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Abstract. The aim of this note is to prove that any compact metric space can be made
connected at a minimal cost, where the cost is taken to be the one-dimensional Hausdor¤
measure.
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1. Introduction

Recall that a continuum is a compact connected metric space. We denote by

ContðXÞ the set of all continua CHX in an arbitrary metric space ðX ; dÞ.

Definition. (A) Given a metric space ðX ; dÞ, and a compact subset SHX , the

relative Steiner invariant of S in X is defined as

StðS;XÞ ¼ inffH1ðCÞ jC and CAS a ContðXÞg;

here, H1 is the one-dimensional Hausdor¤ measure.

(B) If ðS; dÞ is a compact metric space, its absolute Steiner invariant is defined as

StðSÞ ¼ inf
�
St
�
iðSÞ;X

�
jX is an arbitrary metric space and

i : S ,! X is an isometric embedding
�
:

Our goal is to prove the following result.

Theorem 1 (The main theorem). Let S be a compact metric space such that

StðSÞ < l. Then its Steiner invariant is realized, i.e., there exist a compact metric

space Z and an isometric embedding i : S ,! Z such that St
�
iðSÞ;Z

�
¼ StðSÞ. Fur-

thermore, there exists C a ContðZÞ such that CA iðSÞ is also a continuum and

H1ðCÞ ¼ StðSÞ.



The set CA iðSÞ described in this theorem is thus a ‘‘minimal connection’’ of

S, i.e., it is a shortest possible set that can be added to S to make it a continuum.

It should be noted that the ‘‘Steiner Problem’’, i.e., the problem of algorithmi-

cally finding a minimal connection of a given (generally finite) set in the Euclidean

space or other metric spaces such as graphs, has attracted a considerable interest

in the literature on optimization and combinatorial geometry, see e.g. [3], [4], [6].

Let us shortly discuss two elementary examples.

Let X ¼ R2 be the Euclidean space and S ¼ fA;B;CgHR2 be the three

vertices of an equilateral triangle with unit side. Connecting A, B and C to the

center of the triangle gives us a trivalent graph whose total length is 3x, where

x ¼ 1=
�
2 cosðp=6Þ

�
¼

ffiffiffi
3

p
=3. It is known that this graph is the shortest network

connecting A, B and C and thus StðS;R2Þ ¼ 3x ¼
ffiffiffi
3

p
.

However, the absolute Steiner invariant of that set is smaller. Indeed, one

can consider the graph as an abstract metric space. Since dðA;BÞ ¼ dðA;CÞ ¼
dðB;CÞ ¼ 1, all edges must have length x 0 ¼ 1

2 and the absolute Steiner invariant

of our set is StðSÞ ¼ 3x 0 ¼ 3
2 <

ffiffiffi
3

p
.

As a second example, consider the set T ¼ fA;B;C;DgHR2 given by the four

vertices of a square with unit side. It is known that the shortest network connect-

ing A, D and B, C is a trivalent tree with rectilinear edges forming 1200 angles.

From this sole information, one can deduce the shape of that network and com-

pute the lengths. Since dðA;DÞ ¼ 1, we have as before x ¼
ffiffiffi
3

p
=3, we then com-

pute that y ¼ 1�
ffiffiffi
3

p
=3 and we obtain StðT ;R2Þ ¼ 4xþ y ¼ 1þ

ffiffiffi
3

p
.

Again, one may consider the network as an abstract metric space. Since

dðA;DÞ ¼ 2x 0 ¼ 1 the exterior edges have length x 0 ¼ 1
2 , and since dðA;CÞ ¼

2x 0 þ y 0 ¼
ffiffiffi
2

p
, the interior edge has length y 0 ¼

ffiffiffi
2

p
� 1. The absolute Steiner

invariant of that set is then StðTÞ ¼ 4x 0 þ y 0 ¼ 1þ
ffiffiffi
2

p
< 1þ

ffiffiffi
3

p
.

2. Useful results

It is known that the relative Steiner invariant is always realized in a proper metric

space (recall that a metric space is proper if every closed ball in it is compact):
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Theorem 2. Let ðX ; dÞ be a proper metric space and SHX a compact subset such

that StðS;XÞ < l. Then StðS;XÞ is realized, i.e., there exists C a ContðXÞ such
that CAS a ContðXÞ and H1ðCÞ ¼ StðS;XÞ.

If S contains only two points fx; yg, then this theorem simply says that the two

points can be joined by a shortest curve. This is the Hopf–Rinow theorem for

proper metric spaces.

This result can be found in [1], Theorem 4.4.20, (see also [4], chapter 2, for the

special case of a finite set in a complete Riemannian manifold). The proof is es-

sentially based on the Blaschke compactness theorem for the Hausdor¤ distance

and a semi-continuity property of the Hausdor¤ measure due to Golab. Let us

recall these results.

Proposition 3 (Blaschke). Let ðX ; dÞ be an arbitrary metric space. We denote by

KðXÞ the family of all non empty compact subsets of X. This is a metric space for

the Hausdor¤ distance dH. We then have:

a) If ðX ; dÞ is compact, then so is
�
KðXÞ; dH

�
.

b) If ðX ; dÞ is proper, then so is
�
KðXÞ; dH

�
.

This theorem has been originally proved by Blaschke in the context of convex

bodies in Euclidean space. We refer to [1], Theorem 4.4.15, or [2], Theorem 7.3.8,

for a modern proof. r

It is not di‰cult to check that ContðXÞHKðXÞ is a closed subset for the to-

pology induced by the Hausdor¤ distance. Furthermore:

Proposition 4 (Golab). Let ðX ; dÞ be a complete metric space and let fCngH
ContðXÞ be a sequence of continua such that Cn ! C for the Hausdor¤ distance.

Then C a ContðXÞ and
H1ðCÞa lim inf

n!l
H1ðCnÞ:

See [1], Theorem 4.4.17, for a proof. r

Our main theorem is an extension of Theorem 2. In its proof we will need

to replace the Hausdor¤ distance by the Gromov–Hausdor¤ distance and the

Blaschke theorem will be replaced by the Gromov compactness criterion. To re-

call this criterion, remember that the packing number of the metric space X at

mesh e > 0 is the number

PðX ; eÞ ¼ minfn j there exists x1; . . . ; xn a X such that

if iA j then Bðxi; eÞBBðxj; eÞ ¼ jg:

Recall that metric space X is totally bounded if PðX ; eÞ < l for every e > 0. The

Gromov compactness criterion says that a family of isometry classes of compact
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metric spaces is totally bounded for the Gromov–Hausdor¤ distance if and only if

it is uniformly totally bounded:

Theorem 5 (Gromov). Let M be a family of isometry classes of compact metric

spaces. Then the following conditions are equivalent:

i) M is totally bounded for the Gromov–Hausdor¤ distance.

ii) supX AM PðX ; eÞ < l for any e > 0.

See [2], Theorem 7.4.15. r

Another useful result on the Gromov–Hausdor¤ distance says that any se-

quence of compact metric spaces, which is Cauchy for the Gromov–Hausdor¤

distance, contains a subsequence which can be realized as a sequence of subsets

of a single compact metric space:

Proposition 6. Let fXng be a sequence of compact metric spaces which is a

Cauchy sequence in the Gromov–Hausdor¤ sense. Then there exist a subsequence

fXn 0 g, a compact metric space Z and isometric embeddings Xn 0 ,! Yn 0 HZ and

X ,! Y HZ such that Yn 0 ! Y for the Hausdor¤ distance in Z.

This result is Theorem 4.5.7 in [1]. r

3. Proof of the main theorem

We first need a lemma:

Lemma 7. Let ðX ; dÞ be a compact metric space, and C a ContðXÞ. Then for any

a a C and 0 < e < diamðCÞ=2, we have

H1
�
CBBða; eÞ

�
b e;

in particular, we have

PðC; eÞa 1

e
H1ðCÞ:

The proof of this result can be found for instance in [1], Lemma 4.4.5. r

We then need the following generalization of Golab’s semi-continuity result:

Proposition 8. Let fXng be a sequence of compact metric spaces such that Xn ! X

in the Gromov–Hausdor¤ sense. Suppose that Xn is connected for each n. Then X

is compact and connected, and moreover,

H1ðXÞa lim inf
n!l

H1ðXnÞ:
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Proof. From Proposition 6, we know that, choosing a subsequence if necessary,

there exist a compact metric space Z and isometric copies of Xn and X embedded

in Z, say Yn, Y , such that Yn ! Y in the Hausdor¤ sense. Since Xn and Yn are

isometric and each Yn is compact and connected, we deduce from Proposition 4

that Y a ContðZÞ and

H1ðYÞa lim inf
n!l

H1ðYnÞ:

Now since Y is isometric to X , we conclude that X is compact and connected as

well, and that

H1ðXÞa lim inf
n!l

H1ðXnÞ;

because H1ðXnÞ ¼ H1ðYnÞ and H1ðXÞ ¼ H1ðYÞ. r

Proof of Theorem 1. Let S be a compact metric space, and let fðSk;XkÞg be a

minimizing sequence for the absolute Steiner invariant of S, that is:

i) Xk is a compact metric space, and Sk HXk is an isometric copy of S;

ii) StðSk;XkÞ ! StðSÞ.

We first prove that the sequence fXkg can be assumed to be uniformly totally

bounded: indeed, if this where not the case, we could replace Xk by Sk ACk, where

Ck a ContðXkÞ realizes StðSk;XkÞ (such a set exists by Theorem 2). From the

compactness of S, we know that PðSk; eÞ ¼ PðS; eÞ < l for all k and all e. More-

over, H1ðCkÞ ¼ StðSk;XkÞ, therefore supk H
1ðCkÞ < l and the family fCkg is

uniformly totally bounded by Lemma 7. The families fSkg and fCkg being uni-

formly totally bounded, so is fSk ACkg.
We henceforth assume fXkg to be uniformly totally bounded. By the Gromov

compactness criterion, Theorem 5, we know that fXkg contains a subsequence

which is Cauchy in the Gromov–Hausdor¤ distance. From Proposition 6, we

can further take a subsequence which can globally be embedded in a compact

metric space Z. Finally, using the Blaschke compactness theorem, we can take

one more subsequence, which converges for the Hausdor¤ distance in Z.

To sum up, there exist a subsequence fXk 0 g, a compact metric space Z and iso-

metric embeddings ik 0 : Xk 0 ,! Yk 0 HZ and a subset Y HZ such that Yk 0 ! Y

for the Hausdor¤ distance in Z.

Let Tk 0 ¼ ik 0 ðSk 0 ÞHYk 0 HZ. By Theorem 2, we can find Ck 0 a ContðYk 0 Þ
such that Ck 0 ATk 0 a ContðYk 0 Þ and H1ðCk 0 Þ ¼ StðTk 0 ;Yk 0 Þ ¼ StðSk 0 ;Xk 0 Þ.

By Blaschke’s theorem again, we may assume (taking once more a subse-

quence if needed) that fCk 0 g converges to a subset CHZ for the Hausdor¤ dis-

tance in Z. Likewise, we may assume that fTk 0 g converges to a subset T HZ

(since Ck 0 ATk 0 HYk 0 and Yk 0 ! Y , we have in fact CAT HY ).
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Furthermore, we know from Proposition 4 that C and CAT are continua

and that H1ðCÞa lim infk 0!l H1ðCk 0 Þ. But we have H1ðCk 0 Þ ¼ StðTk 0 ;Yk 0 Þ ¼
StðSk 0 ;Xk 0 Þ, which converges to StðSÞ. Thus

H1ðCÞaStðSÞ:

On the other hand C and CAT are continua, hence H1ðCÞbStðTÞ ¼ StðSÞ by
definition of the Steiner invariant. We therefore have equality.

To sum up, we have found a pair of subsets C;T HZ such that C and CAT

are continua, T is isometric to S and H1ðCÞ ¼ StðSÞ. The proof is complete. r
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