ

�
g2ðtÞ for a:e: t a B:

By virtue of (5.19), (5.20), (5.21), and (5.41)–(5.44), we get from the last relations

f ðtÞg2
�
mðtÞ

�
b

f ðtÞ
1þ

Ð t
mðtÞ

n
b�s

þ a2

ðb�sÞl

h i
ds

g2ðtÞb
a3

ðb� tÞl�n
g2ðtÞ ¼ g 01ðtÞ

for a.e. t a A, and

�h1ðtÞg1
�
t1ðtÞ

�
b�h1ðtÞg1ðtÞ þ

a3

ðb� tÞl�n
h1ðtÞ

�
t� t1ðtÞ

�
g2ðtÞ

b� a1

ðb� tÞlþn
g1ðtÞ þ

n

b� t
þ a2

ðb� tÞl

 !
g2ðtÞ

¼ g 02ðtÞ for a:e: t a B;

which, together with (5.47), guarantees

g 01ðtÞa f ðtÞg2
�
mðtÞ

�
; g 02ðtÞa�h1ðtÞg1

�
t1ðtÞ

�
for a:e: t a ½a; b�;

i.e., g1 and g2 satisfies (3.23) and (3.24). Consequently, using Theorem 3.3, we get

ðp; gÞ a ŜS2
abðaÞ. r

Proof of Theorem 5.7. The validity of the theorem follows immediately from The-

orem 3.1 and Theorems 5.1–5.6. r

6. Counter-examples

Example 6.1. Let the operators p and g be defined by (5.1) and (5.3), respectively,

where t1C a. Then the condition (3.30) (i.e., (5.16)) is not only su‰cient but also

necessary for the validity of the inclusion ðp; gÞ a ŜS2
abðaÞ.
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Indeed, let ðp; gÞ a ŜS2
abðaÞ. Then, according to Remark 3.2, the problem

u 0ðtÞ ¼ f ðtÞv
�
mðtÞ

�
; v 0ðtÞ ¼ �h1ðtÞuðaÞ; ð6:1Þ

uðaÞ ¼ 1; vðaÞ ¼ 0 ð6:2Þ

has a unique solution ðu; vÞ and, moreover, (3.5) is satisfied. It follows from (6.1)

and (6.2) that

uðtÞ ¼ 1þ
ð t
a

f ðsÞv
�
mðsÞ

�
ds ¼ 1�

ð t
a

f ðsÞ
� ð mðsÞ

a

h1ðxÞ dx
�
ds for t a ½a; b�:

Hence we get

uðbÞ ¼ 1�
ð b
a

f ðsÞ
� ð mðsÞ

a

h1ðxÞ dx
�
ds;

which, together with (3.5), guarantees (5.16).

This example shows that the inequalities (3.30) and (5.16) in Corollary 3.3 and

Theorem 5.5 cannot be replaced by the inequalities (3.31) and (5.17), respectively,

no matter how small e > 0 would be.

Example 6.2. Let e > 0, a ¼ p
2ð1�eÞðb�aÞ , and let the operators p and g be defined

by (5.1) and (5.3), respectively, where f C a, h1C a, and mðtÞ ¼ t, t1ðtÞ ¼ t for

t a ½a; b�. It is clear that the conditions (5.15), (5.19)–(5.21), and (5.23) are fulfilled

with a1 ¼ a3 ¼ a, a2 ¼ 0, and l ¼ n ¼ 0. On the other hand, the functions

uðtÞ ¼ cos aðt� aÞ; vðtÞ ¼ �sin aðt� aÞ for t a ½a; b�

fulfils (3.1) and (3.2). However, the function u is not nonnegative on the entire

interval ½a; b�, and thus ðp; gÞ B ŜS2
abðaÞ.

This example shows that the inequality (5.18) cannot be replaced by the in-

equality (5.23), no matter how small e > 0 would be.
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[25] H. Štěpánková, On nonnegative solutions of initial value problems for second order
linear functional di¤erential equations. Georgian Math. J. 12 (2005), 525–533.
Zbl 1095.34541 MR 2174954

[26] P. J. Torres, Existence and stability of periodic solutions of a Du‰ng equation by us-
ing a new maximum principle. Mediterr. J. Math. 1 (2004), 479–486. Zbl 1115.34037
MR 2112751

[27] W. Walter, Di¤erential and integral inequalities. Ergeb. Math. Grenzgeb. (2) 55,
Springer-Verlag, Berlin 1970. Zbl 0252.35005 MR 0271508

Received October 16, 2006; revised November 20, 2006

Institute of Mathematics, Academy of Sciences of the Czech Republic, Žižkova 22, 61662
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