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Every strict sum of cubes in F4[t] is a strict sum of 6 cubes

Luis H. Gallardo

(Communicated by Arnaldo Garcia)

Abstract. It is easy to see that an element PðtÞ a F4½t� is a strict sum of cubes if and only if
PðtÞ a Mð4Þ where

Mð4Þ ¼
�
PðtÞ a F4½t� jPðrÞ a f0; 1g for all r a F4 and such that either 3 does

not divide deg
�
PðtÞ

�
; or 3 does divide deg

�
PðtÞ

�
and PðtÞ is monic

�
:

We say that PðtÞ is a ‘‘strict’’ sum of cubes A1ðtÞ3 þ � � � þ AgðtÞ3 if degðA3
i Þ < degðPÞ þ 3

for each i, and we define gð3; F4½t�Þ as the least g such that every element of Mð4Þ is a strict
sum of g cubes. The main result is that

gð3; F4½t�Þa 6:

This improves an earlier result of the author that gð3; F4½t�Þa 9.
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1. Introduction

Let Fq be a finite field of characteristic 2 with q elements. It is easy to identify the

set MðqÞ of polynomials P a Fq½t� that are strict sums of cubes. When q > 4 the

set MðqÞ is the entire ring Fq½t�. For q ¼ 4 the set MðqÞ consists of polynomials

P a F4½t� for which PðrÞ lies in F2 for every r a F4, and such that either 3 does not

divide degðPÞ or 3 divides degðPÞ and P is monic. Finally Mð2Þ is the set of

P a F2½t� such that PC 0 or PC 1 ðmod t2 þ tþ 1Þ; see [3].
Let vð3; Fq½t�Þ ¼ vb 0 be the minimal integer such that every P that is a sum of

cubes is a sum of v cubes. In 1933, see [6], [7], Paley proved that

vð3; Fq½t�Þa 5



for q a f2; 4g. Later, in [8], Vaserstein improved the result for q ¼ 2 to

vð3; F2½t�Þa 4:

The actual value of vð3; Fq½t�Þ for q a f2; 4g is unknown.

An analogue over Fq½t� of Waring’s problem for cubes over the integers is that

every P a MðqÞ is a strict sum of g cubes, with gð3; Fq½t�Þ ¼ gb 0 minimal. This

means that

degðA3Þ < degðPÞ þ 3

when P ¼ A3 þ � � � is written as a sum of cubes. We may re-write this condition as

degðAÞa degðPÞ
3

� �
;

where dae is defined as minfn a Z j nb ag. Notice that one can never write P as a

sum of cubes with degðAÞ < ddegðPÞ=3e, so that the condition for a strict sum of

cubes imposes the tightest possible constraint on the size of degðAÞ.
We may also let cð3; Fq½t�Þ ¼ cb 0 be the minimal integer such that every

P a MðqÞ that is a strict sum of cubic forms FðX ;YÞ ¼ XY ðX þ YÞ is a strict

sum of c cubic forms FðX ;YÞ ¼ XY ðX þ YÞ. This means that

degðA3Þ < degðPÞ þ 3; degðB3Þ < degðPÞ þ 3;

when P ¼ ABðAþ BÞ þ � � � is written as a sum of cubic forms FðX ;YÞ ¼
XY ðX þ YÞ.

It is known that for q ¼ 2 and for q ¼ 4 one has

4a gð3; Fq½t�Þa 9;

see [3]. These results are essentially based on some identities of Paley; see [6].

It is also known that for even q such that q B f2; 4; 16g one has

cð3; Fq½t�Þa 5;

see [2].

Recently, in [4], the author together with D. R. Heath-Brown proved that

5a gð3; Fq½t�Þa 6

for q ¼ 2 by using some simple identities in a new way. The same method cannot

help very much for q ¼ 4 since it is really tailored for q ¼ 2.
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However, using a slight variant of the method we succeeded recently in extend-

ing the result to q ¼ 4. Moreover, we obtained immediately upper bounds for

the representation of all possible polynomials as strict sums of cubic forms

FðA;BÞ ¼ ABðAþ BÞ.
More precisely, the main object of this paper is to prove

gð3; F4½t�Þa 6; ð1Þ

see Corollary 1.

From this follows immediately that

cð3; F4½t�Þa 3; ð2Þ

see Proposition 1.

The same method of proof gives immediately a result that completes earlier

work of the author: We have

cð3; F2½t�Þa 3; ð3Þ

see Proposition 3.

Using some results in [1] it is straightforward to obtain also

cð3; Fq½t�Þa 4; ð4Þ

when q > 4 is of the form q ¼ 22n for some positive integer n > 1; see Proposition

2.

The problem of giving non-trivial lower bounds (i.e. >2) for our functions g

and c is not easy for general q. Even for a fixed small value of q to get a non-

trivial lower bound may require some substantial computations (with computers)

to be done. Also note that, unfortunately, our method does not allow us to im-

prove the bound gð3; Fq½t�Þa 7 which holds even for q > 16 (see [3], Introduction,

or [1], Theorem 1).

Some applications to the problem of the strict representation of a polynomial

P as

P ¼ A2 þ Aþ BC

(see [5]) are also included. See Proposition 4.

The new idea used to obtain the main result of this paper arises from a refine-

ment of the (trivial) observation that every element of Fq is a square when q is

even.

We denote by a a root of the polynomial t2 þ tþ 1 in a fixed algebraic closure

of F2 so that F4 ¼ F2½a�.
All rings are assumed commutative and with 1.
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2. Identities and descent

The following lemmas are crucial to obtain our main results. First of all we intro-

duce some notation.

Lemma 1. Let B be a ring of characteristic 2. Let R ¼ B½t� be the polynomial ring

in one indeterminate t over B. Let L : R ! R be defined by LðyÞ ¼ y2 þ y, and let

C : R ! R be defined by CðrÞ ¼ rtðrþ tÞ. Then L and C are F2-linear functions.

Secondly, using the same notations as in Lemma 1 we present two simple iden-

tities that hold when every element of the ground ring B is a perfect square (i.e.,

when B is perfect).

Lemma 2. Let B be a perfect ring of characteristic 2. Let R ¼ B½t� be the polyno-
mial ring in one indeterminate t over B. Let a a B be written as a ¼ s2 with s a B,

and let nb 0 be a non-negative integer. One has

at2n ¼ ðat2n þ stnÞ þ stn ¼ LðstnÞ þ stn; ð5Þ

and

at2nþ1 ¼ ðstnÞ2tþ ðstnÞt2 þ stnþ2 ¼ CðstnÞ þ stnþ2: ð6Þ

Let us recall the following identities.

Lemma 3. Let B be a perfect ring of characteristic 2. Let R ¼ B½t� be the polyno-
mial ring in one indeterminate t over B. Let y; r a R. Then:

(i) y2 þ y ¼ ðyþ 1Þ3 þ y3 þ 13.

(ii) If B contains F4 then y2 þ y ¼ ðyþ aÞ3 þ ðyþ aþ 1Þ3.
(iii) rtðrþ tÞ ¼ ðrþ tÞ3 þ r3 þ t3.

(iv) If B contains F4 then rtðrþ tÞ ¼ ðrþ taÞ3 þ ðrþ tþ taÞ3.
(v) Assume that B contains F4 then we may rewrite (iv) as

r3 þ y3 ¼ cdðcþ dÞ;

where c ¼ ra2 þ y and d ¼ rþ a2y.

(vi) If B contains F4 then y3 ¼ yðayÞðyþ ayÞ.

The following is a simple but useful lemma:

Lemma 4. Let B be a perfect ring of characteristic 2. Let R ¼ B½t� be the polyno-
mial ring in one indeterminate t over B. Let r a R be an element of R.
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Then

rtðrþ tÞ þ t3 ¼ ðrþ taÞtðrþ taþ tÞ: ð7Þ

Our first result (for the case q ¼ 2 see also [4], Proposition 1b)) is:

Lemma 5. Let n > 0 be a positive integer. Let q ¼ 2n and let P a Fq½t� be a

polynomial. Then there exist a; b; c a Fq and A;Q a Fq½t� such that

P ¼ A2 þ AþQtðQþ tÞ þ at3 þ btþ c ð8Þ

where

maxfdegðA2Þ; degðQ2tÞgadegðPÞ:

Proof. If degðPÞa 3 we choose A ¼ Q ¼ 0. If degðPÞ > 3, the claim follows by

induction from the reduction formulae of Lemma 2 used to remove the leading

term of P together with the addition properties proved in Lemma 1. More pre-

cisely, we can collect all terms containing the function L, and by doing the same

for all terms where the function C appears we obtain the result. r

Now (recall that LðyÞ ¼ y2 þ y) it follows a lemma concerning membership in

Mð4Þ of polynomials of small degree.

Lemma 6. Let a; b; c; d a F4 such that KðtÞ ¼ ct3 þ dt2 þ atþ b is a sum of cubes.

One has: If d ¼ 0 then

(i) KðtÞ ¼ t3 or KðtÞ ¼ t3 þ 13 or

(ii) KðtÞ ¼ 13 or KðtÞ ¼ 03.

If dA 0 and cA 0 then

(iii) KðtÞ ¼ t3 þ LðtÞ ¼ ðtþ 1Þ3 þ 13 or KðtÞ ¼ t3 þ LðtÞ þ 1 ¼ ðtþ 1Þ3 or
(iv) KðtÞ ¼ t3 þ LðatÞ ¼ ðatþ 1Þ3 þ 13 or KðtÞ ¼ t3 þ LðatÞ þ 1 ¼ ðatþ 1Þ3 or
(v) KðtÞ ¼ t3 þ Lða2tÞ ¼ ða2tþ 1Þ3 þ 13 or KðtÞ ¼ t3 þ Lða2tÞ þ 1 ¼ ða2tþ 1Þ3.

If dA 0 and c ¼ 0 then

(vi) KðtÞ ¼ LðtÞ ¼ ðtþ aÞ3 þ ðtþ aþ 1Þ3 or KðtÞ ¼ LðtÞ þ 1 ¼ ðtþ 1Þ3 þ t3 or

(vii) KðtÞ ¼ LðatÞ ¼ ðtþ 1Þ3 þ ðtþ aÞ3 or KðtÞ ¼ LðatÞ þ 1 ¼ ðatþ 1Þ3 þ t3 or

(viii) KðtÞ ¼ Lða2tÞ ¼ ðtþ 1Þ3 þ ðtþ aþ 1Þ3 or KðtÞ ¼ Lða2tÞ þ 1 ¼ ða2tþ 1Þ3þ
t3.

(ix) KðtÞ is a strict sum of 2 cubes.
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Proof. The proof of parts (i) to (viii) is clear from Lemma 3, the definition of L

and the fact that the only sums of cubes in F4 are 0 and 1. Part (ix) follows from

parts (i) to (viii). r

We are ready to present our descent results. First of all a descent lemma for

cubes:

Lemma 7. Let n > 1 be an integer. Let q be a power of 2. Let P a MðqÞ be a

monic polynomial of degree d ¼ 3n. Then there exist polynomials A;R a Fq½t�
such that

(a) P ¼ A3 þ R,

(b) degðAÞ ¼ n,

(c) degðRÞa 2n,

(d) Rð0Þ ¼ 0 when q ¼ 4.

Proof. Set A ¼ tn þ an�1t
n�1 þ � � � þ a1tþ a0 with unknown coe‰cients aj a Fq.

Now fix any a0 a Fq and choose an�1; . . . ; a1 a Fq so that R ¼ P� A3 has degree

at most equal to 2n. This gives a soluble triangular linear system of n� 1 equa-

tions in n� 1 unknowns, and (a), (b) and (c) are proven.

To show (d) set q ¼ 4. Take a0 ¼ Pð0Þ. Choose an�1; . . . ; a1 a F4 as before.

Since P a Mð4Þ it is clear that a0 a f0; 1g, hence Pð0Þ ¼ a0 ¼ a30 and so Rð0Þ ¼
Pð0Þ � a30 ¼ 0. r

Secondly, we present a descent lemma for cubic forms.

Lemma 8. Let n > 1 be an integer. Let P a F2½t� be a polynomial of degree

d a f3n� 1; 3n� 2g. Then there exist polynomials B;R a F2½t� such that

(a) P ¼ tnBðtn þ BÞ þ R,

(b) degðBÞ ¼ n,

(c) degðRÞ < 2n.

Proof. Determine the coe‰cients of B ¼ tn þ bn�1t
n�1 þ � � � þ b0 in F2 such that

R ¼ Pþ tnBðtn þ BÞ be of degree < 2n. This results in a soluble triangular linear

system of n equations with n unknowns. r

3. Main results

We are now ready to present our key result.
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Theorem 1. Any polynomial P a Mð4Þ with degðPÞ a multiple of 3 is a strict sum

of 5 cubes.

Proof. Suppose that degðPÞ ¼ 3n. The case n ¼ 0 is trivial, so assume that nb 1.

If n ¼ 1 then the result follows by part (ix) of Lemma 6. Assume now that nb 2.

Then by Lemma 7 we obtain that P ¼ A3 þ R so that we can apply Lemma 5 to R

to get

P ¼ A3 þ B1ðB1 þ 1Þ þ B2tðB2 þ tÞ þ at3 þ bt: ð9Þ

It follows that KðtÞ ¼ at3 þ bt is a sum of cubes. So, by Lemma 6(i) or (ii), we

get a a f0; 1g and b ¼ 0. By (7) in Lemma 4 we have

S ¼ B2tðB2 þ tÞ þ at3 þ bt ¼ ðB2 þ taÞt
�
ðB2 þ taÞ þ t

�
:

if a ¼ 1, and S ¼ B2tðB2 þ tÞ if a ¼ 0.

Thus, by Lemma 3(ii), B1ðB1 þ 1Þ is a sum of 2 cubes. Moreover, Lemma 3(iv)

implies that S equals a sum of 2 cubes.

It follows that P is a strict sum of 5 cubes. r

Corollary 1. Any polynomial P a Mð4Þ is a strict sum of 6 cubes.

Proof. This follows from Theorem 1 when degðPÞ ¼ 3n. If degðPÞ ¼ 3n� 1 or

3n� 2 one applies Theorem 1 to P� t3n. r

Proposition 1. Any polynomial P a Mð4Þ is a strict sum of 3 cubic forms

FðX ;YÞ ¼ XYðX þ YÞ.

Proof. This follows from Corollary 1 together with the formula in part (v) of

Lemma 3. More precisely, the formula shows that a sum of 2 cubes requires

only 1 cubic form FðX ;YÞ. r

More generally we have the following result.

Proposition 2. Let n > 1 be an integer. Any polynomial P a F22n ½t� is a strict sum

of 4 cubic forms FðX ;YÞ ¼ XY ðX þ YÞ.

Proof. Set q ¼ 22n. Observe that every polynomial in Fq½t� is a strict sum of 7

cubes when qA 16 and that every polynomial in F16½t� is a strict sum of 8 cubes;

see [1], Theorem 1. Thus the result follows from the formulae in (v) and (vi) of

Lemma 3. The former formula shows that a sum of 2 cubes requires two cubic

forms to be represented. The latter formula shows that one cube requires only

one cubic form to be represented. r
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Now we study representations by cubic forms FðX ;YÞ ¼ XY ðX þ YÞ for

q ¼ 2.

Observe (see [4]) that for q ¼ 2 the set S of sums of cubic forms FðX ;YÞ ¼
XY ðX þ YÞ is the following subset of Mð2Þ:

S ¼ fP a Mð2Þ j ðt2 þ tÞ jPg: ð10Þ

Take P a S. Using Lemma 8 together with Lemma 8 we obtain the strict de-

composition

P ¼ ABðAþ BÞ þ A2
1 þ A1 þ B1tðB1 þ tÞ þ at3 þ btþ c;

where a; b; c a F2 and we may take A ¼ 0 when d ¼ degðPÞ < 4. But since A ¼ tn

is a positive power of t for db 4, the condition P a S forces c ¼ Pð0Þ ¼ 0 and also

aþ b ¼ Pð1Þ ¼ 0. Finally, using Lemma 3(iii) observe that that CDðC þDÞ takes
values 0, 1 if t ¼ a. So aa3 þ baþ PðaÞ a f0; 1g, i.e., aþ ba a F2, but this forces

b ¼ 0. Hence a ¼ b ¼ c ¼ 0.

This proves

Proposition 3.

cð3; F2½t�Þa 3:

Now we present a couple of applications of Lemma 5.

In [5] it was asked to give explicit strict representations of P a Fq½t�, q even, in

the form

P ¼ A2 þ Aþ BC:

This question may have some interest since using an indirect method of Serre

we were able to prove the existence of such representations, with some exceptions

when q a f2; 4g; see [5]. The answer seems to be non-trivial. It may also have

some interest to construct some algorithm which computes the values of A, B, C

for given P as above.

We can now address the latter question in the cases where q a f2; 4g by con-

structing infinite subsets of polynomials in Mð2Þ (respectively in Mð4Þ) for which
we can compute in finite time values of A, B, C as above for every P that is a

member of such subsets.

Proposition 4. Let

S2 ¼ fP a Mð2Þ jPð0Þ ¼ 0 ¼ Pð1Þg;

and let

S4 ¼ Mð4Þ:
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Then:

(a) Every P a S2 has a computable strict representation as P ¼ A2 þ Aþ BC.

(b) Every P a S4 has a computable strict representation as P ¼ A2 þ Aþ BC.

(c) S2 and S4 are infinite.

Proof. The sets S4 and S2 both contains t3nðt3n þ 1Þ for all n > 0, so they are

infinite. This proves (c).

From Lemma 5 we have a strict decomposition

P ¼ A2 þ Aþ BtðBþ tÞ þ at3 þ btþ c ð11Þ

for some a; b; c a Fq with q a f2; 4g. Assume that P a S4. Since Pð0Þ a F2, we de-

duce from (11) that c a f0; 1g. If c ¼ 1 ¼ aðaþ 1Þ then we replace A by Aþ a.

So we may assume that c ¼ 0. From (11) we obtain that at3 þ btþ c a Mð4Þ, so
by Lemma 6(i) or (ii), one has b ¼ 0 and a a f0; 1g. If a ¼ 0 then (11) gives the

desired result since a ¼ b ¼ c ¼ 0. If a ¼ 1 then we recall from (7) in Lemma 4

that

BtðBþ tÞ þ t3 ¼ ðBþ taÞtðBþ taþ tÞ:

Thus (11) gives the desired representation, i.e., we have proved (b).

Now for q ¼ 2, i.e., for P a S2, observe that S2 ¼ S as defined in (10). The

proof of Proposition 3 applies here to show that a ¼ b ¼ c ¼ 0, so that we obtain

the assertion. This shows (a), and the proof is finished. r
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