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On periodic solutions of a nonlinear singular
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Abstract. We find sufficient conditions on the rotation number of solutions to a nonlinear
singular problem which guarantee the existence of T-periodic solutions.
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1. Introduction

In this work we study the existence of T-periodic solutions to the following initial
value problem

(P 2x") + ; 772+ g (x(1)) + () =0,
x(0) = xo, (L.1)
x'(0) =0,

where xy and n are real numbers satisfying xy # 0 and n > 0. More precisely, we
will show that (1.1) has T-periodic solutions provided the functions ¢ and 4 satisfy
certain conditions to be specified below. Most often, existence results of this kind
are established via a variational method, where the solutions are obtained as
critical points of some energy functional. For example, in [1] and [9], the authors
obtain existence results for the semilinear second-order ordinary differential equa-
tion when p =2 (i.e., for the operator —u”) under a certain growth condition,
using the variational approach. Our method of proof, unlike those works, is not
variational. Rather, it is based on a phase-plane analysis similar to the methods
used in [5, 6], for elliptic problems, and [2], for the Duffing equation. In fact, our
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results are obtained by combining the time-mapping for the one-dimensional
p-Laplacian with the computation of the rotation number of the solutions of the
planar system.

Our results generalize the results of [3], in the sense that a more general non-
linearity is allowed (even for the case p = 2), and a more general differential oper-
ator (the one-dimensional p-Laplacian) is examined. Some partial results in this
direction were also obtained in [5] and [8], where the authors prove existence under
assumptions some fundamental inequalities relating the asymptotic behaviour of
the time mapping of the p-Laplacian with that of the function £ g( 9 as x — +00.

Our main result is a general existence result for 7-periodic solutlons of the ini-
tial value problem (1.1). We first transform the system into an equivalente planar
system. Then we prove that the rotation number of the solutions of the equivalent
planar system satisfy a certain condition, which allows us to apply the results
of [3], giving existence of T-periodic solutions as fixed points of the associated
Poincaré return map.

The assumptions on the functions g and /4, which we will refer to throughout
the paper, are as follows:

(H1) h,g : R — R are continuous functions and / is T-periodic (T > 0 fixed).

(H2) llle‘HJrT % —+o00.

(H3) he L™ (R).

(H4) Timpy . 76(x) =0, where fc(x) = [ -2 (G(x) ~ G(s)) "ds and G
denotes the primitive G(s) = [, g(o) do. N te that 7g(x) is well defined for
large x.

2. The main result

It will be convenient below to write the initial value problem (1.1) as a first order
system. Setting
[P =

equation (1.1) becomes

_
X =[y[" 7y,

; 2.1
Y = 7;|x1|p—2x/ _ g(x(l)) — h(1), Y

where p’ denotes the Holder conjugate of p (i.e., %—I— pl =1).
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Lemma 2.1. Any solution z(1) = (x(1), (1)) of (2.1) is defined for all t € R.

Proof. To prove this lemma, we consider the following Lyapunov function
1 /
V(5. 2) = (G(x(0) = Gon) + (1" + 1)

Here G, = min{G(x) | x € R}, which by (H2) is finite.
Differentiating v(r) = V' (x(1), y(t)) = V(z(r)) and using (H3), we obtain
that
V(1) = g0’ + [y" 7y’
="y (y +9(x)
I_ n
= "y (=5 = hio))
n ! 1_ ’_
== 1" =A@y < My

with M some positive constant. Using again the expression of V(x, y), we con-
clude that

1/p
0'(1)] < M(ﬁ) (v(t) = (G(x) = Gain) — 1)'”

/p
< M(ﬁ) (o) + )", (22)

where « is a real positive number. Finally, integrating on the interval [0, 7], we
deduce that

U(Z) < ci1vy + Cz|l — Zo‘p/,

where ¢; and ¢, are positive constants depending on M and p.

This last expression shows that v(z) = V' (x(¢), y(¢)) is bounded for ¢ in any
bounded interval. Also, ¥ (x,y) > 0 for each (x,y) € R* and V(x,y) — 40 as
x? 4 y* — 4o0. Therefore, the general theory of Lyapunov functions for first
order systems (see, e.g., [7]) shows that it is possible to extend any solution of
(1.1) to the whole interval [0, 7], so that the global existence of solutions follows.

]

We can also easily prove the following.
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Lemma 2.2. For any Ry > 0 there is Ry > Ry such that for every solution z(-) of
(2.1), we have

|z0)| <Ry = [z(t)]| < Ry forall te|0,T],
|z(0)] = Ry = |z(¢t)] = Ry forall t€[0,T],

where |z(t)| denotes the usual Euclidean norm of z(t) = (x(1), y(1)).
Proof. Integrating (2.2) we see that
v(t) < e(vo+ o) + T7.
Therefore, if Ry > 0 is given, if we set for w = (x, y) € R%
¢ =1+sup{V(w)||w| <R},
e =cler o)+ T7,
Ry =1+ sup{|w|||V(w)| < 2},
the result of Lemma 2.2 follows. O
Let us define now r(z) and 6(t) by
x(t) = r(t) cos 0(1),
y(t) = r(z)sin0()
for any solution of (1.1). A more or less straightforward computation gives

0/(1) = % — —(p— 1)[sin 017/ D|cos o] (-D/(r-D

cosf

= (o) + 2 i) <
for all 7 € [0, T1.

Lemma 2.3. There exists a constant d such that for any solution z(t) = (x(1), y(t))
of (2.1) we have

20)| =r>d = %O(t,z) <0

Sforallt e [0,T].

Proof. The proof is standard; see, e.g., [4]. O
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Let us define for each r > d the following nonnegative integer

n.(r) = max{n eZ"|n< infw(T’ 2)2; 60.2) ,2(0) = ”}v

where the infimum is taken over all solutions z(-) of (2.1). Therefore, n.(r) is the
least “‘rotation number” of the solutions of the planar system around the origin,
during the time [0, 7.

We can now state our main result.

Theorem 2.4. Suppose that (H1)—(H4) are satisfied. Then equation (2.1) has at
least one T-periodic solution.

Proof. The proof is based on the following lemma which gives a fundamental
property of the rotation number 7, (r):

Lemma 2.5. We have

lim n,(r) = +o0. (2.3)

pa——

Proof. Let z(t) = (x(t), y(¢)) be any solution of (2.1) such that [z(0)] =r >d >0

and fix 0 < ¢ < 1. We will estimate %;H(O)l from below.

By assumptions (H2) and (H4) there exist Ry = Ry(¢) and M > 0 such that

6(s) = <%>1/1’

and

p 1/p
< 8<p — 1) , for|s| > Ry (2.4)

[
0 (G(s) — G(&)"

g(s)sign(s) > pM >0,  for |s| > Ry. (2.5)

Fix R; = R;(¢) such that relation (2.9) below is satisfied.
Consider Ry(¢) > R; > R and assume that

(O] = Ri

for all € [0, 7] if |z(0)] =r > R, (see Lemma 2.2). Our aim is to find a lower

(T)—0

. |0 )] .r
estimate for ——_—— if r is large.

Let

A ={(a,b) € R?||(a,b)| = Va? + b2 > R|}.
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One can see that 4 = U,’G=1 A; where

Ay ={(a,b) € A||a] < Ro,b > 0},
Ay ={(a,b) € A|a = Ry,b > 0},
A3 = {(Cl,b) €A|a2R0abSO}a
Ay ={(a,b) € A||a] < Ry,b < 0},
AS = {(Cl,b) €A|a£ _ROabSO}a
As = {(a,b) € Ala < —Ry,b > 0}.
Fori=1,...,6define I, = {t € [0, T] | z(¢) € A;}. Then
=) v,

i=1

where Jj(l) are non-degenerate closed disjoints intervals contained in [0, 7] and
maximal with respect to the property that z(¢) € 4; for all 7 € Jj(l). Moreover, for
each i, j, k, [ the intersection Jj(’) nJ l(k) either is empty or consists of exactly one
point, and P; is a finite set which consists of at most two points.

Observe that

6
Z(t) €A= U A;
i=1
for all z € [0, 7] and that any final transition obeys the following “cycle rule”
Ay — Ay — Az — Ay — As — Ag — A;. (2.6)
Thus |[n; —nj| <1 forall i # k. It follows that

10T) = 0O & ingns 1 <i<6)— 150 —2 (2.7)

for all fixed k with 1 < k < 6. On the other hand it is clear that

.
6 n;

Z( 1 |J].(i>|) —T, (2.8)

=1 =

where |Jj(i)| = meas(Jj(")).
Since 0'(¢) < 0 on [0, T], we have x’ > 0 on A, x’ <0 on A4, and y’ <0 on
Ay Az, y' >0 on As n Ag. To guarantee that z(¢) completes any rotation we

must derive an estimate of w. We claim that

meas(.]j(i)) <e¢
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*

foralli=1,...,6 and all j=1,...,n/. Indeed, we denote for concreteness and
simplicity by
J = [061,062] = [O, T]

(with o) < o) a fixed generic interval among the J_I-(i).

First suppose that
Z(l) € Ay

for t € J (the case z(¢) € Ay is treated similarly). This yields that
lz(1)| = /x2(1) + ¥*(t) = Ri,  |x(t)] < Ro

for all 1 € J. Then from the first equation in (2.1) we have

- 2
IX'|P7 = X)X =y = |p(1)] = \/R} — R}.

In other words we have

¥ > (R R3)Ver-D) 5 2R (2.9)
&

Here R; = Rj(¢) is chosen such that it satisfies the latter inequality, that is,
(R12 _ R%)l/(z(ﬁfl)) > 2Ry

&
By integration on J we obtain that

2Ry = x(o) — x(og) = Jaz x'(s) ds > %('xz — o).

o1

Hence we deduce that
meas(J) = oy — oy < €.

Next we treat the case z(¢) € A, for t € J. We have from the first equation of
(2.1) that
y(1) = [x|P72x" > 0.

Then x'(¢) > 0. Hence, using the fact that G(-) is increasing on [Ry, +oo[, we ob-
tain that

x(1) < x(o) and G(x(t)) < G(x(ocz))
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for t € J. We now introduce for 7 € J the function
|
w(t) = G(x(l)) — Mx(1) + ? [v|”.

Differentiating w(-) with respect to time, we get

w'(t) = (g(x(1)) — M)x'(6) + 3" 3y’
= —(M = g(x(0) 131”2y + |y Pyy’
=" y(M — g(x(1)) - ¥)
= —Iyl”"zy{M +%y + h}
< —|y|" *y{M +h} <0.

Thus w(+) is non-increasing in J. Therefore we have

G(x(1)) — Mx(1) + ; D7 > G(x(o)) — Mx(a) + ]j (e)l”

> G(x(0)) — Mx(a)

for t € J = [0, 00]. By the mean value theorem this implies that

S = Glx() = G{x(0) - M (x() - x(1)
1 e — Glx x(on) — x(1) (G(x(x2)) — G(x(2))
> 556t — 6ot + XA (FE
> {6 () - 6(x0)} + 2 - pa),

where x(7) < & < x(a). It follows by (2.5) that
()7 =" = ¥” = G(x(22)) = G(x(0)).
Hence
¥ 2 (G(x()) - G(x(n)) "

for all z € [, 02[. Thus

x/

(G(x(22)) — G(x(1)))"” =1
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for all 7 € [o,a2[. Using (2.4) and the inequality x(o) > Ry in A, we get by
change of variable

J:meas(J):ocz—oclzj_lds

- » x'(s) ds
u (G(x(m)) — G(x(s))) "
B x(a2) dé
JY(cn) (G(x(x2)) — G(é))l/l7
B x(o2) dé _ TG(X 062)) _.
"o (G(x(m)) -G ()5

Similarly we can obtain the same estimate if z(7) € A3, As, A¢ for t € J. Thus it
follows from (2.8) that

T<e 26: n;,
=1
which implies that
T < 6e(n™ +1).
Here n* = min{n},1 <i < 6}. Consequently, we conclude from (2.7) that

|9(T’ Z) — 0(07 Z)l
2n

T
——3
T
where z(0) = r > R,. Finally, by the definition of n.(r), we have

n(r) > [65— 3],

where [s] is the integer part of s € R. When r — +o0, we have ¢ — 07, so we con-
clude that

lim n,(r) = +o0. O

r—-+0o0
To complete the proof one uses standard approximation and compactness
arguments to obtain the existence of T-periodic solutions as fixed points of the
Poincaré return map associated to the planar system (2.1). The argument is
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entirely similar to the proof of Corollary 1 in [3], the main hypothesis needed
being condition (2.3) on the rotation number of the solutions of the planar system
(2.1). O
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