Portugal. Math. (N.S.) Portugaliae Mathematica
Vol. 65, Fasc. 2, 2008, 261-273 © European Mathematical Society

On radicals and polynomial rings
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Abstract. For any class .# of rings, it is shown that the class &,(.#) of all rings each non-
zero homomorphic image of which contains either a non-zero left ideal in .# or a proper
essential left ideal is a radical. Some characterizations and properties of these radicals are
presented. It is also shown that, for radicals y under certain constraints, one can obtain a
strictly decreasing chain of radicals y = () 2 yp @ -+ 2y, = -+ where, for each posi-
tive integer n, y(, is the radical consisting of all rings 4 such that A[xy,...,x,] is in 7,
thus giving a negative answer to a question posed by Gardner. Moreover, classes .#
of rings are constructed such that there exist several such radicals y in the interval
[64(0), 8/ (A)).

Mathematics Subject Classification (2000). 16N80.
Keywords. Kurosh—Amitsur radical, essential left ideal, upper radical, polynomial rings.

1. Introduction

All rings considered in this note are associative. Let us recall that a (Kurosh—
Amitsur) radical y is a class of rings which is closed under homomorphisms, exten-
sions (I and A/I in y imply that 4 in p) and has the inductive property (if
Lch<c---=1I,<---is an ascending chain of ideals of 4 such that each I, is
in y, then also | )1, € 7). The unique largest y-ideal y(4) of A is then called the
y-radical of A. A class .# of rings is said to be regular if every non-zero ideal of
a ring in .# has a non-zero homomorphic image in .#. Starting from a regular
class .# of rings, the upper radical operator U yields a radical class:

.4 = {A| A has no non-zero homomorphic image in .#}.

The definitions and significant radical theoretic properties used throughout
this text may be found in [2], [9]. As usual, / <« 4 indicates that / is an ideal
of the ring A. A ring (ideal) belonging to a class .# will be called an .#-ring
(A -1deal).
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2. Upper radicals and essential left ideals

For any class .# of rings, we show that the class &,(.#) of all rings each non-zero
homomorphic image of which contains either a non-zero left ideal in .# or a
proper essential left ideal is a radical. For certain classes .# of rings, &,(.#) is
characterized as an upper radical (for example, the Thierrin radical) and we also
show that the collection of all the radicals &,(.#) forms a meet sublattice of the
lattice of all radicals.

Let us recall that a simple ring means a ring without nontrivial ideals. A ring
without nontrivial left ideals shall be called a left simple ring. We remind the
reader that such rings are simple zero-rings or division rings. An essential left
ideal of a ring A4 is a left ideal which has non-zero intersection with every non-
zero ideal of 4.

It is well known [4] that if a ring 4 has a homomorphic image with a proper
essential ideal, then 4 has a proper essential ideal. We now show, in a similar
way, that the same holds for left-sided ideals.

Lemma 1. If' A has a homomorphic image with a proper essential left ideal, then A
has a proper essential left ideal.

Proof. Let A/I be a non-zero homomorphic image of 4 with L/I a proper essen-
tial left ideal of 4/I. Then I is a proper ideal of 4 and L # A. To show that L is
essential in 4, let0 #J < 4. If J= L, thenJnL=J #0, as desired. If J & L,
then J £ 7 and 0 # (J +1)/I < A/I so that [(J +1)/I|n[L/I] # 0. Thus, there
existsa+b e J+ 1 and [ € L such that (a+b) +1 =1+ 1 # I. This implies that
a+b+by =1+ b, for some by,b, € I. Since I = L, we have b+ by € L and
I+ by e L. Therefore, a=(I+by)—(b+b)eL and so aeJnL. If a=0,
then b + by =/ + by, which implies that / € I. However, this is impossible since
[+ 1 +#1. Hence J n L # 0, as required. |

Theorem 2. &,(.#) is a radical class for any class 4 of rings.

Proof. Clearly, &,(#) is a homomorphically closed class of rings. Now suppose
that A ¢ &,(.#). Then A4 has a non-zero homomorphic image A which has neither
a non-zero left ideal in .# nor a proper essential left ideal. Let K be a non-zero
&y (A )-ideal of A. By [3], Theorem 5, K must be a direct summand of 4 and then
also, K is a homomorphic image of 4. Since K € &,(.#), it must have a proper
essential left ideal or a non-zero left ideal in .#. But, if K has a proper essential
left ideal, then Lemma 1 forces A to have a proper essential left ideal, contrary to
the choice of 4. Also, if K has a non-zero left ideal in .#, then this left ideal of K
is actually a left ideal of A, since K is a direct summand of 4. Again this is
impossible. Thus 4 has no non-zero ideal in &, (.%). O
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Let .4 be any class of rings. In the sequel, .# stands for the class of all simple
rings contained in .#, and .# denotes the class of all left simple rings contained in
. The class of rings complementary to the class .# is denoted by .#'.

Proposition 3. For any class 4 of rings, &,( M) = E(Mo) = E,(M).

Proof. Obviously, & (o) < (M) < E(M). Let A € & (M) and let A be any
non-zero homomorphic image of 4. If 4 has no proper essential left ideal, then,
according to [3], Theorem 5, 4 is a direct sum of left simple rings and hence con-
tains a non-zero .#y-ideal. Thus A € &,(.#). O

Theorem 4. For any class 4 of left simple rings, Wil = (M) = E,(MY).

Proof. Suppose A ¢ W./. Then A € ./ for some non-zero homomorphic image
of A. So, A has neither a proper essential left ideal nor a non-zero left ideal
in .#]. Hence, A¢&,(41). On the other hand, if A ¢ &,(.#1), then A has a
non-zero homomorphic image 4 without a proper essential left ideal or a non-
zero left ideal in .#{. Then A is a direct sum of simple rings having only trivial
left ideals, each of which can be considered an ideal of 4. These simple rings are
obviously in .#. Moreover, each of these summands is a homomorphic image
of A and thus of 4. Therefore 4 ¢ ./. O

Corollary 5. If ./ is a homomorphically closed class of rings, then LM = E;( M) if
and only if @M = WAy, where 84 denotes the lower radical determined by M.

Proof. This is clear since &,(.4) = &, (M1) = &/ (My) = WM. O

Corollary 6. If ./ is a regular class of rings, then there exists a class N of rings
such that W4l = &,(N") if and only if Wil = WM.

Proof. 1f W = &,(N") for some class .4 of rings, then &,(N) = E,(N") = WM,
where &,(A5) = WA, Hence Wi/ = UNy. But Ny = .4, for B e Ny implies
that B ¢ U] = W/, whence B € /. Thus W4y = UN;. Moreover, .4y = N .
In fact, A left simple and A ¢ ./ implies that 4 € A4 = W.#. Therefore A ¢ .4
and consequently 4 ¢ .#,. We have now that U.Z = W ,.

Conversely, W/ = Wity = &, (MY). O

Corollary 7. Let ./ be a regular class of rings which contains non-zero left simple
rings. Then there exists a class N of rings such that W4/ = &,(N") if and only if
every non-zero M -ring has a left simple non-zero homomorphic image in M.

Remark 8. Let y be a hypernilpotent radical (that is, all nilpotent rings are
y-rings) and let ¥’y be the semisimple class of y. If .# is any class of rings such
that .#y = y, then we have, by Theorem 4,
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Uyy = E¢(py) = Er(M),

where y;, the class of left simple rings in the complementary class of y, clearly co-
incides with the class of division rings in %y.

Notice that if Z is the class of all division rings and #% < y, then y;, coincides
with the class of division rings in .’y (hence y| is a special class of rings) and
8, (M) is a special radical.

Example 9. If 9 again denotes the class of all division rings, and Z is the class of
all simple zero-rings, then

E/(Z) = &/(2)) =02
and gg(@) = g/(fé) =UZ.

Example 10. Consider the subclass &,(0) of all rings each non-zero homomorphic
image of which has a proper essential left ideal. Obviously, left simple rings can-
not belong to &,(0). For ¥ = {A| A is either a division ring or a prime order zero
ring} and 7 = {all direct sums of members of ¥}, we have:

E(0) =0 =0T = U UL,

In fact, from Theorem 4 and the definition of &,(0), it follows that &,(0) = 7.
Also, ¥ = 7 ,s0 0.7 < U.Y. Conversely, if 4 € LY then R, having no non-zero
image in .%, cannot have an image in .7, so that 4 € U7 and so &,(0) = UT =
Uy, Itis easily seen that T = UY N UZ.

In order to prove the next proposition, we require the following result.

Lemma 11. The following conditions are equivalent for an abelian group G:
(i) Every non-zero homomorphic image of G has a proper essential subgroup;
(i) G is divisible.

Proof. (i) implies (ii). Suppose pG # G for some prime p. Then the cyclic group
Z(p) of order p is a homomorphic image of G/pG and therefore of G. But Z(p)
has no proper essential subgroup; a contradiction. Thus pG = G for every prime
p and so G is divisible.

(ii) implies (i). If G is non-zero and divisible, then G = A @ B where 4 =~ Q
or A = 7Z(p™) for some prime p. If 0 # a € A4, then {a) @ B is a proper essential
subgroup of G, where <{a) is the cyclic subgroup of G generated by a. Now we
just observe that all homomorphic images of G are also divisible. O
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Proposition 12. The radical &,(0) is polynomially extensible; that is, A € &,(0) im-
plies that A[x] € &,(0).

Proof. Let A € £,(0) and consider an arbitrary non-zero homomorphic image
A[x]/I of the polynomial ring A[x]. If AZI, then 0# (A+1)/I=A/(ANI)
and (A+1)/I has a proper essential left ideal. But (4 +1)/I is a
homomorphic image of A[x|/I. 1In fact, ¢: A[x|/I — (A+I)/I defined by
plap+ayx+ - +a,x"+1)=ay+ 1 is a ring epimorphism. Hence, by Lemma
1, A[x]/I has a proper essential left ideal. If A4 <1, then ay+bix+
byx>+--- el for all aye A, b; e A>, so A[x]/I is a homomorphic image of
{lecr + A)x+ (2 +A)x> + - |cie Ay = AJA> D A/A* D ---. Now 4 # A2,
since otherwise I = A[x]. Since 4 € &,(0) it follows that 0 # A4/A4% € &,(0). By
the previous lemma, 4/A4? is a divisible zero-ring and hence also A[x]/I. By the
first part of the proof, A[x]/I has a proper essential left ideal. O

Proposition 13. (1) For any class .U of rings, &;(8,(M)) = &,(M).
(2) For any family {.#;|i € A} of classes of rings, we have

N 6ty = 6,( () M)

ieA ieA

Proof. (1) It is clear that &,(.#) = &,(6,(.#)). On the other hand, suppose that
A€ &/(6(M)) and let A be any non-zero homomorphic image of A. Suppose
that 4 has no proper essential left ideals. Then 4 has a non-zero left ideal
L e é,(M) and, by [3], Theorem 5, L is a direct summand of A; that is,
A =L @ K for some ideal K of 4. But then any left ideal of L is also a left ideal
of A. Now, if L has a proper essential left ideal, then by

A/K=(L+K)/)K~L/(LnK)~L

and Lemma 1, 4 has a proper essential left ideal, a contradiction. Hence L has a
non-zero left ideal in .#, which is also a left ideal in A. Therefore A € & (.4).
(2) Clearly, &(();,oa#:) S ();cp6r(Mi). Let A € (), \&/(A;) and suppose
that A4 is any non-zero homomorphic image of 4. If 4 has no proper essential
left ideal, then 4 has a non-zero left ideal S € .#; which is a left simple ring
and a summand of 4. We claim that S € .#, for each i € A. If S ¢ .#; for some
ieA, then S, as a homomorphic image of 4, has neither a proper essential
left ideal nor a non-zero left ideal in .#;, contradicting 4 € &,(.#;). Therefore,

A€ (g/(mie/\%i)’ |

Remark 14. (i) The lattice of all radicals &,(.#) is atomic and coatomic. The
atoms are the radicals &,({P}) and the coatoms are the radicals &,(.% — {P}),
where P is a non-zero left simple ring and % is the class of all left simple rings.
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(i) The collection of all radicals &,(.#) forms a meet subsemilattice of the
lattice of all radicals. Indeed, if &,(.#,) and &,(.#,) are any two such radical
classes, then 5/@%1) A g{(%z) = 5/(%1) N g/(ﬂz) = 5)/(%1 N ﬂz).

(iii) [11], Example 5, also shows that this collection of radical classes &;(.#) is
not a sublattice of the lattice of all radical classes with respect or A and v. How-
ever, like the collection of the Olson and Jenkins radical classes, this collection
also forms a Boolean lattice with respect to the operators A and v’, where
Ep (M) N Ef (M) = (M © M) for arbitrary classes .#, and .#; of rings.

3. Polynomial rings and radicals

For a ring A, A[x] and A[x;, xs,...,x,] denote, respectively, the ring of polyno-
mials over A4 in one indeterminate and the ring of polynomials over 4 in n
commuting indeterminates and P, denotes the class of all polynomial rings
Alxy, X2, X

For a radical y, let y(;) denote the class {4 |A[x] € y} and let y1) denote the
lower radical L(y n Py).

Proposition 15 ([1], Theorem 1). y(, is a radical class for any radical class y.

Defining y,) = {4 [ A[x1,...,x,] € y} and y" = ({P, ny}), we obtain the
chains

and

Clearly,

In [1], Gardner posed the following question:
Does the chain

terminate for every radical class y? We shall give a negative answer to this ques-
tion, but first we need some preliminary results.

Proposition 16 ([1]). Let A be a ring with unity and S a ring with unity and no
other non-zero idempotents. Then S belongs to L({A}) if and only if it is a homo-
morphic image of A.
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Let A be a ring. A ring [ is said to be an accessible subring of A if
I =1 <---<l, = A for some natural number n.

Lemma 17. Let A be a ring with unity and B a ring with unity and no other non-
zero idempotents. Then the ({A})-radical of B is non-zero if and only if B is a
homomorphic image of A.

Proof. Let £({A}) # 0. Then £({4})(B) has a non-zero accessible subring / such
that 7 is a homomorphic image of 4. Since L({A})(B) < B, I is an accessible
subring of B. Similarly to the proof of Proposition 16, we obtain that / = B.
Hence B is a homomorphic image of 4. The converse is clear. O

Lemma 18. Let y be a radical and let I be an accessible subring of a ring A. If
I €y, then y(A) # 0.

Proof. Suppose that I =1, <---<al, = A. Slnce Teyand I<b, 0#9y(I) <
y(I>) and, by induction, 0 # y(/ ) Sy ) c - cy(ly) =9(4). O

We denote by %, the class of all commutative prime rings and 4 = U%,. If %
is a class of rings with unity, we put 45 = L(€ U %).

Proposition 19. Letr % be a class of rings with unity and let A # 0 be a commuta-
tive reduced ring with unity and no other non-zero idempotent. Then €4 (A) # 0 if
and only if A is a homomorphic image of a ring B € %U.

Proof. Suppose that %4(A) #0. Since A is a commutative reduced ring,
R =%4(A) is also a commutative reduced ring. Therefore, for each 0 # a € R,
there exists an ideal K, of R, which is maximal with respect to the exclusion of
a" for any natural number n. Clearly, R/K, is a prime commutative ring. Since
0 # a € R is arbitrary, R is a subdirect sum of the rings R/K,. Hence R is a %-
semisimple ring. By Lemma 18, R has no non-zero accessible subring which is
a homomorphic image of a ring B € ¥. Therefore R has an accessible subring
I such that 7 is a homomorphic image B in %. Hence, by Lemma 18,
L({B})(A4) # 0, because [ is an accessible subring of 4. By Lemma 17, 4 is a ho-
momorphic image of B. The converse is clear. dJ

We denote by |4]| the cardinality of a ring 4.

Lemma 20. Let A be a simple ring with |A| = No. Then |A| = |B| for every non-
zero homomorphic image B of A[xi,...,x,| and n € N.

Proof. Since A is infinite, we have |A[xj,...,x,]| = |A4|. Therefore |B| < |4]
for every homomorphic image of A[xi,...,x,]. Let B= A[xy,...,x,]/I #0.
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We show that A n 7 =0. Suppose that AnI #0. Since 0 #Anl<1A4 and A
is a simple ring, 4 = AnI. Clearly 4> = 4 because A is infinite. Therefore

A[x1, ..., X, = A*[x1,...,x,) = I. Hence A[x,...,x,] =1, a contradiction to
Alx1, ..., xn)/T#0. Thus AnI=0. Since (A +1)/I =~ A/(AnI)= A, we have
|[A| = [(A+1)/I| < |A]x1,...,x,)/I| = |B|. Thus |A4]| = |B|. O

Remark 21. Notice that we may find fields Fy, F, ..., F,, ..., of zero characteris-
tic such that |F\| < |F2] < --- < |F,| < --- and |Fi| = ¥y. Therefore, we can as-
sume that F; = @, where Q is the field of rational numbers.

In what follows, let

S ={Fy[x1,...,%,]| Fy is a field and F;[xy, ..., x,]

is not a homomorphic image of F,[xi,...,X,] for any m # n}

and 7y = QUZ ' U .9), where # ! is the class of all fields. We are now in a po-
sition to prove the following result.

Theorem 22. Let Fi = Q, F,...,F,,... be fields such that |F;| < |F;| for each
i=1,2,.... Ifyisany radical such that

y—yg%(/’v

Proof. By assumption, we have F, € Q(V)(n) S Y S (F#)(y- We claim that
Fy ¢ 7(us1). It is sufficient to show that F,[xi,..., Xy, Xu41] ¢ F». Suppose that
F,[x1,...,Xn, Xn11] € Zo. Clearly, Fy[xi,..., Xy, X,y1] 1s @ commutative reduced
ring with unity and no other non-zero idemotents. By an argument similar to
the one used in the proof of Proposition 19, F,[xy, ..., X,, X,+1] is @ homomorphic
image of some Bs in S. Let Bs = F[xy,...,x5] and F,[x,..., Xy, Xuy1] = Bs/I.
Then n = 5. Indeed, if n # s, then we have, by Lemma 20, |F,[x1, ..., X, Xu41]| =
|Fn| and |F5| = |FS[)CI7 ce ,XS}/” = |Bs/1| Since F,,[xl, L. ,x,,,an] = Bs/l, it
follows that |F,[xy, ..., xu, Xui1]| = |Bs/I|. But |F,| # |Fs|, a contradiction. Thus
n=s and F,[x|,...,X,, X,+1] is @ homomorphic image of F,[xy,...,x,]. By [10],
Theorem 29, this is impossible. Therefore F, ¢ y(,, ) and so y,) # Y(u41)- O

We notice that Theorem 22 is true for any &. For example, take F; = Z,;,
where p(i) is a prime number such that p(i) # p(j) for i # j.
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Remark 23. Recall that a radical y is said to be subidempotent if y consists of
idempotent rings. Clearly, 4 = F,[xi,...,X,], where n is a positive integer, is an
idempotent ring and hence the radical £(.) is subidempotent.

We now consider the following well-known radicals:

e The Baer radical . This is the upper radical determined by the class of all
prime rings.

e The locally nilpotent radical . This is the radical class of all locally nilpo-
tent rings.

e The Brown-McCoy radical 4. This is the upper radical determined by the
class of all simple rings with unity.

e The nil radical .4". This is the radical class of all nil rings.

e Let 7 be the class of all rings A4 such that for each element a € A4, there exist
elements ay,...,a,,b1,...,b, € A and m e A" with a” + >, a;la,b;] = 0.
In [7], Tumurbat and Wiegandt proved that #" is a radical class and that %"
coincides with % ;).
We notice that fc Lc N W < C < UF !,
Corollary 24. (i) If y is one of the radicals
2pus), LZXVY), LNuY),

or y is any radical in the interval [2 (é"/(O) U Y),ﬁ{g»], then

y(l) Dy(z) D BRI Dy(”) ) cee
(ii) There exists a radical y such that y, # y(,1). Moreover, ¥ < f )

Let A be a ring. We denote by M(A4) the ring of all infinite matrices over A4
having only finitely many non-zero elements. We show that the polynomial ring
M(A)[X] € ()% for any set X of commuting or noncommuting indeterminates.
First, however, we need some preliminary results.

Lemma 25. Let A be a ring with unity and I an ideal of M(A). Then there exists
an ideal K of A such that I = M (K).

Proof. Consider a matrix B = (b;) € I and let (4),, denote the subset of M (A)
having non-zero elements only at the (u,v)-entry. For arbitrary indices k and /,
we have
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0 ... 0 .0
(A)sz(A)jl =[O Ab;A 0= (A)y 1
0 0 0
Since A4 has a unity,
/
0 0 0
k|l O blj 0ler
0 --- 0 --- 0

Clearly, K ={a € A|a = by, (bj) eI} <A and I = M(K). Since

)
0 0 0
k10 a 0el
0 0 0
we have M(K) = I. Therefore M(K) = I. O

Corollary 26. Let A be an arbitrary ring and I an ideal of M(A). Then there exist
ideals K and J of A such that M(K) = I = M(J) and M(J)* = M(K).

Proof. We denote by A! the ring 4 with an identity adjoined. Clearly,
I<aM(A) < M(A"). Let {I) be the ideal of M(A') generated by I. By Lemma
25, there exists and ideal J of A' such that {I» = M(J). By Andrunakievich’s
Lemma, M(J)® = 1. Clearly, J = A. Since M(J)* < M(A"), M(J)’ = M(K),
where K < 4! and also K <1 A. m

Corollary 27. Let A be an arbitrary ring and let I be a semiprime ideal of M(A).
Then there exists an ideal K of A such that I = M(K).

Theorem 28. Let A be an arbitrary ring. If Be M(A), then there exist
By,By,...,By, A1, Ay, ..., Ay € M(A) and a positive integer m such that
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n
B"+Y BB, 4] =0
i=1
and so M(A) € W

Proof. First, we shall show that if M(A4) is a semiprime ring, then M (A) has zero
center. Suppose that 0 # B € Z(M(A)), where, for a ring T, Z(T) denotes the
center of 7 and

byy -+ by 0 -~ 0
a_| bm b 0 0
0 0 0 0
0 0 0 0

0 0
Y=lo ... v o ofnsr
0 0

Clearly, BX = 0. Since B e Z(M(A)), XB =0 and thus xb; = 0. Since M(A) is
semiprime, A4 is a semiprime ring. But 4b; = 0, a contradiction. Now we show
that every non-zero prime homomorphic image of M(A) has zero center. Let
M(A)/I be a non-zero prime homomorphic image of M(4). By Corollary 27,
I = M(K) for an ideal K of 4 and so M(A)/I = M(A)/M(K) = M(A/K). Since
M(A)/I is a prime ring, Z(M(A)/I) = 0. Thus, by [5], M(A) € 9, and, by [7],
for arbitrary B € M(A), there exist By, By, ..., By, A1, As,..., 4, € M(A) and a
positive integer m such that B” + > | BB, A;] = 0. 0

Corollary 29. Let A be an arbirary ring. Then M (A)[x1,...,x,] € W for any pos-
itive integer n.

Proof. In view of M(A)[xi] = M(A[xi1]) € #°, it follows by induction that
M(A)[x1,...,x,] €W . Ul
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Theorem 30. Let A be an arbitrary ring. Then M(A)[X] € ()9, for any set X
of commuting or noncommuting indeterminates.

Proof. This follows from Corollary 29 and [8], Corollary 2.18(ii). O

Corollary 31. If y, = ()7 for a radical p, then we have:
Q) N Wy c&WOS),;
i) p=p, SN =W =9.

Remark 32. (i) All the known examples of radicals y with y(,) # 7(,;) for any
positive integer n are not hereditary. We do not know, however, whether for all
hereditary radicals the chain terminates.

(i) We have Y(n) = V(n+1) If and only if y = »(+1); hence there exist many rad-
icals such that y"+1) < »( for any positive integer 7.
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