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Abstract. We consider the Cauchy problem for nonlinear Schrödinger equations in the
presence of a smooth, possibly unbounded, potential. No assumption is made on the sign
of the potential. If the potential grows at most linearly at infinity, we construct solutions in
Sobolev spaces (without weight), locally in time. Under some natural assumptions, we
prove that the H 1-solutions are global in time. On the other hand, if the potential has a
super-linear growth, then the Sobolev regularity of positive order is lost instantly—no
matter how large it is, unless the initial datum decays su‰ciently fast at infinity.
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1. Introduction

We consider the Cauchy problem for the (nonlinear) Schrödinger equation

iqtuþ
1

2
Du ¼ VðxÞuþ f ðjuj2Þu; ðt; xÞ a Rþ � Rd ;

ujt¼0 ¼ a0 a HsðRdÞ; sb 0;

ð1:1Þ

where the potential V is smooth and sub-quadratic (see below), the nonlinearity f

is su‰ciently smooth, and the initial data a0 may or may not belong to weighted

L2 spaces FðHkÞ (sometimes denoted L2
k), where F stands for the Fourier

transform. Note that we consider only propagation in the future; this choice is

made only to simplify some statements. We show that if the potential V is sub-

linear, then (1.1) is locally well-posed in H 1ðRdÞ, upon suitable assumptions on f .

On the other hand, if V is super-linear (e.g. harmonic potential), then (1.1) is ill-
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posed in all Sobolev spaces of positive order; this is not a nonlinear result, since it

holds even when f C 0. This is heuristically reasonable, at least in the case of the

harmonic oscillator: the potential rotates the phase space, so the natural space for

the initial data is of the form HsBFðHsÞ. If a0 a HsnFðHkÞ, for sb k > 0,

then uðt; �Þ B HkðRdÞ for arbitrarily small t > 0. For the linear equation, this can

be seen via the Fourier integral representation (Mehler’s formula in the case of the

harmonic potential). The proof we present treats both linear and nonlinear cases.

Before going further into details, we clarify our assumptions. We define the

Fourier transform as

FjðxÞ ¼ ĵjðxÞ ¼
ð
Rd

e�ix�xjðxÞ dx:

Denote 3x4 ¼ ð1þ jxj2Þ1=2. For sb 0, we define

HsðRdÞ ¼ fj a L2ðRdÞ j x 7! 3x4sĵjðxÞ a L2ðRdÞg; HlðRdÞ ¼ 7
sb0

HsðRdÞ:

In particular, FðHsÞ is just the weighted L2 space:

FðHsÞ ¼ fj a L2ðRdÞ j x 7! 3x4sjðxÞ a L2ðRdÞg:

Assumption. We assume that the potential is smooth, real-valued and sub-

quadratic: V a ClðRd ;RÞ and qaV a LlðRdÞ for all jajb 2.

Definition. We say that V is sub-linear if qaV a LlðRdÞ as soon as jajb 1. We

say that V is super-linear if ‘xV is unbounded.

Remark. For super-quadratic potentials, the theory must be modified. First, if V

is super-quadratic and negative, then H is not essentially self-adjoint on Cl
0 ðRdÞ

([11], [16]). If V is super-quadratic and positive, then even the local existence

results are di¤erent. We refer to [20], [21] for very interesting results in this

direction.

The construction of the parametrix for the propagator of H ¼ � 1
2Dþ V pro-

vided by D. Fujiwara [12], [13] shows that UðtÞ ¼ e�itH , which is L2-unitary, sat-

isfies the local dispersion estimate: there exists d > 0 such that

kUðtÞkL1!Ll k
1

jtjd=2
for jtja d: ð1:2Þ

One can infer local and global existence results for (1.1) if a0 a Dð
ffiffiffiffiffi
H

p
Þ when

V b 0, under suitable assumptions on the nonlinearity f , as proved initially by

Oh [15]. The assumption V b 0 is actually not necessary, and one can prove the
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local existence results of Oh in weighted Sobolev spaces of the form HsBFðHsÞ
thanks to Strichartz estimates (see, e.g., [5], and [2] where global existence results

are recalled for potentials V which are not necessarily non-negative). Throughout

this paper, u is assumed to be a mild solution to (1.1), that is, to solve

uðtÞ ¼ UðtÞa0 � i

ð t

0

Uðt� sÞ
�
f
�
juðsÞj2

�
uðsÞ

�
ds:

In Proposition 1.2, however, we construct a classical solution for (1.1).

When V b 0 and f ðjuj2Þ ¼ mjuj2s, one can prove global existence in Dð
ffiffiffiffiffi
H

p
Þ

for the solution u of (1.1) under suitable assumptions on m and s, thanks to the

following conservations:

Mass:
d

dt
ðkuðtÞk2L2Þ ¼ 0:

Energy:
d

dt

� 1

2
k‘uðtÞk2L2 þ

m

sþ 1
kuðtÞk2sþ2

L2sþ2 þ
ð
Rd

VðxÞjuðt; xÞj2 dx
�
¼ 0:

The question we ask is: what remains true when we do not assume

V ja0j2 a L1ðRdÞ? Roughly speaking, the local existence results remain when V

is sub-linear, but fail when V is super-linear (we prove the latter under slightly

more restrictive assumptions on V , see Theorem 1.5). Note that in the above ex-

ample, if we assume 0 < s < 2=d, then one can prove the existence of a global

solution, with an L2 regularity, as in [19]. Our goal is to understand better the

relevance of Sobolev spaces with positive index, when no extra decay of the initial

datum is assumed.

We recall a particular case of [4], Lemma 1:

Lemma 1.1. There exist T > 0 and a unique solution feik a Clð½0;T � � RnÞ to:

qtfeik þ
1

2
j‘xfeikj

2 þ V ¼ 0; feik j t¼0 ¼ 0: ð1:3Þ

This solution is sub-quadratic: qa
xfeik a Llð½0;T � � RnÞ as soon as jajb 2.

Example. If VðxÞ ¼ 1
2

Pd
j¼1 o

2
j x

2
j with oj b 0, then

feikðt; xÞ ¼ �
Xd
j¼1

oj

2
x2
j tanðoj tÞ:

This shows that in general the above result is really local in time, due to the for-

mation of caustics.
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Example. If VðxÞ ¼ 3x4a, with 0 < aa 2, then we can see that caustics appear in

finite time even if the potential V is sub-linear.

Proposition 1.2. Let db 1.

(1) If f C 0 (linear equation), assume that a0 a HsðRdÞ for some sb 0. Then

(1.1) has a unique solution u such that u � e�ifeik a Cð½0;T �;HsÞ, where feik and T

are given by Lemma 1.1.

(2) For the nonlinear equation, assume that f is smooth, f a ClðRþ;CÞ and

a0 a HsðRdÞ for some s > d=2. Then (1.1) has a unique solution u such that

u � e�ifeik a Cð½0;T �;HsÞ, where feik and T are given by Lemma 1.1.

Proposition 1.3. Let db 1, a0 a H 1ðRdÞ, and assume that V is sub-linear and that

the nonlinearity f is of the form

f ðjuj2Þ ¼ mjuj2s with m a R; s > 0; and s <
2

d � 2
if db 3:

Then there exists t ¼ tðd; ka0kH 1 ; m; sÞ > 0 such that (1.1) has a unique solution

u a Cð½0; t�;H 1ÞBLð4sþ4Þ=dsð½0; t�;W 1;2sþ2Þ.
If moreover s < 2=d or mb 0, then this solution is global in time:

u a CðRþ;H
1ÞBL

ð4sþ4Þ=ds
loc ðRþ;W

1;2sþ2Þ:

Remark. Even the local result is not a consequence of Proposition 1.2: the

regularity required on the initial data is not the same. The reason is that Proposi-

tion 1.2 is established without dispersive or Strichartz estimates, while the local

existence result in Proposition 1.3 is proven thanks to (local in time) Strichartz

estimates.

We also discuss the local Cauchy problem in HsðRdÞ, s > 0, in Section 4. The

main point consists in showing that in the presence of a sub-linear potential, local

Strichartz estimates are available in Sobolev and Besov spaces. We prove:

Proposition 1.4. Let V be sub-linear, 0 < s < d=2 and 0 < sa 2
d�2s

. If s is not an

integer, assume that ½s� < 2s. Then there exist T > 0 and a unique solution

u a Cð½0;T �;HsÞBLgð½0;T �;Bs
r;2Þ

to (3.1), where

r ¼ 2sþ 2

1þ 2ss
d

; g ¼ 4sþ 4

sðd � 2sÞ :

We now come to the non-existence result:
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Theorem 1.5. Let db 1, and f be smooth, f a ClðRþ;RÞ. Assume that V is

super-linear and there exist 0 < k ða 1Þ and C > 0 such that

j‘VðxÞjaC3x4k for all x a Rd ;

and o;o 0 a Sd�1 such that

jo � ‘VðxÞjb cjo 0 � xjk as jxj ! l for some c > 0: ð1:4Þ

Then there exists a0 a HlðRdÞ such that, for arbitrarily small t > 0 and all s > 0,

the solution uðt; �Þ to (1.1) provided by Proposition 1.2 fails to be in H sðRdÞ.

Example. As a potential V we may consider any non-trivial quadratic form, or

VðxÞ ¼e3x 04a, with 1 < aa 2, for some decomposition x ¼ ðx 0; x 00Þ.

Remark. Note that no assumption is made on the growth of the nonlinearity at

infinity: the above result reveals a geometric phenomenon and not an ill-posedness

result like for super-critical nonlinearities without a potential ([1], [3], [8], [14]).

In Section 2, we outline the proof of Proposition 1.2, which is a particular case

of [4], Proposition 3. We establish Proposition 1.3 in Section 3. We extend the

local theory to all the spaces HsðRdÞ for s > 0 in Section 4, where we prove Prop-

osition 1.4. Finally, Theorem 1.5 is proved in Section 5.

2. Preliminary remarks

In this section, we outline the proof of Proposition 1.2, which is a straightforward

consequence of the analysis in [4], with the choice e ¼ 1. This will also guide us for

the proof of Theorem 1.5.

First, Lemma 1.1 is a straightforward consequence of the local Hamilton-

Jacobi theory, Gronwall lemma, and a global inversion theorem, which can be

found for instance in [17, Th. 1.22] or [10, Prop. A.7.1]. To prepare the proof of

Theorem 1.5, we recall some details. Let xðt; yÞ and xðt; yÞ solve

qtxðt; yÞ ¼ xðt; yÞ; xð0; yÞ ¼ y;

qtxðt; yÞ ¼ �‘xV
�
xðt; yÞ

�
; xð0; yÞ ¼ 0:

�
ð2:1Þ

The local Hamilton-Jacobi theory provides a solution to (1.3) in the neighborhood

of every point where y 7! xðt; yÞ is invertible. The theory is global in space (not in

time, in general) thanks to the global inversion theorem mentioned above, and to

Gronwall lemma. The gradient of feik is given by
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‘xfeikðt; xÞ ¼ x
�
t; yðt; xÞ

�
; ð2:2Þ

where yðt; xÞ is the inverse mapping of y 7! xðt; yÞ. Introduce the Jacobi determi-

nant

JtðyÞ ¼ det‘yxðt; yÞ: ð2:3Þ

The global inversion theorem can be applied since there exists C > 0 such that

C�1
a JtðyÞaC for all ðt; yÞ a ½0;T � � Rd : ð2:4Þ

The change of unknown function uðt; xÞ ¼ aðt; xÞeifeikðt;xÞ turns (1.1) into the

equivalent Cauchy problem:

qtaþ ‘feik � ‘aþ
1

2
aDfeik ¼

i

2
Da� if ðjaj2Þa; ajt¼0 ¼ a0: ð2:5Þ

The major di¤erence with (1.1) is that the potential V is no longer present in the

equation. The idea is to view the left hand side as a transport operator with veloc-

ity ‘feik and a renormalization factor along the characteristics, 1
2 aDfeik. We can

then reduce the problem of existence of solutions of (2.5), to the existence of a pri-

ori estimates, thanks to a mollification procedure. Since we seek a a Cð½0;T �;HsÞ,
we note that the term iD on the right-hand side is skew-symmetric and has no

contribution in the energy estimates. To take advantage of this property, we

do not rewrite (2.5) along the characteristics, but notice that from Lemma 1.1,

kaDfeikkLl
t H s k kakLl

t H s . For the convective term, we use Lemma 1.1 and an in-

tegration by parts: if a a Nd is such that jaja s, we write

Re

ð
qa
xaq

a
xð‘feik � ‘aÞ dx ¼ Re

ð
qa
xað‘feik � ‘qa

xaÞ dx

þ
X
jbjb1

ca;b Re

ð
qa
xa‘q

b
xfeik � ‘qa�b

x a dx

¼ 1

2

ð
‘feik � ‘jqa

xaj
2
dxþ Oðkak2Ll

t H sÞ

¼ Oðkak2Ll
t H sÞ:

If s is not an integer, we can use interpolation. Proposition 1.2 follows easily,

since s > d=2 ensures that HsðRdÞ is an algebra.

Remark 2.1. Let I H ½0;T � be a compact time interval. The approach of [4] re-

called above shows that the map F 7! a, where

qtaþ ‘feik � ‘aþ 1

2
aDfeik ¼

i

2
Daþ F ; ajt¼0 ¼ 0;
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sends L1ðI ;L2Þ to CBLlðI ;L2Þ continuously:

kakLlðI ;L2ÞaCkFkL1ðI ;L2Þ;

where C depends only on d and k‘2feikkLlðI ;L2Þ.

3. Sub-linear potentials

3.1. Local H1 theory. To prove the first part of Proposition 1.3, the idea is

to keep the same proof as without potential. The gradient does not commute

with H, but we have

iqt þ
1

2
D

� �
‘u ¼ VðxÞ‘uþ u‘VðxÞ þ m‘ðjuj2suÞ:

The new term is u‘VðxÞ, that is, u multiplied by a bounded term. Recall that

UðtÞ ¼ e�itH . We show that for t > 0 su‰ciently small, there exists u such that

uðtÞ ¼ UðtÞa0 � im

ð t

0

Uðt� sÞðjuj2suÞðsÞ ds ¼: FðuÞðtÞ: ð3:1Þ

We see that

‘FðuÞðtÞ ¼ UðtÞ‘a0 � im

ð t

0

Uðt� sÞ‘ðjuj2suÞðsÞ ds

� i

ð t

0

Uðt� sÞ
�
FðuÞðsÞ‘V

�
ds: ð3:2Þ

Recall that ðq; rÞ is Schrödinger-admissible in Rd if

2

q
þ d

r
¼ d

2
; 2a ra

2d

d � 2
; ðq; rÞA ð2;lÞ:

It follows from [13] that Strichartz estimates are available for UðtÞ (see e.g. [5]):

for all admissible pairs ðq; rÞ, ðq1; r1Þ and ðq2; r2Þ, there exist Cr and Cr1; r2 such

that for any compact interval I and any j a L2ðRdÞ, F a Lq2
�
I ;Lr2ðRdÞ

�
,

kUð�ÞjkLqðI ;LrÞaCrð1þ jI jÞ1=qkjkL2 ;

			
ð t

0

Uðt� sÞFðsÞ ds
			
Lq1 ðI ;Lp1 Þ

aCr1; r2ð1þ jI jÞ1=q1kFk
L

q 0
2 ðI ;Lp 0

2 Þ
;

ð3:3Þ
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where r 0 stands for the Hölder conjugate exponent of r. Note that the powers of

jI j on the right-hand sides are sharp in general, for H may have eigenvalues. For

ðq; rÞ an admissible pair, define

Yr; locðIÞ :¼ fu a CðI ;H 1Þ jAu a L
q
locðI ;L

rÞBLl
locðI ;L2Þ for all A a fId;‘gg:

Introduce the following Lebesgue exponents:

r ¼ 2sþ 2; q ¼ 4sþ 4

ds
; k ¼ 2sð2sþ 2Þ

2� ðd � 2Þs : ð3:4Þ

Then ðq; rÞ is the (admissible) pair of the proposition, and

1

r 0
¼ 2s

r
þ 1

r
;

1

q 0 ¼
2s

k
þ 1

q
:

For t > 0 and any pair ða; bÞ, we use the notation

k f kLa
t L

b ¼ k f kLað½0; t�;LbÞ:

We first prove that there exists t > 0 such that the set

Xt :¼ fu a Yr; locð½0; t�Þ j kukLl
t L2 a 2ka0kL2 ; kukLq

t L
r a 2Crka0kL2 ;

k‘ukLl
t L2 a 2k‘a0kL2 ; k‘ukLq

t L
r a 2Crk‘a0kL2g

is stable under the map F, where Cr is the constant of the homogeneous Strichartz

inequality (3.3). Then choosing t even smaller, F is a contraction on Lqð½0; t�;LrÞ.
Let u a Xt. For ta 1, (3.3) yields

kFðuÞkLl
t L2 a kUðtÞa0kL2 þ C2; rjmj k juj2sukLq 0

t Lr 0

a ka0kL2 þ Ckuk2sLk
t L

rkukLq
t L

r :

Sobolev embedding gives

kukLk
t L

r aCt1=kkukLl
t H 1 :

It follows that

kFðuÞkLl
t L2 a ka0kL2 þ Ct2s=kka0k2sþ1

H 1 :

The same computations yield

kFðuÞkLq
t L

r aCrka0kL2 þ ~CCt2s=kka0k2sþ1
H 1 :
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Similarly,

k‘FðuÞkLl
t L2 a k‘a0kL2 þ C2; rjmj k‘ðjuj2suÞkLq 0

t Lr 0 þ C2;2k‘VkLlkFðuÞkL1
tL

2

a k‘a0kL2 þ Ckuk2sLk
t L

rk‘ukLq
t L

r

þ tC2;2k‘VkLlðka0kL2 þ Ct2s=kka0k2sþ1
H 1 Þ;

and

k‘FðuÞkLq
t L

r aCrk‘a0kL2 þ ~CCkuk2sLk
t L

rk‘ukLq
t L

r

þ tCr;2k‘VkLlðka0kL2 þ Ct2s=kka0k2sþ1
H 1 Þ:

Therefore F leaves Xt stable for

tk‘VkLlka0kL2 þ t1=kkukLl
t H 1 f 1: ð3:5Þ

To complete the proof of the first part of the proposition, it is enough to prove

contraction for small t in the weaker metric Lqð½0; t�;LrÞ. We have

kFðu2Þ �Fðu1ÞkLq
t L

r aCkðju2j2su2 � ju1j2su1ÞkLq 0
t Lr 0

aCðku1k2sLk
t L

r þ ku2k2sLk
t L

rÞku2 � u1kLq
t L

r :

As above, we have the estimate

kujk2sLk
t L

r aCt1=kkujkLl
t H 1 :

Therefore, contraction follows for t su‰ciently small, according to (3.5).

3.2. Global existence in H1. If V is sub-linear and unbounded, then the energy

E ¼ 1

2
k‘uðtÞk2L2 þ

m

sþ 1
kuðtÞk2sþ2

L2sþ2 þ
ð
Rd

VðxÞjuðt; xÞj2 dx

may not be defined initially, if we simply require a0 a H 1ðRdÞ. To complete the

proof of Proposition 1.3, the idea is to notice that the time derivative of the ‘‘bad’’

term in the energy is controlled by the H 1 norm of the solution. We present the

computations at a formal level only and refer to [5] for a justification method

which uses multiplication by Gaussians. We have

d

dt

ð
Rd

VðxÞjuðt; xÞj2 dx ¼ 2Re

ð
Rd

VðxÞuqtu dx ¼ 2 Im

ð
Rd

VðxÞuðiqtuÞ dx

¼ �Im

ð
Rd

VðxÞuDu dx ¼ Im

ð
Rd

u‘VðxÞ � ‘u dx:
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We infer, thanks to the conservation of mass,

1

2
k‘uðtÞk2L2 þ

m

sþ 1
kuðtÞk2sþ2

L2sþ2 a
1

2
k‘a0k2L2 þ

m

sþ 1
ka0k2sþ2

L2sþ2

þ k‘VkLlka0kL2

ð t

0

k‘uðsÞkL2 ds:

When mb 0, this gives the estimate

k‘uðtÞk2L2 k 1þ
ð t

0

k‘uðsÞkL2 ds;

hence k‘uðtÞkL2 grows at most exponentially.

If s < 2=d and m < 0, the Gagliardo–Nirenberg inequality and the conserva-

tion of mass imply that

k‘uðtÞk2L2 k 1þ k‘uðtÞkds
L2 þ

ð t

0

k‘uðsÞkL2 ds:

Using the Young inequality

k‘uðtÞkdsL2 aC� þ �k‘uðtÞk2L2 ;

and choosing � > 0 su‰ciently small, we conclude as before. This completes the

proof of Proposition 1.3.

4. On the local Cauchy problem in Hs: proof of Proposition 1.4

When a0 a HsðRdÞ with s > 0 not necessarily equal to one, and V is sub-linear, it

is still possible to establish a local in time theory. Without potential, V C 0, Prop-

osition 1.4 was proved by T. Cazenave and F. Weissler [6], Theorem 1.1, (i)–(ii).

As in this paper we shall not define Besov spaces by using a dyadic decomposition,

but rather use their characterization in terms of interpolation between Sobolev

spaces. We first recall the argument when V C 0, and then show how it can be

adapted to infer Proposition 1.4.

4.1. Proof when V z 0. The idea is to apply a fixed point argument, as in Sec-

tion 3.1. However, when s < d=2 is not an integer, it becomes delicate to estimate

the Hs norm of the nonlinearity. This is why in [6] the authors work in Besov

spaces. When s is an integer, the above result can be refined. We shall not recall

this aspect more precisely and simply refer to [6]. The proof proceeds in three

steps. The authors first establish Strichartz estimates for the free group eiðt=2ÞD in
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(homogeneous) Besov spaces [6], Theorem 2.2. Next, they prove estimates for the

nonlinear term, in homogeneous Besov spaces as well [6], Theorem 3.1. Finally,

these tools, along with Strichartz estimates, make it possible to apply a fixed point

argument to prove Proposition 1.4 when V C 0.

Denote

IðtÞF :¼
ð t

0

Uðt� sÞFðsÞ ds:

The first step yields, for s > 0, and ðq; rÞ, ðqj ; rjÞ admissible pairs:

kUð�ÞjkLqðRþ; _BB
s
r; 2Þ

aCrkjk _HH s ;

kIð�ÞFkLq1 ðI ; _BBs
r1 ; 2

ÞaCr1; r2kFkLq 0
2 ðI ; _BBs

r2 ; 2
Þ
;

ð4:1Þ

where Cr1; r2 does not depend on the time interval I . Next, under the assumptions

of Proposition 1.4, we have

k juj2suk _BBs
r 0 ; 2

k kuk2sþ1
_BBs
r; 2

: ð4:2Þ

Proposition 1.4 follows from (4.1), (4.2), Hölder’s inequality and a fixed point

argument.

Remark 4.1. Note that (4.1) and (4.2) still hold if we replace homogeneous Besov

spaces with inhomogeneous ones. This remark simplifies the generalization to the

case when V is sub-linear.

4.2. Strichartz estimates in Besov spaces with a sub-linear potential. We show

that when V is sub-linear, (4.1) still holds, up to two modifications:

• The Strichartz inequalities hold on finite time intervals only.

• We replace the homogeneous Besov spaces with inhomogeneous ones.

The first point is unavoidable, as recalled in Section 3.1. Since we shall prove a

local in time result, in the rest of this section we consider time intervals of length

at most one. The second point is here to consider pseudo-di¤erential operators

with smooth symbols which do not contain x-variable.

If P ¼ PðDÞ is a pseudo-di¤erential operator with smooth symbol, we have

½P;UðtÞ�j ¼ �i

ð t

0

Uðt� sÞ½P;V �UðsÞj ds ¼ �iIðtÞ
�
½P;V �Uð�Þj

�
;

½P;IðtÞ�F ¼ �i

ð t

0

Uðt� sÞ½P;V �IðsÞF ds ¼ �iIðtÞ
�
½P;V �Ið�Þj

�
:
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First, assume 0 < s < 1. For I a time interval with jI ja 1, (3.3) yields

kPUðtÞjkLqðI ;LrÞa kUðtÞPjkLqðI ;LrÞ þ kIðtÞ
�
½P;V �Uð�Þj

�
kLqðI ;LrÞ

k kPjkL2 þ k½P;V �Uð�ÞjkL1ðI ;L2Þ

k kPjkL2 þ k½P;V �Uð�ÞjkLlðI ;L2Þ:

Similarly,

kPIðtÞFkLq1 ðI ;Lr1 Þ k kPFk
L

q 0
2 ðI ;Lr 0

2 Þ
þ k½P;V �Ið�ÞFkLlðI ;L2Þ:

For s > 0, let Ps ¼ ðI � DÞs=2. By [9], Theorem 2 (see also [18], §3.6), we know

that if in addition sa 1, then ½Ps;V � is bounded from L2 to L2, with norm con-

trolled by Ck‘VkLl for some universal constant C. We infer, when sa 1,

kPsUðtÞjkLqðI ;LrÞ k kPsjkL2 þ kUð�ÞjkLlðI ;L2Þ

k kPsjkL2 þ kjkL2 k kPsjkL2 ;

where we have used Strichartz estimates (3.3). This means:

kUð�ÞjkLqðI ;W s; rÞ k kjkH s ð4:3Þ

Similarly, when sa 1,

kIð�ÞFkLq1 ðI ;W s; r1 Þ k kFk
L

q 0
2 ðI ;W s; r 0

2 Þ
: ð4:4Þ

For s > 1, replace Ps with the family ðPs�m � qaÞjajam, where m ¼ ½s�. Reasoning

as above, we see that since qaV a LlðRdÞ for all jajb 1, (4.3) and (4.4) hold for

all s > 0.

Interpolating (as in [6], up to replacing homogeneous spaces by their inhomo-

geneous counterparts), we conclude that

kUð�ÞjkLqðI ;Bs
r; 2

ÞaCrkjkH s ;

kIð�ÞFkLq1 ðI ;Bs
r1 ; 2

ÞaCr1; r2kFkLq 0
2 ðI ;Bs

r2 ; 2
Þ
;

ð4:5Þ

where the constants Cr and Cr1; r2 do not depend on I , provided that jI ja 1.

Conclusion. Since (4.2) holds with homogeneous Besov spaces replaced by their

inhomogeneous counterparts, the fixed point argument used in [6] can be applied

here. This completes the proof of Proposition 1.4.
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5. Loss of Sobolev regularity: proof of Theorem 1.5

5.1. A decomposition suggested by geometric optics. The idea is to resume the

approach of weakly nonlinear geometric optics recalled in Section 2. We consider

an intermediary function defined by leaving out the term iDa in (2.5): without this

term, (2.5) is an ordinary di¤erential equation along the characteristics of the

transport operator with velocity ‘feik (i.e., the bicharacteristics associated to H).

Recall that a solves (2.5) and define b as the solution on ½0;T � to:

qtbþ ‘feik � ‘bþ
1

2
bDfeik ¼ �if ðjbj2Þb; bjt¼0 ¼ a0: ð5:1Þ

To see that b solves an ordinary di¤erential equation along the rays of geometric

optics (the projections of the Hamilton flow (2.1) on the physical space), introduce

bðt; yÞ ¼ b
�
t; xðt; yÞ

� ffiffiffiffiffiffiffiffiffiffiffi
JtðyÞ

p
;

where xðt; yÞ is given by (2.1) and the Jacobi determinant is defined by (2.3). This

change of unknown function makes sense for t a ½0;T �, where y 7! xðt; yÞ is a

global di¤eomorphism. Then (5.1) is equivalent to

qtbðt; yÞ ¼ �if
�
JtðyÞ�1jbðt; yÞj2

�
bðt; yÞ; bð0; yÞ ¼ a0ðyÞ: ð5:2Þ

Since in Theorem 1.5 we assume that f is real-valued, we note that

qtjbj2 ¼ 0;

so that (5.2) is just a linear ordinary di¤erential equation:

bðt; yÞ ¼ a0ðyÞ exp
�
� i

ð t

0

f
�
JsðyÞ�1ja0ðyÞj2

�
ds
�
:

We infer that

bðt; xÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Jt
�
yðt; xÞ

�q a0
�
yðt; xÞ

�
exp

�
� i

ð t

0

f
�
Js
�
yðt; xÞ

��1ja0
�
yðt; xÞ

�
j2
�
ds
�
:

The main observation is that (2.4) implies that b a C
�
½0;T �;HsðRdÞ

�
for all sb 0.

Let r ¼ a� b for every t a ½0;T �, rðt; �Þ a HlðRdÞ. For 1a ja d, xjr solves

qtðxjrÞ þ ‘feik � ‘ðxjrÞ þ
1

2
xjrDfeik

¼ i

2
DðxjrÞ þ rqjfeik � iqjrþ

i

2
xjDb� ixj

�
f ðjbþ rj2Þðbþ rÞ � f ðjbj2Þb

�
;

xjrjt¼0 ¼ 0:
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Notice that the fundamental theorem of calculus gives

xj
�
f ðjaj2Þa� f ðjbj2Þb

�
¼ xj

�
f ðjbþ rj2Þðbþ rÞ � f ðjbj2Þb

�

¼ xjr

ð1

0

qzF ðbþ srÞ dsþ xj r

ð1

0

qzF ðbþ srÞ ds;

where F ðzÞ ¼ f ðjzj2Þz. In particular, we know that

ð1

0

qzF ðbþ srÞ ds;
ð1

0

qzFðbþ srÞ ds a CBLlðI � RdÞ:

Reasoning as in Remark 2.1, we see that

kxrkLlð½0; t�;L2ÞaCð1þ kxDbkL1ð½0; t�;L2ÞÞ:

We must make sure that the last term is, or can be chosen, finite. We shall de-

mand xDb a Llð½0;T �;L2Þ. In view of (2.4), this requirement is met as soon as

a0 a HlðRdÞ is such that xDa0; xa0j‘a0j2 a L2ðRdÞ. We then have:

If a0 a HlðRdÞ is such that xDa0; xa0j‘a0j2 a L2ðRdÞ; then

a ¼ bþ r; with b; r a Cð½0;T �;HsÞ for all sb 0 and xr a Cð½0;T �;L2Þ:
ð5:3Þ

5.2. Small time approximation of ‘feik. We now prove that for small times,

‘feikðt; xÞ can be approximated by �t‘VðxÞ.

Lemma 5.1. Assume that there exist 0a ka 1 and C > 0 such that

j‘VðxÞjaC3x4k for all x a Rd :

Then there exist T0;C0 > 0 such that

j‘feikðt; xÞ þ t‘VðxÞjaC0t
23x4k for all t a ½0;T0�:

Proof of Lemma 5.1. We infer from (1.3) and Lemma 1.1 that

jqt‘feikðt; xÞ þ ‘VðxÞja k‘2feikðtÞkLl j‘feikðt; xÞjk j‘feikðt; xÞj: ð5:4Þ

From (2.1) and (2.2), we also have

j‘feikðt; xÞj ¼


x�t; yðt; xÞ�

 ¼ 




ð t

0

‘V
�
x
�
s; yðt; xÞ

��
ds





k

ð t

0



‘V�
yðt; xÞ

�

 dsþ
ð t

0



x�s; yðt; xÞ�� yðt; xÞ


 ds:
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We claim that

jxðt; yÞ � yjk t23y4k: ð5:5Þ

Indeed, from (2.1) it follows that

jxðt; yÞ � yj ¼




ð t

0

qtxðs; yÞ ds



 ¼ 




ð t

0

ð s

0

‘V
�
xðs 0; yÞ

�
ds 0 ds





¼




ð t

0

ðt� s 0Þ‘V
�
xðs 0; yÞ

�
ds 0





¼




ð t

0

ðt� sÞ‘VðyÞ dsþ
ð t

0

ðt� sÞ
�
‘V

�
xðs; yÞ

�
� ‘VðyÞ

�
ds





k t23y4k þ
ð t

0

ðt� sÞjxðs; yÞ � yj ds;

and (5.5) follows from Gronwall lemma. We infer that for t > 0 su‰ciently small,

jyðt; xÞ � xjk t23x4k;

and therefore,

j‘feikðt; xÞjk
ð t

0



‘V�
yðt; xÞ

�

 dsþ
ð t

0



x�s; yðt; xÞ�� yðt; xÞ


 ds

k

ð t

0

j‘VðxÞj dsþ
ð t

0

jx� yðt; xÞj dsþ
ð t

0



x�s; yðt; xÞ�� yðt; xÞ


 ds

k t3x4k þ t33x4k þ
ð t

0

s23yðt; xÞ4k ds

k t3x4k þ t33x4k þ t3ð3x4k þ t2k3x42kÞ:

Then (5.4) yields

jqt‘feikðt; xÞ þ ‘VðxÞjk t3x4k;

Lemma 5.1 follows by integration in time. r

We infer that for t > 0 small enough,

jo � ‘feikðt; xÞjl tjo � ‘VðxÞj: ð5:6Þ

5.3. Conclusion. Consider
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a0ðxÞ ¼
1

3x4d=2 logð2þ jxj2Þ
: ð5:7Þ

As is easily checked, a0 meets the requirements of the first line of (5.3). Denote

v ¼ beifeik ; w ¼ reifeik :

Obviously, u ¼ vþ w. We see from (5.3) and (5.6) that vðt; �Þ a L2ðRdÞnH 1ðRdÞ
for t > 0 su‰ciently small, under the assumptions of Theorem 1.5. On the other

hand, wðt; �Þ a H 1ðRdÞ for all t a ½0;T �, hence uðt; �Þ a L2ðRdÞnH 1ðRdÞ for

0 < tf 1.

To complete the proof of Theorem 1.5, we now just have to observe that the

same holds if we replace H 1ðRdÞ with HsðRdÞ for 0 < s < 1. We use the follow-

ing characterization of HsðRdÞ (see, e.g., [7]): for j a L2ðRdÞ and 0 < s < 1,

j a HsðRdÞ ()
ð ð

Rd�Rd

jðxþ yÞ � jðxÞj2

jyjdþ2s
dx dy < l:

Since wðt; �Þ a H 1 for all t a ½0;T �, we shall prove that vðt; �Þ a L2nHs for t su‰-

ciently small. Let 0 < s < 1. We prove that for 0 < tf 1,

I :¼
ð
jyja1

ð
x ARd

jvðt; xþ yÞ � vðt; xÞj2

jyjdþ2s
dx dy ¼ l:

To apply a fractional Leibniz rule, write

vðt; xþ yÞ � vðt; xÞ ¼
�
bðt; xþ yÞ � bðt; xÞ

�
eifeikðt;xþyÞ

þ ðeifeikðt;xþyÞ � eifeikðt;xÞÞbðt; xÞ:

In view of the inequality ja� bj2b a2=2� b2, we have

jvðt; xþ yÞ � vðt; xÞj2b 1

2
jðeifeikðt;xþyÞ � eifeikðt;xÞÞbðt; xÞj2

� jbðt; xþ yÞ � bðt; xÞj2:

We can leave out the last term, since bðt; �Þ a Hl for t a ½0;T �:
ð ð

Rd�Rd

jbðt; xþ yÞ � bðt; xÞj2

jyjdþ2s
dx dy < l for all t a ½0;T �:

We now want to prove
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ð
jyja1

ð
x ARd

jbðt; xÞj2
sin

feikðt;xþyÞ�feikðt;xÞ
2

� �


 


2
jyjdþ2s

dx dy ¼ l:

Lemma 1.1 yields

ðqt þ ‘feik � ‘Þ‘2feik a Llð½0;T � � RdÞd
2

; ‘2feik j t¼0 ¼ 0:

Therefore,

k‘2feikðt; �ÞkLlðRd Þd 2 ¼ OðtÞ as t ! 0:

It follows that

feikðt; xþ yÞ � feikðt; xÞ ¼ y � ‘feikðt; xÞ þ Oðtjyj2Þ uniformly for x a Rd ;

and

sin
feikðt; xþ yÞ � feikðt; xÞ

2

� �
¼ sin

y � ‘feikðt; xÞ
2

� �
cos

�
Oðtjyj2Þ

�

þ cos
y � ‘feikðt; xÞ

2

� �
sin

�
Oðtjyj2Þ

�
:

The second term is Oðtjyj2Þ. Using the estimate ja� bj2b a2=2� b2 again, we

see that the integral corresponding to the second term is finite and can be left

out. To prove that

I 0 ¼
ð
jyja1

ð
x ARd

jbðt; xÞj2
sin

y�‘feikðt;xÞ
2

� �


 


2
jyjdþ2s

dx dy ¼ l for 0 < tf 1;

we can localize y in a small conic neighborhood of oRB fjyja 1g:

V� ¼ fjyja 1 j jy� ðy � oÞoja �jyjg; 0 < �f 1:

For 0 < �; tf 1, (5.6) gives

sin
y � ‘feikðt; xÞ

2

� �








l tjy � oj � jo � ‘VðxÞj; y a V� :

Introduce a conic localization for x close to o 0, excluding the origin:

U� ¼ fjxjb 1 j jx� ðx � o 0Þoja �jxjg:

Change the variable in the y-integral: for t and � su‰ciently small, and x a U�, set
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y 0 ¼ o � ‘feikðt; xÞy:

This change of variable is admissible, from (1.4) and (5.6). For 0 < �; tf 1, we

have

I 0b

ð
y AV�

ð
x ARd

jbðt; xÞj2
sin

y�‘feikðt;xÞ
2

� �


 


2
jyjdþ2s

dx dy

l

ð
x AU�

jbðt; xÞj2jo � ‘feikðt; xÞj
2s
� ð

y A jo�‘feikðt;xÞjV�

dy

jyjdþ2s�2

�
dx

l

ð
x AU�

jbðt; xÞj2jo � ‘feikðt; xÞj
2s
� ð

y A ctV�

dy

jyjdþ2s�2

�
dx:

The assumption (1.4), the expression of b and the choice (5.7) for a0 then show

that I ¼ l for 0 < tf 1. This completes the proof of Theorem 1.5.
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