On radicals and polynomial rings

S. Tumurbat, D. I. C. Mendes and A. Mekei

(Communicated by Jorge Almeida)

Abstract. For any class M of rings, it is shown that the class $\mathscr{E}_{\ell}(\mathscr{M})$ of all rings each nonzero homomorphic image of which contains either a non-zero left ideal in M or a proper essential left ideal is a radical. Some characterizations and properties of these radicals are presented. It is also shown that, for radicals γ under certain constraints, one can obtain a strictly decreasing chain of radicals $\gamma = \gamma_{(1)} \supset \gamma_{(2)} \supset \cdots \supset \gamma_{(n)} \supset \cdots$ where, for each positive integer *n*, $\gamma_{(n)}$ is the radical consisting of all rings *A* such that $A[x_1, \ldots, x_n]$ is in γ , thus giving a negative answer to a question posed by Gardner. Moreover, classes M of rings are constructed such that there exist several such radicals γ in the interval $\lbrack \mathscr{E}_{\ell}(0),\mathscr{E}_{\ell}(\mathscr{M}) \rbrack.$

Mathematics Subject Classification (2000). 16N80.

Keywords. Kurosh–Amitsur radical, essential left ideal, upper radical, polynomial rings.

1. Introduction

All rings considered in this note are associative. Let us recall that a (Kurosh– Amitsur) radical γ is a class of rings which is closed under homomorphisms, extensions (I and A/I in γ imply that A in γ) and has the inductive property (if $I_1 \subseteq I_2 \subseteq \cdots \subseteq I_\alpha \subseteq \cdots$ is an ascending chain of ideals of A such that each I_α is in y, then also $\bigcup I_{\alpha} \in \gamma$. The unique largest y-ideal $\gamma(A)$ of A is then called the y-radical of A. A class $\mathcal M$ of rings is said to be regular if every non-zero ideal of a ring in M has a non-zero homomorphic image in M . Starting from a regular class M of rings, the upper radical operator U yields a radical class:

 $\mathfrak{U} \mathcal{M} = \{A \mid A \text{ has no non-zero homomorphic image in } \mathcal{M}\}.$

The definitions and significant radical theoretic properties used throughout this text may be found in [2], [9]. As usual, $I \lhd A$ indicates that I is an ideal of the ring A. A ring (ideal) belonging to a class \mathcal{M} will be called an $\mathcal{M}\text{-ring}$ $(M$ -ideal).

2. Upper radicals and essential left ideals

For any class M of rings, we show that the class $\mathscr{E}_{\ell}(\mathscr{M})$ of all rings each non-zero homomorphic image of which contains either a non-zero left ideal in $\mathcal M$ or a proper essential left ideal is a radical. For certain classes $\mathcal M$ of rings, $\mathcal{E}_{\ell}(\mathcal M)$ is characterized as an upper radical (for example, the Thierrin radical) and we also show that the collection of all the radicals $\mathscr{E}_{\ell}(\mathscr{M})$ forms a meet sublattice of the lattice of all radicals.

Let us recall that a simple ring means a ring without nontrivial ideals. A ring without nontrivial left ideals shall be called a left simple ring. We remind the reader that such rings are simple zero-rings or division rings. An essential left ideal of a ring A is a left ideal which has non-zero intersection with every nonzero ideal of A.

It is well known [4] that if a ring A has a homomorphic image with a proper essential ideal, then A has a proper essential ideal. We now show, in a similar way, that the same holds for left-sided ideals.

Lemma 1. If A has a homomorphic image with a proper essential left ideal, then A has a proper essential left ideal.

Proof. Let A/I be a non-zero homomorphic image of A with L/I a proper essential left ideal of A/I . Then I is a proper ideal of A and $L \neq A$. To show that L is essential in A, let $0 \neq J \lhd A$. If $J \subseteq L$, then $J \cap L = J \neq 0$, as desired. If $J \nsubseteq L$, then $J \nsubseteq I$ and $0 \neq (J+I)/I \lhd A/I$ so that $[(J+I)/I] \cap [L/I] \neq 0$. Thus, there exists $a + b \in J + I$ and $l \in L$ such that $(a + b) + I = l + I \neq I$. This implies that $a + b + b_1 = l + b_2$ for some $b_1, b_2 \in I$. Since $I \subseteq L$, we have $b + b_1 \in L$ and $l + b_2 \in L$. Therefore, $a = (l + b_2) - (b + b_1) \in L$ and so $a \in J \cap L$. If $a = 0$, then $b + b_1 = l + b_2$, which implies that $l \in I$. However, this is impossible since $l + I \neq I$. Hence $J \cap L \neq 0$, as required.

Theorem 2. $\mathscr{E}_{\ell}(\mathscr{M})$ is a radical class for any class M of rings.

Proof. Clearly, $\mathcal{E}_{\ell}(\mathcal{M})$ is a homomorphically closed class of rings. Now suppose that $A \notin \mathscr{E}_{\ell}(\mathscr{M})$. Then A has a non-zero homomorphic image \overline{A} which has neither a non-zero left ideal in $\mathcal M$ nor a proper essential left ideal. Let \overline{K} be a non-zero $\mathscr{E}_{\ell}(\mathscr{M})$ -ideal of \overline{A} . By [3], Theorem 5, \overline{K} must be a direct summand of \overline{A} and then also, \overline{K} is a homomorphic image of \overline{A} . Since $\overline{K} \in \mathscr{E}_{\ell}(\mathscr{M})$, it must have a proper essential left ideal or a non-zero left ideal in M . But, if \overline{K} has a proper essential left ideal, then Lemma 1 forces \overline{A} to have a proper essential left ideal, contrary to the choice of \overline{A} . Also, if \overline{K} has a non-zero left ideal in \mathcal{M} , then this left ideal of \overline{K} is actually a left ideal of \overline{A} , since \overline{K} is a direct summand of \overline{A} . Again this is impossible. Thus \bar{A} has no non-zero ideal in $\mathscr{E}_{\ell}(\mathscr{M})$.

Let M be any class of rings. In the sequel, \mathcal{M}_1 stands for the class of all simple rings contained in \mathcal{M} , and \mathcal{M}_0 denotes the class of all left simple rings contained in M. The class of rings complementary to the class M is denoted by M' .

Proposition 3. For any class M of rings, $\mathscr{E}_{\ell}(\mathscr{M}) = \mathscr{E}_{\ell}(\mathscr{M}_0) = \mathscr{E}_{\ell}(\mathscr{M}_1)$.

Proof. Obviously, $\mathcal{E}_{\ell}(\mathcal{M}_0) \subseteq \mathcal{E}_{\ell}(\mathcal{M}_1) \subseteq \mathcal{E}_{\ell}(\mathcal{M})$. Let $A \in \mathcal{E}_{\ell}(\mathcal{M})$ and let \overline{A} be any non-zero homomorphic image of A. If \overline{A} has no proper essential left ideal, then, according to [3], Theorem 5, \overline{A} is a direct sum of left simple rings and hence contains a non-zero \mathcal{M}_0 -ideal. Thus $A \in \mathcal{E}_{\ell}(\mathcal{M}_0)$.

Theorem 4. For any class M of left simple rings, $\mathfrak{U} \mathcal{M} = \mathcal{E}_{\ell}(\mathcal{M}'_0) = \mathcal{E}_{\ell}(\mathcal{M}'_1)$.

Proof. Suppose $A \notin \mathfrak{U} \mathcal{M}$. Then $\overline{A} \in \mathcal{M}$ for some non-zero homomorphic image of A. So, \overline{A} has neither a proper essential left ideal nor a non-zero left ideal in \mathcal{M}'_1 . Hence, $A \notin \mathscr{E}_{\ell}(\mathscr{M}'_1)$. On the other hand, if $A \notin \mathscr{E}_{\ell}(\mathscr{M}'_1)$, then A has a non-zero homomorphic image \overline{A} without a proper essential left ideal or a nonzero left ideal in \mathcal{M}'_1 . Then \overline{A} is a direct sum of simple rings having only trivial left ideals, each of which can be considered an ideal of \overline{A} . These simple rings are obviously in M . Moreover, each of these summands is a homomorphic image of \overline{A} and thus of A . Therefore $A \notin \mathfrak{U} \mathcal{M}$.

Corollary 5. If M is a homomorphically closed class of rings, then $\mathfrak{L}M = \mathscr{E}_{\ell}(M)$ if and only if $\mathfrak{L}M = \mathfrak{U}M'_0$, where $\mathfrak{L}M$ denotes the lower radical determined by M.

Proof. This is clear since $\mathscr{E}_{\ell}(\mathscr{M}) = \mathscr{E}_{\ell}(\mathscr{M}_1) = \mathscr{E}_{\ell}(\mathscr{M}_0) = \mathfrak{U}\mathscr{M}'_0$. $\overline{0}$.

Corollary 6. If M is a regular class of rings, then there exists a class N of rings such that $\mathfrak{U}_{\mathcal{M}} = \mathscr{E}_{\ell}(\mathcal{N})$ if and only if $\mathfrak{U}_{\mathcal{M}} = \mathfrak{U}_{\mathcal{M}}_0$.

Proof. If $\mathfrak{U}_{\mathcal{M}} = \mathscr{E}_{\ell}(\mathcal{N})$ for some class N of rings, then $\mathscr{E}_{\ell}(\mathcal{N}_0) = \mathscr{E}_{\ell}(\mathcal{N}) = \mathfrak{U}_{\mathcal{M}}$, where $\mathscr{E}_{\ell}(\mathcal{N}_0) = \mathfrak{U}\mathcal{N}'_0$. Hence $\mathfrak{U}\mathcal{M} = \mathfrak{U}\mathcal{N}'_0$. But $\mathcal{N}'_0 \subseteq \mathcal{M}_0$, for $B \in \mathcal{N}'_0$ implies that $B \notin \mathfrak{U} \mathcal{N}'_0 = \mathfrak{U} \mathcal{M}$, whence $B \in \mathcal{M}$. Thus $\mathfrak{U} \mathcal{M}_0 \subseteq \mathfrak{U} \mathcal{N}'_0$. Moreover, $\mathcal{M}_0 \subseteq \mathcal{N}'_0$. In fact, A left simple and $A \notin \mathcal{N}'_0$ implies that $A \in \mathcal{N}_0 \subseteq \mathfrak{U} \mathcal{M}$. Therefore $A \notin \mathcal{M}$ and consequently $A \notin \mathcal{M}_0$. We have now that $\mathfrak{U} \mathcal{M} = \mathfrak{U} \mathcal{M}_0$.

Conversely, $\mathfrak{U}_{\mathcal{M}} = \mathfrak{U}_{\mathcal{M}}_0 = \mathscr{E}_{\ell}(\mathscr{M}'_0)$. \cup 0).

Corollary 7. Let M be a regular class of rings which contains non-zero left simple rings. Then there exists a class N of rings such that $\mathfrak{U}_{\mathcal{M}} = \mathscr{E}_{\ell}(\mathcal{N})$ if and only if every non-zero M-ring has a left simple non-zero homomorphic image in M.

Remark 8. Let γ be a hypernilpotent radical (that is, all nilpotent rings are γ -rings) and let $\mathcal{S}\gamma$ be the semisimple class of γ . If M is any class of rings such that $\mathcal{M}_0 = \gamma_0$ then we have, by Theorem 4,

$$
\mathscr{U}\gamma_0'=\mathscr{E}_{\ell}(\gamma_0)=\mathscr{E}_{\ell}(\mathscr{M}),
$$

where γ'_0 , the class of left simple rings in the complementary class of γ , clearly coincides with the class of division rings in \mathcal{S}_{γ} .

Notice that if $\mathscr D$ is the class of all division rings and $\mathscr U\mathscr D\subseteq\gamma$, then γ'_0 coincides with the class of division rings in $\mathcal{S}\gamma$ (hence γ'_0 is a special class of rings) and $\mathscr{E}_{\ell}(\mathscr{M})$ is a special radical.

Example 9. If \mathscr{D} again denotes the class of all division rings, and \mathscr{Z} is the class of all simple zero-rings, then

$$
\mathscr{E}_{\ell}(\mathscr{Z})=\mathscr{E}_{\ell}(\mathscr{D}_{0}')=\mathfrak{U}\mathscr{D}
$$

and $\mathscr{E}_{\ell}(\mathscr{D}) = \mathscr{E}_{\ell}(\mathscr{Z}'_0) = \mathfrak{U}\mathscr{Z}$.

Example 10. Consider the subclass $\mathcal{E}_{\ell}(0)$ of all rings each non-zero homomorphic image of which has a proper essential left ideal. Obviously, left simple rings cannot belong to $\mathscr{E}_{\ell}(0)$. For $\mathscr{S} = \{A \mid A \text{ is either a division ring or a prime order zero }\}$ ring} and $\mathcal{T} = \{$ all direct sums of members of $\mathcal{S}\}$, we have:

$$
\mathscr{E}_{\ell}(0)=\mathfrak{U}\mathscr{S}=\mathfrak{U}\mathscr{T}=\mathfrak{U}\mathscr{D}\cap\mathfrak{U}\mathscr{Z}.
$$

In fact, from Theorem 4 and the definition of $\mathscr{E}_{\ell}(0)$, it follows that $\mathscr{E}_{\ell}(0) = \mathfrak{U}\mathscr{T}$. Also, $\mathcal{S} \subseteq \mathcal{T}$, so $\mathfrak{U}\mathcal{T} \subseteq \mathfrak{U}\mathcal{S}$. Conversely, if $A \in \mathfrak{U}\mathcal{S}$ then R, having no non-zero image in \mathcal{S} , cannot have an image in \mathcal{T} , so that $A \in \mathfrak{U} \mathcal{T}$ and so $\mathscr{E}_{\ell}(0) = \mathfrak{U} \mathcal{T} =$ $\mathfrak{U}\mathscr{S}$. It is easily seen that $\mathfrak{U}\mathscr{T} = \mathfrak{U}\mathscr{D} \cap \mathfrak{U}\mathscr{Z}$.

In order to prove the next proposition, we require the following result.

Lemma 11. The following conditions are equivalent for an abelian group G :

- (i) Every non-zero homomorphic image of G has a proper essential subgroup;
- (ii) G is divisible.

Proof. (i) implies (ii). Suppose $pG \neq G$ for some prime p. Then the cyclic group $\mathbb{Z}(p)$ of order p is a homomorphic image of G/pG and therefore of G. But $\mathbb{Z}(p)$ has no proper essential subgroup; a contradiction. Thus $pG = G$ for every prime p and so G is divisible.

(ii) implies (i). If G is non-zero and divisible, then $G = A \oplus B$ where $A \cong \mathbb{Q}$ or $A \cong \mathbb{Z}(p^{\infty})$ for some prime p. If $0 \neq a \in A$, then $\langle a \rangle \oplus B$ is a proper essential subgroup of G, where $\langle a \rangle$ is the cyclic subgroup of G generated by a. Now we just observe that all homomorphic images of G are also divisible. \Box **Proposition 12.** The radical $\mathcal{E}_{\ell}(0)$ is polynomially extensible; that is, $A \in \mathcal{E}_{\ell}(0)$ implies that $A[x] \in \mathscr{E}_{\ell}(0)$.

Proof. Let $A \in \mathcal{E}_\ell(0)$ and consider an arbitrary non-zero homomorphic image $A[x]/I$ of the polynomial ring $A[x]$. If $A \nsubseteq I$, then $0 \neq (A + I)/I \cong A/(A \cap I)$ and $(A+I)/I$ has a proper essential left ideal. But $(A+I)/I$ is a homomorphic image of $A[x]/I$. In fact, $\varphi : A[x]/I \to (A+I)/I$ defined by $\varphi(a_0 + a_1x + \cdots + a_nx^n + I) = a_0 + I$ is a ring epimorphism. Hence, by Lemma 1, $A[x]/I$ has a proper essential left ideal. If $A \subseteq I$, then $a_0 + b_1x +$ $b_2x^2 + \cdots \in I$ for all $a_0 \in A$, $b_i \in A^2$, so $A[x]/I$ is a homomorphic image of $\{(c_1+A^2)x+(c_2+A^2)x^2+\cdots\,| c_i\in A\}\cong A/A^2\oplus A/A^2\oplus\cdots$. Now $A\neq A^2$, since otherwise $I = A[x]$. Since $A \in \mathcal{E}_{\ell}(0)$ it follows that $0 \neq A/A^2 \in \mathcal{E}_{\ell}(0)$. By the previous lemma, A/A^2 is a divisible zero-ring and hence also $A[x]/I$. By the first part of the proof, $A[x]/I$ has a proper essential left ideal.

Proposition 13. (1) For any class M of rings, $\mathscr{E}_{\ell}(\mathscr{E}_{\ell}(\mathscr{M})) = \mathscr{E}_{\ell}(\mathscr{M})$. (2) For any family $\{M_i | i \in \Lambda\}$ of classes of rings, we have

$$
\bigcap_{i\in\Lambda}\mathscr{E}_{\ell}(\mathscr{M}_i)=\mathscr{E}_{\ell}\Big(\bigcap_{i\in\Lambda}\mathscr{M}_i\Big).
$$

Proof. (1) It is clear that $\mathscr{E}_{\ell}(\mathscr{M}) \subseteq \mathscr{E}_{\ell}(\mathscr{E}_{\ell}(\mathscr{M}))$. On the other hand, suppose that $A \in \mathscr{E}_{\ell}(\mathscr{E}_{\ell}(\mathscr{M}))$ and let \overline{A} be any non-zero homomorphic image of A. Suppose that \overline{A} has no proper essential left ideals. Then \overline{A} has a non-zero left ideal $\overline{L} \in \mathscr{E}_{\ell}(\mathscr{M})$ and, by [3], Theorem 5, \overline{L} is a direct summand of \overline{A} ; that is, $\overline{A} = \overline{L} \oplus \overline{K}$ for some ideal \overline{K} of \overline{A} . But then any left ideal of \overline{L} is also a left ideal of \overline{A} . Now, if \overline{L} has a proper essential left ideal, then by

$$
\overline{A}/\overline{K} = (\overline{L} + \overline{K})/\overline{K} \simeq \overline{L}/(\overline{L} \cap \overline{K}) \simeq \overline{L}
$$

and Lemma 1, \overline{A} has a proper essential left ideal, a contradiction. Hence \overline{L} has a non-zero left ideal in \mathcal{M} , which is also a left ideal in \overline{A} . Therefore $A \in \mathscr{E}_{\ell}(\mathcal{M})$.

(2) Clearly, $\mathscr{E}_{\ell}(\bigcap_{i\in\Lambda}\mathscr{M}_i)\subseteq\bigcap_{i\in\Lambda}\mathscr{E}_{\ell}(\mathscr{M}_i)$. Let $A\in\bigcap_{i\in\Lambda}\mathscr{E}_{\ell}(\mathscr{M}_i)$ and suppose that \overline{A} is any non-zero homomorphic image of A. If \overline{A} has no proper essential left ideal, then \overline{A} has a non-zero left ideal $\overline{S} \in \mathcal{M}_1$ which is a left simple ring and a summand of \overline{A} . We claim that $\overline{S} \in \mathcal{M}_i$ for each $i \in \Lambda$. If $\overline{S} \notin \mathcal{M}_i$ for some $i \in \Lambda$, then \overline{S} , as a homomorphic image of A, has neither a proper essential left ideal nor a non-zero left ideal in \mathcal{M}_i , contradicting $A \in \mathscr{E}_\ell(\mathcal{M}_i)$. Therefore, $A \in \mathscr{E}_{\ell}(\bigcap_{i \in \Lambda} \mathscr{M}_i).$

Remark 14. (i) The lattice of all radicals $\mathscr{E}_{\ell}(\mathscr{M})$ is atomic and coatomic. The atoms are the radicals $\mathscr{E}_{\ell}(\{P\})$ and the coatoms are the radicals $\mathscr{E}_{\ell}(\mathscr{S} - \{P\})$, where P is a non-zero left simple ring and \mathcal{S} is the class of all left simple rings.

(ii) The collection of all radicals $\mathscr{E}_\ell(\mathscr{M})$ forms a meet subsemilattice of the lattice of all radicals. Indeed, if $\mathscr{E}_{\ell}(\mathscr{M}_1)$ and $\mathscr{E}_{\ell}(\mathscr{M}_2)$ are any two such radical classes, then $\mathscr{E}_{\ell}(\mathscr{M}_1) \wedge \mathscr{E}_{\ell}(\mathscr{M}_2) = \mathscr{E}_{\ell}(\mathscr{M}_1) \cap \mathscr{E}_{\ell}(\mathscr{M}_2) = \mathscr{E}_{\ell}(\mathscr{M}_1 \cap \mathscr{M}_2)$.

(iii) [11], Example 5, also shows that this collection of radical classes $\mathscr{E}_{\ell}(\mathscr{M})$ is not a sublattice of the lattice of all radical classes with respect or \wedge and \vee . However, like the collection of the Olson and Jenkins radical classes, this collection also forms a Boolean lattice with respect to the operators \wedge and \vee' , where $\mathscr{E}_{\ell}(\mathscr{M}_1) \vee \mathscr{E}_{\ell}(\mathscr{M}_2) = \mathscr{E}_{\ell}(\mathscr{M}_1 \cup \mathscr{M}_2)$ for arbitrary classes \mathscr{M}_1 and \mathscr{M}_2 of rings.

3. Polynomial rings and radicals

For a ring A, $A[x]$ and $A[x_1, x_2, \ldots, x_n]$ denote, respectively, the ring of polynomials over A in one indeterminate and the ring of polynomials over A in n commuting indeterminates and P_n denotes the class of all polynomial rings $A[x_1, x_2, \ldots, x_n].$

For a radical γ , let $\gamma_{(1)}$ denote the class $\{A \mid A[x] \in \gamma\}$ and let $\gamma^{(1)}$ denote the lower radical $\mathfrak{L}(\gamma \cap P_1)$.

Proposition 15 ([1], Theorem 1). $\gamma_{(1)}$ is a radical class for any radical class γ .

Defining $\gamma_{(n)} = \{ A \mid A[x_1, \dots, x_n] \in \gamma \}$ and $\gamma^{(n)} = \mathfrak{L}(\{P_n \cap \gamma\})$, we obtain the chains

$$
\gamma \supseteq \gamma_{(1)} \supseteq \cdots \supseteq \gamma_{(n)} \supseteq \cdots
$$

and

$$
\gamma \supseteq \gamma^{(1)} \supseteq \cdots \supseteq \gamma^{(n)} \supseteq \cdots.
$$

Clearly,

 $\gamma_{(n)} \subseteq \gamma^{(n)}$.

In [1], Gardner posed the following question: Does the chain

$$
\gamma = \gamma_{(0)} \supseteq \gamma_{(1)} \supseteq \cdots \supseteq \gamma_{(n)} \supseteq \cdots
$$

terminate for every radical class γ ? We shall give a negative answer to this question, but first we need some preliminary results.

Proposition 16 ([1]). Let A be a ring with unity and S a ring with unity and no other non-zero idempotents. Then S belongs to $\mathfrak{L}(\lbrace A \rbrace)$ if and only if it is a homomorphic image of A.

Let A be a ring. A ring I is said to be an accessible subring of A if $I = I_1 \lhd \cdots \lhd I_n = A$ for some natural number *n*.

Lemma 17. Let A be a ring with unity and B a ring with unity and no other nonzero idempotents. Then the $\mathfrak{L}(\lbrace A \rbrace)$ -radical of B is non-zero if and only if B is a homomorphic image of A.

Proof. Let $\mathfrak{L}(\lbrace A \rbrace) \neq 0$. Then $\mathfrak{L}(\lbrace A \rbrace)(B)$ has a non-zero accessible subring I such that I is a homomorphic image of A. Since $\mathfrak{L}(\lbrace A \rbrace)(B) \lhd B$, I is an accessible subring of B. Similarly to the proof of Proposition 16, we obtain that $I = B$. Hence B is a homomorphic image of A . The converse is clear.

Lemma 18. Let γ be a radical and let I be an accessible subring of a ring A. If $I \in \gamma$, then $\gamma(A) \neq 0$.

Proof. Suppose that $I = I_1 \lhd \cdots \lhd I_n = A$. Since $I \in \gamma$ and $I \lhd I_2$, $0 \neq \gamma(I) \subseteq I$ $\gamma(I_2)$ and, by induction, $0 \neq \gamma(I) \subseteq \gamma(I_2) \subseteq \cdots \subseteq \gamma(I_n) = \gamma(A)$.

We denote by \mathcal{C}_p the class of all commutative prime rings and $\mathcal{C} = \mathfrak{U}\mathcal{C}_p$. If \mathcal{U} is a class of rings with unity, we put $\mathscr{C}_{\mathscr{U}} = \mathfrak{L}(\mathscr{C} \cup \mathscr{U})$.

Proposition 19. Let *U* be a class of rings with unity and let $A \neq 0$ be a commutative reduced ring with unity and no other non-zero idempotent. Then $\mathcal{C}_{\mathcal{U}}(A) \neq 0$ if and only if A is a homomorphic image of a ring $B \in \mathcal{U}$.

Proof. Suppose that $\mathcal{C}_{\mathcal{U}}(A) \neq 0$. Since A is a commutative reduced ring, $R = \mathcal{C}_{\mathcal{U}}(A)$ is also a commutative reduced ring. Therefore, for each $0 \neq a \in R$, there exists an ideal K_a of R, which is maximal with respect to the exclusion of a^n for any natural number *n*. Clearly, R/K_a is a prime commutative ring. Since $0 \neq a \in R$ is arbitrary, R is a subdirect sum of the rings R/K_a . Hence R is a Csemisimple ring. By Lemma 18, R has no non-zero accessible subring which is a homomorphic image of a ring $B \in \mathscr{C}$. Therefore R has an accessible subring I such that I is a homomorphic image B in \mathcal{U} . Hence, by Lemma 18, $L({B})(A) \neq 0$, because I is an accessible subring of A. By Lemma 17, A is a homomorphic image of B. The converse is clear. \square

We denote by $|A|$ the cardinality of a ring A.

Lemma 20. Let A be a simple ring with $|A| \geq \aleph_0$. Then $|A| = |B|$ for every nonzero homomorphic image B of $A[x_1,\ldots,x_n]$ and $n \in \mathbb{N}$.

Proof. Since A is infinite, we have $|A[x_1, \ldots, x_n]| = |A|$. Therefore $|B| \le |A|$ for every homomorphic image of $A[x_1, \ldots, x_n]$. Let $B = A[x_1, \ldots, x_n]/I \neq 0$.

We show that $A \cap I = 0$. Suppose that $A \cap I \neq 0$. Since $0 \neq A \cap I \leq A$ and A is a simple ring, $A = A \cap I$. Clearly $A^2 = A$ because A is infinite. Therefore $A[x_1,\ldots,x_n]=A^2[x_1,\ldots,x_n]\subseteq I$. Hence $A[x_1,\ldots,x_n]=I$, a contradiction to $A[x_1, \ldots, x_n]/I \neq 0$. Thus $A \cap I = 0$. Since $(A + I)/I \cong A/(A \cap I) \cong A$, we have $|A| = |(A + I)/I| \le |A[x_1, \ldots, x_n]/I| = |B|$. Thus $|A| = |B|$.

Remark 21. Notice that we may find fields $F_1, F_2, \ldots, F_n, \ldots$, of zero characteristic such that $|F_1| < |F_2| < \cdots < |F_n| < \cdots$ and $|F_1| \geq \aleph_0$. Therefore, we can assume that $F_1 = \mathbb{Q}$, where $\mathbb Q$ is the field of rational numbers.

In what follows, let

$$
\mathcal{S} = \{F_n[x_1, \dots, x_n] | F_n \text{ is a field and } F_n[x_1, \dots, x_n]
$$

is not a homomorphic image of $F_m[x_1, \dots, x_m]$ for any $m \neq n\}$

and $\mathcal{F}_{\mathcal{S}} = \mathfrak{L}(\mathfrak{U}\mathcal{F}^1 \cup \mathcal{S})$, where \mathcal{F}^1 is the class of all fields. We are now in a position to prove the following result.

Theorem 22. Let $F_1 = \mathbb{Q}, F_2, \ldots, F_n, \ldots$ be fields such that $|F_i| < |F_{i+1}|$ for each $i = 1, 2, \ldots$ If y is any radical such that

$$
\mathscr{S} \subseteq \gamma \subseteq \mathscr{F}_{\mathscr{S}},
$$

then $\gamma = \gamma_{(1)} \supset \gamma_{(2)} \supset \cdots \supset \gamma_{(n)} \supset \cdots$.

Proof. By assumption, we have $F_n \in \mathfrak{L}(\mathcal{S})_{(n)} \subseteq \gamma_{(n)} \subseteq (\mathcal{F}_{\mathcal{S}})_{(n)}$. We claim that $F_n \notin \gamma_{(n+1)}$. It is sufficient to show that $F_n[x_1,\ldots,x_n,x_{n+1}] \notin \mathcal{F}_{\mathcal{S}}$. Suppose that $F_n[x_1,\ldots,x_n,x_{n+1}] \in \mathscr{F}_{\mathscr{S}}$. Clearly, $F_n[x_1,\ldots,x_n,x_{n+1}]$ is a commutative reduced ring with unity and no other non-zero idemotents. By an argument similar to the one used in the proof of Proposition 19, $F_n[x_1, \ldots, x_n, x_{n+1}]$ is a homomorphic image of some B_S in S. Let $B_S = F_s[x_1, \ldots, x_s]$ and $F_n[x_1, \ldots, x_n, x_{n+1}] \cong B_S/I$. Then $n = s$. Indeed, if $n \neq s$, then we have, by Lemma 20, $|F_n[x_1, \ldots, x_n, x_{n+1}]|$ $|F_n|$ and $|F_s| = |F_s[x_1, ..., x_s]/I| = |B_s/I|$. Since $F_n[x_1, ..., x_n, x_{n+1}] \cong B_s/I$, it follows that $|F_n[x_1,\ldots,x_n,x_{n+1}]|=|B_s/I|$. But $|F_n|\neq |F_s|$, a contradiction. Thus $n = s$ and $F_n[x_1, \ldots, x_n, x_{n+1}]$ is a homomorphic image of $F_n[x_1, \ldots, x_n]$. By [10], Theorem 29, this is impossible. Therefore $F_n \notin \gamma_{n+1}$ and so $\gamma_{n} \neq \gamma_{n+1}$.

We notice that Theorem 22 is true for any \mathcal{S} . For example, take $F_i = \mathbb{Z}_{p(i)}$, where $p(i)$ is a prime number such that $p(i) \neq p(j)$ for $i \neq j$.

Remark 23. Recall that a radical γ is said to be subidempotent if γ consists of idempotent rings. Clearly, $A = F_n[x_1, \ldots, x_n]$, where *n* is a positive integer, is an idempotent ring and hence the radical $\mathfrak{L}(\mathcal{S})$ is subidempotent.

We now consider the following well-known radicals:

- The Baer radical β . This is the upper radical determined by the class of all prime rings.
- The locally nilpotent radical \mathcal{L} . This is the radical class of all locally nilpotent rings.
- The Brown-McCoy radical $\mathscr G$. This is the upper radical determined by the class of all simple rings with unity.
- The nil radical N . This is the radical class of all nil rings.
- Let W be the class of all rings A such that for each element $a \in A$, there exist elements $a_1, \ldots, a_n, b_1, \ldots, b_n \in A$ and $m \in \mathcal{N}$ with $a^m + \sum_{i=1}^n a_i [a, b_i] = 0$. In [7], Tumurbat and Wiegandt proved that $\mathscr W$ is a radical class and that $\mathscr W$ coincides with $\mathcal{G}_{(1)}$.

We notice that $\beta \subset L \subset N \subset W \subset C \subset \mathfrak{U} \mathcal{F}^1$.

Corollary 24. (i) If γ is one of the radicals

 $\mathfrak{L}(\beta\cup S), \quad \mathfrak{L}(\mathscr{L}\cup\mathscr{S}), \quad \mathfrak{L}(\mathscr{N}\cup\mathscr{S}),$

or γ is any radical in the interval $\big[\mathfrak{L}\big(\mathscr{E}_{\ell}(0)\cup\mathscr{S}\big),\mathscr{F}_{\mathscr{S}}\big]$, then

$$
\gamma_{(1)} \supset \gamma_{(2)} \supset \cdots \supset \gamma_{(n)} \supset \cdots.
$$

(ii) There exists a radical γ such that $\gamma_{(n)} \neq \gamma_{(n+1)}$. Moreover, $\mathscr{L} \subseteq \bigcap \gamma_{(n)}$.

Let A be a ring. We denote by $M(A)$ the ring of all infinite matrices over A having only finitely many non-zero elements. We show that the polynomial ring $M(A)[X] \in \bigcap \mathscr{G}_{(n)}$ for any set X of commuting or noncommuting indeterminates. First, however, we need some preliminary results.

Lemma 25. Let A be a ring with unity and I an ideal of $M(A)$. Then there exists an ideal K of A such that $I = M(K)$.

Proof. Consider a matrix $B = (b_{ij}) \in I$ and let $(A)_{uv}$ denote the subset of $M(A)$ having non-zero elements only at the (u, v) -entry. For arbitrary indices k and l, we have

$$
(A)_{ki}B(A)_{jl} = \begin{pmatrix} 0 & \cdots & 0 & \cdots & 0 \\ \vdots & & & & \vdots \\ 0 & \cdots & Ab_{ij}A & \cdots & 0 \\ \vdots & & & \vdots & & \vdots \\ 0 & \cdots & 0 & \cdots & 0 \end{pmatrix} \subseteq (A)_{kl} \cap I.
$$

Since A has a unity,

$$
k\begin{pmatrix}0 & \cdots & 1 & & & & 0\\ \vdots & & & & & \vdots\\ 0 & \cdots & b_{ij} & \cdots & 0\\ \vdots & & & & \vdots\\ 0 & \cdots & 0 & \cdots & 0\end{pmatrix} \in I
$$

Clearly, $K = \{a \in A \mid a = b_{ij}, (b_{ij}) \in I\} \leq A$ and $I \subseteq M(K)$. Since

we have $M(K) \subseteq I$. Therefore $M(K) = I$.

Corollary 26. Let A be an arbitrary ring and I an ideal of $M(A)$. Then there exist ideals K and J of A such that $M(K) \subseteq I \subseteq M(J)$ and $M(J)^3 \subseteq M(K)$.

Proof. We denote by $A¹$ the ring A with an identity adjoined. Clearly, $I \lhd M(A) \lhd M(A^1)$. Let $\langle I \rangle$ be the ideal of $M(A^1)$ generated by I. By Lemma 25, there exists and ideal J of A^1 such that $\langle I \rangle = M(J)$. By Andrunakievich's Lemma, $M(J)^3 \subseteq I$. Clearly, $J \subseteq A$. Since $M(J)^3 \prec M(A^1)$, $M(J)^3 = M(K)$, where $K \leq A^1$ and also $K \leq A$.

Corollary 27. Let A be an arbitrary ring and let I be a semiprime ideal of $M(A)$. Then there exists an ideal K of A such that $I = M(K)$.

Theorem 28. Let A be an arbitrary ring. If $B \in M(A)$, then there exist $B_1, B_2, \ldots, B_n, A_1, A_2, \ldots, A_n \in M(A)$ and a positive integer m such that

$$
B^m+\sum_{i=1}^n B_i[B,A_i]=0
$$

and so $M(A) \in \mathcal{W}$.

Proof. First, we shall show that if $M(A)$ is a semiprime ring, then $M(A)$ has zero center. Suppose that $0 \neq B \in Z(M(A))$, where, for a ring T, $Z(T)$ denotes the center of T and

$$
B = \begin{pmatrix} b_{11} & \cdots & b_{1n} & 0 & \cdots & 0 \\ \vdots & & \vdots & & \\ b_{n1} & & b_{nn} & 0 & \cdots & 0 \\ 0 & & 0 & 0 & & 0 \\ \vdots & & \vdots & \vdots & & \vdots \\ 0 & & 0 & 0 & & 0 \end{pmatrix}.
$$

Then $b_{ij} \neq 0$ for some *i*, *j*. Let *x* be an arbitary element of *A* and let

$$
\overline{X} = \begin{pmatrix} 0 & \cdots & i & \cdots & 0 \\ \vdots & & & & \vdots \\ 0 & \cdots & x & \cdots & 0 \\ \vdots & & & & \vdots \\ 0 & \cdots & & & \cdots & 0 \end{pmatrix} n + 1.
$$

Clearly, $B\overline{X} = 0$. Since $B \in Z(M(A)), \overline{X}B = 0$ and thus $xb_{ij} = 0$. Since $M(A)$ is semiprime, A is a semiprime ring. But $Ab_{ij} = 0$, a contradiction. Now we show that every non-zero prime homomorphic image of $M(A)$ has zero center. Let $M(A)/I$ be a non-zero prime homomorphic image of $M(A)$. By Corollary 27, $I = M(K)$ for an ideal K of A and so $M(A)/I = M(A)/M(K) \cong M(A/K)$. Since $M(A)/I$ is a prime ring, $Z(M(A)/I) = 0$. Thus, by [5], $M(A) \in \mathcal{G}_{(1)}$ and, by [7], for arbitrary $B \in M(A)$, there exist $B_1, B_2, \ldots, B_n, A_1, A_2, \ldots, A_n \in M(A)$ and a positive integer m such that $B^m + \sum_{i=1}^n B_i[B, A_i] = 0$.

Corollary 29. Let A be an arbirary ring. Then $M(A)[x_1, \ldots, x_n] \in \mathcal{W}$ for any positive integer n.

Proof. In view of $M(A)[x_1] \cong M(A[x_1]) \in \mathcal{W}$, it follows by induction that $M(A)[x_1,\ldots,x_n]\in\mathscr{W}.$ $\in \mathscr{W}.$ 272 S. Tumurbat, D. I. C. Mendes and A. Mekei

Theorem 30. Let A be an arbitrary ring. Then $M(A)[X] \in \bigcap \mathscr{G}_{(n)}$, for any set X of commuting or noncommuting indeterminates.

Proof. This follows from Corollary 29 and [8], Corollary 2.18(ii). \Box

Corollary 31. If $\gamma_{\infty} = \bigcap \gamma$ for a radical γ , then we have: (i) $\mathcal{N} \subset \mathscr{W}_{\infty} \subset \mathfrak{L}(\mathscr{W} \cup \mathscr{S})_{\infty};$ (ii) $\beta = \beta_{\infty} \subseteq \mathscr{W}_{\infty} \subseteq \mathscr{W} \subseteq \mathscr{G}$.

Remark 32. (i) All the known examples of radicals γ with $\gamma_{(n)} \neq \gamma_{(n+1)}$ for any positive integer *n* are not hereditary. We do not know, however, whether for all hereditary radicals the chain terminates.

(ii) We have $\gamma_{(n)} = \gamma_{(n+1)}$ if and only if $\gamma^{(n)} = \gamma^{(n+1)}$; hence there exist many radicals such that $\gamma^{(n+1)} \subset \gamma^{(n)}$ for any positive integer *n*.

Acknowledgements. The authors wish to express their gratitude to the referee for all the help[ful remarks, L](http://www.emis.de/MATH-item?0225.16006)[emma 11 and](http://www.ams.org/mathscinet-getitem?mr=0318206) for completing the proof of Proposition 12.

They also acknowledge the support of the Centro de Matemática UBI, Project ATG, in the framework of program POCI 2010 [co-financed by](http://www.emis.de/MATH-item?1034.16025) [the Portug](http://www.ams.org/mathscinet-getitem?mr=2015465)uese Government and EU (FEDER).

References

- [1] B. J. Gardner, A note on radicals and polynomial rings. *Math. Scand.* 31 [\(1972\),](http://www.emis.de/MATH-item?0909.16015) [83–88.](http://www.ams.org/mathscinet-getitem?mr=1627872) Zbl 0225.16006 MR 0318206
- [2] B. J. Gardner and R. Wiegandt, Radical theory of rings. Monogr. Textbooks Pure Appl. Math. 261, Marcel [Dekker, New Yo](http://www.emis.de/MATH-item?0969.16008)[rk 2004.](http://www.ams.org/mathscinet-getitem?mr=1805740) Zbl 1034.16025 MR 2015465
- [3] D. I. C. Mendes and R. Wiegandt, On essential left ideals of associative rings. Math. Pannon. 12 (2001), 217–224. Zbl [0981.16002 MR](http://www.emis.de/MATH-item?1059.16014) [1860162](http://www.ams.org/mathscinet-getitem?mr=2046150)
- [4] D. M. Olson and T. L. Jenkins, Upper radicals and essential ideals. J. Austral. Math. Soc. Ser. A 30 (1980/81), 385–389. Zbl 0467.16010 MR 621555
- [5] E. R. Puczyłowski and A. Smoktunowicz, On maximal ideals and the Brown-McCoy radical of polynomial rings. Comm. Algebra 26 (1998), 2473–2482. Zbl 0909.16015 MR 1627872
- [6] E. R. Puczyłowski and H. Zand, Subhereditary radicals of associative rings. Algebra Colloq. 6 (1999), 215–223. Zbl 0969.16008 MR 1805740
- [7] S. Tumurbat and R. Wiegandt, On polynomial and multiplicative radicals. *Quaes*tiones Math. 26 (2003), 453–469. Zbl 1059.16014 MR 2046150
- [8] S. Tumurbat and R. Wisbauer R., Radicals with the a-Amitsur property. Preprint 2007.

On radicals and polynomial rings 273

- [9] R. Wiegandt, Radical and semisimple classes of rings. Queen's Papers in Pure and Appl. Math. 37, Queen's University, Kingston, Ont., 1974. Zbl 0324.16006 MR 0349734
- [10] O. Zariski and P. Samuel, Commutative algebra. Vol. 1, Van Nostrand, Princeton 1958. Zbl 0081.26501 MR 0090581
- [11] L. Zhian, On the radical classes defined by Olson and Jenkins. Neimenggu Daxue Xuebao Ziran Kexue 27 (1996), 585–588. MR 1445211

Received March 20, 2007; revised May 17, 2007

S. Tumurbat, Department of Algebra, University of Mongolia, P.O. Box 75, Ulaan Baatar 20, Mongolia

E-mail: stumurbat@hotmail.com

D. I. C. Mendes, Departamento de Matema´tica, Universidade da Beira Interior, Rua Marquês d'Ávila e Bolama, 6201-001 Covilhã, Portugal E-mail: dmendes@mat.ubi.pt

A. Mekei, Institute of Mathematics, National University of Mongolia, Po.Box-46/627, Ulaan Baatar, Mongolia

E-mail: mekei@yahoo.com; mekei@num.edu.mn