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Abstract. It is shown that the nonstandard representatives of Schwartz distributions, as in-
troduced by K. D. Stroyan and W. A. J. Luxemburg in their book Introduction to the

theory of infinitesimals [5], are locally equal to a finite-order derivative of a finite-valued
and S-continuous function. By ‘equality’, we mean a pointwise equality, not an equality
in a distributional sense. This proves a conjecture by M. Oberguggenberger in Z. Anal.

Anwendungen 10 (1991), 263–264. Moreover, the representatives of the zero-distribution
are locally equal to a finite-order derivative of a function assuming only infinitesimal
values. These results also unify the nonstandard theory of distributions by K. D. Stroyan
and W. A. J. Luxemburg with the theory by R. F. Hoskins and J. Sousa Pinto in Portugal.

Math. 48 (1991), 195–216.

Mathematics Subject Classification (2000). 46S20, 46F30.

Keywords. Nonstandard analysis, generalized functions, distributions.

1. Introduction

1.1. Stroyan and Luxemburg’s theory of distributions. In [5], §10.4, K. D.

Stroyan and W. A. J. Luxemburg introduced their nonstandard theory of

Schwartz distributions. We give a brief account of the definitions and properties

in this theory needed in the sequel. The notations in this section will be used

throughout the whole paper (some are di¤erent from Stroyan and Luxemburg’s).

The nonstandard language used is Robinson’s book [4].

We will often identify a standard entity A with its image sA :¼ f�x j x a Ag
when no confusion is possible.

Let W be an open subset of Rn. Let ClðWÞ be the space of all W !
C-functions possessing continuous derivatives of any order. Let DðWÞ be the

space of all test-functions on W, i.e., all ClðWÞ-functions with compact support
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contained in W and D 0ðWÞ the space of Schwartz distributions, i.e., continuous

linear functionals onDðWÞ. By nsð�WÞ, we denote the set fx a �W j by 2 W : xQ yg
of near-standard points of �W. By Finð�CÞ, we denote the set of finite elements

of �C. By st we denote the standard part map.

A topological structure is introduced on �DðWÞ in the following way. We

denote by qa the partial derivative of order a a Nn. A function f a �DðWÞ is

called a finite element of �DðWÞ i¤ its support is contained in nsð�WÞ and if

qafðxÞ a Finð�CÞ for all (finite) multi-indices a a N and all x a �W. The set of

all finite elements of �DðWÞ will be denoted by Fin
��DðWÞ

�
.

Similarly, f a �DðWÞ is called an infinitesimal element of �DðWÞ i¤ its support

is contained in nsð�WÞ and if qafðxÞQ0 for all (finite) multi-indices a a N and all

x a �W. We will write fQD 0 in this case.

A �ClðWÞ-function f is called a representative of T a D 0ðWÞ i¤ for each

f a Fin
��DðWÞ

�
,

ð
�W

f fQð�TÞðfÞ:

It can be shown that every function f in the set

D 0ðWÞ :¼
n
f a �ClðWÞ

����
ð
�W

f f a Finð�CÞ for all f a Fin
��DðWÞ

�o

is a representative of a distribution T by means of the definition TðfÞ :¼ st
Ð

�W f f.

This unique distribution is called the standard part of f and is denoted by st f .

Vice versa, it can be shown that every distribution has a representative in

D 0ðWÞ.
T a �D 0ðWÞ is called S-continuous i¤

�
Ef a �DðWÞ

� �
fQD 0 ¼) TðfÞQ0

�
: ð1Þ

It can be shown that every f a D 0ðWÞ is S-continuous as an element of �D 0ðWÞ.
Stroyan and Luxemburg call the elements of D 0ðWÞ finite distributions. To avoid

the suggestion that D 0ðWÞ should be a subset of the space of distributions, and be-

cause of the S-continuity as an element of �D 0ðWÞ, we will call them S-distributions

instead.

Remark. A function f : �W ! �C is called S-continuous i¤

xQ y ¼) f ðxÞQ f ðyÞ for all x; y a �W:

To avoid confusion for elements of D 0ðWÞ, we will refer to the S-continuity in the

sense of eq. (1) explicitly as ‘S-continuity as a linear functional’.
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Two elements f , g of D 0ðWÞ represent the same distribution i¤

ð
�W

f fQ

ð
�W

gf for all f a Fin
��DðWÞ

�
:

In such case f and g are called D 0-infinitely close, and we write f QD 0ðWÞ g. If

W is fixed in the context and no confusion can exist, we often shortly write

f QD 0 g.

An S-distribution f is of order at most m a N on K HHW i¤

ðbC a RþÞ
�
Ef a Fin

��DðKÞ
������

ð
�W

f f
���aC max

jajam
sup
x A �K

jqafðxÞj
�
:

The smallest m a N for which f is of order at most m is (logically) called the order

of f .

1.2. New results. In their short section on distributions (which they call a

‘sketch’ themselves), Stroyan and Luxemburg only mention S-distributions of fi-

nite order for proving the theorem that every distribution is locally a finite order

derivative of a continuous function, by means of the fact (mentioned as an exer-

cise) that any S-distribution of finite order is D 0-infinitely close to a finite-order

derivative of an S-continuous function a D 0ðWÞ. We will show that the order of

an S-distribution f is not equal to the order of the distribution st f . More pre-

cisely, we will prove the following result.

Theorem 1. Let f a D 0ðWÞ and KHHW. Then the (distributional ) order of st f

on K is the smallest m a N such that

ðbC a RþÞ
�
Ef a Fin

��DðKÞ
������

ð
�W

f f
���oC max

jajam
sup
x A �K

jqafðxÞj
�
:

We write xo y i¤ x < y or xQ y for x; y a �R.
The di¤erence between these two orders will be the key to give (at least par-

tially) an answer the following questions.

What do S-distributions look like? Is there a qualitative distinction (apart

from what is clear from the definition) between S-distributions and ordinary func-

tions in �ClðWÞ?
How much can two representatives of the same distribution di¤er? Except

from the fact that they are D 0-infinitely close, are there qualitative ways in which

this di¤erence can be described?

It may be clear from the following example that there is hardly any pointwise

way in which di¤erent representatives of a given distribution coincide in general.
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Example. For each k 2 Z and o a �NnN, the function ok sinðoxÞ a �ClðRÞ is a
representative of the zero-distribution

�
a D 0ðRÞ

�
.

Proof. For k < 0, fkðxÞ ¼ ok sinðoxÞQ0 for all x a �R, so fkQD 0 0. As it is well

known that the distributional derivatives coincide with the derivatives of the rep-

resentatives, also the second derivative f 00
k ¼ �fkþ2QD 0 0. Inductively, fkQD 0 0

for all k a N. r

In the example, the method to find heavily irregular representatives of the

zero-distribution was by taking derivatives of a function that assumes infinitesimal

values. We will prove that no other irregularities can exist, i.e., that every f QD 0 0

is (locally) pointwise equal to some finite order derivative of a �ClðWÞ-function
assuming only infinitesimal values:

Theorem 3. Let f a �ClðWÞ. Then f QD 0ðWÞ 0 i¤ for each K HHW, there exists

a a Nn and g a �DðWÞ such that gðxÞQ0 for all x a �W and f ¼ qag on �K.

Similarly, we will prove that every f a D 0ðWÞ is (locally) pointwise equal

to some finite order derivative of an S-continuous and finite-valued �ClðWÞ-
function:

Theorem 2. Let f a �ClðWÞ. Then f a D 0ðWÞ i¤ for each KHHW there exists

g a D 0ðWÞ which is finite-valued and S-continuous on �K and such that f is a finite

order derivative of g on �K.

The last of these two assertions was already mentioned (for W ¼ Rn and omit-

ting the S-continuity) in [3], Prop. 2.10, in the nonstandard language of Nelson,

but, as it appears from the correction to [3], it still remained unproved.

Although such theorems are of a fashion similar to the classical local represen-

tation theorem of distributions, the distributional order cannot be a measure for

the order of the derivative in our representation theorems: already for the zero-

distribution, which is trivially of order 0, the order of the derivative may be arbi-

trary large. Moreover, equalities in a stronger sense than being D 0-infinitely close

(such as pointwise equalities) become even more relevant when dealing with non-

linear operations that are ill-defined in a distributional sense.

2. Results on the order of an S-distribution

As it will play a crucial role in proving our results, we recall a proposition about

S-continuity which is proved implicitly in [5] (i.e., there is a general theorem on

S-continuity from which this theorem follows partly). Also in the context of
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Banach spaces, characterizations for S-continuity for internal linear maps are

well-known (see e.g. [6]).

We write KHHW if K is a compact subset of W.

Proposition 4. Let T a �D 0ðWÞ. Then the following are equivalent:

(1) T is S-continuous.

(2)
�
Ef a �DðWÞ

� �
fQD 0 ¼) TðfÞ a Finð�CÞ

�
.

(3)
�
Ef a Fin

��DðWÞ
�� �

TðfÞ a Finð�CÞ
�
.

(4) ðEKHHWÞ ðbC a RÞ ðbm a NÞ
�
Ef a �DðKÞ

�
�
jTðfÞjaC max

jajam
sup
x A �K

jqafðxÞj
�
:

(5) ðEKHHWÞ ðEe a RþÞ ðbd a RþÞ ðbm a NÞ
�
Ef a �DðKÞ

�
�
max
jajam

sup
x A �K

jqafðxÞj < d ¼) jTðfÞj < e
�
:

Proof. 1 ) 2: clear.

2 ) 3: follows using the fact that efQD 0 for all e a �R with eQ0 and for all

f a Fin
��DðWÞ

�
.

3 ) 4: let KHHW. Let m a �NnN and f a �DðKÞ. Let

M :¼ max
jajam

sup
x A �K

jqafðxÞj:

If MA 0, 1
M
f a Fin

��DðWÞ
�
. So jTðfÞj ¼ M jTðf=MÞj|fflfflfflfflfflffl{zfflfflfflfflfflffl}

aFinð�RÞ

, and the internal set

�
m a �N j

�
Ef a �DðKÞ

��
jTðfÞjam max

jajam
sup
x A �K

jqafðxÞj
��

contains all infinite m. By underspill, property 4 holds.

4 ) 5: clear.

5 ) 1: follows using the fact that for each f a Fin
��DðWÞ

�
there exists

K HHW such that supp fJ �K . r

Corollary. 1. An S-distribution f is of order at most m a N on K HHW i¤

ðbC a RþÞ
�
Ef a �DðKÞ

�����
ð
�W

f f
���aC max

jajam
sup
x A �K

jqafðxÞj
�
:

2. Any S-distribution f is of some finite order on any given K HHW.
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Proof. 1. This follows from the fact that for each f a �DðKÞ there exists M a �Rþ

such that f=M a Fin
��DðKÞ

�
(see the proof of the preceding proposition).

2. This follows from the preceding proposition applied to the ‘regular’ func-

tional f 7!
Ð

�W f f a �D 0ðWÞ. r

Now we prove the following result.

Theorem 1. Let f a D 0ðWÞ and K HHW. Then the (distributional ) order of st f

on K is the smallest m a N such that

ðbC a RþÞ
�
Ef a Fin

��DðKÞ
������

ð
�W

f f
���oC max

jajam
sup
x A �K

jqafðxÞj
�
:

Proof. 1. Let the order of T :¼ st f on K be at most m, i.e. (by transfer),

ðbC a RþÞ
�
Ef a �DðKÞ

��
j�TðfÞjaC max

jajam
sup
x A �K

jqafðxÞj
�
:

Since �TðfÞQ
Ð

�W f f for f a Fin
��DðWÞ

�
, we find that the formula in the state-

ment of Theorem 1 holds for this m.

2. On the other hand suppose that the formula in the statement of theorem 1

holds for some m a N. Again by the fact that �TðfÞQ
Ð

�W f f (with T ¼ st f ) for

f a Fin
��DðWÞ

�
, we have in particular that

ðbC a RþÞ
�
Ef a DðKÞ

��
j�Tð�fÞjoC max

jajam
sup
x A �K

jqa �fðxÞj
�
:

Since both sides of the o-inequality are standard numbers, we actually have a

a-inequality, and the (distributional) order of T on K is at most m. r

Corollary. The order of an S-distribution f is not smaller than the distributional

order of st f .

The following example shows that the di¤erence between the two orders can be

arbitrary large.

Example. Consider f ðxÞ ¼ ok sinðoxÞ, with o a �NnN. It has order k on every

compact K HHR. On the other hand, f QD 0 0 (see the example in Section 1.2), so

the order of the corresponding standard distribution is 0.

Proof. Let f a �DðKÞ. For some R a R, KJ ½�R;R�. Then by partial integra-

tion ð
�R

f f ¼ ð�1Þk
ð
�R

gðxÞfðkÞðxÞ dx
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with gðkÞ ¼ f , so we can choose gðxÞ a fesinðoxÞ;ecosðoxÞg. Thus

���
ð
�R

f f
���a 2R sup

x A �K
jgðxÞj sup

x A �K
jfðkÞðxÞja 2R sup

x A �K
jfðkÞðxÞj;

so the order is at most k.

To see that the order is at least k, let f0 a DðKÞ with
Ð
f0 ¼ 1 and let

fðxÞ :¼ sinðoxÞf0ðxÞ. Then

1

ok

ð
�R

f f ¼ 1

2

ð
�R

�
1� cosð2oxÞ

�
f0ðxÞ dxQ

1

2
;

since cosð2oxÞQD 0 0 (similarly as in Example 1.2). On the other hand, for

each j a N, supx A �K jfð jÞðxÞjaMo j for some M a R, so for this f a �DðKÞ,
j
Ð

�R f fj > Cmaxjak�1 supx A �K jfð jÞðxÞj for all C a R. r

3. Structure theorems

We will now prepare our main results. First we show that a representative of a

distribution has anti-derivatives representing anti-derivatives of the distribution.

To our knowledge, such a theorem is not available in the nonstandard literature.

For convenience, we only deal with partial derivatives in the first variable.

We introduce the following notation: for x ¼ ðx1; . . . ; xnÞ a �Rn we will write
~xxi :¼ ðx1; . . . ; xi�1; xiþ1; . . . ; xnÞ. Similarly, if i < j we write ~xxi; j ¼ ðx1; . . . ; xi�1;

xiþ1; . . . ; xj�1; xjþ1; . . . ; xnÞ and so on for ~xxi; j;k; . . . .

Lemma 5. Let W be an open interval (i.e., it is the Cartesian product of n one-

dimensional intervals). Let T a D 0ðWÞ and f be a representative of T. Then there

exists an S-distribution g a D 0ðWÞ with q1g ¼ f . As a consequence, g determines a

distribution U with q1U ¼ T.

Proof. 1. In order to get some insight in the proof, we first consider the one-

dimensional case.

Choose F a �ClðWÞ such that F 0 ¼ f on W. We can only expect F to be an

S-distribution if the integration constant is well chosen. So we seek C a �C such

that
Ð

�RðF þ CÞf a Finð�CÞ for all f a Fin
��DðWÞ

�
. Now fix f0 a DðWÞ withÐ

R
f0 ¼ 1. Then the previous condition specifies to

Ð
�R F �f0 þ C a Finð�CÞ. As

a finite change in the constant does not influence the S-distributional character of

F þ C, we can put C :¼ �
Ð

�R F �f0. Then for any f a Fin
��DðWÞ

�
,ð

�R
ðF þ CÞf ¼

ð
�R

F ðtÞ
	
fðtÞ �

� ð
�R

f
�
�f0ðtÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼:cðtÞ AFinð�DðWÞÞ



dt:
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As
Ð

�R c ¼ 0, it follows that cð�1ÞðxÞ :¼
Ð x

�l c a Fin
��DðWÞ

�
, and by partial inte-

gration we have

ð
�R
ðF þ CÞf ¼ �

ð
�R

fcð�1Þ a Finð�CÞ

since f is an S-distribution.

2. In the general case we choose an arbitrary anti-derivative F of f in the first

variable (on W). E.g., if W ¼ ða1; b1Þ � � � � � ðan; bnÞ, ai; bi a RA f�l;þlg,
then for any a1 < c < b1,

Ð x1
c

f ðt; ~xx1Þ dt is such an anti-derivative. An anti-

derivative is determined up to a function Gð~xx1Þ. Now it turns out that for a fixed

f0 a Dðða1; b1ÞÞ with
Ð
R
f0 ¼ 1, Gð~xx1Þ ¼ �

Ð
�R F ðt; ~xx1Þ�f0ðtÞ dt is a good choice:

for any f a Fin
��DðWÞ

�
we have

ð
�Rn

�
F ðxÞ þ Gð~xx1Þ

�
fðxÞ dx ¼

ð
�Rn

FðxÞ
	
fðxÞ �

� ð
�R

fðu; ~xx1Þ du
�
�f0ðx1Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼:cðxÞ



dx:

As W is an interval, c a Fin
��DðWÞ

�
. Moreover,

Ð
�R cðt; ~xx1Þ dt ¼ 0 for all

~xx1 a �Rn�1, so wðxÞ :¼
Ð x1
�l cðt; ~xxÞ dt a Fin

��DðWÞ
�
and similarly as in the one-

dimensional case we find that
Ð

�Rn

�
FðxÞ þ Gð~xx1Þ

�
fðxÞ dx a Finð�CÞ. r

Lemma 6. Let f a D 0ðWÞ of orderam on an interval K HHW, m > 0.

Then there exists g a D 0ðWÞ of orderam� 1 on K such that q1 . . . qng ¼ f on �K.

Proof. Let K ¼ ½a1; b1� � � � � � ½an; bn�. We will show that if f satisfies

���
ð
�W

f f
���aC sup

x A �K
jqðk;aÞfðxÞj for all f a Fin

��DðKÞ
�

and for some C a R, k a N and a a Nn�1, then the anti-derivative gðxÞ ¼
F ðxÞ þ Gð~xx1Þ in the first variable defined in Lemma 5 satisfies

���
ð
�W

gf
���aC 0 max

jal
sup
x A �K

jqð j;aÞfðxÞj for all f a Fin
��DðKÞ

�

with C 0 a R and l ¼ maxðk � 1; 0Þ.
Let f a Fin

��DðKÞ
�
. With c; w a Fin

��DðKÞ
�
as in Lemma 5, we have

���
ð
�W

gf
��� ¼ ���

ð
�W

f w
���aC sup

x A �K
jqðk;aÞwðxÞj ¼ C sup

x A �K
jqð0;aÞqk

1 q
�1
1 cðxÞj:
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In case k ¼ 0, we have for x a �K that

jqð0;aÞq�1
1 cðxÞj ¼

���
ð x1

�l
qð0;aÞcðt1; ~xx1Þ dt1

���a ðb1 � a1Þ sup
x A �K

jqð0;aÞcðxÞj;

so in any case we have (for some C 0;C 00 a R, independent of f)

���
ð
�W

gf
���aC 0 sup

x A �K
jqðl;aÞfðxÞj þ C 0 sup

x A �K

���Dl �f0ðx1Þ
ð
�R

qð0;aÞfðu; ~xx1Þ du
���

aC 00 max
jal

sup
x A �K

jqð j;aÞfðxÞj:

Since g is well defined on �W 0 for some interval W 0 JW with K HHW 0, we can use

f0 a DðW 0Þ with f0 ¼ 1 on K to ensure that g�f0 a D 0ðWÞ without changing the

values on �K .

If we repeatedly apply also the analogous result for the variables x2; . . . ; xn, we

finally conclude that the order of the primitive ðq1 . . . qnÞ�1
f has decreased (if

m > 0). r

For K HHW we call LlðKÞ the space of all (standard) bounded (Lebesgue-

measurable) functions f : W ! C with support contained in K .

Lemma 7. Let K HHW an interval. An S-distribution f is of order zero on K i¤

ðbC a RþÞ
�
Ef a �LlðKÞ

�����
ð
�W

f f
���aC sup

x A �K
jfðxÞj

�
:

Proof. Let f a ClðWÞ and f a LlðKÞ. Then by a classical density theorem it is

clear that there exists some h a DðKÞ such that

���
ð
W

f f�
ð
W

f h
���a sup

x AK
jfðxÞj and sup

x AK
jhðxÞja 2 sup

x AK
jfðxÞj:

By transfer, we have
�
Ef a �ClðWÞ

� �
Ef a �LlðKÞ

� �
bh a �DðKÞ

�
����
ð
�W

f f�
ð
�W

f h
���a sup

x A �K
jfðxÞj and sup

x A �K
jhðxÞja 2 sup

x A �K
jfðxÞj

�
:

If in particular f is an S-distribution of order 0 on K , then

ðbC a RþÞ
�
Eh a �DðKÞ

�����
ð
�W

f h
���aC sup

x A �K
jhðxÞj

�
:

The result follows by combining these two formulas. r
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Lemma 8. Let f a D 0ðWÞ. Suppose that f is of order zero on a (standard ) interval

K ¼ ½a1; b1� � � � � � ½an; bn�HHW. Then

(1) there exists g a �ClðWÞ which is bounded on �K by a standard constant and

such that q1 . . . qng ¼ f on �K.

(2) there exists h a �ClðWÞ which is S-continuous and bounded by a standard con-

stant on �K and such that q21 . . . q
2
nh ¼ f on �K.

Proof. (1) Let x ¼ ðx1; . . . ; xnÞ and t ¼ ðt1; . . . ; tnÞ. For AHW, we denote the

characteristic function of A by wA. Then (for x a �K)

gðxÞ :¼
ð x1

a1

dt1 . . .

ð xn

an

f ðtÞ dtn ¼
ð
�W

f w½a1;x1������½an;xn�

clearly satisfies q1 . . . qng ¼ f on �K . Further, applying the previous lemma with

f ¼ w½a1;x1������½an;xn� a
�LlðKÞ (if x a �K), we find C a Rþ such that

ðEx a �KÞ
�
jgðxÞjaC sup

x A �K
jfðxÞj|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
¼1

�
:

(2) If g satisfies the conditions from part 1, then (for x a �K)

hðxÞ :¼
ð x1

a1

dt1 . . .

ð xn

an

gðtÞ dtn

clearly satisfies q21 . . . q
2
nh ¼ f on �K . Further, for eQ0 and e > 0,

jhðx1 þ e; ~xx1Þ � hðxÞj ¼
���
ð x1þe

x1

dt1 . . .

ð xn

an

gðtÞ dtn
���aCe

Y
iA1

ðbi � aiÞQ0;

and similarly for the other variables. So hðxÞQhðyÞ as soon as xQ y ðx; y a �KÞ.
Further, jhðxÞjaC

Q
iðbi � aiÞ a Finð�CÞ for all x a �K . r

We are now ready to prove one of our main results.

Theorem 2. Let f a �ClðWÞ. Then f a D 0ðWÞ i¤ for each K HHW there exists a

g a D 0ðWÞ which is finite-valued and S-continuous on �K and such that f is a finite

order derivative of g on �K.

Proof. (: follows using the fact that for each f a Fin
��DðWÞ

�
, there exists

K HHW such that supp fJ �K .

): 1. We first consider the special case where K HHW is an interval.
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Take an interval K 0 HHW with KHH �ðK 0Þ, the (topological) interior of K 0.
Since f has a finite order m on K 0, we find, by repeatedly applying Lemma 6,

some ~gg a D 0ðWÞ of order zero on K 0 such that ðq1 . . . qnÞm~gg ¼ f on �K 0. By

Lemma 8, we find h a �ClðWÞ which is finite and S-continuous on �K 0 and

such that ðq1 . . . qnÞmþ2
h ¼ f on �K 0. If f0 a DðK 0Þ with f0 ¼ 1 on K , then

g :¼ h�f0 a D 0ðWÞ has the required properties.

2. We consider the special case where f ðxÞ ¼ 0 for all x B nsð�WÞ.
Then f can be extended to a �ClðRnÞ-function, setting f ðxÞ :¼ 0 if x a

�Rnnnsð�WÞ. We claim that this extension is in D 0ðRnÞ. There exists K0 HHW

such that f ðxÞ ¼ 0 outside �K0. Choose f0 a DðWÞ with f0 ¼ 1 on K0. Then for

any f a Fin
��DðRnÞ

�
,

ð
�Rn

f f ¼
ð
�W

f �f0f|ffl{zffl}
AFinð�DðWÞÞ

a Finð�CÞ:

Now let KHHW be arbitrary. Since K JLHHRn, with L an interval (possibly

LUW), we conclude from part 1 that there exists a g a D 0ðRnÞ which is finite and

S-continuous on �L and such that (the extended) f is a finite order derivative of g

on �L. The restriction of g to �W has the required properties.

3. In the general case, let KHHW. Taking f0 a DðWÞ with f0 ¼ 1 on K , we

apply part 2 on f �f0 a D 0ðWÞ. r

The other main result will follow from Theorem 2 together with some addi-

tional lemmas.

Lemma 9. Let W ¼ ða1; b1Þ � � � � � ðan; bnÞJRn be an open interval (possibly

ai ¼ �l, bi ¼ þl). Let ~WW :¼ ða2; b2Þ � � � � � ðan; bnÞJRn�1. Let f a �ClðWÞ
be independent of x1, so it can be identified with a �Clð~WWÞ-function. Then:

(1) f ð~xx1Þ a D 0ðWÞ () f ð~xx1Þ a D 0ð~WWÞ.
(2) f ð~xx1ÞQD 0ðWÞ 0 () f ð~xx1ÞQD 0ð~WWÞ 0.

As a consequence, the expression f ð~xx1ÞQD 0 0 is unambiguous.

Proof. (1) ): Let f ð~xx1Þ a D 0ðWÞ. Fix cðx1Þ a Fin
��Dða1; b1Þ

�
with

Ð
�R c ¼ 1.

Choose fð~xx1Þ a Fin
��Dð~WWÞ

�
arbitrarily. Then cðx1Þfð~xx1Þ a Fin

��DðWÞ
�
, so

Finð�CÞ C
ð
�W

f ð~xx1Þcðx1Þfð~xx1Þ dx ¼
ð b1

a1

cðx1Þ dx1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
¼1

ð
� ~WW

f ð~xx1Þfð~xx1Þ d~xx1;

which means that f ð~xx1Þ a D 0ð~WWÞ.

331The local structure of nonstandard representatives of distributions



(: Let f ð~xx1Þ a D 0ð~WWÞ. For any f a Fin
��DðWÞ

�
and c a ns

��ða1; b1Þ�, the
map ~xx1 7! fðc; ~xx1Þ a Fin

��Dð~WWÞ
�
, so

cðcÞ :¼
ð
� ~WW

f ð~xx1Þfðc; ~xx1Þ d~xx1 a Finð�CÞ:

Further, for some KHH ða1; b1Þ, if c lies outside �K , then cðcÞ ¼ 0. So

ð
�W

f ð~xx1ÞfðxÞ dx ¼
ð
�K

cðx1Þ dx1 a Finð�CÞ;

which means that f ð~xx1Þ a D 0ðWÞ.
(2) Similar. r

The following lemmas could be considered as exercises in distribution theory.

To our knowledge, they are not widely known. Therefore, we will include a non-

standard version with proof.

Lemma 10. Let W be an open interval.

If f a D 0ðWÞ and qaf QD 0 0, then there exist gij a D 0ðWÞ such that

f ðxÞQD 0
Xn

i¼1

Xai�1

j¼0

gijð~xxiÞx j
i :

Proof. 1. We first show that if F a D 0ðWÞ and q1FQD 0 0, then F is D 0-infinitely
close to a D 0ðWÞ-function which does not depend on x1.

If we choose Gð~xx1Þ as in Lemma 5, we see that for all f a Fin
��DðWÞ

�
,

ð
�Rn

�
FðxÞ þ Gð~xx1Þ

�
fðxÞ dx ¼

ð
�Rn

ðq1FÞðxÞwðxÞ dxQ0

with w a Fin
��DðWÞ

�
as in Lemma 5. So F ðxÞQD 0 �Gð~xx1Þ.

2. Now suppose that f a D 0ðWÞ and

q1 f ðxÞQD 0
Xn

i¼1

Xmi

j¼0

gijð~xxiÞx j
i ð2Þ

for some gij a D 0ðWÞ. We will show that

f ðxÞQD 0
Xn

i¼1

X~mmi

j¼0

~ggijð~xxiÞx
j
i

for some ~ggij a D 0ðWÞ, ~mm1 ¼ m1 þ 1, ~mm2 ¼ m2; . . . ; ~mmn ¼ mn.

332 H. Vernaeve



We notice that the right-hand side of eq. (2) is equal to

q1

�Xm1

j¼0

g1jð~xx1Þ
x
jþ1
1

j þ 1
þ
Xn

i¼2

Xmi

j¼0

ðq�1
1 gijÞð~xxiÞx j

i

�
:

From the explicit construction of the primitives q�1
1 gij in Lemma 5, it is immediate

that also they are independent of xi. Then applying part 1 on the di¤erence of

both sides in eq. (2), we find that there exists Gð~xx1Þ a D 0ðWÞ such that

f ðxÞQD 0 Gð~xx1Þ þ
Xm1

j¼0

g1jð~xx1Þ
x
jþ1
1

j þ 1
þ
Xn

i¼2

Xmi

j¼0

ðq�1
1 gijÞð~xxiÞx j

i ;

which has the required form.

3. Now the theorem follows inductively using part 2 and the analogous for-

mulas for all the other variables (other than x1), also using the fact that if

f a D 0ðWÞ, then qbf a D 0ðWÞ for all b a Nn. r

Lemma 11. Let W be an open interval. Let f a �ClðWÞ be S-continuous and finite-
valued on nsð�WÞ, and suppose that qaf QD 0 0. Then there exist gij a �ClðWÞ which
are S-continuous and finite-valued on nsð�WÞ such that

f ðxÞQD 0
Xn

i¼1

Xai�1

j¼0

gijð~xxiÞx j
i :

Proof. First notice that a �ClðWÞ-function which is finite-valued on nsð�WÞ is in
D 0ðWÞ. Let W ¼ ða1; b1Þ � � � � � ðan; bnÞ and ~WW :¼ ða2; b2Þ � � � � � ðan; bnÞ. Let

qaf QD 0 0 and let a ¼: ða1; ~aaÞ, ~aa a Nn�1. By the previous lemma,

f ðxÞQD 0
Xn

i¼1

Xai�1

j¼0

hijð~xxiÞx j
i ; ð3Þ

with hij a D 0ðWÞ. Now consider an arbitrary c a ns�ða1; b1Þ. Fix cðx1Þ a DðRÞ
with

Ð
R
c ¼ 1 and cb 0. Let cmðx1Þ :¼ mcðmx1Þ for all m a �N. Let fð~xx1Þ a

Fin
��Dð~WWÞ

�
be arbitrary. Since

qð0; ~aaÞf ðxÞQD 0
Xa1�1

j¼0

q ~aah1jð~xx1Þx j
1;

we have for su‰ciently large m a N (such that supp
�
cmðc� x1Þ

�
H ns�ða1; b1Þ)

that
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ð
�W

qð0; ~aaÞf ðxÞcmðc� x1Þfð~xx1Þ dxQ
Xa1�1

j¼0

ð
�W

q ~aah1jð~xx1Þx j
1cmðc� x1Þfð~xx1Þ dx: ð4Þ

By Robinson’s sequential lemma, this also holds for some o a �NnN. If
~xx1 a nsð� ~WWÞ, the map x1 ! f ðxÞ is S-continuous on ns

��ða1; b1Þ�. Then

���
ð b1

a1

f ðxÞcoðc� x1Þ dx1 � f ðc; ~xx1Þ
��� ¼ ���

ð b1

a1

�
f ðxÞ � f ðc; ~xx1Þ

�
coðc� x1Þ dx1

���
a sup

x1 A suppco

j f ðxÞ � f ðc; ~xx1ÞjQ0

for all ~xx1 a nsð� ~WWÞ, since suppco contains only infinitesimals and
Ð

�R jcoj ¼ 1. In

particular, they are D 0-infinitely close. So also

ð b1

a1

qð0; ~aaÞf ðxÞcoðc� x1Þ dx1QD 0 q ~aaf ðc; ~xx1Þ:

On the other hand,

ð
�W

q ~aah1jð~xx1Þx j
1coðc� x1Þfð~xx1Þ dx ¼

ð
� ~WW

q ~aah1jð~xx1Þfð~xx1Þ d~xx1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
AFinð�CÞ

ð b1

a1

x
j
1coðc� x1Þ dx1|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Qc j

;

so we find from eq. (4) that

q ~aaf ðc; ~xx1ÞQD 0
Xa1�1

j¼0

c jq ~aah1jð~xx1Þ

for each c a ns
��ða1; b1Þ�. Now choose a1 di¤erent values ci a ns

��ða1; b1Þ�, with
ci T cj if iA j. Then we find a linear system with a1 equations and a1 unknown

functions q ~aah1j. The determinant of the system is a Vandermonde determinant

equal to
Q

i<jðcj � ciÞT 0. Therefore, each q ~aah1jð~xx1Þ is D 0-infinitely close to

a Finð�CÞ-linear combination of the q ~aaf ðcj; ~xx1Þ, which we call q ~aag1jð~xx1Þ. So

g1jð~xx1Þ a �ClðWÞ are S-continuous and finite-valued on nsð�WÞ. By the previous

lemma (applied to ~WWJRn�1),

h1jð~xx1ÞQD 0 g1jð~xx1Þ þ
Xn

i¼2

Xai�1

k¼0

~hhikð~xx1iÞxk
i

for some ~hhik a D 0ðWÞ. Substituting these expressions, together with the analogous

expressions for hijð~xxiÞ (with i > 1), in formula (3) yields that
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f ðxÞQD 0
Xn

i¼1

Xai�1

j¼0

gijð~xxiÞx j
i þ

X
1ai1<i2an

Xai1�1

j1¼0

Xai2�1

j2¼0

hi1i2 j1 j2ð~xxi1; i2Þx
j1
i1
x
j2
i2
; ð5Þ

for some hi1i2 j1 j2 a D 0ðWÞ, since multiplication by xi preserves theQD 0 -equality.

We now proceed inductively and show that

f ðxÞQD 0
Xn

i¼1

Xai�1

j¼0

gijð~xxiÞx j
i þ

X
1ai1<i2<i3an

X
j1; j2; j3

hi1i2i3 j1 j2 j3ð~xxi1; i2; i3Þx
j1
i1
x
j2
i2
x
j3
i3

ð6Þ

for some gij a �ClðWÞ, S-continuous and finite-valued on nsð�WÞ, and some

hi1i2i3 j1 j2 j3 a D 0ðWÞ.
The proof is similar. Let F :¼ f �

Pn
i¼1

Pai�1
j¼0 gijð~xxiÞx j

i . Let a ¼: ða1; a2; ~aaÞ,
~aa a Nn�2. Let ~WW :¼ ða3; b3Þ � � � � � ðan; bnÞ. Then

qð0;0; ~aaÞF ðxÞQD 0
Xa1�1

j1¼0

Xa2�1

j2¼0

q ~aah1;2; j1; j2ð~xx1;2Þx
j1
1 x

j2
2 :

Fixing now c a ns�ða1; b1Þ and d a ns�ða2; b2Þ, we choose cm as before, fð~xx1;2Þ a
Finð� ~WWÞ, multiply the previous expression by cmðc� x1Þcmðd � x2Þfð~xx1;2Þ and

integrate over �W to obtain similarly that

q ~aaF ðc; d; ~xx1;2ÞQD 0
Xa1�1

j1¼0

Xa2�1

j2¼0

q ~aah1;2; j1; j2ð~xx1;2Þc j1d j2 :

Now we substitute c by a1 di¤erent values c1; . . . ; ca1 a ns�ða1; b1Þ and d by a2 dif-

ferent values d1; . . . ; da2 a ns�ða2; b2Þ, with ci T cj if iA j and di T dj if iA j. The

resulting linear system has a1a2 equations and a1a2 unknown functions q ~aah1;2; j1; j2 .

The matrix of the system is (if the equations and unknowns are written down in

a suitable order) the Kronecker product (sometimes also called direct product,

see e.g. [2]) of the Vandermonde matrices ðc j�1
i Þi; j¼1;...;a1

and ðd j�1
i Þi; j¼1;...;a2

, with

determinant

Y
i<j

ðcj � ciÞa2
Y
i<j

ðdj � diÞa1 T 0:

Another application of the previous lemma yields that

h1;2; j1; j2ð~xx1;2ÞQD 0 g1;2; j1; j2ð~xx1;2Þ þ
Xn

i¼3

Xai�1

k¼0

~hhikð~xx1;2; iÞxk
i
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for some g1;2; j1; j2 a
�ClðWÞ, S-continuous and finite-valued on nsð�WÞ, and

~hhik a D 0ðWÞ. Substituting these expressions (for all hi1; i2; j1; j2 ) in formula (5) and

absorbing the terms gi1i2 j1 j2ð~xxi1i2Þx
j1
i1
x
j2
i2
in the gijð~xxiÞx j

i we arrive at formula (6).

Repeatedly applying this procedure, we conclude that

f ðxÞQD 0
Xn

i¼1

Xai�1

j¼0

gijð~xxiÞx j
i þ

X
j1; j2;...; jn

cj1;...; jnx
j1
1 x

j2
2 . . . x jn

n

for some gij a �ClðWÞ, S-continuous and finite-valued on nsð�WÞ, and constant

cj1;...; jn a D 0ðWÞ. Since a constant function belonging to D 0ðWÞ is necessarily in

Finð�CÞ (see Lemma 12), we can absorb the terms cj1;...; jnx
j1
1 x

j2
2 . . . x jn

n in the

gijð~xxiÞx j
i and finally obtain the required formula. r

Finally, we need a lemma of Robinson’s [4], Theorem 5.3.14. Robinson works

with real-valued distributions on R. We show that the result can be generalized to

our situation.

Lemma 12. Let T a D 0ðWÞ. If there exists a representative f of T which is

S-continuous at a a W, then f ðaÞ a Finð�CÞ. Moreover, the value st f ðaÞ does not
depend on the chosen S-continuous representative.

Proof. Let e a Rþ. By S-continuity, there exists r a Rþ such that j f ðxÞ � f ðaÞja e

for all x a �Bða; rÞJ �W. Now let f a D
�
Bða; rÞ

�
, real-valued, fðxÞb 0 for all

x a W and
Ð
W f ¼ 1. Then

���
ð
�W

f ðxÞ�fðxÞ dx� f ðaÞ
��� ¼ ���

ð
�Bða; rÞ

�
f ðxÞ � f ðaÞ

��fðxÞ dx���
a

ð
�Bða; rÞ

ej�fðxÞj dx ¼ e:

As f represents T , we have jTðfÞ � f ðaÞja 2e. In particular, f ðaÞ a Finð�CÞ.
For any representative g of T , S-continuous at a, we have the same inequality

(possibly only for some smaller r a Rþ), so j f ðaÞ � gðaÞja 4e. As e a Rþ is arbi-

trary, it follows that st f ðaÞ ¼ st gðaÞ. r

Now we can prove our last main result.

Theorem 3. Let f a �ClðWÞ. Then f QD 0ðWÞ 0 i¤ for each KHHW there exists

a a Nn and g a �DðWÞ such that gðxÞQ0, Ex a �W and f ¼ qag on �K.

Proof. 1. ): We first consider the case where K HHW is an interval.

Take an interval K 0 HHW with KHH �ðK 0Þ. By Theorem 2, there exists

h a D 0ðWÞ which is finite-valued and S-continuous on �K 0 and such that qah ¼ f

on �K 0. By Lemma 11 applied on the open interval ~WW :¼ �ðK 0Þ, we find in partic-
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ular that h is D 0ð~WWÞ-infinitely close to some ~hh a �Clð~WWÞ, which is S-continuous

on nsð� ~WWÞ. As ~hhðxÞ ¼
Pn

i¼1

Pai�1
j¼0 gijð~xxiÞx j

i , we see that qa~hh ¼ 0 on � ~WW. Now

h� ~hhQD 0ð~WWÞ 0 and is S-continuous on nsð� ~WWÞ, so by Lemma 12, hðxÞ � ~hhðxÞQ0

for all x a nsð� ~WWÞ. Further, qaðh� ~hhÞ ¼ qah ¼ f on �K . If f0 a Dð~WWÞ with

f0 ¼ 1 on a neigbourhood of �K , then g :¼ ðh� ~hhÞ�f0 has the required properties.

2. The general case as well as the (-part follow in a way similar to the proof of

Theorem 2. r

4. Application

In [1], R. F. Hoskins and J. Sousa Pinto introduce another nonstandard theory

of distributions. In this setting, nonstandard representatives of a distribution are

by definition locally finite-order derivatives of finite-valued and S-continuous

functions. By Theorem 2, it now follows that representatives of distributions in

the sense of Hoskins and Sousa Pinto are exactly representatives of distributions

in the sense of Stroyan and Luxemburg.
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