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The Fourier—Borel transform between spaces
of entire functions of a given type and order
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Abstract. In this article we study the Fourier—Borel transform between the dual of
Expf\‘?. . 4(E), the space of entire functions on E of (53 (r, q))-quasi-nuclear order
k and (s; (r, q))-quasi—nuclear type strictly less than A, and the space
EXp(I;/'.m(r';q')),o.(9(k>A)*1 (E') of entire functions on E’ of (s',m(r';q"))-summing order k
and (s",m(r';q'))-summing type less than or equal to (O(k)A)_l. This mapping identifies
algebraically and topologically these two spaces. On the dual space it is considered the
strong topology. This generalizes results of Matos [4] and Martineau [3].
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1. Introduction and notation

The results of this article are a generalization of results obtained by Matos in [4],
and the main results are the algebraic isomorphisms given by the Fourier—Borel
transforms in Theorems 3.4, 3.5 and 3.9 as well as the topological isomorphism
given by the Fourier—Borel transform in Theorem 4.5.

See Matos [5] for the theory used to define these spaces and the duality results
which are the key to prove the theorems of the Fourier—Borel transforms. The
notation follows Matos, [4], [5]: if E is a complex Banach space, then #(E) is
the vector space of all entire functions in E; 2, ¢))("E) is the Banach space of
all n-homogencous polynomials in E that are (s;m(r, ¢))-summing in 0, with the
norm || - [l irgi a0d Py (. (. ("E) is the Banach space of all (s; (r,¢))-quasi-
nuclear n-homogeneous polynomials in E, with the norm || [[g (., for all
j € Nwhere N=1{0,1,2,...}.
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In the definitions involving (s, m(r; q))-summing polynomials we consider
0<g<r<+oo and se[l,+o], and in the definitions involving (s;(r,q))-
quasi-nuclear polynomials we consider s < ¢, r < ¢ and s,r,¢ € [1,+00].

2. Spaces of entire functions of a given type and order

Definition 2.1. If p > 0 and k& > 1, we denote by 93 (s.m(r:q)).p(E) the complex vec-
tor space of all /" € #(E) such that d’f(0) e Ps,m(r;q) ( ) for all j € N and

=) e
||f|| (s,m(r;q)),k,p < > . djf(o) <+,
or gt \ke) | 1 (sm(r:q))
normed by || ||5 u(g).k,- We denote by &3" ))‘p( ) the complex vector
space of all f € #(E) such that d’f(0) e (s: ( E) for all j € N and
0 . ] ilk 1 . i
11, s (.0, kp = Zp_j <E> —d’f(0) < +o0,
j=0 J: N, (s:(r,q))
with norm || - [/ (5. (r.)). k.-
oy X k
Proposition 2.2. For each p > 0 and k > 1, By - (r,q)),p( E) and % (s,m(rsq).p(E) are

Banach spaces.

Proof. The proof is analogous to that in Matos [4] for the spaces ﬂj’\‘, ,(E) and
) (E). O

Definition 2.3. If 4 € (0,+c) and k>1, we denote by Exp“m(, ). 4E)

and ExpN (:(r.q).4E) the complex vector spaces Up 4 <S m(r.a)), H(E) c}nd

Up <d N )p(E) with the locally convex inductive limit topologies,

respectlvely We consider the complex vector spaces Exp(s m(rsq)),0,4(E) =
k k AN

(Vo4 Bis.mirq)),p(E) and ExpN (im0 E) = (psa By (s (r.q).p E) with the pro-

jective limit topologles
If A = +o00 and k > 1, we consider the complex vector spaces

EXPls miriq)). 0 (E) = U B i) (E)

p>0

and Expjli, (E) with the locally convex inductive

(s;(r,q U/)>0 N, (8;(r,q)),p
limit topologles and 1f A=0and k > 1, we consider the complex vector spaces
,(E) an

EXp(S m(r;q)),0 ﬂ/}>0 ﬂ (s,m(r;q)) )
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Expg (g = ,@" iy E)
) p>0
with the projective limit topologies.

The next two results give characterizations of these spaces.

Proposition 2.4. If f € #(E) is such that d’f(0) € P(s (. ('E) for all j € N,
then the following holds:

(a) For each A € (0,+0],

Nk 1/j
. . . ] 1~
£ B0 ey B) i andonly it timswn((L) |20 R
(b) For each A € [0,40),
. . NG 1)
S € EXDE i gyoa(E) if and only if h?li;‘p(E) G0 <4

Proposition 2.5. If [ € #(E) is such that d’f(0) e P5i (s (r.qnVE) for all j € N,
then:

(a) For each A € (0,+0],

-\ 1/k 1/j
: By . . J 1.
e Expk E if and only if hmsup<> —d’f (0 < A.
e T je \ke) || ! © ¥, (55r.0)
(b) For each A € [0,+0),
7k 1/i
k ) } 1 L ~ i
S & B sivano.alB) I and only i h;riigp (ke) J! 4“1 N.(s:(r.q)) =4

Due to these two results the elements of Exp (s.m(rq)), 4 (E) are called entire func-
tions of (s m(r; q)) -summing order k and (s, m(r; q))—summing type strictly less than
A, and the elements of Exp]]& (). (E) are called entire functions of (s;(r,q))-

quasi-nuclear order k and (s; (r, q))-quasi-nuclear type strictly less than A. For
A = +0o0 we omit “strictly less than 4.

We call the elements of Exp”n(, o).0,4(E) entire functions of (s,m(r;q))-
summing order k and (s m(r; q))-summmg type less than or equal to A, and the ele-
ments of ExpN (; . q)) 0. (E) are called entire functions of ( (r, q))—quasi—nuclear
order k and ( r,q))-quasi-nuclear type less than or equal to A.

Proposition 2.6. (a) For each A e (0,400 and k > 1, Evam(r o.a(E) and
Esz% (5;:(r,q)) (E) are DF-spaces.
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(b) For each A € [0,+0) and k > 1, Exp (s,m(r:q)),0,4(E) and Expj%, E)

; (s (r-,q)>-,07A(
are Fréchet spaces.

Proof. For part (a), let (a,),~, be a strictly increasing sequence of positive real
numbers converging to A. Hence |J,_, 21'\‘, (o =", %k (st rg)).an E)
and the inductive limit topologies given by 93](‘, (s (hq))’p(E), P < A ‘and
,/3" N (5 (1) (E), n e N, are equal. Since the inductive limit of a sequence of DF-
spaces isa DF- -space, we have that ExpN (5:(). A(E) is a DF-space. The proof for
Exp(s m(r.q)), 4 (E) 18 analogous

For part (b), since Exp(s mir:q).0,4(E) and Exp]%, (s:(q)).0.4E) are projective
limits of Banach spaces, they are complete locally convex spaces. Now let
(by),—, be a strictly decreasing sequence of positive real numbers converging to
A. Then the metrizability of Exp (s.m(rq)),0,4(E) and Exp]%’ (s:(r.)).0.4E) follows
from the fact that the topologies of these spaces and the topologies generated by
1 mrg).5, A0 118 52 7. 7)., 7 € N, coincide. O

Now we construct similar spaces of entire functions of infinite order.

Definition 2.7. If 4 € [0, +c0), we denote by #j(; ))(Bl /4(0)) the complex

vector space of all f € #(By,4(0)) such that d’f (0 ) Pls.mirq)('E) for all j e N
and
1 .. 1/j
lim sup ‘—,'d/f(O) <4,
e L (s.m(r:q))

endowed with the locally convex topology generated by the family of seminorms

o0

(p<5,m(r;q))’p)p>A3 where

p(s m(r Z djf ‘ .
=0 (s,m(r: q))
We denote by Ay, (5 ) (Bi/4(0)) the complex vector space of all
f € #(By,4(0)) such that d/f( ) 25 (ss(r.gy E) for all j € N and
1 .. 1/j
lim sup ’—,|dff(0) <4,
jmeo ML N, (s: (r.q)

endowed with the locally convex topology generated by the family of seminorms

(plos (3 (r, q))ip)/)>A 5 Where
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We denote %b(A m(r;q)) (BI/A( )) by Exps (s,m(r; q)) 0, A( ) E)and %Nb‘(s;( ))(BI/A( ))
by EXpN( " 4(E), and we also write EXp{ . o(E) = Exp(”’ n(r:)),0,0(E)

and ExpN_’ (s (W))_’O(E) = ExpN E).

Proposition 2.8. If' A € [0,+0), then

(5 (r,q)),o,o(

Hosmiria)) (Biya(0)) and Ay, (s 4))(B114(0))
are Fréchet spaces.

Proof. Since both (pN 5 () ), and (p;f( (g ) =4 generate the same topol-
ogy, where (a,),—, is a strlctly decreasing sequence of positive real numbers con-
verging to A, we have that #y, . ( (31 /4 (0)) is a locally convex and metrizable
topological vector space. Now the completeness follows as mentioned in Proposi-
tion 2.2.

For A (s, m(r.q)) (B1,4(0)) the proof is analogous. O

Now we use the definitions of the spaces H(sm(q)(Bi/4(0)) and
H i (s (r.q) (B1/4(0)) to construct new spaces as follows:
Let L = Uyt Xm0 (B1/,(0)) and define the following relation:

f ~g < thereis p € (0,4) such that f|BW(0) = 9‘31/,,(0)

It is obvious that ~ is an equivalence relation. We denote by L/~ the set of all
equivalence classes of elements of L and by [f] the equivalence class which has f
as one representant. Now we define the following operations in L/~:

f]+1g] = [f|3,/,,(0) + g|Bl/,,(0)]v
where p € (0, 4) is such that f{z ), 9l3,, o) € #x, (s (r.a)) (B1/,(0)), and

AN =MW1, 2eC.

With these two operations L/~ is a vector space. The case (s,m(r;q)) is analo-
gous.

For each pe(0,4), let i,: H#y, () (Bip0) — L/~ be given by
i,(f)=[f].

Definition 2.9. If 4 € (0,+o0], we define Ay, (., ) (B1/4(0)) = L/~ with the
locally convex inductive limit topology generated by the (z,,) < (0,

A):

In the same way we construct the space #(s (. q)) (B1,4(0)).

Now we define the following spaces:
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Definition 2.10. If p > 0, let #7 (.., (B1/,(0)) be the complex vector space of
all /€ #(By),(0)) such that d’f (0) € P . q)('E) for all j € N and

0

ool <o
=0 (s,m(r;q))
which is a Banach space with the norm psmr Dp Moreover, let

K3 s (31 ;»(0)) be the complex vector space of all f (Bl /»(0)) such that
d’f(0) e 2 (s:(r.qn E) for all j € N and

s

o0 1 .
> | Lo <+,
P P (5 (9))
L . o
which is a Banach space as well with the norm PR (s trna)p

As in Definition 2.9, we consider an equivalence relation in L=
Uyt # o)) (B1yp(0)), and for A e (0,+00] we define EXp(; ., 4(E) =
L/~ =, s gy (Bp(0)) /[~ with the locally convex inductive limit
topology. We also define Expy Up A5 s r.0) (B1/,(0))/~ with
the locally convex inductive limit topology

The next result assures that Definitions 2.9 and 2.10 are equivalent:

Proposition 2.11. The spaces # g, (5:(r.) (B1,4(0)) and Expy (5:0.) (E) coincide
algebraically and are topologically isomorphic, and the same holds for the spaces
Hsismriq)) (B1/4(0)) and Exp(; . ) 4(E).

Proof. Straightforward. ]

Due to Proposition 2.11 we denote the spaces g ))(Bl /4 (O)) and
A b, (5: (r, q))(Bl /A (0)) by Exp (sm(r;q)), A 4(E) and Exle’ 55010, A(E) respectively.

Since 1im1Hoo (kje =1, we may use notations ||l (g2, and
|-l ¥ (g for p Gom(s)p and p;{ (0. respectively.

Proposition 2.12. (a) For each A € (0, + o],

Exp(v m(r;q)), A(E) and Expg E)

1(5§(rvq>)vA(
are DF-spaces.

(b) For each A € [0,+00), EXP( . )).0,4(E) and Expg (= (r,q)),OAA(E) are Freé-
chet spaces.
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Proof. Note that (b) is Proposition 2.8, and the proof for (a) follows as in Propo-
sition 2.6. 0

Proposition 2.13. (a) If k € [1,+00] and A € (0,+00], then the Taylor series at 0
for each element of EXP(ks,m(r; o), 4(E) (respectively, Explkv_’ 5(0)). (E)) converges to
the element in the topology of the space.

(b) If k € [1,+00] and A € [0,+0), then the Taylor series at 0 for each element

of Exp(ksym(r; )0, 4(E) (respectively, Exp]kg,‘ 5 ()10, (E)) converges to the element in
the topology of the space.
Proof. In each case it is enough to consider the difference /' — Z/n:o %c;”f(O) and
the corresponding norm of the space in question. O
Proposition 2.14. (a) If ke (1,+w] and A€ (0,+w], then e? belongs to
Expg, (= (’_,q)),A(E) forall p € E'.

(b) If k € (1,+0] and A € [0,4+00), then e? belongs to Exp]%(‘y; (rAq))AO.A(E> Sfor
all p € E'. R

(c)Ifk =1and A € (0,+c0], then e? belongs to Exp]lg,.
such that ||p|| < A. '

(d) If k=1 and A € (0,4 )], then e’ belongs to EXp}V,(s;(r‘q)),O.A(E) for all
¢ € E' such that ||¢| < A. o

(55 (r,q)).,A(E) forall p € E'

Proof. This follows from the definitions and characterizations of the spaces and
the fact that ||d’(e?)(0)| = ||¢|l’ = [d’(e?)(0)[| ¥, (s. (r,q)- The proof of the last
equality can be found in Matos [5], p. 162. O

Proposition 2.15. Let r < s. Then:

(@) If k € (1,+0] and A € (0,+c0], then e? belongs to Exp(’fv_’mo,;q))’A(E) for all
pek

(b) If k € (1,+0] and A € [0,+0), then e? belongs to Exp(];m(r;q)),o,A(E) for
all p € E'.

(c)Ifk =1and A € (0,4 ], then e? belongs to Expés,m(nq»’A(E),for allp e E'
such that ||p|| < A.

(d) If k=1 and A € (0,+x], then e? belongs to Exp(l‘gm(,;q))yoﬁA(E) Sfor all
@ € E' such that ||p|| < A.

Proof. Since r<s, we have ¢" € P ) ("E) and ||cAl”(e‘/’)(0)||(S,m(r: 7))

10"l mrsq)) = lp||" for each n € N. Now the proof follows along the same lines

as that of Proposition 2.14. |

Proposition 2.16. (1) The vector subspace generated by all e?, ¢ € E', is dense in:
(a) Esz%,@;(;‘,q)),A(E) ifk e (l,40] and A € (0,+0];

(6) EXPY, (s (1. g1.0.4(E) i k € (1,+00] and A € [0, +o0).
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(2) The vector subspace generated by e?, ¢ € E', ||¢|| < A, is dense in
Exp]lw srgy.a E) if A€ (0,+0).

(3) The vector subspace generated by e?, pe E', |p|| < A, is dense in
Exp]l;,_’ (s;(r,q)).,o,A(E) if A e (0,+00).

Proof. Let g be the closure of Expﬁ, (5:(r.0). ,(E). By Proposition 2.13 and by the

fact that @f(’E) is dense in Zy ,q)>( E) for all j e N (see Matos [5]), it is
enough to show that Jy(’E) Sy for each j € N. Therefore it is enough to show
that 9" € g for all n € N and ¢ € E’. We proceed by induction on n. For 1€ C,
A # 0, we have

1
Z]_/{/(pj

=0

converging in Expg 5:(-9)). 4(E) and

lim eww— ! - = lim M\HZ i ZWH .

(] -t Nosi(n)kp 10 (5: (r.9)) k. p
Since

1557 < S,
= N ra)dop — W= 17 NG (r0)) ko

whenever

¢ € E'. Now suppose that ¢/ € g for j <n — 1. Then

1 . n—1 1
rp J ] n
e (e ],/1 ¢ ) o'l
/70 Na(5§("7‘1>)akel7

SN N
> —-i"’”w’H- .
j=n+17" N, (s:(r.q)).k,p

H\ 0

Since

[pog Eat

/\

r,q)),k ]'(p H q)),k,p

whenever |/| < 1, we have the above limit equal to zero. Hence, ¢" € ¢ for all
@ € E’. The proof for the other cases is analogous. O
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3. The Fourier—Borel transforms

Definition 3.1. For k € (1,4+00] and 4 € (0,+c0], the Fourier—Borel transform
FT of T e [ExpN( (r.a). A(E)]/ is the function on E’ defined by FT(p) =
T(e?) e C.
For ke (1,+] and A4 €[0,4+00), the Fourier—Borel transform FT of
T e [ExpN 0).0. J(E )] is the function on E’ defined by FT(p) = T(e?) € C.
For k= 1 and A4 e (0,+c0], the Fourier—Borel transform FT of T e
[Exp}v () A(E)]' is the function on B,4(0) = E' defined by FT(¢p) = T'(e?) € C.
In all cases the function F7 is well defined by Proposition 2.14.

Notation 3.2. As usual we set A~! :i for 4 € (0,400). If 4=0, we set
A7 = +oo and if 4 = +o0, we set A~! =0. For k € (1,+0), we denote by k'
its conjugate, that is, llc+kl’ =1 For k=1 we set k' = +o0, and for k = 400 we

set k' = 1. We define 0(k) = m for k € (1,400). Since limy_10(k) =1 =
limy_.. 0(k), we set 0(1) = 0(0) =

To prove the next results we need a duality result obtained by Matos in [5]:

Lemma 3.3. If E’ has the A-bounded approximation property, then the topological
dual of Py (. (. )("E) is isometrically isomorphic 10 P (s ¢))("E") through the
mapping

AB(Y)(p) = ¥(p")

for all p € E' and ¥ in the required dual.

Theorem 3.4. If E’ has the A-bounded approximation property, then the mapping
. k ! I
F [EXPY, gt BN = BXRLG i, 0, o (E:

given by FT (p) = T(e?) forall T € [EXPN.(S; (r‘q)M(E)]', p e E'(ifk € (1,+0]) or
¢ € E' with ||p|| < A (if k = 1), establishes an algebraic isomorphism between these
spaces for all A € (0,+o0].

Proof. First we consider k € (1,4+00). Let T € [Exp]%‘(&(r q))‘A(E)]/, Then for
each p € (0, A) there is C(p) > 0 such that -

0 Jilk
TU1< OIS seiep = VY0 (k)

forall f € Expjl‘\i,.

Félro),

N, (s:(r. )

(5. (E). In particular, for P e 2y (. q))(-jE) we have
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-\ jJk
(7Y
7)< o (L) 1Pl oo

Let T, = T|,/,N 2 (E)" By Lemma 3.3 there is #7; e,@(s/,m(,,;q,))(jE’) with

ATi(p) = Ty(p/) for all p & ' and ||| = | BT}l Hence
g Jlk
19T e = 171 = €l () )
for each p € (0, 4), and we may write
<1 “ 1
FT(p) ZFT ZF%TJ (2)
j=0 j=0

for all p € E’. By (1) we have

lim su I l/k,L” ||1/j
p k/ (]')1// / (s',m(r";q"))

J—®©

N1k o NJK 1/j
. el J 1
< hi-rl s;}p(c(ﬂ)) P (ke) (k’e) <ﬂ>

LN
o \k) K 0k

for all p € (0,4). Hence

NG 1/j U 1
1 o '@T ’ 1o S—
man(7e) () 19T e S <+

and since
P\
1 =
manlie) =+
we have
1\ .
11msup< ) | 2T Y//mr g =0
o \J!
Since | BTj|| < |BTjll(y (47> We have that the radius of convergence of (2) is

+o00. Therefore, by Proposmon 2.4 we have FT € Exp E').

(s',m f )),0,(()(1{)A)’1(
(E").

Now we prove that F is surjective. Consider H € Exp(A (rq),0, (0(k) )
For each p € (0, 4), there is C(p) > 0 such that
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() e |
N @ HO iy < C0)——
k/e _]' ( ’ ( 7q>) (pa(k))]

for all jeN. Let Tje [Py () E)l such that #T;=d’H(0), |T;| =
HdJH(O)H(s’,m(r’;q’))? then

1 1 1 k'e\:
AT €01 s (7) . 3

For f € Expg E) we define

(s (N/)%A(

=3 Lr@ro)

Jj=0 J:

Now, we prove that Ty € [ExpN (), A(E)]' and FTy; = H. By (3) and the def-
inition of Ty we have

1 . ilk i
SISO 0y < O (L) () 1 Ol

Since lim;_. ﬁ](] )1/’ =1 for each ¢ > 0, there is C(¢) > 0 such that

J ,
<€> < C(e)(1 +£)J% for all j e N.

J

Hence

1 . l1+e¢ J s oN\J/k aAlj 0

AT Oy 50 < COCO() (£) |42

N, (s;(r,q))
and
Ta(n)] < ) S (-2 "4r©
n = —\l+e¢ ke J! _
J= N, (s;(r,q))

= CP)CENS N, (5: (.01, k. p/(1-42)

: k
for a.llf € Expy (g 4(E),€>0and p € (0,4). Thus Ty € [Explls,_’ (s (r,q)),A(E)}l
and it is easy to see that FTy = H.

Now we prove the case k = 1. Proceeding in the same way and using the same
notations as in the case k € (1, +o0) we have

1 o0
FT(p ZFT Z

Jj=0

ATy

|-
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for all ¢ € E’ such that ||¢|| < 4 and

, 1 W 1
lim sup —AT; < VE
jmeo 17 (s".m(r'3"))
which implies that
, 1 W
w57 <
because (| BT} < || BTl m(.qy)- Hence, by Definition 2.7 we have FT e

Htsmirsqy) (Ba(0)) = EXP(Y mrrsq),0,1/4(E")-
Now we prove that F is surjective. Consider H € EXp{5: - 4)).0,1/4(E").
Then

N 1/
J

d%@) -
T gy

By Lemma 3.3 there is 7; € [Zy (w))(jE)]' such that #7T; = d’H(0) and | T;|| =
ld’H(0) For f € EXpy ;. (s ¢)), 4(E), we define

=N
Z_ J

=i

(4)

h;\'—‘

lim sup

J—=o

st m(rr: gy

Then we have

ln(c?fﬂo»\ < LIT1ds0)

.50
1 ..
:FdeH( )”tmrq ”d/f( )” N, (s;:(r,q)"
By (4), for each p € (0, A), there is C(p) > 0 such that
1o~ 1 .
ﬁ”d HO)[ (5 iy qry) < C(p)ﬁ for all j € N.

Hence

1Tu(f)l < (%ﬂWV(N (g = COINSw s

J=0

for each p € (0, 4) and /" € Expy ;.. ;) 4(E). Therefore
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!/
Ty € [Expy, (s; (r,q)),A(E)] )

and it is easy to see that FTy = H.
Now we prove the case k = +00. Proceeding as before and using the same no-
tations, we have that for 7' € [Expg . JEN =[5 (.0 (B174(0))] '

<1 <1
FT(p) = T(e") = ng,,/ =3 AT
for all p € E’ and
1
limsup || AT; 1/’ < —.

1/j
Since limsup; ., (%) g 0, we have

1
hmsuP(J) ||ﬂT||1s/’mr 4 =0,

j— 0
and this implies that FT e Exp<s m(r'sq)),0,1/4(E")-
Finally, let us prove that F is surjective. If H € EXpy ,,1.41).0,1/4(E"), then

lim sup ||d’ H (0 )||1/f

1
o0 )= ©)

By Lemma 3.3 there is Tj e [Zy (,,Aq))(jE)]' such that #T; = d’H(0) and

T = ld’H (0 s m@r:4))- ForfeExpN< (- ))A(E),We define
o0 1 j
=Y = T,(d’f(0
/ZOJ
and obtain
1 T(d’ 1 TN Id’ £ (0) -
al Ti(d'f(0))| < ﬁ” N )y, s: . )

1 .
= 1l HO) e Oz (.0
y (5), for each p € (0, 4), there is C(p) > 0 such that
y 1
ld HO)|| (s mtrr-army < C(p)ﬁ for all j € N.

(s',m(r':q") =

Thus these two above inequalities imply that
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Tl = 3|5 7@r0)
Jj=0
—‘,_VO >,p,|| V1 O) 3,500y = CONf

for each p € (0, 4) and each f € Expy Then

(st 4 (E)-
Ty e [EXpN (r.q)), A(E)}/v

and it is easy to see that FTy = H.
It is clear that F is linear and injective by Proposition 2.16. O

Theorem 3.5. If E’ has the A-bounded approximation property, then the mapping

. k / !
F[EXPY (g 0.4 (BN = XD i oy (B

given by FT(p) = T(e?) for all T € [ExpN( ()0 A(E)}' and ¢ € E', establishes
an algebraic isomorphism between these spaces for allk € (1,+o0] and A € [0, +0).

Proof. The proof is similar to that of Theorem 3.4. |

Remark 3.6. If T’ € [Exp]lv‘ 5 ()0, A(E)]', by Proposition 2.14 the natural defini-
tion for the Fourier—Borel transform of 7" would be FT'(p) = T'(e?) for all p € E’
such that ||g|| < A. However we will prove that we can define FT for all p € E’ in
a “bigger” set in such way that it agrees with the previous definition for ¢ € E’

with ||g|| < 4. This is Proposition 3.8 below.

Definition 3.7. If k =1, 4 € [0,4+o0) and E’ has the A-bounded approximation
property, then the Fourier—Borel transform FT of T € [Exp}\, (5 ()0, A(E)]' is the
function defined by o

1
FT(p) = Zﬁ«@T;(w)
Jj=0
for all p € E’ such that the series converges absolutely. Here 7; = T| Pa 0.y VY
. . (s (ryq
BT € Py iriq))('E") is given by BTj(p) = Tj(¢/) for all p € E’, and ||T}|| =
||QT (s, m(r 7)) BY Lemma 3.3.

Proposition 3.8. If E' has the A-bounded approximation property, A € [0,+o0) and
T e [Expy, sra).0.4E ))', then there is p > A such that FT € K[, .4 (By(0)),
where B,(0) is the open ball in E'.
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Proof. If T € [Exp}g,’ (s (r,q)),O,A(E)],’ there are 0 > 4 and C(6) > 0 such that

o0

T < CONS w5 ma.0 = CO) DN Oy, 5001

Jj=0

for all /' € Expy E). Hence for P € Zy (., q))(-iE) we have

(s; (ry q))A,O.A(
IT(P)] < COITMPl g (5. .-

Thus
1BT sy = 1T < CO7 forall j e N
and
A7, i 1
lim sup ! < 5
J=o (s',m(r';q")
Let p € (4,0). Then
T 1/j
lim sup ’—" <-,
J—o J: (s",m(r";q")) P

and this implies that FT € #(B,(0)). Furthermore,

/ F@Tj < +o0.

(s",m(r';q")

=0
Thus FT' € A gy (Bo(0)). 0
Theorem 3.9. If E’ has the A-bounded approximation property, then the mapping

1
F T € [Expy 04N = FT € EXDL 000 14 (E')
establishes an algebraic isomorphism between the two spaces spaces, for

A € [0,4+00). Here we identify the class [FT) with its representative FT.

Proof. By definition of Exp(;, STARY 4(E") and Proposition 3.8 we have that FT'
belongs to EXp§ . 4,174 (E") forall T [ExpN( ()0, LB

Now suppose that T e [ExpN 550 )),O,A(E)] is such that FT = 0. By Proposi-
tion 3.8, there is p > A4 such that FT(p) = 0 for all ¢ € E’ with [|¢|| < p, that is,
BTi(p) =0 for all p e B,(0) = E' and je N. Hence #7;=0 and ||T;| =
| BTl =0. Thus T|J, By = =0 for all jeN, and by Proposition

(s',m(r';q")
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213 we have T(f)=0 for all feExpN( ) ))OA(E) because d’f(0) e
Py (s: q))( E) for all j e N. Therefore T =0 and consequently F is injective.
The linearity of F is clear. Now let H € EXp(j .41 1/4(E"). Then there is
p > Asuch that H € #( ,r.) (B, (0 )) Thus

FHO)|
]l

<
(S’,ﬂ'l(r’;q’))
Therefore, for all ¢ > 0, there is C(¢) > 0 such that

lim sup

]~>30

!
>

1 J
+8) for all j e N.
p

1 .
jNWHmmWWWWMSC@<

By Lemma 3.3, there is 7; € [QN,(S;(W»("E)]’ such that QTj:é’jH(O) and

||7}|| = ||d]H(O)||(Srm(rrqr)) Hence
ST@PO)] < LIHO i1 Ol )
I+e¢ _
SC()( 5 > \d’f (0 M. (sqy forall jeN.
For [ € ExpN< _— O,A(E)’ we define
<1
mm:;ﬁMMW)
Jj=
Then
146\ 5
ITu(N1 < €@ Y= NI Ol = COI Ny, st
Jj=0
for all f e Eszl(/,(s~(r.q)),0A( ) and ¢ >0 such that {2~ > 4. Therefore, Ty €
[EXPY (s (r.g1).0.4(E)] and FTpy = H. ]

4. Bounded sets

In this section we give characterizations of the bounded sets of Exp% N
and Exp(s mir.q),4(E) for ke [l,+o0], A€ (0,+00] (EXpN 550 )),O,A(E) and
Exp(s mir.q)),0,4(E) fork € [1,+00], 4 € [0,+00)). We shall use these characteriza-
tions to prove that the Fourier—Borel transforms are topological isomorphisms in
some cases.

(5: (o)), 4 E)
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We denote by ¢ the family of all sequences o = (%), of real numbers o; > 0
such that limsup;_, &; < 4.

Proposition 4.1. For ke [l,+), A€ (0,+0] and o€ %4, the seminorms
pN, (SZ, (r,q)),k,oc and p(s,m(r;q)),k,a deﬁned by

o Ik 57
B J d’f (0)
PR (s gk alS) = D% (k€> J! 7
=0 N, (s;(r,q))
c Ed’r (0)
P(s.m(rq)).k.a(f) = Z % (ke) 7!
= (s,m(r;q))

are continuous in Expl, (s:(r.q)).4 E) and EXp (s.m(r:q)), 4 (E), respectively.
For k=+0w, A€ (0,+x] and o€ S, the seminorms PR, (s5:(r,q)), 0,0 AN
P(s,m(r;q)), .o deﬁned by

= |ldf(0)
pNv(‘W ("%‘1)%&.0{(1() = % ]' )
J=0 N, (s5:(r,q))
SO
p(s.,m(r;q)),ac,ot(f) = oy ]'
=0 (s.m(r;q))

are continuous in Expg, (). A(E) and EXP(g ;. 1), 4 (E), respectively.

Proof. For each p € (0, 4), we have § < | and since o € &4, there is C(p) >0
such that o; < C(p)ﬁ for all j € N. Thus, for k € [1,4+00) we get

(Y|4 o
PN (5 ).k Z; <—> Al CONS (5, 47,k
J=! N, (S? (r)q))
AN A
p(s,m(r;q)),k,oc(f) < C(p) /7_ (k_) ;! = C(p)”f”(s,m(r;q)),k.,/)’
- s m(rg)
For k = 400 we obtain that
1 ||d’f(0)
PR (s, e.al) < C(P) Y ol = CPIPR (s r.40,) )
j=0 "IN (s ()
d’f (0) o
p(v m(r;q)), o at(f) < C(p) Zpl j' - C(p)p(;m(r q))7/;(f>
© s m(r;q))
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Now these four inequalities and the properties of the inductive limit topology im-
ply the continuity of these seminorms in the respective spaces. O

Proposition 4.2. For ke[l,+0) and Ae (0,4, a subset B of

Exp]%_’ . (r,q))_’A(E) or EXPé,m(r;q)),A(E) is bounded if and only if there is p € (0, 4)
such that
o\ 1k 5 Vi
lim sup (é) / sup d-’f'(O) <p (6)
o Gl I P AR
or
N 1/j
lim sup (i)l/k sup d/f(O) <p, (7)
- \ke regl| J!
' (s;m(r;q))
respectively.
For k=40 and A€ (0,4, a subset B of Expﬁ (= (r,q)),A(E) or
EXD(§ (s q)), 4 (E) is bounded if and only if there is p € (0, A) such that
210) !
limsup | sup " <p (8)
UNACH | IO PR
or
zrof Y
limsup | sup ||~ <p, 9)
= BT g
respectively.

Proof. Tt is a known result of the theory of topological vector spaces that a subset
L of a locally convex space X is bounded if an only if each continuous seminorm
in X is bounded in L (see Grothendieck [1], p. 25). We use this result to prove that
if one of the conditions (6), (7), (8), (9) holds, then B is bounded in its correspond-
ing space. Let p be a continuous seminorm in its corresponding space, then for
each 0 € (0, A) there is C(d) > 0 such that

p(f) < CONS g, 5 0q0.00 (forall e EXP]%?(M,.,,]))?A(E))

or

p(f) < C(5)||f||(s.m(r;q)),k,§ (fOI' all f € Exp(lfy,m(r;q)),A(E))

for each k € [1,+o0]. In particular,
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sup p(f) =< C(p) sup ||f||]\~77(s (r,q)).k.p (19)
feB feB
sup p(f) =< C(p) sup ”f”(s‘m(r;q)),k,p' (11)
feB feB

For k € [1,4 ), we have from (6) and (7) that

SENFAGNN 1A
sop 1l i = 27 () sup | < +o0,
en N, (s:(r.q). k. p ;pj ke) Gem| J! S
N |dro)
sup ||f|| s,m(r;q)), k, < i <_> sup : < 40
pen ke /Zo”’ ke/ renll T Nl
Hence B is bounded in Exp "), A(E).

Now we suppose that B is bounded in ExpN (5: (), A L(E) (for Exp (s.m(rq)), 4(E)
the proof is analogous). Since these spaces are inductive limits of a sequence of
DF-spaces of type 4 ﬂk ()., (E), where (p,),-, is a strictly increasing sequence
of positive real numbers converging to A, B is contained in the closure of a
bounded subset of some 4 ,/ﬁk a), (E) (this is also a result of the theory of topo-
logical vector spaces and can be found in Grothendieck [1], p. 171, Proposition 5).
Without loss of generality we suppose that B is contained in the closed unit ball of
@k 0., p( ), where p € (0, 4). Now to get our result it is enough to show that
the closure for the topology in ExpN (5(1.0). (E), of this ball is contained in a ball

k :
of some ‘%’ (s:(r,q)), b(E) L:t Bﬂ]\"},(s:(l‘.t/))ﬂ( {f € g (s; ( )7||fl|N,(s;()‘,q))kp
<1} be the nmt balkl of By, (= (nq)),p(E)' If g belongs to B B o (E) (closure of
B% s ®) in Expy o, ). 4(E)), then there is a net (g,)le] in B”zé,(m...(/)),,,(E) con-

verging to ¢ in the topology of ExpN 550, 4(E). Thus,

7 iNJ/k d’
p—J (k]> sup gz'( )
AL A A

For each j € N we define the seminorms py (... o)) k4 DY

N,
o PV a0
Py, (s (r.q) k() = 27 <§>

J!
where o; = p~/ and oy =0 for / # j. Hence by Proposition 4.1 we have that
PR, (5:(r.q)). k. 1S @ CONtinuous seminorm in Exp]’%' (5 (0)). 4(E). By (12) we have

iV
v
()

<1 forall jeN. (12)

d’g(0)

5 <1 forall jeN.
J!

N, (s:(r,9))
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N\ J/k
3
- sup
(ke .-

#k (E)
N (s (rq))op

Thus

d’g(0)
]l

<p/ forall jeN.
N, (s:(r,))

Hence, if 0 € (p, 4) we have

© 1 ] Jjlk
sup |91l 5, (s: (r,q). k0 < 257 (k_) sup

geB =0 geB

d’g(0)
I

The case k = +o0 is analogous. O

Corollary 4.3. For k € [1,4+ o] and A € (0,4 0], a subset B ofExpllg,‘ (= (r‘q))‘A(E)

or Expé’m(r;q))’A(E) is bounded if and only if there is p € (0, A) such that B is con-
tained and bounded in @f:, (s (hq))’p(E) or %’(]; m(r.q)),p(E)s respectively.
Proof. This follows immediately using Proposition 4.2. O

Proposition 4.4. For ke[l,+x) and Ae[0,+w), a subset B of

Exp]%_ (55 ()0 LJ(E) or Expécs,m(r;q)),O,A(E) is bounded if and only if
1/j
.\ 17k A0
lim sup (kje) sup f‘( ) <4 (13)
o el I AR
or
1/
17k 1500
lim sup <ki> sup d f'( ) <A, (14)
j— 00 5 e .
/ PR T N mina)
respectively.
For k=+0w and Ae[0,+mw), a subset B of Expg 5:(.) o 4(E) or
EXD(; (.04 (E) i bounded if and only if o
B /i
. 0
limsup | sup f|( ) <A (15)
AN B A
or
d’f (0 v
lim sup | sup f( ) <A, (16)
J= feB ']' (s,m(r;q))

respectively.
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Proof. If B is a bounded subset of ExpN (= L(E) for k € [1,+o0), then B is

(r,9)),0

bounded in .%’k (5: (). (E) for all p > A (see Grothendleck [1], p. 24, Proposition
11). Thus, e
lim sup (kje> sup # < A.
o ol I A

For Exp(s m(r.q)),4(E) 1t is analogous. The case k = +o0 is analogous too.
Now suppose that (13) holds. Then for ¢ > 0 there is C(g) > 0 such that

i\ J/k Jif
(1) up |41
ke feB

J!
If p > A4, we have

o ilk
“l=] su
g <k€> S eg

Let e > 0 such p > 4 +¢. Then

< C(e)(A+¢) forall jeN.
N (5 (r.q))

d’f(0)
;!

J
SC(S)(A;_S) for all j e N.

N, (5 (r.q))

SN 1)
sup Hf”N (s:(r, ). k. p < i <_> sup 1
seB o ke el Ty )
0 A Jj
< C(s)Z(—Jr) <+
=0\ P
Hence B is bounded in %’]’; (5: ) p(E) for each p > A4, and so is bounded in
k 1Py bl bl
EXPW, (5r:00),0.4(E)-
For Expéi m(r:q), 4(E) as well as the case k = 4o the argument is analogous.

O

Now we are able to prove that the Fourier—Borel transforms are topological
isomorphisms.

Theorem 4.5. If E’ has the J-bounded approximation property, then the Fourier—

Borel transform F is a topological isomorphism  between the spaces
k

[EXPN,(.s;(n oA (E)]ﬂ and Exps m(rq).0, (9(/{)A>,,(E’) for all kell,+o0] and

A € (0,400]. Here 8 denotes the strong topology on the dual.

Proof. By the Open Mapping Theorem it is enough to show that F~! is contin-

k ! J
uous, because [EXPN,(S;(,I, A J(E )]ﬂ and Exps o~ (()(k)A)’l(E) are Fréchet
spaces. Note that [EprIE,‘ (a), SJ(E )] 5 1s a Fréchet space since it is the strong dual
of a DF-space. R
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We will prove that F~!
seminorm q in [ExpN (
p in Ex p
H e Exp
before).

S7

(S m(r';q’ ))70,(0(k)A)’1(
(s',m(r';q")),0, (H(k)A)fl(

k
B < Expy (., ) 4

Let B e ExpN
tion 4.2 there is p e 0, A4) such that

j 1/k
lim sup (—) sup
Jj—o ke feB

Thus, for each ¢ > 0 there is C(g) > 0's

N\ J/k 1) ¢
feB

V. V.

(E') such that ¢(F

Favaro

2 (55(r,9)), 4

,+00).

1/j
) <p.
N (s:(r,q))

uch that

d’f(0)
!

J!
for all j € N. Then

sup |[F~1(H
JeB

) = sup [T (/)]

Since

O)H(S’,m(r’;q’)) )

up d-J;!(O)

feB N, (s:(r,9))

d’H( )
]!

()

(s',m(r';q")

() w4

we have

d’H(
!

;pﬂ <ke>

p—l—.s/]'

and since

)

(s'm(rq)

AT,

,( J >’ d’H(0)
k'e /!

)

(s",m(r';q"))

is continuous by showing that for each continuous
) A(E)]/;, there are C > 0 and a continuous seminorm
“(H)) =q(Ty) < Cp(H) for all
E') (here Ty is the same we used several times
We know that the strong topology on the dual is generated by a
family of seminorms pp(S) = sup,.p|S(f)|, where S e [Expj%,
(E) is a bounded subset.

r.0) (E) be a bounded subset for k e (1

(E)]; and

By Proposi-

(17)

(18)
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lim (N =1,

there is D(¢) > 0 such that
e/ < D(e)(1+¢) (19)
for all j € N. Therefore,

;ul; |F~'(H)(f)| < C(e)D(e WH (5 mr: g5, 1 /006 (p+2) (12)

Now, choosing ¢ > 0 such that (p+¢)(1 +¢) < A, we have a(k)(pﬁ;;)(m;) > 9(;)/1
and the continuity of F~! follows.
Proceeding the same way we have

;ug |F71(H)(f)| =< C( )”HH (s",m(r';q")),0,1/(p+e)

if k=1, and

sup|F~!(H)(/)| < C@)|H|(y

feB (s',m(r'5q9")),1/(p+e)

if k = +o0. Then, choosing & > 0 so that (p +¢) < 4, we have - > 1, and the
continuity of F~! follows. O

It is an open problem whether the Fourier—Borel transform, in the next case, is
a topological isomorphism. But it is possible to prove that F~! is continuous.

Theorem 4.6. If E’ has the i-bounded approximation property, k € [1,+o0| and
A € [0,+00), then

1 / k l

F o Ex p(s’ (g, 04y (B = [EXPN (s (r.q1).0.4 (E)lg

is continuous. Again [§ denotes the strong topology on the dual.

Proof. Let B € Exp]]‘g,‘ s (r.g.0.4(E)
have

j 1/k
lim sup (—) sup
Jj—oo ke feB

For p > A there is C(p) > 0 such that

be a bounded subset. By Proposition 4.4 we

. i
a’f(0)

" < A4.
J!

N, (s;(r,q9))
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N\ /K d’7(0
(2) s |2 < Clp)p’
TR I s )
for all j € N. Thus
. B d’f (0)
sup |[F~' (H)(/)| < D | d"H(O)| (g g1y 59P [ =
feB pay FeBI R g

% d’H
Zp,( ) J'( )

j=0 ’ (s',m(r";q"))

. ( ) TR i)

ke) O '
1:0 J / (s',m(r':q"))
By (19) we have
o0 J/k Nd’H(o
sup |F~'(H)(f)| < C(p Zp& ( e> le '()
f€ B ] .] ] (s’,m(r/;q’))
. J ik de(O)
Z L+¢)0 Ke) |
=0 (s',m(r":q"))

= C(P)DEH |y m(r; g1)), k7,1 j000) p(1+2)

for all e > 0and p > A. Hence

Sup|F71(H)(f)‘ < C(p) ( )”H” (s',m(r';q")), k' 1

feB
for all r < 5 k) —» which proves that F~! is continuous.
The proof for k = 1 and k = 4o follows the same pattern. O
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