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Wedderburn quasialgebras
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Abstract. The Wedderburn—Artin Theorem for G-graded quasialgebras is proved. This
provides new examples of quasialgebras.

Mathematics Subject Classification (2000). 17A01, 16W50.
Keywords. Nonassociative algebras, group graded algebras, Wedderburn algebras.

1. Introduction

Octonions are one of the best known examples of nonassociative algebras. In[3] the
nonassociativity of octonions was interpreted as inherited from being an algebra in
a quasitensor category. These categories have tensor products (V ® W) ® Z =
V ® (W ® Z), but these isomorphisms are not necessarily the trivial vector space
isomorphisms. Nonassociative algebras coming from quasitensor categories have
recently received attention in the context of noncommutative geometry and gauge
theory [7].

Given a group G, a G-graded quasialgebra is a G-graded algebra
A=@@),_ ;A" over a unital commutative and associative ring k, such that the
product of any three homogeneous elements in A satisfies the weak associative
condition

(xy)z = d(Ix[, [y, [2)x(y2) ()

for some cocycle ¢ of G with values in k* (|x| denotes the degree of x). That
is,
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¢(a7 e? b) = 17
¢(a, b, c)p(a, be,d)d(b,c,d) = ¢(ab, c,d)d(a, b, cd),

for any a, b, ¢,d € G, where e denotes the neutral element of G.

A quasialgebra is called a division quasialgebra if the left and right multiplica-
tions by any nonzero homogeneous elements are bijective. For unital quasialgebras,
the identity element 1 belongs to 4¢, and the division property is equivalent to the
condition of any nonzero homogeneous element having a left and a right inverse.
Division quasialgebras were considered in [5] and in [1]. The octonion algebra is a
Z3-graded division quasialgebra; see [3] for details.

In [2] a classical study of the structure of quasialgebras was initiated. In that
paper the authors focus upon the case that the grading group is Z,. A full descrip-
tion of Z,-graded quasialgebras 4 = 45 @ A; in the case that 4; is semisimple and
Aj is a unital 45-bimodule was given.

By analogy to the classical case [9], we define a Wedderburn quasialgebra as a
unital quasialgebra that has no nonzero nilpotent graded ideals and satisfies the
descending chain condition on graded left ideals. The goal of this paper is to pro-
vide an analogous of the Wedderburn—Artin Theorem for quasialgebras. The re-
sults are formulated in terms of a nonassociative version of the usual matrix alge-
bra related with the quasi-associative linear algebra introduced in [3] and extend
those in [4].

In this paper G will denote a finite group and 4 a Wedderburn quasialgebra
A =@, ;A with attached cocycle ¢, over a unital commutative and associative
ring k.

2. A°is a Wedderburn algebra

Since the product of homogeneous elements in a quasialgebra is associative up to
scalar multiples, it will be convenient to define x - y = span{xy)». For homoge-
neous elements this ‘product’ is associative.

Lemma 2.1. Let A be a Wedderburn quasialgebra. Then A° is a Wedderburn al-
gebra.

Proof. Let I} 2 I, = --- be a decreasing chain of left ideals of 4¢, and consider
the left graded ideals I; = AI; of A. Since A is a Wedderburn quasialgebra,

the decreasing chain L2o2bho--- stops. Thus I, = an for all i >0, and
I,=1; =1 =1, foralli>0.

Let I be an ideal of 4¢ with 2 = 0. We will prove that I = (41)A = A(IA)is a
graded ideal of A4 satisfying /1°*! = 0. Let n = |G|. Then I”*! is spanned by ele-
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ments in X = Xy, - X0 - .. Xq, - Xp - Xg,,, With x,, € A% and x; € I. If gja;y1...aj=e
with I <i<j<n, then x, - x;...x, S A4°,

Xt (X Xg X)) S TP =0

and x = 0. Therefore, whenever e appears in {a;,ajay,...,a;...a,} the corre-
sponding generator in x vanishes. If e does not appear, then two elements collapse
to the same value, say a;...a; =a;...a; with i <j. But this means that
ajt1-..a; = e, 50 x = 0 again. O

3. The basic quasialgebra of 4

The Wedderburn—Artin Theorem asserts that A4¢ = @:’:1 B; with B; ~ M, (D;)
for some division algebras D;. The quasi-associativity of 4 implies that 4% is a
unital 4°-bimodule.

If ¢; is the identity element of B; for any i, then 1=¢; 4+ ---+ ¢, and
=141 = @ij e;iA%e;. Let A be e;A“;, which is a unital B;-B;-bimodule.
Hence A4 = (—Bl - A“ Other components By act trivially on 47, i.e. BkA“ =0if
k #iand 4B, =0 1f k # j. The product A? @ . A> — A% is a homomorphlsm

of A¢- blmodules o)

AfAp =0 (j#k) and Ajd) = AP

/1 =
Let V; be the irreducible left B;i-module (unique up to isomorphism) and
V¥ =Homp,(V;, D;) its dual. As in [2], Proposition 9, up to isomorphism we
can write A4;; as

A= Vi@, Wi @,V

for some D;-D;-bimodule W,” Since V: ®4e V; = D; as Dj-bimodules, it follows
that the product Ajf @4 A], — A becomes an element of Homp g (V; ®p. ®
Wi ®p, W P Qp, ® V, Vi®p, ® Wz ®p, ® V). With the same arguments as

[ ], proof of Theorem 10, for any D;-D;-bimodules W and W' the map

HomB[,Bl(V,' ®Di ® w ®Dl ® Vl*, V,‘ ®Di ® W/ ®D1 ® Vl*) — HO]TID[,D](VI/7 W/),

is a bijection (since the image of an element v; ® w ® ¢; under an element in
Homgp_p, (Vi ®p, ® W ®p, @ V", Vi ®p, @ W' ®p, ® V;*) is annihilated by the
annihilator of v; on the left and the annihilator of ¢; on the right, and hence this
image belongs to v; ® W' ® ¢;).
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Thus, the product 4¢ ® Ay, — A¢’ induces a product Wi ® W} — Wi’ so
that

(0 @ Wi ® 0;) (6 @ Wiy ® 9)) = Iy ® (wijw; (1)) wiy ® o,

for any 1 <i,j kI <r, abe G, vye Vi (s=1ik), p,e V}

t >
b b
and wii € Wi, wi € Wy

Wyt € W;; (t = j> l)

Definition 3.1. The algebra W = @, _ (D),
called the basic quasialgebra of A.

i Wi ) with the previous product is

It is easy to check that the basic quasialgebra of A4 is a quasialgebra with the
same cocycle ¢ as 4. Some properties of W are collected in the following propo-
sition.

Proposition 3.2. Under the hypotheses above, the following holds:
1) Wi=Djand Wi =0ifi# ]
If Wi # 0 then W Wjﬁ‘fl = D;. In particular, W # 0 implies that W}?*l # 0.
If Wi #0 then Wi = Dyw = wD; for any nonzero element w € W.
W;;éOIhen Wi=0= W;foranyk;éjandl;éi.
If Wi #0 and W) # 0 then WiW; = Wi # 0.

11

v

i) If
i)
) 4
v) J

Proof. Part i) is obvious.

ii) Since Wi W " ep;if Wi W” # 0, the equality trivially holds. Hence,
in order to prove ii) we are left with the case in which W W" =0.
If Wb Wiw #0 for some bac=e then k=1 and Wb W“W” Dk, SO
wk W“ W‘ sz Wk #0. However, bac=e implies that cb =a ', so
Wi W,g c W and 0% Wh=WLWWwswh < whwewg ' In particular
Wi W” # O contrary to our assumptlon Therefore Wkl W” Wi=20 whenever
bac = e. The e component of the graded ideal I = (44})A Vanlshes Moreover,
given |G|+ 1 elements x,, € I, i=0,...,|G|, some sequence a;,...,aq; (i < j)
satisfisfies ;. .. a; = e and hence the product of x, ... s Xag, in any order of asso-
ciation is zero. The nonzero graded ideal 7 is then nilpotent, which is not possible.

iii) Given w,w’ € W and w € Wjj?fl, we have

(win)w' = ¢(a,a", a)w(ivw’).

If wiv = d; # 0, then w(ivd; 1) = 1, (the identity element of D;). Thus, we choose
w, w with wiw = 1p,, and then we get that w' € wD;. Thus W = wD; is a one-
dimensional D; vector space. A dimension argument makes the equahty valid

for any nonzero w. Similarly W = D;w.
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) Wi =DiWi=Wgi(W;i WIZ) S WiWj =0ifk # j. In the same way we
obtain that Wy = 0if / # i.
v) If wi Wb # 0, then the statement follows by dimension counting. If

WEW) =0, then
Wh=D,wh =W wHwh =we (Wiwh) =0
=Y jl_( ji 1"/‘) = ji( ij jl)_7
which contradicts the hypothesis. O

Definition 3.3. Given 1 <i,j <r, we say that i and j are related if W # 0 for
some a € G.

Parts 1), ii) and v) of the preceding proposition show that to be related is an
equivalence relation. We denote the different equivalence classes by Cy, ..., C;.

Proposition 3.4. Let Ce {Cy,...,Cs} and Ic =), jec Wi Then Ic is
a minimal graded ideal of W, which is simple as a quaszalgebra Moreover,

W=®L e

Proof. Let Wi clc. If Wk,W“ #0, then /=17 and k and j are related, so
JjkeC and W) Wi = W,;“ < Ic by Proposition 3.2.  This shows that
Wic < Ic. In the same way we obtain that Ic W < I¢.

Given a nonzero graded ideal J = W with J < I¢, there exists J7 # 0, with
i,jeC. By dimension counting, we have Ji = W, so Wi/ W = D c J. Fix
any 0 W} < Ic. Since k is related to i, there exists 0 # W/a = WD, = J.
Again Dy = J, and W}, = Dy W}, < J. Therefore, J = Ic.

Let J < I¢ be a nonzero graded ideal of Ic. If / ¢ C, then kalJ =0=JW}
for all k, b and ¢. Hence J is an ideal of W and so J = I¢. Thus I¢ is simple. []

Corollary 3.5. Ac =36 ;ccVi®pWi®p @V is a mzmmal graded
ideal of A, which is simple as a quasialgebra. Moreover A (—D

4. Classifying the basic quasialgebra

Corollary 3.5 reduces the study of Wedderburn quasialgebras to the study of those
that in addition satisfy that for any 1 < i, j < r there exists « € G with Aj; # 0.
The basic quasialgebra W of A satisfies the same property.

Let R be a quasialgebra with cocycle ¢ and let [1],...,|r| be elements in the
grading group G. In the set of all matrices M¢(R) = span{x; = E;x|x € R and
1 <i,j <r) we define the gradation (cf. [8], 1.5)

Ix;| = |il x| |jI”"  for homogeneous x,
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and a product

gl 1x| L~ Ll 1) (], 17 1) | i
R R @

A straightforward computation gives the following extension of Proposition
7.31in [3]. (Think of x; as vi(xgp;).)

XijVkl = 5

Proposition 4.1. M/ (R) is a quasialgebra with cocycle ¢.

Let 4 be a simple Wedderburn quasialgebra with 4¢ = @;:1 B; as before, and
let W be its basic quasialgebra. By Corollary 3.5, for any i # j there exists an ele-
ment a € G such that A% # 0 (or Wy # 0).

Our goal is to prove that W M #(D) for some division quasialgebra D.

The division quasialgebra. Proposition 3.2 shows, in particular, that D =
@,.c WY is a division quasialgebra. This is the division quasialgebra we are
looking for. Note that N = Nj; ={a e G| W # 0} is a subgroup of G and

D=@@, \ Wa.

The grading elements. Let N; = {a € G| W # 0}. Our hypotheses on A4 imply
that N; #0. Given ae N; and 0 #b € N,k, it follows that »~! € Ny; and
b~la € Ny, and so Ny = bNy;. Similarly, N; = Nyc for any ¢ € N.

Fix ajy € Ny, i=1,...,r with a;; = e. Clearly

-1
N,’j = a,']Nlj = ailNajl .

The elements in G that provide the gradation are |i| = a;;.
Now fix w; € W‘ 1 with w1 = 1p, and take wy; € W‘ 1 such that wiiwin = 1.
Observe that

A a1
wit (Dwi;) = wit (D Wi)wi; = wa ( @ Wl‘;l"‘ )= wi.

aeN ae Ny
Then W = @11 | Wil (Dwyj).
Given d € D define dij = wi1(dwyj). If d is homogeneous then
. a—1
|dy| = il |d] 7]
Proposition 4.2. The map
M?(D) — W,

is an isomorphism of quasialgebras.
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Proof. Clearly the map is bijective and preserves the gradation, so we only have to
check that the product of the elements dj is given by an analogue of (2). For ho-
mogeneous d,d’ € D we have
dydy = (wit (dwyj)) (wii (d'wip))
_ gl 1A e
| 17" 1l a1
_ gl LA L ¢
p(d| 17 1 117 ¢
_ gl LA a1 ¢
(1| 11 LA ¢

and the result follows. |

wir (((dwij)win) (d'wi))

], i1~ 1D
. 1], 1117
)

—~

wit ((dd")wy),

—~

dl, 1] " 1]
dl,d’], |1

—~

(dd");,

—~

The maps oy : D; — D; given by w;d = ;1 (d)w;; are isomorphisms of alge-
bras, which allow to identify D; with D = D;. Thus,

wiie = oaw;; forall o € D.

In particular, since (wijo)w;1 = wij(ow;1) = wij(wjo) = (wiiwj)o = o = (awij)wji,
it follows that wy;o = owy; too, and hence that djo = (do); and ad; = (ad),; for
anyoe D,de D,andi,j=1,...,r

5. Wedderburn—Artin Theorem

Note first that, given any natural numbers ny,...,n,, the matrix algebra
My, ...y, (k) has a basis consisting of the elements
ki
El‘j = Em+~~+n[,1+k7n1+~--+n,-71+l
where, as usual, E; denotes the matrix with 1 in the (i, j)-entry and 0’s elsewhere.
These basic elements multiply as follows:
ki k
Eij E;ﬁz = éfmélpEinq'
As in the previous section, consider a quasialgebra R with cocycle ¢, and given

some grading elements |1|,...,|r| € G, take natural numbers #j,...,n, and con-
sider

ny,...,ny

M! (R) :span<x§1:E§lx|xeR,l <ij<rl<k<n,1<I[<n).
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This is G-graded by
|x§l| = li||x|[j|”"  for homogeneous x,

and it is endowed with the multiplication given by

. a—1 . ’ —1 g=1 .
1), |x , n X1, )

ity _ 5, g, PUL LI LA ) B LD, (vt
GUxL L1 Ll Ly ) gllxls [yl [nl )

Again, M fl _____ . (R) is a quasialgebra with cocycle ¢, as in the previous section.

Let us return to a simple Wedderburn quasialgebra 4 with cocycle ¢. Let
Ay = (—B%N”A; with Ny ={a e G[4f#0}. We write 4; as 4;="V;®)p
Wi ®p Vi with Wy = wi (Dwy;), where D; and D; are identified with D through
Jjl and gj1-

Foranyi=1,...,r letn; = dimp, V;, and let {v{,..., v} } and {¢{,...,¢] } be
dual bases in V; and V*. Then the linear map determined by

A— M’ (D),

MY yeey My

vp ® dy @ ¢ — Ejld,

is shown to be an isomorphism by a straightforward computation. Thus we ob-
tain our main result:

Theorem 5.1. Let A be a Wedderburn quasialgebra. Then A is isomorphic 1o a fi-
nite direct sum of quasialgebras of the form M? (D).

Nyyeey Ny
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