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An exact multiplicity result for a class
of symmetric problems

Philip Korman

(Communicated by Luı́s Sanchez)

Abstract. We consider positive solutions of a class of semilinear problems

u 00 þ laðxÞ f ðuÞ ¼ 0; �1 < x < 1; uð�1Þ ¼ uð1Þ ¼ 0;

with even and positive aðxÞ, depending on a positive parameter l. In case f ðuÞ is convex,
an exact multiplicity result was given in P. Korman, Y. Li and T. Ouyang [6]; see also P.
Korman [4] for the details. It was observed by P. Korman and J. Shi [7] that convexity
requirement can be relaxed for large u (see also [5]). We show that convexity requirement
can also be relaxed for small u.
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We consider positive solutions of a class of non-autonomous problems

u 00 þ laðxÞ f ðuÞ ¼ 0; �1 < x < 1; uð�1Þ ¼ uð1Þ ¼ 0; ð1Þ

with even and positive aðxÞ, depending on a positive parameter l. We assume that

the function aðxÞ a C1ð�1; 1ÞBC½�1; 1� satisfies

aðxÞ > 0; að�xÞ ¼ aðxÞ; a 0ðxÞ < 0 for x a ð0; 1Þ; ð2Þ

while f ðuÞ a C2ðRþÞ satisfies

f ðuÞ > 0 for ub 0: ð3Þ

We study exactly how many solutions the problem (1) has, and how these solu-

tions are connected when l is varied.

It follows from B. Gidas, W.-M. Ni and L. Nirenberg [3] that under these con-

ditions any positive solution of (1) is an even function, with u 0ðxÞ < 0 for x > 0



(i.e., uð0Þ gives the maximum value of the solution). It is also known that in this

case the problem (1) has properties similar to those of autonomous problems; see a

recent review paper [4]. In particular, any non-trivial solution of the correspond-

ing linearized problem

w 00 þ laðxÞ f 0ðuÞw ¼ 0; �1 < x < 1; wð�1Þ ¼ wð1Þ ¼ 0; ð4Þ

is an even function of one sign, so that we may assume that wðxÞ > 0 on ð�1; 1Þ.
It is also known that as one varies l, solutions of (1) lie on smooth solution curves,

which admit only simple turns at singular solutions (i.e., solutions
�
l; uðxÞ

�
of (1),

at which the problem (4) admits non-trivial solutions).

We now make a further assumption on f ðuÞ. We assume there is an g > 0, so

that

f 0ðuÞ < 0 for 0 < u < g; f 0ðuÞ > 0 and f 00ðuÞ > 0 for u > g: ð5Þ

(Observe that we do not restrict convexity on the interval ð0; gÞ.)

Lemma 1. Under the assumption (5), for any singular solution uðxÞ and the corre-

sponding non-trivial solution of (4) one has

pðxÞC 3u 0ðxÞw 0ðxÞ � u 00ðxÞwðxÞ > 0 for all x a ½0; 1�:

Proof. It follows by maximum principle that (4) cannot have a non-trivial solu-

tion in the region where f 0ðuÞ < 0, i.e. uð0Þ > g at any singular solution. Since

wðxÞ > 0, we see from the equation (4) that wðxÞ changes concavity exactly once

on ð0; 1Þ, being concave for small x and convex near x ¼ 1. It follows that wðxÞ
is a non-increasing function, i.e., w 0ðxÞa 0 for all x a ð0; 1Þ. But then pðxÞ ¼
3u 0ðxÞw 0ðxÞ þ laðxÞ f

�
uðxÞ

�
wðxÞ > 0. r

Theorem 1. For the problem (1) assume that the conditions (2), (3) and (5) hold.

Then the problem (1) has at most two positive solutions, and moreover all solutions

lie on a unique smooth solution curve, starting at ðl ¼ 0; u ¼ 0Þ. This curve makes

at most one turn, and it tends to infinity at some lb 0. If, in addition, we assume that

lim
u!l

f ðuÞ
u

¼ l; ð6Þ

then this curve of solutions makes exactly one turn at some l ¼ l0, and it tends to

infinity as l # 0, so that for 0 < l < l0 the problem (1) has exactly two strictly or-

dered positive solutions, it has exactly one positive solution at l ¼ l0, and none for

l > l0.

Proof. By the implicit function theorem there is a curve of positive solutions,

starting at ðl ¼ 0; u ¼ 0Þ. We can continue this curve for increasing l by using
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either the implicit function theorem or the Crandall–Rabinowitz bifurcation theo-

rem [2]; see [4] for the details. Since f ðuÞ is increasing and convex for large u, it

follows that it grows at least linearly, and then the Sturm comparison theorem im-

plies that this curve cannot extend for all l > 0, so that it will either go to infinity

at a finite l, or it will turn left eventually. If condition (6) holds, then the second

possibility must be true, again by the Sturm comparison theorem.

The key is to show that a turn to the left in the
�
l; uð0Þ

�
plane occurs at any

turning point. This will imply that there is only one turning point, and the theo-

rem will follow.

Let uðxÞ be a singular solution of (1). We denote by a ¼ uð0Þ its maximal

value. By maximum principle a > g. It then follows by our assumption (5) that

f 0�uðxÞ�� f 0ðaÞ < 0 for all x a ð0; 1Þ: ð7Þ

The direction of turn at any critical solution of (1) is governed by the sign of the

integral I C
Ð 1
0 aðxÞ f 00ðuÞw3 dx. We show next that this integral is positive, which

implies that a turn to the left must occur at any singular solution; see, e.g., [4].

Indeed

I ¼
ð1

0

d

dx
½ f 0ðuÞ � f 0ðaÞ� aðxÞw

3ðxÞ
u 0ðxÞ dx

¼ ½ f 0ðuÞ � f 0ðaÞ� aw
3

u 0

����
1

0

�
ð1

0

½ f 0ðuÞ � f 0ðaÞ� a
0u 0w3 þ aw2p

u 02 dx: ð8Þ

The first term on the right vanishes, since

lim
x!0

f 0ðuÞ � f 0ðaÞ
u 0 ¼ lim

x!0
f 00ðuÞu 0u 00 ¼ 0; ð9Þ

while the second term is positive by (7) and Lemma 1. (Observe that the integrand

in the second term is bounded, as seen by a computation similar to (9).) r

We remark that our result might be new even for constant aðxÞ, although in

that case it can probably be obtained by the time-map method; see, e.g., I. Addou

and S.-H. Wang [1].
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