Portugal. Math. (N.S.) Portugaliae Mathematica
Vol. 65, Fasc. 2, 2008, 191-209 © European Mathematical Society

On the Cauchy problem in Sobolev spaces for nonlinear
Schrodinger equations with potential
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Abstract. We consider the Cauchy problem for nonlinear Schrédinger equations in the
presence of a smooth, possibly unbounded, potential. No assumption is made on the sign
of the potential. If the potential grows at most linearly at infinity, we construct solutions in
Sobolev spaces (without weight), locally in time. Under some natural assumptions, we
prove that the H'-solutions are global in time. On the other hand, if the potential has a
super-linear growth, then the Sobolev regularity of positive order is lost instantly—no
matter how large it is, unless the initial datum decays sufficiently fast at infinity.
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1. Introduction

We consider the Cauchy problem for the (nonlinear) Schrédinger equation

D+ A= VO (P (13) € Ry x R, (L)

u—o = ap € H'(R?),  5>0,

where the potential V" is smooth and sub-quadratic (see below), the nonlinearity f
is sufficiently smooth, and the initial data @y may or may not belong to weighted
L? spaces Z (H*) (sometimes denoted L?), where # stands for the Fourier
transform. Note that we consider only propagation in the future; this choice is
made only to simplify some statements. We show that if the potential V" is sub-
linear, then (1.1) is locally well-posed in H'(R¢), upon suitable assumptions on .
On the other hand, if V" is super-linear (e.g. harmonic potential), then (1.1) is ill-
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posed in all Sobolev spaces of positive order; this is not a nonlinear result, since it
holds even when f = 0. This is heuristically reasonable, at least in the case of the
harmonic oscillator: the potential rotates the phase space, so the natural space for
the initial data is of the form H*®n.Z (H*). If ay € H\F (H"), for s > k > 0,
then u(t,-) ¢ H*(R?) for arbitrarily small # > 0. For the linear equation, this can
be seen via the Fourier integral representation (Mehler’s formula in the case of the
harmonic potential). The proof we present treats both linear and nonlinear cases.

Before going further into details, we clarify our assumptions. We define the
Fourier transform as

Fo&) = #(&) = | e ot ax

Denote (x> = (1 + [x|*)"/%. For s > 0, we define

H'(RY) = {p e L*(R") |£ = <°9(&) e LR},  H*(RY) = ) H'(RY).

s=0
In particular, % (H*) is just the weighted L? space:
F(H*) = {p € L*(R") | x = {x)°p(x) € L*(R)}.

Assumption. We assume that the potential is smooth, real-valued and sub-
quadratic: ¥ € C*(R? R) and *V e L*(RY) for all |«| > 2.

Definition. We say that V' is sub-linear if 0*V € L*(R?) as soon as |o| > 1. We
say that V' is super-linear if V. V' is unbounded.

Remark. For super-quadratic potentials, the theory must be modified. First, if
is super-quadratic and negative, then H is not essentially self-adjoint on C()”(Rd)
([11], [16]). If V' is super-quadratic and positive, then even the local existence
results are different. We refer to [20], [21] for very interesting results in this
direction.

The construction of the parametrix for the propagator of H = — %A + V pro-
vided by D. Fujiwara [12], [13] shows that U(¢) = e~ which is L>-unitary, sat-
isfies the local dispersion estimate: there exists & > 0 such that

1
WU S |t|—d/2 for |7] < 0. (1.2)
One can infer local and global existence results for (1.1) if @y € D(v/H) when
V' > 0, under suitable assumptions on the nonlinearity f, as proved initially by
Oh [15]. The assumption V' > 0 is actually not necessary, and one can prove the



Cauchy problem in H* for NLS with potential 193

local existence results of Oh in weighted Sobolev spaces of the form H® n 7 (H?)
thanks to Strichartz estimates (see, e.g., [5], and [2] where global existence results
are recalled for potentials ¥ which are not necessarily non-negative). Throughout
this paper, u is assumed to be a mild solution to (1.1), that is, to solve

t

u(t) = U(t)ag — iJ Ut — ) (f (Ju(s)|?)u(s)) ds.

0

In Proposition 1.2, however, we construct a classical solution for (1.1).

When ¥ >0 and f(|u|?) = u|u|*’, one can prove global existence in D(v/H)
for the solution u of (1.1) under suitable assumptions on u and o, thanks to the
following conservations:

d
Mass: E(Hu(t)”iz) =0.
d 1 2 K 20+2 2 —
Energy: 7 <§ |Vu()||72 + T lu(®)||;%2 + JW V(x)|u(t, x)| dx) =0.

The question we ask is: what remains true when we do not assume
V|ao|2 e L'(RY)? Roughly speaking, the local existence results remain when ¥
is sub-linear, but fail when V" is super-linear (we prove the latter under slightly
more restrictive assumptions on ¥V, see Theorem 1.5). Note that in the above ex-
ample, if we assume 0 < g < 2/d, then one can prove the existence of a global
solution, with an L? regularity, as in [19]. Our goal is to understand better the
relevance of Sobolev spaces with positive index, when no extra decay of the initial
datum is assumed.
We recall a particular case of [4], Lemma 1:

Lemma 1.1. There exist T > 0 and a unique solution ¢, € C* ([0, T] x R") to

t¢elk +5 |V‘€¢elk| + V= 0 ¢eik\t:0 =0. (13)
This solution is sub-quadratic: 0%¢y € L7 ([0, T] x R") as soon as |o| > 2.

Example. If V(x) = j" | 07x7 with @; > 0, then

d
wj
elk t x 27 tan COJ

This shows that in general the above result is really local in time, due to the for-
mation of caustics.



194 R. Carles

Example. If 7 (x) = (x)>“ with 0 < a < 2, then we can see that caustics appear in
finite time even if the potential } is sub-linear.

Proposition 1.2. Let d > 1.

(1) If f =0 (linear equation), assume that ay € H*(RY) for some s > 0. Then
(1.1) has a unique solution u such that u - e~ e C([0, T); H*), where ¢ and T
are given by Lemma 1.1.

(2) For the nonlinear equation, assume that f is smooth, f € C*(R;;C) and
ap € HY(R?) for some s >d/2. Then (1.1) has a unique solution u such that
u-e i e C([0, T); H*), where ¢ and T are given by Lemma 1.1.

Proposition 1.3. Letd > 1, ag € H'(R?), and assume that V is sub-linear and that
the nonlinearity f is of the form

2

Ful®) = wul®  withpe R, 6>0, and o<

if d =3.
Then there exists © = t(d, ||aol| 1,1, 0) > 0 such that (1.1) has a unique solution
ue C([O,T];Hl) r\L(4”+4>/d”([0,‘L']; W1'2”+2).

If moreover a < 2/d or u > 0, then this solution is global in time:

ue C(Ry; HY) A LT 914(R w2042,

Remark. Even the local result is not a consequence of Proposition 1.2: the
regularity required on the initial data is not the same. The reason is that Proposi-
tion 1.2 is established without dispersive or Strichartz estimates, while the local
existence result in Proposition 1.3 is proven thanks to (local in time) Strichartz
estimates.

We also discuss the local Cauchy problem in H*(R?), s > 0, in Section 4. The
main point consists in showing that in the presence of a sub-linear potential, local
Strichartz estimates are available in Sobolev and Besov spaces. We prove:

Proposition 1.4. Let V be sub-linear,0 < s < d/2and0 < g < ﬁ. If o is not an

integer, assume that [s| < 2a. Then there exist T > 0 and a unique solution
ue C([0,T]; H') 0 L7([0, T]; B, »)
to (3.1), where
_20+2 4o+ 4

P YT -2

We now come to the non-existence result:
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Theorem 1.5. Let d > 1, and [ be smooth, f € C*(Ry;R). Assume that V is
super-linear and there exist 0 < k (< 1) and C > 0 such that

IVV(x)| < C{xY* for all x € RY,
and w, ' € S such that
lw-VV(x)| > ¢l - x|* as |x| — o for some ¢ > 0. (1.4)

Then there exists ay € H*(RY) such that, for arbitrarily small t > 0 and all s > 0,
the solution u(t,-) to (1.1) provided by Proposition 1.2 fails to be in H*(RY).

Example. As a potential J we may consider any non-trivial quadratic form, or
V(x) = +<{x'> with | < a <2, for some decomposition x = (x’, x").

Remark. Note that no assumption is made on the growth of the nonlinearity at
infinity: the above result reveals a geometric phenomenon and not an ill-posedness
result like for super-critical nonlinearities without a potential ([1], [3], [8], [14]).

In Section 2, we outline the proof of Proposition 1.2, which is a particular case
of [4], Proposition 3. We establish Proposition 1.3 in Section 3. We extend the
local theory to all the spaces H*(R“) for s > 0 in Section 4, where we prove Prop-
osition 1.4. Finally, Theorem 1.5 is proved in Section 5.

2. Preliminary remarks

In this section, we outline the proof of Proposition 1.2, which is a straightforward
consequence of the analysis in [4], with the choice ¢ = 1. This will also guide us for
the proof of Theorem 1.5.

First, Lemma 1.1 is a straightforward consequence of the local Hamilton-
Jacobi theory, Gronwall lemma, and a global inversion theorem, which can be
found for instance in [17, Th. 1.22] or [10, Prop. A.7.1]. To prepare the proof of
Theorem 1.5, we recall some details. Let x(¢, y) and (2, y) solve

{&X(I, y) =<, y); x(0,») = », 2.1)
0:L(1,y) = =V V(x(1,y)); &(0,y) =0. '
The local Hamilton-Jacobi theory provides a solution to (1.3) in the neighborhood
of every point where y — x(z, y) is invertible. The theory is global in space (not in
time, in general) thanks to the global inversion theorem mentioned above, and to
Gronwall lemma. The gradient of ¢ is given by
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Vx¢eik(ta x) = é(ta y(t> x))> (22)

where y(z, x) is the inverse mapping of y — x(z, y). Introduce the Jacobi determi-
nant

Ji(y) =detV,x(t, y). (2.3)
The global inversion theorem can be applied since there exists C > 0 such that
Cl'<J(y)<C forall (t,y) € [0, T] x R%. (2.4)

The change of unknown function u(t,x) = a(t, x)e?«(®¥) turns (1.1) into the
equivalent Cauchy problem:

01a+ Vg - Va + %aAqﬁeik = %Aa — if (|a|})a, aj—o = do. (2.5)
The major difference with (1.1) is that the potential ¥ is no longer present in the
equation. The idea is to view the left hand side as a transport operator with veloc-
ity V. and a renormalization factor along the characteristics, §aAd.; . We can
then reduce the problem of existence of solutions of (2.5), to the existence of a pri-
ori estimates, thanks to a mollification procedure. Since we seek a € C([0, T|; H*),
we note that the term /A on the right-hand side is skew-symmetric and has no
contribution in the energy estimates. To take advantage of this property, we
do not rewrite (2.5) along the characteristics, but notice that from Lemma 1.1,
laA@eixll o s < |l@l|» . For the convective term, we use Lemma 1.1 and an in-
tegration i)y parts: if 2 e N is such that loe| < s, we write

Re J 0%a0* (Ve - Va) dx — Re J 0%a(Vy - VO¥a) dx

+ Z cxpRe J 0%avol g - Vo* Padx
1B=1

1 x
— 5 | Véex - viezaP ax-+ €(alf )

= @(Ha”%fHS)‘

If s is not an integer, we can use interpolation. Proposition 1.2 follows easily,
since s > d/2 ensures that H*(R?) is an algebra.

Remark 2.1. Let 7 = [0, 7] be a compact time interval. The approach of [4] re-
called above shows that the map F — a, where

1 i
5[3 + V¢eik -Va+ EaA¢eik = EAa + F7 a|t:0 = 0’
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sends L' (I; L?) to C n L*(I; L?) continuously:

lall 2. r2) < ClF L r. 12

where C depends only on d and ||V*¢ey || (1:12)-

3. Sub-linear potentials

3.1. Local H' theory. To prove the first part of Proposition 1.3, the idea is
to keep the same proof as without potential. The gradient does not commute
with H, but we have

1
<z‘a, + §A> Vu = V(x)Vu+ uVV (x) + uV(|u|*"u).

The new term is ¥V (x), that is, u multiplied by a bounded term. Recall that
U(t) = e ™. We show that for r > 0 sufficiently small, there exists u such that

u(t) = U(t)ao — in J; Ut — ) (|u|*u) (s) ds =: ®(u)(1). (3.1)

We see that

V() (1) = U(1)Vao — i JO Ut — $)V(|u*u)(s) ds

- zJ; U(t — 5)(D(u)(s)V V) ds. (3.2)

Recall that (¢, r) is Schrodinger-admissible in RY if

2d
;o 2=r< -2 (q.7) # (2, 00).

=~
NSRS

+

LSRN

It follows from [13] that Strichartz estimates are available for U(z) (see e.g. [5]):
for all admissible pairs (g,r), (qi,71) and (g2,r2), there exist C, and C,, ,, such
that for any compact interval 7 and any ¢ € L*(R?), F e L (I; L"(R?)),

1
NUOl Loy < G+ 1Dl 2,

H JI Ut — 5)F(s) ds‘

0

(3.3)

/g ,
Lo Lm) < Crler(l + |I|) ”FHL"Z/([;L"z)’
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where 1’ stands for the Holder conjugate exponent of r. Note that the powers of
|I| on the right-hand sides are sharp in general, for H may have eigenvalues. For
(¢,r) an admissible pair, define

Yoioc(I) :={ue C(I; H"Y | Au e L (I, L") n L.(I; L*) for all 4 € {Id,V}}.

loc
Introduce the following Lebesgue exponents:

4o +4

L 2000+2)
do ’

= 2 2 _——_
r=dot s 2—(d—2)0
Then (g, r) is the (admissible) pair of the proposition, and

1 20 1 1 26 1
— =4, —=4-
k ¢

For 7 > 0 and any pair (a,b), we use the notation

1 e = IS | Laqpo, ;-
We first prove that there exists t > 0 such that the set

Xoi={u € Yroe([0, 7)) [ull 1o r2 < 2llaoll s [[ull o < 2C a0l 2,

Vil 12 < 2[|Vaol 2, IVl Lopr < 2G| Vaol| 2}

is stable under the map ®, where C, is the constant of the homogeneous Strichartz
inequality (3.3). Then choosing 7 even smaller, ® is a contraction on L4([0, z]; L").
Let u € X;. Fort <1, (3.3) yields

1O(w)l| 2 < NU@aoll 2 + Corlael | |u*ull 0
< llaoll 2 + Cllullzip lull oz -
Sobolev embedding gives
1/k

Hu”LfLr <(Ct ||M||L3;H1.

It follows that
10112 < llaoll 2 + CT7* aollz
The same computations yield

~ 20 20+1
1)l o1 < Cillaoll > + CT/*|laol77
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Similarly,

IV @)l o2 < [ Vaollz + Coslpl IVl 7w) | g o+ Co2 VY] [ @) 2

< [|Vao|| 2 + Cllul| iy [ Val

LiLr
+2C22 VY e (llaoll 2 + €27 o777,
and
IV 9. < CollVaoll 2 + Cllul|zp | Vell o
+2CalVV o (laoll 2 + €77 aol 7).
Therefore @ leaves X, stable for

T VWl llaoll > + o ull o < 1. (3.5)

To complete the proof of the first part of the proposition, it is enough to prove
contraction for small 7 in the weaker metric L9([0, z]; L"). We have

[ (u2) — D(uy)

worr < Cll(jw ™ — [ [7w)|
< Clllwn |z + Nl Zp )z = wi o
As above, we have the estimate
||“J||L’~L' = CTI/kH“jHL;«Hl-
Therefore, contraction follows for 7 sufficiently small, according to (3.5).

3.2. Global existence in H'. If V is sub-linear and unbounded, then the energy
1 o
E=3Vu ()HL2+ 7w ()IlizizerJR, V(x)|u(t, x)|* dx

may not be defined initially, if we simply require ay € H'(RY). To complete the
proof of Proposition 1.3, the idea is to notice that the time derivative of the “bad”
term in the energy is controlled by the H' norm of the solution. We present the
computations at a formal level only and refer to [5] for a justification method
which uses multiplication by Gaussians. We have

ij V(x)|u(t, x)|* dx = 2ReJ V(x)idu dx = ZImJ V(x)a(idu) dx

dt R R R

= —ImJ V(x)aAudx = ImJ aVV(x) - Vudx.
Rd Rd
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We infer, thanks to the conservation of mass,

2042

1 2042
5 IVu(t e + == ()53 < ||Va0||Lz +——llaollzz>

+1 +1

V¥V L= llaoll 2 L [Vu(s)|l - ds.

When u > 0, this gives the estimate

t
nwm@sr4NW@Mﬁ,

hence ||Vu(?)||,. grows at most exponentially.
If 0 < 2/d and p < 0, the Gagliardo—Nirenberg inequality and the conserva-
tion of mass imply that

t
HW®%$PWWOM+JWWMM&

Using the Young inequality
IVu(Dl73 < Cc + ]| Vu(n)lI7,

and choosing ¢ > 0 sufficiently small, we conclude as before. This completes the
proof of Proposition 1.3.

4. On the local Cauchy problem in H*: proof of Proposition 1.4

When ay € H*(RY) with s > 0 not necessarily equal to one, and ¥ is sub-linear, it
is still possible to establish a local in time theory. Without potential, V' = 0, Prop-
osition 1.4 was proved by T. Cazenave and F. Weissler [6], Theorem 1.1, (i)—(ii).
As in this paper we shall not define Besov spaces by using a dyadic decomposition,
but rather use their characterization in terms of interpolation between Sobolev
spaces. We first recall the argument when V7 = 0, and then show how it can be
adapted to infer Proposition 1.4.

4.1. Proof when V' =0. The idea is to apply a fixed point argument, as in Sec-
tion 3.1. However, when s < d/2 is not an integer, it becomes delicate to estimate
the H*® norm of the nonlinearity. This is why in [6] the authors work in Besov
spaces. When s is an integer, the above result can be refined. We shall not recall
this aspect more precisely and simply refer to [6]. The proof proceeds in three
steps. The authors first establish Strichartz estimates for the free group (/24
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(homogeneous) Besov spaces [6], Theorem 2.2. Next, they prove estimates for the
nonlinear term, in homogeneous Besov spaces as well [6], Theorem 3.1. Finally,
these tools, along with Strichartz estimates, make it possible to apply a fixed point
argument to prove Proposition 1.4 when V' = 0.

Denote

The first step yields, for s > 0, and (¢, r), (g;,r;) admissible pairs:

10Ol agp.sr, < Collole

(4.1)
17 C)Fl (1B

) < C”l;"2||F||Lfl£(

2 I ?B}‘7,2)7
where C,, ,, does not depend on the time interval /. Next, under the assumptions
of Proposition 1.4, we have

2 20+1
Il ™ ullg, < lullg (4.2)
p!.2 2

Proposition 1.4 follows from (4.1), (4.2), Holder’s inequality and a fixed point
argument.

Remark 4.1. Note that (4.1) and (4.2) still hold if we replace homogeneous Besov
spaces with inhomogeneous ones. This remark simplifies the generalization to the
case when V is sub-linear.

4.2. Strichartz estimates in Besov spaces with a sub-linear potential. We show
that when V' is sub-linear, (4.1) still holds, up to two modifications:

e The Strichartz inequalities hold on finite time intervals only.

e We replace the homogeneous Besov spaces with inhomogeneous ones.

The first point is unavoidable, as recalled in Section 3.1. Since we shall prove a
local in time result, in the rest of this section we consider time intervals of length
at most one. The second point is here to consider pseudo-differential operators
with smooth symbols which do not contain x-variable.

If P = P(D) is a pseudo-differential operator with smooth symbol, we have

[P, U(1))p = —iJ; U(t=s)[P, VU (s)pds = —is (1) ([P, V]U (")),

[P, J(t)|]F = —iL U(t—s5)[P, V]I (s)F ds = —ig (1) ([P, V]S (-)p).
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First, assume 0 < s < 1. For I a time interval with || < 1, (3.3) yields
IPUO@N Loz 1y < 1UOPN Lagr; 1y + 1.7 (0) ([P, V]U(‘)Cﬂ)”u(l;u)

S 1Pl + (1P, VIUC)oll L1 2. 22)
< 1Poll> + 1P, VIU (ol o 1. 2

Similarly,

I1PI()F

LN(I; L") S ||PF||L42’(I;LQ) + ||[P, V]f('>FHLx(1;L2)-

For s > 0, let Py = (I — A)S/Z. By [9], Theorem 2 (see also [18], §3.6), we know
that if in addition s < 1, then [Py, V'] is bounded from L? to L?, with norm con-
trolled by C||VV||,.. for some universal constant C. We infer, when s < 1,

I1PsU@D0ll Lo,y S N1Psll2 + NU )@l L1, 12
S 1Psollz> + lloll 2 < 1Psll 2

where we have used Strichartz estimates (3.3). This means:

IUOON Loz wsry < 0l (4.3)
Similarly, when s < 1,

IOl o g, weny S IF (4.4)

Swy
For s > 1, replace P, with the family (P,_,, o 6“)‘(1‘ ~m» Where m = [s]. Reasoning
as above, we see that since 0*V e L*(R?) for all || > 1, (4.3) and (4.4) hold for
all s > 0.

Interpolating (as in [6], up to replacing homogeneous spaces by their inhomo-
geneous counterparts), we conclude that

1Tl Loty < Gl

(4.5)
17O F g, < CurslFll

i), ,)’

where the constants C, and C,, ,, do not depend on 7, provided that || < 1.

Conclusion. Since (4.2) holds with homogeneous Besov spaces replaced by their
inhomogeneous counterparts, the fixed point argument used in [6] can be applied
here. This completes the proof of Proposition 1.4.
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5. Loss of Sobolev regularity: proof of Theorem 1.5

5.1. A decomposition suggested by geometric optics. The idea is to resume the

approach of weakly nonlinear geometric optics recalled in Section 2. We consider

an intermediary function defined by leaving out the term iAa in (2.5): without this

term, (2.5) is an ordinary differential equation along the characteristics of the

transport operator with velocity Vg, (i.e., the bicharacteristics associated to H).
Recall that a solves (2.5) and define b as the solution on [0, T to:

1 .
0b+ Ve - Vb + EbA¢eik = —1f(|b|2)b, bji—o = ao. (5.1

To see that b solves an ordinary differential equation along the rays of geometric
optics (the projections of the Hamilton flow (2.1) on the physical space), introduce

B(t, y) = b(1,x(1, )/ Ji(¥),

where x(z, y) is given by (2.1) and the Jacobi determinant is defined by (2.3). This
change of unknown function makes sense for 7 € [0, T], where y — x(¢,y) is a
global diffeomorphism. Then (5.1) is equivalent to

0t y) = —if (L) BB ), O ) =a(y).  (52)
Since in Theorem 1.5 we assume that f is real-valued, we note that
aulpl* =0,

so that (5.2) is just a /inear ordinary differential equation:

t

pit.) = ann)exp( ~i [ £0) o) ds).

0

We infer that

t

1
b(t,x) = ——ua ,x))exp( — i
(1, %) OuT) o(¥(t,x)) e p( JO

The main observation is that (2.4) implies that b € C([0, T]; H*(R?)) for all s > 0.
Letr=a— b for every ¢ € [0, T}, r(t,-) € H*(R?). For 1 < j <d, x;r solves

F(Js((e, x))7l lao (¥(1,x)) |2) ds).

1
0u(xj1) + Ve - V(xj7) + ExjrA¢eik

B éA(X_/r) + rOjeix — i0jr + é)@Ab —ix;(f(|b+r*)(b+1) = f(Ib*)b),

xjr|,:0 =0.
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Notice that the fundamental theorem of calculus gives

x;(f (lal*)a = £(1bI*)b) = x;(f (1 +r*)(b+7r) = f(Ib]*)b)
1 1
= xjrj 0.F(b+ sr)ds + xjfj 0:F (b + sr) ds,
0 0
where F(z) = f(|z]*)z. In particular, we know that

1 1
J GZF(bJrsr)ds,J 0:F(b+sr)ds e Cn L™ (I x RY).
0 0

Reasoning as in Remark 2.1, we see that
X7\l L= 10, 1.2y < C(1 =+ [[XAb|| 10, 4 12))-

We must make sure that the last term is, or can be chosen, finite. We shall de-
mand xAb € L*([0, T]; L?). In view of (2.4), this requirement is met as soon as
ay € H*(RY) is such that xAay, xao|Vao|* € L*(R?). We then have:

If ay € H* (RY) is such that xAay, xao|Vao|* € L*(R?), then

(5.3)
a=b+r, withb,re C([0,T); H*) for all s > 0 and xr € C([0, T]; L?).

5.2. Small time approximation of V¢,,,. We now prove that for small times,
Ve (2, x) can be approximated by —tVV(x).
Lemma 5.1. Assume that there exist 0 < k < 1 and C > 0 such that
IVV(x)| < C{xd* for all x € RY.
Then there exist Ty, Cy > 0 such that
Ve (1, %) + IVV(x)| < Cot>xD* for all t € [0, Ty).

Proof of Lemma 5.1. We infer from (1.3) and Lemma 1.1 that

|0V (1,%) + VV (x)] < [V G (Dl 1 Ve (1, %)] S Vo (£, 5] (5.4)

From (2.1) and (2.2), we also have
Ve (2, x)] = ’f(t, y(t,x))| = ‘ Jo VV(x(s, »(t, x))) ds‘

< JZ‘VV(y(t, x))} ds + Jl|x(s, y(t,x)) — y(t, x)| ds.
0 0
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We claim that
k
Ix(2, ) — ¥ s 2D (5.5)

Indeed, from (2.1) it follows that

t

trs
|x(t,y) — y| = . 0,x(s, ) ds‘ = ‘ Jo L VV(x(s', y))ds' ds‘

= do([ — 5" \VV (x(s',»)) ds'

t

= (t—s)VV(y)ds—i—J
0 0

t

(1= ) (VV (x(s, ) = VV () d]

t
< )k +J (t—s)|x(s,y) — y|ds,
0
and (5.5) follows from Gronwall lemma. We infer that for ¢ > 0 sufficiently small,
|y(t,%) = x| 5 20K,
and therefore,
t t
‘V¢eik(tv X)| S JO}VV(y(tv x)) | ds + JO’X(S’ y(tv X)) - y(t7 x)’ ds
t t !
< | v+ | eyl | s oe0) < v 0] ds
0 0 0
t
SR P+ | RO ds
0
< 1K+ B ODK 4+ B (k1R ey,
Then (5.4) yields
|61V¢eik(la X) + VV(X)| < t<x>k7

Lemma 5.1 follows by integration in time. O

We infer that for 7 > 0 small enough,
@ - Ve (1, X)| 2t - VIV (x)]. (5.6)

5.3. Conclusion. Consider



206 R. Carles

1
P log2 + X))

ao(x) (5.7)

As is easily checked, ¢y meets the requirements of the first line of (5.3). Denote
v = be"%k, T

Obviously, u = v+ w. We see from (5.3) and (5.6) that v(z,-) € L>(RY)\H'(RY)
for ¢ > 0 sufficiently small, under the assumptions of Theorem 1.5. On the other
hand, w(z,-) € HY(R?) for all e [0,T], hence u(t,-) e L*(RY)\H'(RY) for
0<txl.

To complete the proof of Theorem 1.5, we now just have to observe that the
same holds if we replace H'(R?) with H*(R¢) for 0 < s < 1. We use the follow-
ing characterization of H*(R?) (see, e.g., [7]): for ¢ € L>(R?) and 0 < s < I,

i p(x+ ) — o(x)|”
pe H(RY) < JJR“de |7 dxdy < 0.

Since w(t,-) € H' for all ¢ € [0, T], we shall prove that v(z,-) € L*\H* for ¢ suffi-
ciently small. Let 0 < s < 1. We prove that for 0 < 7 < 1,

A |U(t7x+y) _U(tvx)|2
I.:J J ) FAuE dxdy = 0.
ly|<1 Jxer [y

To apply a fractional Leibniz rule, write

v(t,x + y) —v(t,x) = (b(t,x + y) — b(t, x))ef¢eik(t-X+y)
+ (eMet:xHy) _ ofetX))p (1, x).

In view of the inequality | — f|* > «2/2 — >, we have

1 . .
[o(t,x + 3) = vt x)|* = 5 |(eMt) — et (r, )|
— |b(t,x + ») = b(1,x)|*.

We can leave out the last term, since b(¢,-) € H* for ¢t € [0, T):

2
dxdy < oo forallze|0,T].

JJ |b(t,x + y) — b(t,x)|
R xR

|y|d+2s

We now want to prove
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¢cik(1$x+y>_¢cik<t¢x)) ’ 2

5 ‘sin( >
J|y|<1 LeR" o) |y| dxdy = oo.

Lemma 1.1 yields
(01 + Vi - V)V e € L7([0, T x Rd)dza V2¢eik|t:0 =0.
Therefore,
IV e (2, ')“L%(R“)‘” =0(t) ast—0.
It follows that
i (1, X+ V) — e (1, X) = ¥ - Ve (2, x) + @(l|y|2) uniformly for x € RY,

and

Sin<¢eik(t7x + J’Z) — Peirc (1, x)) _ sin(%) cos(@(t|y|2))

+ cos (M) sin(0(1]y]%)).

The second term is ('(z|y|?). Using the estimate |ox — f|* > a2/2 — > again, we
see that the integral corresponding to the second term is finite and can be left
out. To prove that

y'V¢eik(f1-\‘)) ‘2

2‘sin( 5
I/:J J b(t, x)|" g5 dxdy =00 for0<r«l,
<1 Jxerd |yl

we can localize y in a small conic neighborhood of wR N {|y| < 1}:
Ye={bI<1ly- (oo <dyl}, 0<e<l

For 0 < e, 1« 1, (5.6) gives

2

SiH(MNZt|y-a)|><|w-VV(x)|7 ye.

Introduce a conic localization for x close to ’, excluding the origin:
U= {|x| 2 1||x = (x-0")o| < €|x]}.

Change the variable in the y-integral: for ¢ and e sufficiently small, and x € %, set
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y/ =w:- V¢eik(t> x)y

This change of variable is admissible, from (1.4) and (5.6). For 0 < e, < 1, we
have

‘Sin (y-weiunx)) ‘2
2
I'> J (%)) =L dx dy
ye#, JxeRr? |y| '
dy
2 | )Pl Ve (| ) dx
e, ek yeloViat ol |y 72
d
2 2 Y
2 | Pl V(| —E)ax
XEU, yecty |y|

The assumption (1.4), the expression of b and the choice (5.7) for ¢y then show
that I = oo for 0 < t « 1. This completes the proof of Theorem 1.5.
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