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The local structure of nonstandard representatives
of distributions
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Abstract. It is shown that the nonstandard representatives of Schwartz distributions, as in-
troduced by K. D. Stroyan and W. A. J. Luxemburg in their book Introduction to the
theory of infinitesimals [5], are locally equal to a finite-order derivative of a finite-valued
and S-continuous function. By ‘equality’, we mean a pointwise equality, not an equality
in a distributional sense. This proves a conjecture by M. Oberguggenberger in Z. Anal.
Anwendungen 10 (1991), 263-264. Moreover, the representatives of the zero-distribution
are locally equal to a finite-order derivative of a function assuming only infinitesimal
values. These results also unify the nonstandard theory of distributions by K. D. Stroyan
and W. A. J. Luxemburg with the theory by R. F. Hoskins and J. Sousa Pinto in Portugal.
Math. 48 (1991), 195-216.
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1. Introduction

1.1. Stroyan and Luxemburg’s theory of distributions. In [5], §10.4, K. D.
Stroyan and W. A. J. Luxemburg introduced their nonstandard theory of
Schwartz distributions. We give a brief account of the definitions and properties
in this theory needed in the sequel. The notations in this section will be used
throughout the whole paper (some are different from Stroyan and Luxemburg’s).
The nonstandard language used is Robinson’s book [4].

We will often identify a standard entity 4 with its image “4 := {*x|x € A}
when no confusion is possible.

Let Q be an open subset of R". Let ¥ (Q) be the space of all Q —
C-functions possessing continuous derivatives of any order. Let 2(Q) be the
space of all test-functions on Q, i.e., all ¥ (Q)-functions with compact support
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contained in Q and 2'(Q) the space of Schwartz distributions, i.e., continuous
linear functionals on Z(2). By ns(*Q), we denote the set {x € *Q [y € Q: x ~ y}
of near-standard points of “*Q. By Fin(*C), we denote the set of finite elements
of *C. By st we denote the standard part map.

A topological structure is introduced on *2(Q) in the following way. We
denote by 0% the partial derivative of order « € N”. A function ¢ € *Z(Q) is
called a finite element of *2(Q) iff its support is contained in ns(*Q) and if
0%¢(x) € Fin(*C) for all (finite) multi-indices o € N and all x € *Q. The set of
all finite elements of *Z(Q) will be denoted by Fin(*%(Q)).

Similarly, ¢ € *2(Q) is called an infinitesimal element of *Z(Q) iff its support
is contained in ns(*Q) and if d*¢(x) ~ 0 for all (finite) multi-indices o € N and all
x € *Q. We will write ¢ ~ 0 in this case.

A *€*(Q)-function f is called a representative of 7T € 2'(Q) iff for each
¢ € Fin(*2(Q)),

j 1o (T)).
Q

It can be shown that every function f in the set
D'(Q) := {f € *%W(Q)U f¢ e Fin(*C) forall ¢ € Fin(*@(Q))}
‘Q

is a representative of a distribution 7" by means of the definition 7'(¢) := st [., ¢
This unique distribution is called the standard part of f and is denoted by st f.
Vice versa, it can be shown that every distribution has a representative in
D'(Q).
T € *2'(Q) is called S-continuous iff

(W e Q)  ($x00 = T(#)~0). (1)

It can be shown that every f € D'(Q) is S-continuous as an element of *2'(Q).
Stroyan and Luxemburg call the elements of D’(Q) finite distributions. To avoid
the suggestion that D’(Q) should be a subset of the space of distributions, and be-
cause of the S-continuity as an element of *2’(Q), we will call them S-distributions
instead.

Remark. A function f : *Q — *C is called S-continuous iff
xxy = f(x)~f(y) forallx,ye Q.

To avoid confusion for elements of D’(Q), we will refer to the S-continuity in the
sense of eq. (1) explicitly as ‘S-continuity as a linear functional’.
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Two elements f, g of D'(Q) represent the same distribution iff

J fo~ J gp  forall ¢ € Fin(*2(Q)).
0 0

In such case f and g are called Z'-infinitely close, and we write [ ~y/(q)g. If
Q is fixed in the context and no confusion can exist, we often shortly write
S =g 9.

An S-distribution f is of order at most m € N on K << Q iff

(3C e RY) (V¢ € Fin(*2(K))) (

j fo| < € max sup 0%9())).

lo|<m yerK

The smallest m € N for which £ is of order at most m is (logically) called the order

of f.

1.2. New results. In their short section on distributions (which they call a
‘sketch’ themselves), Stroyan and Luxemburg only mention S-distributions of fi-
nite order for proving the theorem that every distribution is locally a finite order
derivative of a continuous function, by means of the fact (mentioned as an exer-
cise) that any S-distribution of finite order is &'-infinitely close to a finite-order
derivative of an S-continuous function € D'(Q). We will show that the order of
an S-distribution f is not equal to the order of the distribution st f. More pre-
cisely, we will prove the following result.

Theorem 1. Let f € D'(Q) and K < Q. Then the (distributional) order of st f
on K is the smallest m € N such that

(3C e R") (V¢ € Fin(*2(K))) (U*quﬁ’ < C max sup [0%¢(x )|>

le|<m xerk

We write x $ yiff x < yor x =~ y for x, y € *R.

The difference between these two orders will be the key to give (at least par-
tially) an answer the following questions.

What do S-distributions look like? Is there a qualitative distinction (apart
from what is clear from the definition) between S-distributions and ordinary func-
tions in *&*(Q)?

How much can two representatives of the same distribution differ? Except
from the fact that they are &'-infinitely close, are there qualitative ways in which
this difference can be described?

It may be clear from the following example that there is hardly any pointwise
way in which different representatives of a given distribution coincide in general.
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Example. For each k € Z and € *N\N, the function * sin(wx) € *¢*(R) is a
representative of the zero-distribution (€ 2'(R)).

Proof. Fork <0, fi(x) = o sin(wx) ~ 0 for all x € *R, s0 f; o 0. As it is well
known that the distributional derivatives coincide with the derivatives of the rep-
resentatives, also the second derivative f” = —fii2 &4 0. Inductively, fi x4 0
for all k e N. ([l

In the example, the method to find heavily irregular representatives of the
zero-distribution was by taking derivatives of a function that assumes infinitesimal
values. We will prove that no other irregularities can exist, i.e., that every f ~,/ 0
is (locally) pointwise equal to some finite order derivative of a *¢* (Q)-function
assuming only infinitesimal values:

Theorem 3. Let f € "¢ (Q). Then f g/ q)0 iff for each K =< Q, there exists
o e N"and g € *Z(Q) such that g(x) ~ 0 for all x e *Q and f = g on *K.

Similarly, we will prove that every f e D'(Q) is (locally) pointwise equal
to some finite order derivative of an S-continuous and finite-valued *&*(Q)-
function:

Theorem 2. Let f € *¢*(Q). Then f € D'(Q) iff for each K == Q there exists
g € D'(Q) which is finite-valued and S-continuous on *K and such that f is a finite
order derivative of g on *K.

The last of these two assertions was already mentioned (for Q = R” and omit-
ting the S-continuity) in [3], Prop. 2.10, in the nonstandard language of Nelson,
but, as it appears from the correction to [3], it still remained unproved.

Although such theorems are of a fashion similar to the classical local represen-
tation theorem of distributions, the distributional order cannot be a measure for
the order of the derivative in our representation theorems: already for the zero-
distribution, which is trivially of order 0, the order of the derivative may be arbi-
trary large. Moreover, equalities in a stronger sense than being &’-infinitely close
(such as pointwise equalities) become even more relevant when dealing with non-
linear operations that are ill-defined in a distributional sense.

2. Results on the order of an S-distribution

As it will play a crucial role in proving our results, we recall a proposition about
S-continuity which is proved implicitly in [5] (i.e., there is a general theorem on
S-continuity from which this theorem follows partly). Also in the context of
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Banach spaces, characterizations for S-continuity for internal linear maps are
well-known (see e.g. [6]).
We write K << Q if K is a compact subset of Q.

Proposition 4. Let T € *9'(Q). Then the following are equivalent:
(1) T is S-continuous.
(2) (Y& 9Q) ($~20 = T(#) € Fin(*C)).
(3) (V¢ € Fin(*2(Q))) (T(¢) € Fin(*C)).
(4) (VK c= Q) (AC e R) (Im e N) (Vo € *Z(K))
(IT(#)] < € max sup [0"¢(x)]).

le|<m xexk
(5) (VK =< Q) (Ye € RY) (30 € RY) (Im e N) (V9 € *2(K))

(max sup [0%4(x)| <0 = |T(4)| <e).

o <m xe K

Proof. 1 = 2: clear.

2 = 3: follows using the fact that ep ~4 0 for all ¢ € *R with ¢ ~ 0 and for all
¢ € Fin(*2(Q)).

3=4:let Kcc Q. Letm e *N\N and ¢ € *2(K). Let

M := max sup |0%¢(x)|.

ol <m xe*Kx
If M #0, -4 € Fin(*2(Q)). So |T(¢)| = M |T(¢/M)|, and the internal set
——
eFin(*R)

{me*N| (Ve *2(K))(|T(¢)| <m max sup |0°¢(x)|)}

o <m xe K

contains all infinite m. By underspill, property 4 holds.

4 = 5: clear.
5= 1: follows using the fact that for each ¢ e Fin(*Z(Q)) there exists
K cc Q such that supp ¢ = *K. O

Corollary. 1. An S-distribution f is of order at most m € N on K =< Q iff’

(3C € R*) (V4 € "2(K)) (”*quﬁ‘ < C max sup |6“¢(x)|).

ol <m xe K

2. Any S-distribution f is of some finite order on any given K —c Q.
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Proof. 1. This follows from the fact that for each ¢ € *2(K) there exists M € *R"
such that ¢/ M € Fin(*%(K)) (see the proof of the preceding proposition).

2. This follows from the preceding proposition applied to the ‘regular’ func-
tional ¢ — [. f¢ € *2'(Q). O

Now we prove the following result.

Theorem 1. Let f € D'(Q) and K == Q. Then the (distributional) order of st f
on K is the smallest m € N such that

(3C e R")(V¢ € Fin(*2(K))) (Hnyﬁ’ < C max sup |6“¢(x)|).

|l <m xe*k

Proof. 1. Let the order of T := st f on K be at most m, i.e. (by transfer),

(AC e RY)(Vp e *2(K))(|*T(4)| < C max sup [0%¢(x)]).

ol <m ek

Since *T($) ~ [. [ for ¢ € Fin(*2(Q)), we find that the formula in the state-
ment of Theorem 1 holds for this m.

2. On the other hand suppose that the formula in the statement of theorem 1
holds for some m € N. Again by the fact that *7'(¢) ~ LQ f¢ (with T = st f) for
¢ € Fin(*2(Q)), we have in particular that

(ACeR")(Vp e 2(K))('T(*¢)| £ C max sup [0**¢(x)]).

[of<m xe+k

Since both sides of the <-inequality are standard numbers, we actually have a

~

<-inequality, and the (distributional) order of T on K is at most . O

Corollary. The order of an S-distribution f is not smaller than the distributional
order of st f.

The following example shows that the difference between the two orders can be
arbitrary large.

Example. Consider f(x) = o sin(wx), with @ € *N\N. It has order k on every

compact K < R. On the other hand, /"~ 0 (see the example in Section 1.2), so
the order of the corresponding standard distribution is 0.

Proof. Let ¢ € *2(K). For some R e R, K = [-R,R]. Then by partial integra-
tion

j f¢=(—1)"J g(x)¢® (x) dx
*R *R
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with g®) = £ so we can choose g(x) € {+sin(wx), +cos(wx)}. Thus

|| o] <2 sup lg(a] sup 6 (o)l < 28 sup ).
R xe*K xe*K xe*K
so the order is at most k.
To see that the order is at least k, let ¢y € Z(K) with [¢, =1 and let
$(x) := sin(wx)@y(x). Then

1 1 1
JJ*R]((ZS = ELR(I — c0s(20x) ) ¢y (x) dx ~ 3
since cos(2wx) x4 0 (similarly as in Example 1.2). On the other hand, for
each je N, sup, .. | (x)] < Mo’ for some M e R, so for this ¢ € *Z(K),
Jog S| > Cmax;<j_isup,..x ¢V (x)] for all C € R. O

3. Structure theorems

We will now prepare our main results. First we show that a representative of a
distribution has anti-derivatives representing anti-derivatives of the distribution.
To our knowledge, such a theorem is not available in the nonstandard literature.
For convenience, we only deal with partial derivatives in the first variable.

We introduce the following notation: for x = (xy,...,x,) € *R" we will write
X = (Xl, ey Xie 1, XLy e - - ,X,,). Similarly, if i< Jj we write )NC,'J = (X], ey Xie ],
Xifls- -y Xj—1,Xjt1,- .-, X,) and so on for X; j x,....

Lemma 5. Let Q be an open interval (i.e., it is the Cartesian product of n one-
dimensional intervals). Let T € 2'(Q) and [ be a representative of T. Then there
exists an S-distribution g € D'(Q) with 019 = f. As a consequence, g determines a
distribution U with 0,U = T.

Proof. 1. In order to get some insight in the proof, we first consider the one-
dimensional case.

Choose F € *¢™(Q) such that F/ = f on Q. We can only expect F to be an
S-distribution if the integration constant is well chosen. So we seek C € *C such
that [.,(F + C)¢ € Fin(*C) for all ¢ € Fin(*2(Q)). Now fix ¢, € Z(Q) with
Jg @0 = 1. Then the previous condition specifies to [., F*¢, + C € Fin(*C). As
a finite change in the constant does not influence the S-distributional character of
F + C, we can put C := — [, F*¢. Then for any ¢ € Fin(*2(Q)),

J*R(F + ) = LRF(I) <¢(;) - (J*Rqﬁ) *¢0(t)) "

=(1)eFin(*2(Q))
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As [ = 0, it follows that ' = " ¥ € Fin(*2(Q)), and by partial inte-
gration we have

J (F+C)p= —J fy=Y e Fin(*C)
- ®

since f is an S-distribution.

2. In the general case we choose an arbitrary anti-derivative F of f in the first
variable (on Q). E.g., if Q= (a1,b)) x -+ X (an,by), ai,b; e Ru{—c0,+0},
then for any «a; < ¢ < by, fcx' f(t,%)dt is such an anti-derivative. An anti-
derivative is determined up to a function G(¥;). Now it turns out that for a fixed
do € Z((ar1,by)) with [ ¢y =1, G(X1) = — [.5x F(£,%1)*d(1) dt is a good choice:
for any ¢ € Fin(*Z(Q)) we have

LR” (F(x) + G(%1))$(x) dx = LR” F(x) (¢(x) - (JR B, 51) dut) “o(x1) ) dx.

= (x)

As Q is an interval Y € Fin(*2(Q)). Moreover, [.py(t,%)dt=0 for all
%1 e *R"1 so y(x) == [ (t,%)dt € Fin(*2(Q)) and similarly as in the one-
dimensional case we ﬁnd that [..(F(x) + G(%1))¢(x) dx € Fin(*C). O

Lemma 6. Let f e D'(Q) of order <m on an interval K cc=Q, m > 0.
Then there exists g € D'(Q) of order <m — 1 on K such that 0; ...0,9 = f on *K.

Proof. Let K = [ay,b1] X -+ X [ay, b,). We will show that if 1 satisfies

U f¢] < C sup [0%9g(x)|  forall ¢ € Fin(*%(K))
*Q

xe*K

and for some CeR, ke N and a e N"! then the anti-derivative g(x) =
F(x) + G(x) in the first variable defined in Lemma 5 satisfies

H q¢‘ <C max sup 10V% g(x)|  for all ¢ € Fin(*Z(K))
xe*K

with C' € R and / = max(k — 1,0).
Let ¢ € Fin(*2(K)). With y, y € Fin(*%(K)) as in Lemma 5, we have

9| = || fx| < C sup [0%y(x)| = C sup |0 ofo; (x)|.
J ol =1] 74

xe*K xe*K
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In case k = 0, we have for x € *K that

X1
00y = || 8w dn] < (b - @) sup [0y,

xe*K

so in any case we have (for some C’, C” € R, independent of ¢)

09| = € sup 10|+ € sup [D"gon) |8 gtu. 1)
Q) *R

xe*K xe*K
< C" max sup |0V ¢(x)|.
J<I xe'k

Since ¢ is well defined on *Q’ for some interval Q' = Q with K =< Q’, we can use
$o € 2(Q') with ¢, =1 on K to ensure that g*¢, € D'(Q) without changing the
values on K.

If we repeatedly apply also the analogous result for the variables x», . .., x;,, we
finally conclude that the order of the primitive (8 ...d,) '/ has decreased (if
m > 0). Ul

For K c= Q we call L*(K) the space of all (standard) bounded (Lebesgue-
measurable) functions f : Q — C with support contained in K.

Lemma 7. Let K =< Q an interval. An S-distribution f is of order zero on K iff

e er) W L) (|| ro] < € sup o)

xe*K
Proof. Let f € €°(Q) and ¢ € L*(K). Then by a classical density theorem it is

clear that there exists some /4 € Z(K) such that

| o= 1 < suploeol and sup ol <2 sup lpo.
Q Q xeK xek

xekK

By transfer, we have (V/ € *¢*(Q)) (V¢ € *L*(K)) (Ih € *2(K))

(] o= s < suploland sup ol <2 sup [9(])-

xe*K xe*K

If in particular f is an S-distribution of order 0 on K, then

(3C e RY)(Vh e *@(K))(

J*th’ < C sup |h(x)|)

xe*K

The result follows by combining these two formulas. O
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Lemma 8. Ler f € D'(Q). Suppose that | is of order zero on a (standard) interval
K =la;,b)] x -+ x [ay, b,] c= Q. Then

(1) there exists g € *“€* () which is bounded on *K by a standard constant and
such that 0y ...0,9 = f on *K.

(2) there exists h € *€~ (Q) which is S-continuous and bounded by a standard con-
stant on *K and such that 07 ...02h = f on *K.

Proof. (1) Let x = (x1,...,x,) and = (¢1,...,,). For 4 = Q, we denote the
characteristic function of 4 by y,. Then (for x € “K)

X1 Xn
g(x) :ZJ dt J f(1)dr, :Jgf){[ahxl]x...x[an‘xn]
ay 2% *

clearly satisfies 0, ...0,9 = f on *K. Further, applying the previous lemma with
D= Lar xi]xx(an ) € L7 (K) (if x € *K), we find C € R" such that

(Vx € "K)(|g(x)| < C sup [¢(x)] ).

xe*K

=1

(2) If g satisfies the conditions from part 1, then (for x € *K)

X1 X
h(x) = J d .. J o(t) dty
ajp An
clearly satisfies 07 ...32h = f on *K. Further, for ¢~ 0 and ¢ > 0,

X1+e Xn
J dzl...J g(t)dt,| < Ce ][ (bi — ai) 0,

X1 ay i£l

|h(x1 +&,%1) — h(x)| =

and similarly for the other variables. So /(x) ~ h(y) as soon as x ~ y (x, y € *K).
Further, |h(x)| < C[],(b; — a;) € Fin(*C) for all x € “K. O

We are now ready to prove one of our main results.

Theorem 2. Let [ € *6¢*(Q). Then f € D'(Q) iff for each K =< Q there exists a
g € D'(Q) which is finite-valued and S-continuous on *K and such that f is a finite
order derivative of g on *K.

Proof. <: follows using the fact that for each ¢ e Fin(*Z(Q)), there exists
K =< Q such that supp ¢ < “K.
=: 1. We first consider the special case where K —< Q is an interval.
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Take an interval K’ == Q with K =< °(K’), the (topological) interior of K'.
Since f has a finite order m on K’, we find, by repeatedly applying Lemma 6,
some g € D'(Q) of order zero on K’ such that (0y...0,)"g=f on *K'. By
Lemma 8, we find /4 € *¢*(Q) which is finite and S-continuous on *K’ and
such that (0;...8,)"*h=f on *K'. If ¢, e Z(K') with ¢y =1 on K, then
g = h*¢, € D'(Q) has the required properties.

2. We consider the special case where f(x) = 0 for all x ¢ ns(*Q).

Then f can be extended to a *&*(R")-function, setting f(x):=0 if x e
*R™\ns(*Q). We claim that this extension is in D’(R"). There exists Ky cc Q
such that f(x) = 0 outside *Ky. Choose ¢, € 2(Q) with ¢, = 1 on Kj. Then for
any ¢ € Fin(*2(R")),

J*Rnf"’ = J*Qf M e Fin(*C).

eFin(*2(Q))

Now let K < Q be arbitrary. Since K = L << R”, with L an interval (possibly
L & Q), we conclude from part 1 that there exists a g € D’(R") which is finite and
S-continuous on *L and such that (the extended) f is a finite order derivative of g
on *L. The restriction of g to *Q has the required properties.

3. In the general case, let K == Q. Taking ¢, € Z(Q) with ¢, =1 on K, we
apply part 2 on f*¢, € D'(Q). O

The other main result will follow from Theorem 2 together with some addi-
tional lemmas.

Lemma 9. Let Q= (aj,by) x -+ x (an,bn) = R" be an open interval (possibly
aj = —0, b = +000). Let Q:= (a2, by) x -+ X (an,by) < R™ . Let f € *¢*(Q)
be mdependent of x1, so it can be identified wzth a *€* (Q)-function. Then:

(1) f(%1) e D'(Q) <= f(%1) € D'(Q).
2) f(xX1) o) 0 <= [(%1) 2yg) 0.

As a consequence, the expression f(X1) x4 0 is unambiguous.

Proof. (1) =: Let f(%) € D'(Q). Fix y(x1) € Fin(*Z(a;, b)) with [, = 1.
Choose ¢(x1) € Fin(*2(Q)) arbitrarily. Then y(x1)¢(%1) € Fin(*2(Q)), so

by

Fin("C) 3 J

*Q

FEW ) p(F) dx = J
“1_:,1_,

‘//(Xl)dxlj f(x1)(X1) dx1,

which means that /(%) € D'(Q).
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<: Let f(X) € D'(Q). For any ¢ € Fin(*2(Q)) and ¢ € ns(*(a1,b1)), the
map X — ¢(c, %) € Fin(*2(Q)), so

W(c) = JQ f(%)¢(c, %)) d% € Fin(*C).

Further, for some K =< (ay, b)), if ¢ lies outside *K, then /(¢) = 0. So

J f(x1)p(x) dx :J W(x1)dx; € Fin(*C),
-0 .

K

which means that f(%;) € D'(Q).
(2) Similar. 0

The following lemmas could be considered as exercises in distribution theory.
To our knowledge, they are not widely known. Therefore, we will include a non-
standard version with proof.

Lemma 10. Let Q be an open interval.
If f € D'(Q) and 0°f ~4 0, then there exist g; € D'(Q) such that

n o—1 )
S mg YD gq(F)x.

i=1 j=0

Proof. 1. We first show that if F € D'(Q) and 0,F ~ 0, then F is &'-infinitely
close to a D'(Q)-function which does not depend on Xx;.
If we choose G(X;) as in Lemma 5, we see that for all ¢ € Fin(*2(Q)),

| @+ Gpean = | @)oo de w0
with € Fin(*2(Q)) as in Lemma 5. So F(x) ~y —G(X1).
2. Now suppose that f € D'(Q) and

nom;

oif (x) =g Z gy (%i)x] (2)

i=1 j=0

for some g; € D'(Q). We will show that

S (x) =g Z Z g,.j(yci)x{

i=1 j=0

for some g; € D'(Q),my =m + 1, my =my,... 0, =m,.
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We notice that the right-hand side of eq. (2) is equal to

m nom;

51(291/(56 +1+ZZ a1 gy) (%)x )
J=0

i=2 j=0

From the explicit construction of the primitives aflg,-j in Lemma 5, it is immediate
that also they are independent of x;. Then applying part 1 on the difference of
both sides in eq. (2), we find that there exists G(X;) € D'(Q) such that

]+1 noom

+ZZ 1gi) (%),

i=2 j=0

f(x) =g G(x +Zgy x1)

which has the required form.

3. Now the theorem follows inductively using part 2 and the analogous for-
mulas for all the other variables (other than x;), also using the fact that if
f € D'(Q), then 8’f € D'(Q) for all § e N”. O

Lemma 11. Let Q be an open interval. Let [ € *€* (Q) be S-continuous and finite-
valued on ns(*Q), and suppose that 0*f ~, 0. Then there exist g; € *€™ (Q) which
are S-continuous and finite-valued on ns(*Q) such that

nooo—

Nf]’ Zzglj xl

Proof. First notice that a *@* (Q)-function which is finite-valued on ns(*Q) is in

D'(Q). Let Q= (aj, b)) x - % (ay,b,) and Q := (ay,bs) x --- X (an, b,). Let
0%f x40 and let o =: (a1,&), & € N"~!. By the previous lemma,

n o o—1 )
X)xg > Y (%), (3)
i=1 j=0
with h; € D'(Q). Now consider an arbitrary ¢ € ns*(ai,b1). Fix ¥(x;) € 2(R)
with [ =1 and > 0. Let ,,(x1) := my(mx;) for all m e *N. Let ¢(X) €
Fin(*Z(Q)) be arbitrary. Since

OC]]

o

we have for sufficiently large m € N (such that supp(y,,(c — x1)) = ns*(a;, b))
that
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6(1—1

| a0 omnte =g drs 3 | o)l xda) dv. (4)

J=0

By Robinson’s sequential lemma, this also holds for some w e *N\N. If
% € ns(*Q), the map x; — f(x) is S-continuous on ns(*(ay,b1)). Then

Jbl (f(x) = fe;%1))¥,,(c — x1) dxy ’

ai

< sup |f(x) = fle,x)| =0
X1 ESuppy,,

Jb] S, (e = x1)dxy — f(e, 561)’ =

ai

for all %; € ns(*Q), since supp ,, contains only infinitesimals and JoglWol =1 In
particular, they are &'-infinitely close. So also

b g
J AN (X)W, (¢ — x1) dxy =g 0% (¢, %1).

ay

On the other hand,

by

J 0% Iy (1) X]W (¢ — x1)p(31) dx = J C0%hy(R1)g(x1) dy J X, (c — x1) dxy,
o 4

ai

eFin(*C) ~cl
so we find from eq. (4) that

06171

I f(e.X) xg Y O hy(%)

J=0

for each ¢ € ns(*(ar,b1)). Now choose o different values ¢; € ns(*(ay, by)), with
ci # ¢ if i # j. Then we find a linear system with «; equations and «; unknown
functions 0%hy;. The determinant of the system is a Vandermonde determinant
equal to [, ;(¢ —¢)# 0. Therefore, each 0%hy; (%) is 9'-infinitely close to
a Fin(*C)-linear combination of the 0% (c;, %), which we call d%gy;(%). So
g1;(X1) € "€ (Q) are S-continuous and finite-valued on ns(*Q). By the previous
lemma (applied to Q = R"™!),

n o o—1

hj(%1) &g gy(%0) + )Y ha(%1)x
i=2 k=0

for some hy € D’ (Q). Substituting these expressions, together with the analogous
expressions for /;;(x;) (with i > 1), in formula (3) yields that
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n o—1 oy — -1 xlz—l

J2
§ : E gll xl E , E : E : hlllzlllz xll 12 xl‘)’ (5)
i=1 j= 1<11<12<n J1=0 =

for some 4, ,;, € D'(Q), since multiplication by x; preserves the ~/-equality.
We now proceed inductively and show that

n o—1 )
S ma DD aiE)x + D0 D iy (B o)X XX (6)
i=1 j=0 I <iy<i<iz<nji,j2,J3

for some g; € *¢*(Q), S-continuous and finite-valued on ns(*Q2), and some

hilizisjljzjs € D/(Q)' )
The proof is similar. Let F:= f -3, >3 Vi (®)x]. Let o =: (a1, o, d),
GeN"2 Let Q:= (a3,b3) X - x (ay,b,). Then

o — 112 1

0,0oc o"c J1 )2
o' EEO 2 gy (%1,2) ] X5

J1=0 j»=0

Fixing now ¢ € ns*(a1,b1) and d € ns*(aa, ba), we choose y,, as before, ¢(x12) €
Fin(*Q), multiply the previous expression by ,,(c — x1)¥,,(d — x2)$(X1,2) and
integrate over *Q to obtain similarly that

B (1171 \’1271 B . .
6“F(c, d, 561,2) g Z Z aahl‘zmihjz(561_’2)611611‘]2.
1=0 j»=0
Now we substitute ¢ by o; different values ¢y, ..., ¢, € ns*(aj,b;) and d by o, dif-

ferent values dy, ..., d,, € ns*(az,b>), with ¢; # ¢; if i # jand d; # d; if i # j. The
resulting linear system has a0, equations and oo, unknown functions é‘&thz, o
The matrix of the system is (if the equations and unknowns are written down in
a suitable order) the Kronecker product (sometimes also called direct product,
see e.g. [2]) of the Vandermonde matrices (¢!~ 1), 1., and (d/ ) with
determinant

i,j=1,... 007

[T eI —d) #0

i<j i<j
Another application of the previous lemma yields that
n o o—1

M2y (X1.2) Rgr g2,y (X1,2) + Z Z hi(%1,2,1)xf
i3 k=0
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for some g2, 5 € “6¢”(Q), S-continuous and finite-valued on ns(*Q), and
hiyc € D'(€). Substituting these expressions (for all /; ;, j ;) in formula (5) and
absorbing the terms g; 5, j,(Xi,;,) X/ x7 in the g;;(X;)x] we arrive at formula (6).

Repeatedly applying this procedure, we conclude that

n_ %l . . . .
F) o Y Y g+ > x5 x)

i=1 j=0 JUs 25w Jn

for some g;; € *¢*(Q), S-continuous and finite-valued on ns(*Q2), and constant
Cjr...j, € D'(€). Since a constant function belonging to D'(€) is necessarily in
Fin(*C) (see Lemma 12), we can absorb the terms ¢, ;x{'x3’...x/" in the

.....

g;(%)x/ and finally obtain the required formula. O

Finally, we need a lemma of Robinson’s [4], Theorem 5.3.14. Robinson works
with real-valued distributions on R. We show that the result can be generalized to
our situation.

Lemma 12. Let T € 2'(Q). If there exists a representative f of T which is
S-continuous at a € Q, then f(a) € Fin(*C). Moreover, the value st f(a) does not
depend on the chosen S-continuous representative.

Proof. Lete € R*. By S-continuity, there exists r € R" such that |f(x) — f(a)| < ¢
for all x € *B(a,r) = *Q. Now let ¢ € Z(B(a,r)), real-valued, ¢(x) >0 for all
xeQand [,¢=1. Then

| oo ra| ||

*B(a,r)

< J " p(x)| dx = e.
“Bla,r)

(f(3) = f(a) " () dx]

As f represents 7', we have |T(¢) — f(a)| < 2e. In particular, f(a) € Fin(*C).
For any representative g of 7, S-continuous at a, we have the same inequality
(possibly only for some smaller r € R"), so |f(a) — g(a)| < 4e. As ¢ e R is arbi-
trary, it follows that st f(a) = stg(a). O

Now we can prove our last main result.

Theorem 3. Let f € *6™(Q). Then [~y q)0 iff for each K =< Q there exists
o e N"and g € *P(Q) such that g(x) ~ 0, Vx € *Q and f = 0*g on *K.

Proof. 1. =: We first consider the case where K —c Q is an interval.

Take an interval K’ c= Q with K «<= °(K’). By Theorem 2, there exists
h € D'(Q) which is finite-valued and S-continuous on *K’ and such that é*h = f
on *K’. By Lemma 11 applied on the open interval Q := °(K’), we find in partic-
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ular that A is 2'(Q)-infinitely close to some & € *¢*(Q), which is S-continuous
on qs(*f!). As h(x) =", Z;‘;Bl g,»j(fc,»)x;i, we see that 9%k =0 on *Q Now
h—h=g, g 0 and is S-continuous on ns(*Q), so by Lemma 12, A(x) — h(x) ~ 0
for all x € ns(*Q). Further, 0*(h—h) =0"h= f on *K. If ¢, € 2(Q) with
#o = 1 on a neigbourhood of *K, then g := (h — iz)*qﬁo has the required properties.

2. The general case as well as the <=-part follow in a way similar to the proof of
Theorem 2. |

4. Application

In [1], R. F. Hoskins and J. Sousa Pinto introduce another nonstandard theory
of distributions. In this setting, nonstandard representatives of a distribution are
by definition locally finite-order derivatives of finite-valued and S-continuous
functions. By Theorem 2, it now follows that representatives of distributions in
the sense of Hoskins and Sousa Pinto are exactly representatives of distributions
in the sense of Stroyan and Luxemburg.
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