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Abstract. The aim of this note is to prove that any compact metric space can be made
connected at a minimal cost, where the cost is taken to be the one-dimensional Hausdorff
measure.
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1. Introduction

Recall that a continuum is a compact connected metric space. We denote by
Cont(X) the set of all continua C — X in an arbitrary metric space (X,d).

Definition. (A) Given a metric space (X,d), and a compact subset S = X, the
relative Steiner invariant of S in X is defined as

St(S,X) = inf{#'(C)|Cand C U S e Cont(X)},

here, #' is the one-dimensional Hausdorff measure.
(B) If (S, d) is a compact metric space, its absolute Steiner invariant is defined as

St(S) = inf{St(:(S), X) | X is an arbitrary metric space and

1: S < X is an isometric embedding}.
Our goal is to prove the following result.

Theorem 1 (The main theorem). Let S be a compact metric space such that
St(S) < co. Then its Steiner invariant is realized, i.e., there exist a compact metric
space Z and an isometric embedding 1 : S — Z such that St(1(S), Z) = St(S). Fur-
thermore, there exists C € Cont(Z) such that C U 1(S) is also a continuum and
H(C) = St(S).
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The set C U (.S) described in this theorem is thus a “minimal connection” of
S, i.e., it is a shortest possible set that can be added to S to make it a continuum.

It should be noted that the “Steiner Problem™, i.e., the problem of algorithmi-
cally finding a minimal connection of a given (generally finite) set in the Euclidean
space or other metric spaces such as graphs, has attracted a considerable interest
in the literature on optimization and combinatorial geometry, see e.g. [3], [4], [6].
Let us shortly discuss two elementary examples.

D

B

Let X = R? be the Euclidean space and S = {4, B,C} c R?> be the three
vertices of an equilateral triangle with unit side. Connecting 4, B and C to the
center of the triangle gives us a trivalent graph whose total length is 3x, where
x=1/(2cos(n/6)) = V3/3. It is known that this graph is the shortest network
connecting A4, B and C and thus St(S, R?) = 3x = /3.

However, the absolute Steiner invariant of that set is smaller. Indeed, one
can consider the graph as an abstract metric space. Since d(A4,B) =d(A4,C) =
d(B,C) = 1, all edges must have length x’ =1 and the absolute Steiner invariant
of our set is St(S) = 3x’ =3 < /3.

As a second example, consider the set 7' = {4, B, C, D} < R? given by the four
vertices of a square with unit side. It is known that the shortest network connect-
ing A, D and B, C is a trivalent tree with rectilinear edges forming 120° angles.
From this sole information, one can deduce the shape of that network and com-
pute the lengths. Since d(4, D) = 1, we have as before x = v/3/3, we then com-
pute that y = 1 —+/3/3 and we obtain St(7,R?) = 4x + y =14 /3.

Again, one may consider the network as an abstract metric space. Since
d(A,D) =2x"=1 the exterior edges have length x' =1, and since d(4,C) =
2x' 4+ y' = /2, the interior edge has length »’ = /2 — 1. The absolute Steiner
invariant of that set is then St(7) = 4x’ + y' = 1 +v2 < 1 + /3.

2. Useful results

It is known that the relative Steiner invariant is always realized in a proper metric
space (recall that a metric space is proper if every closed ball in it is compact):
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Theorem 2. Let (X,d) be a proper metric space and S = X a compact subset such
that St(S, X) < co. Then St(S, X) is realized, i.e., there exists C € Cont(X) such
that C U S € Cont(X) and #'(C) = St(S, X).

If S contains only two points {x, y}, then this theorem simply says that the two
points can be joined by a shortest curve. This is the Hopf-Rinow theorem for
proper metric spaces.

This result can be found in [1], Theorem 4.4.20, (see also [4], chapter 2, for the
special case of a finite set in a complete Riemannian manifold). The proof is es-
sentially based on the Blaschke compactness theorem for the Hausdorff distance
and a semi-continuity property of the Hausdorff measure due to Golab. Let us
recall these results.

Proposition 3 (Blaschke). Let (X, d) be an arbitrary metric space. We denote by
H(X) the family of all non empty compact subsets of X. This is a metric space for
the Hausdorff distance dy. We then have:

a) If (X, d) is compact, then so is (A (X),dp).
b) If (X,d) is proper, then so is (A (X),dy).
This theorem has been originally proved by Blaschke in the context of convex

bodies in Euclidean space. We refer to [1], Theorem 4.4.15, or [2], Theorem 7.3.8,
for a modern proof. |

It is not difficult to check that Cont(X) = 2 (X) is a closed subset for the to-
pology induced by the Hausdorff distance. Furthermore:

Proposition 4 (Golab). Let (X,d) be a complete metric space and let {C,} =
Cont(X) be a sequence of continua such that C, — C for the Hausdorff distance.
Then C € Cont(X) and

#1(C) < liminf #1(C,).

n—oo

See [1], Theorem 4.4.17, for a proof. O

Our main theorem is an extension of Theorem 2. In its proof we will need
to replace the Hausdorff distance by the Gromov-Hausdorff distance and the
Blaschke theorem will be replaced by the Gromov compactness criterion. To re-
call this criterion, remember that the packing number of the metric space X at
mesh ¢ > 0 is the number

P(X,¢) = min{n| there exists xy, ..., x, € X such that
if i # j then B(x;,¢) N B(x;,¢) = 0}.

Recall that metric space X is totally bounded if P(X,¢) < oo for every ¢ > 0. The
Gromov compactness criterion says that a family of isometry classes of compact
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metric spaces is totally bounded for the Gromov—Hausdorff distance if and only if
it is uniformly totally bounded:

Theorem 5 (Gromov). Let .4 be a family of isometry classes of compact metric
spaces. Then the following conditions are equivalent:

1) A is totally bounded for the Gromov—Hausdorff distance.
il) supy. , P(X,¢e) < oo for any ¢ > 0.
See [2], Theorem 7.4.15. O

Another useful result on the Gromov-Hausdorff distance says that any se-
quence of compact metric spaces, which is Cauchy for the Gromov-Hausdorff
distance, contains a subsequence which can be realized as a sequence of subsets
of a single compact metric space:

Proposition 6. Let {X,} be a sequence of compact metric spaces which is a
Cauchy sequence in the Gromov—Hausdorff sense. Then there exist a subsequence
{Xw}, a compact metric space Z and isometric embeddings X, — Y, < Z and
X — Y < Z such that Y,y — Y for the Hausdorff distance in Z.

This result is Theorem 4.5.7 in [1]. O

3. Proof of the main theorem
We first need a lemma:

Lemma 7. Let (X,d) be a compact metric space, and C € Cont(X). Then for any
ae Cand0 < ¢ < diam(C)/2, we have

H'(CnBla,e)) =&
in particular, we have
P(C,e) < éyfl(C).
The proof of this result can be found for instance in [1], Lemma 4.4.5. ]
We then need the following generalization of Golab’s semi-continuity result:

Proposition 8. Let { X, } be a sequence of compact metric spaces such that X,, — X
in the Gromov—Hausdorff sense. Suppose that X, is connected for each n. Then X
is compact and connected, and moreover,

#'(X) < liminf #'(X,).

n— o0
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Proof. From Proposition 6, we know that, choosing a subsequence if necessary,
there exist a compact metric space Z and isometric copies of X;, and X embedded
in Z, say Y,, Y, such that Y, — Y in the Hausdorff sense. Since X, and Y, are
isometric and each Y, is compact and connected, we deduce from Proposition 4
that ¥ € Cont(Z) and

AN (Y) < liminf #1(Y,).

n— o0

Now since Y is isometric to X, we conclude that X is compact and connected as
well, and that

#1(X) < liminf #'(X,),

because #'(X,) = #'(Y,) and #'(X) = #(Y). O

Proof of Theorem 1. Let S be a compact metric space, and let {(Si, Xx)} be a
minimizing sequence for the absolute Steiner invariant of S, that is:

1) X} is a compact metric space, and Sy < X} is an isometric copy of S;
ii) St(Sk, Xix) — St(S).

We first prove that the sequence { X} can be assumed to be uniformly totally
bounded: indeed, if this where not the case, we could replace X by S; U C, where
Cy € Cont(X)) realizes St(Sk, Xx) (such a set exists by Theorem 2). From the
compactness of S, we know that P(Sk,¢) = P(S,¢) < oo for all k and all &. More-
over, #'(Cr) = St(Sk, X), therefore sup, #'(C;) < co and the family {C} is
uniformly totally bounded by Lemma 7. The families {S;} and {C;} being uni-
formly totally bounded, so is {Si U C}.

We henceforth assume { X} } to be uniformly totally bounded. By the Gromov
compactness criterion, Theorem 5, we know that {X}} contains a subsequence
which is Cauchy in the Gromov—Hausdorff distance. From Proposition 6, we
can further take a subsequence which can globally be embedded in a compact
metric space Z. Finally, using the Blaschke compactness theorem, we can take
one more subsequence, which converges for the Hausdorff distance in Z.

To sum up, there exist a subsequence { X;'}, a compact metric space Z and iso-
metric embeddings 1/ : X — Y = Z and a subset Y < Z such that Y — Y
for the Hausdorff distance in Z.

Let Ty = 4 (Sp) € Yo =« Z. By Theorem 2, we can find Cy € Cont(Yy/)
such that Cp U Ty € Cont(Yys) and #(Cyr) = St(Tyr, Yir) = St(Skr, Xi).

By Blaschke’s theorem again, we may assume (taking once more a subse-
quence if needed) that {Cy } converges to a subset C = Z for the Hausdorff dis-
tance in Z. Likewise, we may assume that {7} } converges to a subset T = Z
(since Cyr U Tjr < Yy and Yy — Y, we have infact Cu T < Y).
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Furthermore, we know from Proposition 4 that C and C u T are continua
and that #'(C) < liminf,, ., #'(Cy/). But we have #'(Cp) = St(Ty, Yir) =
St(Sy+, Xx+), which converges to St(S). Thus

H1(C) < St(S).

On the other hand C and C U T are continua, hence #'(C) > St(T) = St(S) by
definition of the Steiner invariant. We therefore have equality.

To sum up, we have found a pair of subsets C, T < Z such that C and Cu T
are continua, 7 is isometric to S and #'(C) = St(S). The proof is complete. []
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