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Bivariate classical and g-series transformations
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Abstract. By means of bivariate inverse series relations, we review several bivariate classi-
cal hypergeometric series transformation formulae and establish their g-analogues.
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1. Introduction and motivation

For a complex number x and a natural number 7, denote the shifted factorial by
(x)p=1 and (x),=x(x+1)...(x+n—-1) withn=1,2,....

Following Bailey [1], the hypergeometric series in variable z is defined by

]+/F/{ao,a1,..., ,Z]_i(ao)n(al)n...(a/)nzn

as
bl,...,b/ =0 I/l!(bl)n...(b/)n ’

where {a;} and {b;} are complex parameters such that no zero factors appear in
the denominators of the summands on the right-hand side. If one of the numera-
tor parameters {ay } is a negative integer, then the series terminates, which reduces
to a polynomial in z.

Similarly, we have the basic hypergeometric series, called g-series briefly. Ac-
cording to Bailey [1] and Slater [9], it reads as

1+/CD/ dap,dy, ..., dy
: b],...,b/

| =5 (@0 )u(@139), - ariq)y
q’] ;(q;q)n(bl;q)n---(bz;q)n ’

where the g-shifted factorial is defined by
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n—1

(x;9)g=1 and (x;9),= H(l —¢*x)  withn=1,2,....
k=0

For the sake of brevity, we write

a,b,....c;q), = (a;:9),(b;9),...(¢q),

The |, ,®/-series is well defined, provided that no zero factors appear in the de-
nominator on the right-hand side, i.e., none of the denominator parameters
{bk}li:l has the form ¢~ with m € Ny. When ¢; and b; are replaced respectively
by their g-exponential functions ¢% and ¢, then the |, ,®,-series will become the
classical | ,F,-series as ¢ — 1 under term by term limit.

From their work on integrals involving products of Laguerre polynomials, Lee
et al. [6], Eq. 39, found the following interesting bivariate hypergeometric series
transformation associated with the Kampé de Fériet function:

- (a)i+j(b)i+j (c+c — 1)[+j {x(1 - y)}i (1 — x)}j
i;) (@+b);  (e)(e) i! Jl

G0 latb)y (o (¢ i

2 (et - 1)i+j (a),(b); (a).i(b)./ X'y

A detailed proof can be found in Karlsson et al. [5], §2, where several transforma-
tion and reduction formulae are derived by means of integral representations for
the Kampé de Fériet function. Most of these results have subsequently been
reviewed through a combination of the formal power series method and a series
rearrangement by Chu and Srivastava [3], who succeeded also in establishing ¢-
analogues. In the same paper, Chu and Srivastava [3], Theorem 2, generalized a
fundamental result due to Karlsson et al. [5], Eq. 1.12, with two extra parameters,
but failed to figure out its g-analogue with the same approach.

Motivated by this intriguing fact, we find that the bivariate inverse series rela-
tions can be employed not only to establish the desired g-analogue, but also to
derive several other transformations for bivariate hypergeometric series. The
main body of the paper will be divided into two parts. In the next section, we shall
present new proofs of four main theorems due to Chu—Srivastava [3], Theorem
2, Lievens—Jeugt [7], Eqs. 11a and 11b, and Singh [8], Eq. 1.2. Then their ¢-
analogues will be presented in the last section.
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2. Bivariate hypergeometric series transformations

We first consider transformation formulae for bivariate hypergeometric series with
the help of the double inverse series relations [2]

=SS5 () (o 1

i=0 j=

imo jno(l)iﬂ‘(’:’) (;)f(i,j), (1b)

which can be easily verified with the help of the binomial theorem.

Q
—~
3
S
~—
I

2.1. Generalizing the transformation formula of Kampé de Fériet functions due
to Karlsson et al. [5], Eq. 1.12, Chu and Srivastava found the following result.

Theorem 1 (Chu—Srivastava [3], Theorem 2).

e 2+J z+J(c +c' = I)H-j (_m)z( (et m)J
72 - a+b)L+7( )H-](e/)H-J Z!(C)z j'(c/)] (23.)
R Z”:(c—i—c = Diyj (=m);(@);(b); (=n);(a);(b); (2b)

= (a+D),, ie)(e); M) (eh);

This theorem can be shown alternatively by applying the double inverse series
relations to the following closed double sum. The interested reader may write
down the details as an exercise following the procedure exhibited in Sections 2.2—
2.4.

Lemma 2 (Closed double sum).

(e ("’“)22’12?2:’ e

i=0 j=0

_ (0),(B),, (@),(B), (c+¢" = 1)y
m'(c)m I’l'( /)n (a+b)m+n .

Sketch of the proof. For the double sum displayed in the lemma, we can first in-
vert the summation order by the replacements i — m — i and j — n — j, then re-
formulate it by letting k := i + j, and finally reduce it to the closed expression by
appealing successively to the Chu—Vandermonde summation theorem (cf. Bailey
[1], §1.3) and the Pfaff-Saalschiitz summation formula (cf. Bailey [1], §2.2). [
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2.2. By using twice the Chu—Vandermonde summation theorem, it is not difficult
to evaluate the following double sum

23 (M) 0) M

r=0 s=0

Multiplying both sides by ((‘:;Ef,/)), we may reformulate it as follows:

(a)m<b)m(al)n(d B b)n _ b (_m)r(a)r(d B b)r (_n)s(al>s(b)s
(d)m+n (C)m(cl)n B ;O ; r!(c)r(d)r—ks S!(C/)s
atr), (d+5),
et e+ 9),

Replacing the last factorial fraction by the Chu—Vandermonde sums

(a+r)mfr(al+s)n7s :2F1 1 2F1 —n+S,C/—a/
(C + r)m—r(cl + S)n—s C/ + 5

—-m-+r,c—a
c+r

|

M S (g V C —a); (—I’l + S)j(C/ _ a/)j
-8 |

il( c—i—r) " +5);

i=0 j=

and then interchanging the summation order, we get

(@),,(b),,(a"),(d = D),
(d)n1+n (C)m (C,)n

l i m()(i)(d),,ﬂ(liai'fdc__bi))';((cﬁf(?i I

In view of (1a)—(1b), its dual relation recovers the following result.

r=

Theorem 3 (Transformation formula, [8], Eq. 1.2).

()u(c), T (=m);(a);(b); (_n)j(al)j(d — b).i

ZZ (d)i+ji!(c)i j!(c/)j
(

0
i(@)i(d = b), (=n);(a'),(b);
= = (d); i1 +a—c—m), /(1 +a" —c —n)
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2.3. Similarly, we have the following almost trivial double summation formula:

i e ()0 = o,

(),

Then multiplying across by we may restate it as follows:

(1+d c),’
(a)m(a/)n(d)mﬂz n)s(d)s(b/ — a/)s
(6),(€)n(07),(1 +d = ¢), ,20: SZ; ri(b 1(b"),
.(a—Q—r) (d+s)n s( _d_n)i
(b+r), (1+d-c), '

Replacing the last fraction by the following double sum

(a+1),_(d+s), (c—d—n),
b+r),,d1+d-c),
(c—d—ys), —-m+r,b—a —n+s,1—c—r
(1+d—qfﬂ{ b+¢1}5{1+d—c+s—rq
_(e=d—5), F R (mAn)(b—a), (nts)(1—c—r)
S (+d-o)

iNb+r), NM+d—c+s—r);

+ s i=0 j=0

and then interchanging the summation order, we get

(a)m(a/)n(d)mHz - 1N\ m n (b B a)f(l B C)j
B +d—a, ~ 2525 (1))@t B)

s (S @), (e = d = ), (<)) (b = a') (d),
r:OSz:; (c=J)pt (M +a—b—1i)sl(b),

According to (1a)—(1b), its dual relation results in the following theorem.

Theorem 4 (Transformation formula, Lievens—Jeugt [7], Eq. 11a).

(b) ANC N ,+, ( a),  (=n),(d);
(b ;1,25/2: 1 J'(b,)j(l +d—c)j
3 a)e—d—n), (=n),(t'—a)(d)
_E:EZ H,,1+a—b m),i! JU(b"),; '

10/0
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We remark that the reversal of this double series gives another transformation
due to Lievens—Jeugt [7], Eq. 12a.

2.4. For an arbitrary sequence {€}, there holds the almost trivial relation
(d) m (m> (d) ) m (m> (d) m—r ; m—r
- m) = —1Q V)ér.m = _rQ(}, (_1) . ’
0 2 =21 ) @, 200 = 2 ) (0, 20 2V

where 6; ; stands for the usual Kronecker symbol. Applying twice the Chu-
Vander-monde summation formula, it is not hard to check the double sum identity

(d+m),(a"), - n) (0" —a')(d+m) (1 —m—c),
( +d—cn( ZZ )( +d—c)s+j .

s=0 j=0

Multiplying both equations, we get the expression

(a/)n<d)m+n r+s m)r ( n)s(b’—a’)s r
(1 +d— )b ZZ AE, (T d— o,
.’"*Y”A(_m_ﬂf) ( n+s)(1—r—c)j
i! S +s+d—c);

i=0 j=0
Interchanging the summation order, we can rewrite the last equality as

e =20 () (%) %

i=0 j=0

i J ) . . d b/ !

. Z(_I)I+S<l><.]> ( )r+s( a/)sQ(r)
r=0 s=0 r s (C )r+s(b )

Its dual relation through (1a)—(1b) reads as the following general theorem.

Theorem 5 (New transformation formula).
Zm: 1+] (_n)j(a,)j Q(l)
i=0 j=0 j‘(bl)f(l—’_d_c)f

_ ﬂ m n (d)i+j (7m)l. (—}’l)j(b’ _ Cl/)'
(I+d—c), & (e—n)y, i FICo)

The transformation due to Lievens—Jeugt [7], Eq. 11b, results in the very spe-
cial case Q(m) = (a),,/(b),, of this theorem.
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3. Transformation formulae for double g-series

By means of Euler’s ¢-binomial theorem (cf. [4], II-4), we can prove the following
g-analogue for the inverse series relations displayed in (1a)—(1b):

B
ZZ ’“{ ]Mq("/)F(l J). (3b)

For the subsequent applications, we need also the slightly varied form with the
alternating factors and the g-exponents being migrated:

i /{m} [’;]G(i,]’), (4a)

l

”q ”f[¢}B]nuﬁ. (4b)

i=0 j=0 L

n

Ms }Ms

Now we are ready to derive transformation formulae for the terminating bivariate
basic hypergeometric series.

3.1. In order to establish the g-analogue of (2a)—(2b), we first prove the following
bivariate summation formula.

Lemma 6 (Closed g-double sum).
" —i— ] 1) [n—i—j—17¢""(q/c) la,b;ql;,; (c¢'/q:q);y;
DIPS) LA | }<%qm%q» @iy, @aesa), Y

~(4\"[a,b;4q],, [a,b;q], (c¢'/q:0), 0
B (C> (4. ¢;q), [a,¢5 4], (@b q)n (5b)

i=0 j=0

Proof. With i and j being replaced by m — i and n — j respectively, the reversal of
(5a) may be restated as follows:

g™ (q/)" la,b; gl (€' a5 )

Eq. (5a) = (4:9),(a:9), (ab;q),,., (c:q),,(c";q),

, 2w, i@ @) ),
i,_,z-;o(q [ (¢:9):(q:9);

lg g7, q" """ Jab; q);,
’ [qlfm*n/d, qlfmfn/b’ q27’7’7n/CC/; q}

i+
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Letting k := i + j, the last double sum may be simplified successively by means of
the ¢-Gauss and the g-Saalschiitz summation formulae (cf. [4], II-6 and II-12) as
follows:

v lg, ", q" """ [ab; q],
g, g e a, gt by g

q; :| _ (a; q)m(b; q)m mn
’ (q"a;q),,(q"b; q),,

v (@7 q) qa*,q""/c

D ey el
(qZ—m—n/cc/; q)k C/qn—k
qu7 qfn’ qlfmfn/ab
ql—m—n/a, qlfmfn/b

—3CD2[

Therefore we have the following expression

_ (4)'[a.b3dly [a,b5ql, (¢ /g @)pin _
Eq- (32) = <C> 9,64, 195 ¢34, (abs;q),,., Eq. (50),

which completes the proof of the lemma. O

Now rewrite the formula in the lemma as

n—1j

P |
(

} la,biq],., (cc'/q:9),4,
(ab;q),,, (¢;q),(c'5q),
a2 (q/eY @794 4),,
(e:9),(¢'1q), (eq':q),_.(e'q5q),_,

In view of the ¢g-Gauss summation theorem (cf. [4], 1I-6 and 11-7), performing
the replacements

1—m 2+
eq™

eq'

m . _ 1+7. X i .
=Sy )
=1 (eq 7q)i—z

(a759),,,

=0 {
(€q" 5 q)m,

q: qm—z—j:|

)
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K

(@59,
(¢'q:9),,

—n ! 0+
" e'q™
e'q

2(131[

g q] (e'q) "

S 2]

-] (e'qsq);,

and then interchanging the summation order, we find, after some routine modifi-
cation, that

E ) et P O P G e (61_6’>"
[C,(:’; q]m [C/’el;q}n (ab;q)ern ¢

Sl

i=0 j=0

3y (—UMH {j ]q("';z) .5, cc'/4; .., (€' 4).(eq59), <e_/ql>].
0 Z ¢

J lab,e.e’;ql,,  (c:9),(c";3q),

1=0 )=

This relation matches with (3b) under the following specification:

=SS 7] e

1=0 5=0

la,b,cc'/q;4),., (e'q";q),(eq™; q), (ql e_’)j
lab.e.e’iql,.,  (c:q),(c';q), c)’

G(m,n) = q(;) [a, b; q]m [aab;Q]n (CC//Q;Q)ern (q_e/>n
7 [C’ 6’; q]m [Cl7 el; q]n (aba q)m+n C

Then the dual relation (3a) leads us to the transformation formula

Sgor: }uw T )

1=0 7=0 (]

j ol el e : ~)

i=0 j=l 0 [Cvevcﬂi [C 7€/aq]j (abvq)ldrj

which can be highlighted as the following theorem.
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Theorem 7 (New transformation formula).

ii LZ b cc /q7 ]z+] [q7m7elqn;q]l [q_n’eqm;q]] <q1+nm E_/)J
lab, e, e'; q] g, ¢; 4], g, ¢ 4], ¢

1=0 =0 "+

n (el g )iy (g absq) g abidl (e
ZZ . ol g )
=0 j (abvq)H»j [q7 Caeaq]i [q,c , € 7q]j ¢

This is the full g-analogue of the transformation (2a)-(2b). The weaker ¢-
analogue established by Chu-Srivastava [3], Theorem 6, results in the special
case of this theorem with ¢’ = a and e = b.

3.2. Applying twice the ¢g-Gauss theorem, we can evaluate the double sum:

- g d bigl, a7 by s (Bi9),,(d/big), (47N,
,ZX dq),ﬂ(q,q) @0, T T (i@ <b>b

Multiplying both sides by % (¢)™(%)", we may restate it as follows:

(a; q)m( ’ q)m(a,. q)n(d/bv q)" <qn0d>m <b_6/>n
(43 @) in(€: Q) (5 q),, ab a’
= e (&) () 2.2 e e

-y - qm[ g " a,d/biql, lg" a',biql,
- (diq)la. g, g, 4l

=0
Lt () (5).

Again by means of the ¢g-Gauss summation formula, making the substitution

3

7

e ()
=2CD1{ g c/a ] qu)l[ g, ;]/Ccl qvq}

= (¢ """ q)i(c/asq), (a5 9)(c'a"sq);
9);(q"¢; q); (4:9);(g°c"; q);

i=0 j=0



Bivariate classical and g-series transformations 253

and then interchanging the summation order, we derive the equality

B q>i)<(d$ 2 (229) (%)

Xm: n _m C/Cl q] [ 7C,/a/;q]qu’+j
i=

(= lacdl 9. ¢"; q;
4 Zj: a d/b q] [q_j>alvb;q]s r+s
= (dsq)la.9" al e q), (g9 al [l )

Multiplying across by q(?)+(121), we may reformulate the last equation as

L )

S]] e

i=0 j=0

1

z/: A, d/b q] [qijva’vb;Q]s r+s
(d;9),4la, 9" a/c; q, 19, 9" a' [¢'; g

r=0 s=

In view of the double series inversions (4a)—(4b), we obtain the following dual
formula.

Theorem 8 (Transformation formula, Singh [8], Eq. 3.2).

"IN (g ) as q) (b ), (@7 @);(a’sq),(d]biq); (qmed\' (g ibe'Y
;, (d; q),+,(q q);(c;:9); (¢:9),(c"sq); ( ab ) < a )

- qurj [qu,a,d/b;q]i [q7n7a/7b;q]j

_ (e/a;q),,(c'/a’;q),
— (d;9)i; (:9):(q"a/e;9); (q:9),(q""a’[c'sq);

(¢:q)u(c5q), 4

hgE

Il
=)

J

3.3. Similar to Section 3.2, we have another double sum formula:

al

g, q"c/d;ql, lq7",b'/a’; g, o = (¢"d;q),,(a’;q), (q‘”c'>'" (b’)"
= (9,9, (69,059, (¢:9),(0"q), \ d ’

NE

Il
o

7
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which, by multiplying both sides by % (4)™(4)", can be rewritten in the
form

wanco oo (o) ()
LY Grear (o) (6)

g O ()

a
Replacing the last expression by the double sum

(¢'a:9),, ,(q7"c/d;9),(4°d; q), (g)”” <q>’”

(703 q),,-.(qd/c; q),, a ¢
(qﬁvc/d; Q)‘ —m-H b/ q—n+s’ l r/C
= U0 @
(qdfciq), > R 1“ rdfe| T

_(g7%¢/d;q), R (g1 q),(b/as g); (‘17"“%61)1(‘11 ) g
- (qd/e; q), ;;0 (©9)abiq);  (¢:9);(¢"7d/c;q);

and then interchanging the summation order, we have the following equality:
(s D 58Dy (q_”b0>m (g)
(b:4),,(¢: ), (qd /¢ 9),(b"; 9) ad a'c

2’: g g a,q7c/d;q), g7, b'/a', d;ql,
= (q76q),,s la,9"a/b;ql, lg,b"; 4],

i=0 j=

Applying again (4a)—(4b) to the last relation, we derive the following dual for-
mula.

Theorem 9 (g-analogue of Lievens—Jeugt [7], Eq. 11a).
ZZ z+/ aQ) (Cl Q) (q aq) (Cl q) (qmbC)i<(]1+n_ib/>j
i=0 j=0 b q)( ) ( q; 4 )J(b/7 )_,(Cld/c, Q)j ad a'c

:(b/a;q) (/D) 9 g a,q "e/dsq), la" b /a' diq);
(bsq@)lad/c;q), = = (@ " @)iy; (a:9)(a""a/biq);  (4:9);(b"5q);

J=
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3.4. For an arbitrary sequence {Q(k)}, we can check, by means of the ¢-binomial
theorem, the almost trivial relation

(s D ¢y py = S~ [1]
Ca), 2 Z;(C;q),,[ ]9”

Applying twice the g-Gauss theorem, we have also the following identity

@' .q"d;q), g b/ q"diql,, R T ed)
no_ Ky na S nmd ]'
pradicd, 2 whadied, 0 2 gavdiad, @

Multiplying both equations

Q(m)(a’;9),(d;q) 10
(¢;9),,(b"3q),(qd/c; (])

zm: zn: r+s(q7m? q) [q b /a q]s qmr ( )(q a )
g ey [q,c q),[q.0',qd/c; g,

m—r n—s [ __—m+r —nts l-r /..
. Q(V) (6[ M ,CI) [q 4 /C’ q]j (m=r)i+(ntr)j 1J

== (@9, lg.9'"d/cq];

and then exchanging the summation order, we arrive at the following relation:

((1/; q)n (d7 q)m+n
(¢:9),,(b"19),(qd/c;q),

=§j:< 0" [ﬂ%qen@d.f

(d:9),es (a7:0), la7,0'/a"q), (@'
(@7¢:0)s (@q), (6:9),059), (d>g( )

Q(m)

i

M\.

\ |
S

According to (4a)—(4b), its dual relation reads as the following transformation.

Theorem 10 (New transformation formula).

—m. —n /.
ZZQ 1+j(q 7q)[ [qb, 7‘;aq.]j q,‘+j
par g, ¢;4); [q,b', qd/c; q);
_d"4/G NN Qi diq); (@™ q); lg".b'/a’sq); i(a_/c>j
/. q :
(qd/c;q), = = (7" 9)i(q59);  a,b'54); d
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For the very particular case Q(m) = (a;q),,/(b;q),,, this theorem yields the
g-analogue of the transformation due to Lievens—Jeugt [7], Eq. 11b.
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