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On radicals and polynomial rings
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Abstract. For any class M of rings, it is shown that the class ElðMÞ of all rings each non-
zero homomorphic image of which contains either a non-zero left ideal in M or a proper
essential left ideal is a radical. Some characterizations and properties of these radicals are
presented. It is also shown that, for radicals g under certain constraints, one can obtain a
strictly decreasing chain of radicals g ¼ gð1Þ I gð2Þ I � � �I gðnÞ I � � � where, for each posi-
tive integer n, gðnÞ is the radical consisting of all rings A such that A½x1; . . . ; xn� is in g,
thus giving a negative answer to a question posed by Gardner. Moreover, classes M
of rings are constructed such that there exist several such radicals g in the interval
½Elð0Þ;ElðMÞ�.
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1. Introduction

All rings considered in this note are associative. Let us recall that a (Kurosh–

Amitsur) radical g is a class of rings which is closed under homomorphisms, exten-

sions (I and A=I in g imply that A in g) and has the inductive property (if

I1 J I2 J � � �J Ia J � � � is an ascending chain of ideals of A such that each Ia is

in g, then also 6 Ia a g). The unique largest g-ideal gðAÞ of A is then called the

g-radical of A. A class M of rings is said to be regular if every non-zero ideal of

a ring in M has a non-zero homomorphic image in M. Starting from a regular

class M of rings, the upper radical operator U yields a radical class:

UM ¼ fA jA has no non-zero homomorphic image in Mg:

The definitions and significant radical theoretic properties used throughout

this text may be found in [2], [9]. As usual, I pA indicates that I is an ideal

of the ring A. A ring (ideal) belonging to a class M will be called an M-ring

(M-ideal).



2. Upper radicals and essential left ideals

For any class M of rings, we show that the class ElðMÞ of all rings each non-zero

homomorphic image of which contains either a non-zero left ideal in M or a

proper essential left ideal is a radical. For certain classes M of rings, ElðMÞ is

characterized as an upper radical (for example, the Thierrin radical) and we also

show that the collection of all the radicals ElðMÞ forms a meet sublattice of the

lattice of all radicals.

Let us recall that a simple ring means a ring without nontrivial ideals. A ring

without nontrivial left ideals shall be called a left simple ring. We remind the

reader that such rings are simple zero-rings or division rings. An essential left

ideal of a ring A is a left ideal which has non-zero intersection with every non-

zero ideal of A.

It is well known [4] that if a ring A has a homomorphic image with a proper

essential ideal, then A has a proper essential ideal. We now show, in a similar

way, that the same holds for left-sided ideals.

Lemma 1. If A has a homomorphic image with a proper essential left ideal, then A

has a proper essential left ideal.

Proof. Let A=I be a non-zero homomorphic image of A with L=I a proper essen-

tial left ideal of A=I . Then I is a proper ideal of A and LAA. To show that L is

essential in A, let 0A JpA. If JJL, then JBL ¼ JA 0, as desired. If JPL,

then JP I and 0A ðJ þ IÞ=I pA=I so that ½ðJ þ IÞ=I �B ½L=I �A 0. Thus, there

exists aþ b a J þ I and l a L such that ðaþ bÞ þ I ¼ l þ I A I . This implies that

aþ bþ b1 ¼ l þ b2 for some b1; b2 a I . Since I JL, we have bþ b1 a L and

l þ b2 a L. Therefore, a ¼ ðl þ b2Þ � ðbþ b1Þ a L and so a a JBL. If a ¼ 0,

then bþ b1 ¼ l þ b2, which implies that l a I . However, this is impossible since

l þ I A I . Hence JBLA 0, as required. r

Theorem 2. ElðMÞ is a radical class for any class M of rings.

Proof. Clearly, ElðMÞ is a homomorphically closed class of rings. Now suppose

that A B ElðMÞ. Then A has a non-zero homomorphic image A which has neither

a non-zero left ideal in M nor a proper essential left ideal. Let K be a non-zero

ElðMÞ-ideal of A. By [3], Theorem 5, K must be a direct summand of A and then

also, K is a homomorphic image of A. Since K a ElðMÞ, it must have a proper

essential left ideal or a non-zero left ideal in M. But, if K has a proper essential

left ideal, then Lemma 1 forces A to have a proper essential left ideal, contrary to

the choice of A. Also, if K has a non-zero left ideal in M, then this left ideal of K

is actually a left ideal of A, since K is a direct summand of A. Again this is

impossible. Thus A has no non-zero ideal in ElðMÞ. r
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Let M be any class of rings. In the sequel, M1 stands for the class of all simple

rings contained in M, and M0 denotes the class of all left simple rings contained in

M. The class of rings complementary to the class M is denoted by M 0.

Proposition 3. For any class M of rings, ElðMÞ ¼ ElðM0Þ ¼ ElðM1Þ.

Proof. Obviously, ElðM0ÞJElðM1ÞJElðMÞ. Let A a ElðMÞ and let A be any

non-zero homomorphic image of A. If A has no proper essential left ideal, then,

according to [3], Theorem 5, A is a direct sum of left simple rings and hence con-

tains a non-zero M0-ideal. Thus A a ElðM0Þ. r

Theorem 4. For any class M of left simple rings, UM ¼ ElðM 0
0Þ ¼ ElðM 0

1Þ.

Proof. Suppose A B UM. Then A a M for some non-zero homomorphic image

of A. So, A has neither a proper essential left ideal nor a non-zero left ideal

in M 0
1. Hence, A B ElðM 0

1Þ. On the other hand, if A B ElðM 0
1Þ, then A has a

non-zero homomorphic image A without a proper essential left ideal or a non-

zero left ideal in M 0
1. Then A is a direct sum of simple rings having only trivial

left ideals, each of which can be considered an ideal of A. These simple rings are

obviously in M. Moreover, each of these summands is a homomorphic image

of A and thus of A. Therefore A B UM. r

Corollary 5. If M is a homomorphically closed class of rings, then LM ¼ ElðMÞ if
and only if LM ¼ UM 0

0, where LM denotes the lower radical determined by M.

Proof. This is clear since ElðMÞ ¼ ElðM1Þ ¼ ElðM0Þ ¼ UM 0
0. r

Corollary 6. If M is a regular class of rings, then there exists a class N of rings

such that UM ¼ ElðNÞ if and only if UM ¼ UM0.

Proof. If UM ¼ ElðNÞ for some class N of rings, then ElðN0Þ ¼ ElðNÞ ¼ UM,

where ElðN0Þ ¼ UN 0
0 . Hence UM ¼ UN 0

0 . But N 0
0 JM0, for B a N 0

0 implies

that B B UN 0
0 ¼ UM, whence B a M. Thus UM0 JUN 0

0 . Moreover, M0 JN 0
0 .

In fact, A left simple and A B N 0
0 implies that A a N0 JUM. Therefore A B M

and consequently A B M0. We have now that UM ¼ UM0.

Conversely, UM ¼ UM0 ¼ ElðM 0
0Þ. r

Corollary 7. Let M be a regular class of rings which contains non-zero left simple

rings. Then there exists a class N of rings such that UM ¼ ElðNÞ if and only if

every non-zero M-ring has a left simple non-zero homomorphic image in M.

Remark 8. Let g be a hypernilpotent radical (that is, all nilpotent rings are

g-rings) and let Sg be the semisimple class of g. If M is any class of rings such

that M0 ¼ g0 then we have, by Theorem 4,
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Ug 00 ¼ Elðg0Þ ¼ ElðMÞ;

where g 00, the class of left simple rings in the complementary class of g, clearly co-

incides with the class of division rings in Sg.

Notice that if D is the class of all division rings and UDJ g, then g 00 coincides
with the class of division rings in Sg (hence g 00 is a special class of rings) and

ElðMÞ is a special radical.

Example 9. If D again denotes the class of all division rings, and Z is the class of

all simple zero-rings, then

ElðZÞ ¼ ElðD 0
0Þ ¼ UD

and ElðDÞ ¼ ElðZ 0
0Þ ¼ UZ.

Example 10. Consider the subclass Elð0Þ of all rings each non-zero homomorphic

image of which has a proper essential left ideal. Obviously, left simple rings can-

not belong to Elð0Þ. For S ¼ fA jA is either a division ring or a prime order zero

ringg and T ¼ fall direct sums of members of Sg, we have:

Elð0Þ ¼ US ¼ UT ¼ UDBUZ:

In fact, from Theorem 4 and the definition of Elð0Þ, it follows that Elð0Þ ¼ UT.

Also, SJT, so UTJUS. Conversely, if A a US then R, having no non-zero

image in S, cannot have an image in T, so that A a UT and so Elð0Þ ¼ UT ¼
US. It is easily seen that UT ¼ UDBUZ.

In order to prove the next proposition, we require the following result.

Lemma 11. The following conditions are equivalent for an abelian group G:

(i) Every non-zero homomorphic image of G has a proper essential subgroup;

(ii) G is divisible.

Proof. (i) implies (ii). Suppose pGAG for some prime p. Then the cyclic group

ZðpÞ of order p is a homomorphic image of G=pG and therefore of G. But ZðpÞ
has no proper essential subgroup; a contradiction. Thus pG ¼ G for every prime

p and so G is divisible.

(ii) implies (i). If G is non-zero and divisible, then G ¼ AaB where AGQ

or AGZðplÞ for some prime p. If 0A a a A, then 3a4aB is a proper essential

subgroup of G, where 3a4 is the cyclic subgroup of G generated by a. Now we

just observe that all homomorphic images of G are also divisible. r
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Proposition 12. The radical Elð0Þ is polynomially extensible; that is, A a Elð0Þ im-

plies that A½x� a Elð0Þ.

Proof. Let A a Elð0Þ and consider an arbitrary non-zero homomorphic image

A½x�=I of the polynomial ring A½x�. If A 6O I , then 0A ðAþ IÞ=I GA=ðAB IÞ
and ðAþ IÞ=I has a proper essential left ideal. But ðAþ IÞ=I is a

homomorphic image of A½x�=I . In fact, j : A½x�=I ! ðAþ IÞ=I defined by

jða0 þ a1xþ � � � þ anx
n þ IÞ ¼ a0 þ I is a ring epimorphism. Hence, by Lemma

1, A½x�=I has a proper essential left ideal. If AJ I , then a0 þ b1xþ
b2x

2 þ � � � a I for all a0 a A, bi a A2, so A½x�=I is a homomorphic image of

fðc1 þ A2Þxþ ðc2 þ A2Þx2 þ � � � j ci a AgGA=A2aA=A2a � � � . Now AAA2,

since otherwise I ¼ A½x�. Since A a Elð0Þ it follows that 0AA=A2 a Elð0Þ. By

the previous lemma, A=A2 is a divisible zero-ring and hence also A½x�=I . By the

first part of the proof, A½x�=I has a proper essential left ideal. r

Proposition 13. (1) For any class M of rings, El

�
ElðMÞ

�
¼ ElðMÞ.

(2) For any family fMi j i a Lg of classes of rings, we have

7
i AL

ElðMiÞ ¼ El

�
7
i AL

Mi

�
:

Proof. (1) It is clear that ElðMÞJEl

�
ElðMÞ

�
. On the other hand, suppose that

A a El

�
ElðMÞ

�
and let A be any non-zero homomorphic image of A. Suppose

that A has no proper essential left ideals. Then A has a non-zero left ideal

L a ElðMÞ and, by [3], Theorem 5, L is a direct summand of A; that is,

A ¼ LaK for some ideal K of A. But then any left ideal of L is also a left ideal

of A. Now, if L has a proper essential left ideal, then by

A=K ¼ ðLþ KÞ=KUL=ðLBKÞUL

and Lemma 1, A has a proper essential left ideal, a contradiction. Hence L has a

non-zero left ideal in M, which is also a left ideal in A. Therefore A a ElðMÞ.
(2) Clearly, Elð7i ALMiÞJ7

i ALElðMiÞ. Let A a 7
i ALElðMiÞ and suppose

that A is any non-zero homomorphic image of A. If A has no proper essential

left ideal, then A has a non-zero left ideal S a M1 which is a left simple ring

and a summand of A. We claim that S a Mi for each i a L. If S B Mi for some

i a L, then S, as a homomorphic image of A, has neither a proper essential

left ideal nor a non-zero left ideal in Mi, contradicting A a ElðMiÞ. Therefore,

A a Elð7i ALMiÞ. r

Remark 14. (i) The lattice of all radicals ElðMÞ is atomic and coatomic. The

atoms are the radicals ElðfPgÞ and the coatoms are the radicals ElðS� fPgÞ,
where P is a non-zero left simple ring and S is the class of all left simple rings.
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(ii) The collection of all radicals ElðMÞ forms a meet subsemilattice of the

lattice of all radicals. Indeed, if ElðM1Þ and ElðM2Þ are any two such radical

classes, then ElðM1ÞbElðM2Þ ¼ ElðM1ÞBElðM2Þ ¼ ElðM1BM2Þ.
(iii) [11], Example 5, also shows that this collection of radical classes ElðMÞ is

not a sublattice of the lattice of all radical classes with respect orband4. How-

ever, like the collection of the Olson and Jenkins radical classes, this collection

also forms a Boolean lattice with respect to the operators b and 40, where

ElðM1Þ40 ElðM2Þ ¼ ElðM1AM2Þ for arbitrary classes M1 and M2 of rings.

3. Polynomial rings and radicals

For a ring A, A½x� and A½x1; x2; . . . ; xn� denote, respectively, the ring of polyno-

mials over A in one indeterminate and the ring of polynomials over A in n

commuting indeterminates and Pn denotes the class of all polynomial rings

A½x1; x2; . . . ; xn�.
For a radical g, let gð1Þ denote the class fA jA½x� a gg and let gð1Þ denote the

lower radical LðgBP1Þ.

Proposition 15 ([1], Theorem 1). gð1Þ is a radical class for any radical class g.

Defining gðnÞ ¼ fA jA½x1; . . . ; xn� a gg and gðnÞ ¼ LðfPnB ggÞ, we obtain the

chains

gK gð1Þ K � � �K gðnÞ K � � �

and

gK gð1Þ K � � �K gðnÞ K � � � :

Clearly,

gðnÞ J gðnÞ:

In [1], Gardner posed the following question:

Does the chain

g ¼ gð0Þ K gð1Þ K � � �K gðnÞ K � � �

terminate for every radical class g? We shall give a negative answer to this ques-

tion, but first we need some preliminary results.

Proposition 16 ([1]). Let A be a ring with unity and S a ring with unity and no

other non-zero idempotents. Then S belongs to LðfAgÞ if and only if it is a homo-

morphic image of A.
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Let A be a ring. A ring I is said to be an accessible subring of A if

I ¼ I1 p � � �p In ¼ A for some natural number n.

Lemma 17. Let A be a ring with unity and B a ring with unity and no other non-

zero idempotents. Then the LðfAgÞ-radical of B is non-zero if and only if B is a

homomorphic image of A.

Proof. Let LðfAgÞA 0. Then LðfAgÞðBÞ has a non-zero accessible subring I such

that I is a homomorphic image of A. Since LðfAgÞðBÞpB, I is an accessible

subring of B. Similarly to the proof of Proposition 16, we obtain that I ¼ B.

Hence B is a homomorphic image of A. The converse is clear. r

Lemma 18. Let g be a radical and let I be an accessible subring of a ring A. If

I a g, then gðAÞA 0.

Proof. Suppose that I ¼ I1 p � � �p In ¼ A. Since I a g and I p I2, 0A gðIÞJ
gðI2Þ and, by induction, 0A gðIÞJ gðI2ÞJ � � �J gðInÞ ¼ gðAÞ. r

We denote by Cp the class of all commutative prime rings and C ¼ UCp. If U

is a class of rings with unity, we put CU ¼ LðCAUÞ.

Proposition 19. Let U be a class of rings with unity and let AA 0 be a commuta-

tive reduced ring with unity and no other non-zero idempotent. Then CUðAÞA 0 if

and only if A is a homomorphic image of a ring B a U.

Proof. Suppose that CUðAÞA 0. Since A is a commutative reduced ring,

R ¼ CUðAÞ is also a commutative reduced ring. Therefore, for each 0A a a R,

there exists an ideal Ka of R, which is maximal with respect to the exclusion of

an for any natural number n. Clearly, R=Ka is a prime commutative ring. Since

0A a a R is arbitrary, R is a subdirect sum of the rings R=Ka. Hence R is a C-

semisimple ring. By Lemma 18, R has no non-zero accessible subring which is

a homomorphic image of a ring B a C. Therefore R has an accessible subring

I such that I is a homomorphic image B in U. Hence, by Lemma 18,

LðfBgÞðAÞA 0, because I is an accessible subring of A. By Lemma 17, A is a ho-

momorphic image of B. The converse is clear. r

We denote by jAj the cardinality of a ring A.

Lemma 20. Let A be a simple ring with jAjb@0. Then jAj ¼ jBj for every non-

zero homomorphic image B of A½x1; . . . ; xn� and n a N.

Proof. Since A is infinite, we have jA½x1; . . . ; xn�j ¼ jAj. Therefore jBja jAj
for every homomorphic image of A½x1; . . . ; xn�. Let B ¼ A½x1; . . . ; xn�=I A 0.
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We show that AB I ¼ 0. Suppose that AB I A 0. Since 0AAB I pA and A

is a simple ring, A ¼ AB I . Clearly A2 ¼ A because A is infinite. Therefore

A½x1; . . . ; xn� ¼ A2½x1; . . . ; xn�J I . Hence A½x1; . . . ; xn� ¼ I , a contradiction to

A½x1; . . . ; xn�=I A 0. Thus AB I ¼ 0. Since ðAþ IÞ=I GA=ðAB IÞGA, we have

jAj ¼ jðAþ IÞ=I ja jA½x1; . . . ; xn�=I j ¼ jBj. Thus jAj ¼ jBj. r

Remark 21. Notice that we may find fields F1;F2; . . . ;Fn; . . . , of zero characteris-

tic such that jF1j < jF2j < � � � < jFnj < � � � and jF1jb@0. Therefore, we can as-

sume that F1 ¼ Q, where Q is the field of rational numbers.

In what follows, let

S ¼ fFn½x1; . . . ; xn� jFn is a field and Fn½x1; . . . ; xn�
is not a homomorphic image of Fm½x1; . . . ; xm� for any mA ng

and FS ¼ LðUF1ASÞ, where F1 is the class of all fields. We are now in a po-

sition to prove the following result.

Theorem 22. Let F1 ¼ Q, F2; . . . ;Fn; . . . be fields such that jFij < jFiþ1j for each
i ¼ 1; 2; . . . . If g is any radical such that

SJ gJFS;

then g ¼ gð1Þ I gð2Þ I � � �I gðnÞ I � � � .

Proof. By assumption, we have Fn a LðSÞðnÞ J gðnÞ J ðFSÞðnÞ. We claim that

Fn B gðnþ1Þ. It is su‰cient to show that Fn½x1; . . . ; xn; xnþ1� B FS. Suppose that

Fn½x1; . . . ; xn; xnþ1� a FS. Clearly, Fn½x1; . . . ; xn; xnþ1� is a commutative reduced

ring with unity and no other non-zero idemotents. By an argument similar to

the one used in the proof of Proposition 19, Fn½x1; . . . ; xn; xnþ1� is a homomorphic

image of some BS in S. Let BS ¼ Fs½x1; . . . ; xs� and Fn½x1; . . . ; xn; xnþ1�GBS=I .

Then n ¼ s. Indeed, if nA s, then we have, by Lemma 20, jFn½x1; . . . ; xn; xnþ1�j ¼
jFnj and jFsj ¼ jFs½x1; . . . ; xs�=I j ¼ jBS=I j. Since Fn½x1; . . . ; xn; xnþ1�GBS=I , it

follows that jFn½x1; . . . ; xn; xnþ1�j ¼ jBs=I j. But jFnjA jFsj, a contradiction. Thus

n ¼ s and Fn½x1; . . . ; xn; xnþ1� is a homomorphic image of Fn½x1; . . . ; xn�. By [10],

Theorem 29, this is impossible. Therefore Fn B gðnþ1Þ and so gðnÞA gðnþ1Þ. r

We notice that Theorem 22 is true for any S. For example, take Fi ¼ ZpðiÞ,
where pðiÞ is a prime number such that pðiÞA pð jÞ for iA j.
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Remark 23. Recall that a radical g is said to be subidempotent if g consists of

idempotent rings. Clearly, A ¼ Fn½x1; . . . ; xn�, where n is a positive integer, is an

idempotent ring and hence the radical LðSÞ is subidempotent.

We now consider the following well-known radicals:

• The Baer radical b. This is the upper radical determined by the class of all

prime rings.

• The locally nilpotent radical L. This is the radical class of all locally nilpo-

tent rings.

• The Brown-McCoy radical G. This is the upper radical determined by the

class of all simple rings with unity.

• The nil radical N. This is the radical class of all nil rings.

• Let W be the class of all rings A such that for each element a a A, there exist

elements a1; . . . ; an; b1; . . . ; bn a A and m a N with am þ
Pn

i¼1 ai½a; bi� ¼ 0.

In [7], Tumurbat and Wiegandt proved that W is a radical class and that W

coincides with Gð1Þ.

We notice that bHLHNHW HCHUF1.

Corollary 24. (i) If g is one of the radicals

LðbASÞ; LðLASÞ; LðNASÞ;

or g is any radical in the interval
�
L
�
Elð0ÞAS

�
;FS

�
, then

gð1Þ I gð2Þ I � � �I gðnÞ I � � � :

(ii) There exists a radical g such that gðnÞA gðnþ1Þ. Moreover, LJ7 gðnÞ.

Let A be a ring. We denote by MðAÞ the ring of all infinite matrices over A

having only finitely many non-zero elements. We show that the polynomial ring

MðAÞ½X � a 7GðnÞ for any set X of commuting or noncommuting indeterminates.

First, however, we need some preliminary results.

Lemma 25. Let A be a ring with unity and I an ideal of MðAÞ. Then there exists

an ideal K of A such that I ¼ MðKÞ.

Proof. Consider a matrix B ¼ ðbijÞ a I and let ðAÞuv denote the subset of MðAÞ
having non-zero elements only at the ðu; vÞ-entry. For arbitrary indices k and l,

we have
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ðAÞkiBðAÞjl ¼

0 � � � 0 � � � 0

..

. ..
.

0 � � � AbijA � � � 0

..

. ..
. ..

.

0 � � � 0 � � � 0

0
BBBBBBB@

1
CCCCCCCA
J ðAÞkl B I :

Since A has a unity,

l

k

0 � � � 0 � � � 0

..

. ..
.

0 � � � bij � � � 0

..

. ..
.

0 � � � 0 � � � 0

0
BBBBBBB@

1
CCCCCCCA
a I

Clearly, K ¼ fa a A j a ¼ bij; ðbijÞ a IgpA and I JMðKÞ. Since

l

k

0 � � � 0 � � � 0

..

. ..
.

0 � � � a � � � 0

..

. ..
.

0 � � � 0 � � � 0

0
BBBBBBB@

1
CCCCCCCA
a I

we have MðKÞJ I . Therefore MðKÞ ¼ I . r

Corollary 26. Let A be an arbitrary ring and I an ideal of MðAÞ. Then there exist

ideals K and J of A such that MðKÞJ I JMðJÞ and MðJÞ3 JMðKÞ.

Proof. We denote by A1 the ring A with an identity adjoined. Clearly,

I pMðAÞpMðA1Þ. Let 3I4 be the ideal of MðA1Þ generated by I . By Lemma

25, there exists and ideal J of A1 such that 3I4 ¼ MðJÞ. By Andrunakievich’s

Lemma, MðJÞ3 J I . Clearly, JJA. Since MðJÞ3 pMðA1Þ, MðJÞ3 ¼ MðKÞ,
where K pA1 and also KpA. r

Corollary 27. Let A be an arbitrary ring and let I be a semiprime ideal of MðAÞ.
Then there exists an ideal K of A such that I ¼ MðKÞ.

Theorem 28. Let A be an arbitrary ring. If B a MðAÞ, then there exist

B1;B2; . . . ;Bn;A1;A2; . . . ;An a MðAÞ and a positive integer m such that
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Bm þ
Xn

i¼1

Bi½B;Ai� ¼ 0

and so MðAÞ a W.

Proof. First, we shall show that if MðAÞ is a semiprime ring, then MðAÞ has zero
center. Suppose that 0AB a Z

�
MðAÞ

�
, where, for a ring T , ZðTÞ denotes the

center of T and

B ¼

b11 � � � b1n 0 � � � 0

..

. ..
.

bn1 bnn 0 � � � 0

0 0 0 0

..

. ..
. ..

. ..
.

0 0 0 0

0
BBBBBBBBB@

1
CCCCCCCCCA

:

Then bij A 0 for some i, j. Let x be an arbitary element of A and let

X ¼

i

0 � � � � � � 0

..

. ..
.

0 � � � x � � � 0

..

. ..
.

0 � � � � � � 0

0
BBBBBBB@

1
CCCCCCCA
nþ 1:

Clearly, BX ¼ 0. Since B a Z
�
MðAÞ

�
, XB ¼ 0 and thus xbij ¼ 0. Since MðAÞ is

semiprime, A is a semiprime ring. But Abij ¼ 0, a contradiction. Now we show

that every non-zero prime homomorphic image of MðAÞ has zero center. Let

MðAÞ=I be a non-zero prime homomorphic image of MðAÞ. By Corollary 27,

I ¼ MðKÞ for an ideal K of A and so MðAÞ=I ¼ MðAÞ=MðKÞGMðA=KÞ. Since

MðAÞ=I is a prime ring, Z
�
MðAÞ=I

�
¼ 0. Thus, by [5], MðAÞ a Gð1Þ and, by [7],

for arbitrary B a MðAÞ, there exist B1;B2; . . . ;Bn;A1;A2; . . . ;An a MðAÞ and a

positive integer m such that Bm þ
Pn

i¼1 Bi½B;Ai� ¼ 0. r

Corollary 29. Let A be an arbirary ring. Then MðAÞ½x1; . . . ; xn� a W for any pos-

itive integer n.

Proof. In view of MðAÞ½x1�GMðA½x1�Þ a W, it follows by induction that

MðAÞ½x1; . . . ; xn� a W. r
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Theorem 30. Let A be an arbitrary ring. Then MðAÞ½X � a 7GðnÞ, for any set X

of commuting or noncommuting indeterminates.

Proof. This follows from Corollary 29 and [8], Corollary 2.18(ii). r

Corollary 31. If gl ¼ 7 g for a radical g, then we have:

(i) NHWl HLðWASÞl;

(ii) b ¼ bl JWl JWJG.

Remark 32. (i) All the known examples of radicals g with gðnÞA gðnþ1Þ for any

positive integer n are not hereditary. We do not know, however, whether for all

hereditary radicals the chain terminates.

(ii) We have gðnÞ ¼ gðnþ1Þ if and only if gðnÞ ¼ gðnþ1Þ; hence there exist many rad-

icals such that gðnþ1Þ H gðnÞ for any positive integer n.
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