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Abstract. We find su‰cient conditions on the rotation number of solutions to a nonlinear
singular problem which guarantee the existence of T -periodic solutions.
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1. Introduction

In this work we study the existence of T-periodic solutions to the following initial

value problem

ðjx 0jp�2
x 0Þ0 þ n

t
jx 0jp�2

x 0 þ g
�
xðtÞ

�
þ hðtÞ ¼ 0;

xð0Þ ¼ x0;

x 0ð0Þ ¼ 0;

9>>>=
>>>;

ð1:1Þ

where x0 and n are real numbers satisfying x0A 0 and nb 0. More precisely, we

will show that (1.1) has T-periodic solutions provided the functions g and h satisfy

certain conditions to be specified below. Most often, existence results of this kind

are established via a variational method, where the solutions are obtained as

critical points of some energy functional. For example, in [1] and [9], the authors

obtain existence results for the semilinear second-order ordinary di¤erential equa-

tion when p ¼ 2 (i.e., for the operator �u 00) under a certain growth condition,

using the variational approach. Our method of proof, unlike those works, is not

variational. Rather, it is based on a phase-plane analysis similar to the methods

used in [5, 6], for elliptic problems, and [2], for the Du‰ng equation. In fact, our



results are obtained by combining the time-mapping for the one-dimensional

p-Laplacian with the computation of the rotation number of the solutions of the

planar system.

Our results generalize the results of [3], in the sense that a more general non-

linearity is allowed (even for the case p ¼ 2), and a more general di¤erential oper-

ator (the one-dimensional p-Laplacian) is examined. Some partial results in this

direction were also obtained in [5] and [8], where the authors prove existence under

assumptions some fundamental inequalities relating the asymptotic behaviour of

the time mapping of the p-Laplacian with that of the function pgðxÞ
xp as x ! þl.

Our main result is a general existence result for T-periodic solutions of the ini-

tial value problem (1.1). We first transform the system into an equivalente planar

system. Then we prove that the rotation number of the solutions of the equivalent

planar system satisfy a certain condition, which allows us to apply the results

of [3], giving existence of T-periodic solutions as fixed points of the associated

Poincaré return map.

The assumptions on the functions g and h, which we will refer to throughout

the paper, are as follows:

(H1) h; g : R ! R are continuous functions and h is T-periodic (T > 0 fixed).

(H2) limjxj!þl
signðxÞgðxÞ

jxjp ¼ þl.

(H3) h a LlðRÞ.
(H4) limjxj!þl tGðxÞ ¼ 0, where tGðxÞ ¼

Ð x

0
p

p�1

�
GðxÞ � GðsÞ

��1=p
ds and G

denotes the primitive GðsÞ ¼
Ð s

0 gðsÞ ds. Note that tGðxÞ is well defined for

large x.

2. The main result

It will be convenient below to write the initial value problem (1.1) as a first order

system. Setting

jx 0jp�2
x 0 ¼ y;

equation (1.1) becomes

x 0 ¼ jyjp
0�2

y;

y 0 ¼ � n

t
jx 0jp�2

x 0 � g
�
xðtÞ

�
� hðtÞ;

9>=
>; ð2:1Þ

where p 0 denotes the Hölder conjugate of p (i.e., 1
p
þ 1

p 0 ¼ 1).
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Lemma 2.1. Any solution zðtÞ ¼
�
xðtÞ; yðtÞ

�
of (2.1) is defined for all t a R.

Proof. To prove this lemma, we consider the following Lyapunov function

Vðx; yÞ ¼
�
G
�
xðtÞ

�
� Gmin

�
þ 1

p 0 ðjyj
p 0
þ 1Þ:

Here Gmin ¼ minfGðxÞ j x a Rg, which by (H2) is finite.

Di¤erentiating vðtÞ ¼ V
�
xðtÞ; yðtÞ

�
¼ V

�
zðtÞ

�
and using (H3), we obtain

that

v 0ðtÞ ¼ gðxÞx 0 þ jyjp
0�2

yy 0

¼ jyjp
0�2

y
�
y 0 þ gðxÞ

�
¼ jyjp

0�2
y � n

t
y� hðtÞ

� �

¼ � n

t
jyjp

0
� hðtÞjyjp

0�2
yaMjyjp

0�1;

with M some positive constant. Using again the expression of Vðx; yÞ, we con-

clude that

jv 0ðtÞjaM
p

p� 1

� �1=p�
vðtÞ �

�
GðxÞ � Gmin

�
� 1

�1=p

aM
p

p� 1

� �1=p�
vðtÞ þ a

�1=p
; ð2:2Þ

where a is a real positive number. Finally, integrating on the interval ½0;T �, we
deduce that

vðtÞa c1v0 þ c2jt� t0jp
0
;

where c1 and c2 are positive constants depending on M and p.

This last expression shows that vðtÞ ¼ V
�
xðtÞ; yðtÞ

�
is bounded for t in any

bounded interval. Also, Vðx; yÞ > 0 for each ðx; yÞ a R2 and Vðx; yÞ ! þl as

x2 þ y2 ! þl. Therefore, the general theory of Lyapunov functions for first

order systems (see, e.g., [7]) shows that it is possible to extend any solution of

(1.1) to the whole interval ½0;T �, so that the global existence of solutions follows.

r

We can also easily prove the following.
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Lemma 2.2. For any R1 > 0 there is R2bR1 such that for every solution zð�Þ of
(2.1), we have

jzð0ÞjaR1 ¼) jzðtÞjaR2 for all t a ½0;T �;
jzð0ÞjbR2 ¼) jzðtÞjbR1 for all t a ½0;T �;

where jzðtÞj denotes the usual Euclidean norm of zðtÞ ¼
�
xðtÞ; yðtÞ

�
.

Proof. Integrating (2.2) we see that

vðtÞa cðv0 þ aÞ þ T p 0
:

Therefore, if R1 > 0 is given, if we set for w ¼ ðx; yÞ a R2:

c1 ¼ 1þ supfVðwÞ j jwjaR1g;

c2 ¼ cðc1 þ aÞ þ T p 0
;

R2 ¼ 1þ supfjwj j jVðwÞja c2g;

the result of Lemma 2.2 follows. r

Let us define now rðtÞ and yðtÞ by

xðtÞ ¼ rðtÞ cos yðtÞ;
yðtÞ ¼ rðtÞ sin yðtÞ

for any solution of (1.1). A more or less straightforward computation gives

y 0ðtÞ ¼ dy

dt
¼ �ðp� 1Þjsin yjp=ðp�1Þjcos yjð p�2Þ=ðp�1Þ

� gðxÞ þ n

t
jx 0jp

0�2
x 0 þ hðtÞ

� �
cos y

r

for all t a ½0;T �.

Lemma 2.3. There exists a constant d such that for any solution zðtÞ ¼
�
xðtÞ; yðtÞ

�
of (2.1) we have

jzð0Þj ¼ rb d ¼) d

dt
yðt; zÞ < 0

for all t a ½0;T �.

Proof. The proof is standard; see, e.g., [4]. r
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Let us define for each rb d the following nonnegative integer

n�ðrÞ ¼ max n a Zþ j na inf
jyðT ; zÞ � yð0; zÞj

2p
; zð0Þ ¼ r

� �
;

where the infimum is taken over all solutions zð�Þ of (2.1). Therefore, n�ðrÞ is the
least ‘‘rotation number’’ of the solutions of the planar system around the origin,

during the time ½0;T �.
We can now state our main result.

Theorem 2.4. Suppose that (H1)–(H4) are satisfied. Then equation (2.1) has at

least one T-periodic solution.

Proof. The proof is based on the following lemma which gives a fundamental

property of the rotation number n�ðrÞ:

Lemma 2.5. We have

lim
r!þl

n�ðrÞ ¼ þl: ð2:3Þ

Proof. Let zðtÞ ¼
�
xðtÞ; yðtÞ

�
be any solution of (2.1) such that jzð0Þj ¼ rb d > 0

and fix 0 < e < 1. We will estimate
jyðTÞ�yð0Þj

2p from below.

By assumptions (H2) and (H4) there exist R0 ¼ R0ðeÞ and M > 0 such that

tGðsÞ ¼
p

p� 1

� �1=p				
ð s

0

dx�
GðsÞ � GðxÞ

�1=p
				 < e

p

p� 1

� �1=p

; for jsjbR0 ð2:4Þ

and

gðsÞ signðsÞ > pM > 0; for jsjbR0: ð2:5Þ

Fix R1 ¼ R1ðeÞ such that relation (2.9) below is satisfied.

Consider R2ðeÞ > R1 > R0 and assume that

jzðtÞjbR1

for all t a ½0;T � if jzð0Þj ¼ r > R2 (see Lemma 2.2). Our aim is to find a lower

estimate for
jyðTÞ�yð0Þj

2p if r is large.

Let

A ¼ fða; bÞ a R2 j jða; bÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
bR1g:
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One can see that A ¼ 66

i¼1 Ai where

A1 ¼ fða; bÞ a A j jajaR0; b > 0g;
A2 ¼ fða; bÞ a A j abR0; bb 0g;
A3 ¼ fða; bÞ a A j abR0; ba 0g;
A4 ¼ fða; bÞ a A j jajaR0; b < 0g;
A5 ¼ fða; bÞ a A j aa�R0; ba 0g;
A6 ¼ fða; bÞ a A j aa�R0; bb 0g:

For i ¼ 1; . . . ; 6 define Ii ¼ ft a ½0;T � j zðtÞ a Aig. Then

Ii ¼
�
6
n�
i

i¼1

J
ðiÞ
j

�
APi;

where J
ðiÞ
j are non-degenerate closed disjoints intervals contained in ½0;T � and

maximal with respect to the property that zðtÞ a Ai for all t a J
ðiÞ
j . Moreover, for

each i, j, k, l the intersection J
ðiÞ
j B J

ðkÞ
l either is empty or consists of exactly one

point, and Pi is a finite set which consists of at most two points.

Observe that

zðtÞ a A ¼ 6
6

i¼1

Ai

for all t a ½0;T � and that any final transition obeys the following ‘‘cycle rule’’

A1 ! A2 ! A3 ! A4 ! A5 ! A6 ! A1: ð2:6Þ

Thus jn�
i � n�

k ja 1 for all iA k. It follows that

jyðTÞ � yð0Þj
2p

bminfn�
i j 1a ia 6g � 1b n�

k � 2 ð2:7Þ

for all fixed k with 1a ka 6. On the other hand it is clear that

X6

i¼1

�Xn�
i

j¼1

jJðiÞ
j j

�
¼ T ; ð2:8Þ

where jJðiÞ
j j ¼ measðJðiÞ

j Þ.
Since y 0ðtÞ < 0 on ½0;T �, we have x 0 > 0 on A1, x

0 < 0 on A4, and y 0 < 0 on

A2BA3, y 0 > 0 on A5BA6. To guarantee that zðtÞ completes any rotation we

must derive an estimate of
jyðTÞ�yð0Þj

2p . We claim that

measðJðiÞ
j Þa e
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for all i ¼ 1; . . . ; 6 and all j ¼ 1; . . . ; n�
i . Indeed, we denote for concreteness and

simplicity by

J ¼ ½a1; a2�J ½0;T �

(with a1 < a2Þ a fixed generic interval among the J
ðiÞ
j .

First suppose that

zðtÞ a A1

for t a J (the case zðtÞ a A4 is treated similarly). This yields that

jzðtÞj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ðtÞ þ y2ðtÞ

q
bR1; jxðtÞjaR0

for all t a J. Then from the first equation in (2.1) we have

jx 0jp�1 ¼ jx 0jp�2
x 0 ¼ y ¼ jyðtÞjb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

1 � R2
0

q
:

In other words we have

x 0
b ðR2

1 � R2
0Þ

1=ð2ðp�1ÞÞ
b

2R0

e
: ð2:9Þ

Here R1 ¼ R1ðeÞ is chosen such that it satisfies the latter inequality, that is,

ðR2
1 � R2

0Þ
1=ð2ðp�1ÞÞ

b
2R0

e
.

By integration on J we obtain that

2R0bxða2Þ � xða1Þ ¼
ð a2

a1

x 0ðsÞ dsb 2R0

e
ða2 � a1Þ:

Hence we deduce that

measðJÞ ¼ a2 � a1a e:

Next we treat the case zðtÞ a A2 for t a J. We have from the first equation of

(2.1) that

yðtÞ ¼ jx 0jp�2
x 0 > 0:

Then x 0ðtÞ > 0. Hence, using the fact that Gð�Þ is increasing on ½R0;þl½, we ob-
tain that

xðtÞaxða2Þ and G
�
xðtÞ

�
aG

�
xða2Þ

�
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for t a J. We now introduce for t a J the function

wðtÞ ¼ G
�
xðtÞ

�
�MxðtÞ þ 1

p 0 jyj
p 0
:

Di¤erentiating wð�Þ with respect to time, we get

w 0ðtÞ ¼
�
g
�
xðtÞ

�
�M

�
x 0ðtÞ þ jyjp

0�2
yy 0

¼ �
�
M � g

�
xðtÞ

�
jyjp

0�2
yþ jyjp

0�2
yy 0

¼ �jyjp
0�2

y
�
M � g

�
xðtÞ

�
� y 0�

¼ �jyjp
0�2

y M þ n

t
yþ h

n o

a�jyjp
0�2

yfM þ hga 0:

Thus wð�Þ is non-increasing in J. Therefore we have

G
�
xðtÞ

�
�MxðtÞ þ 1

p 0 jyj
p 0
bG

�
xða2Þ

�
�Mxða2Þ þ

1

p 0 jyða2Þj
p 0

bG
�
xða2Þ

�
�Mxða2Þ

for t a J ¼ ½a1; a2�. By the mean value theorem this implies that

1

p 0 jyj
p 0
bG

�
xða2Þ

�
� G

�
xðtÞ

�
�M

�
xða2Þ � xðtÞ

�

b
1

p 0 G
�
xða2Þ

�
� G

�
xðtÞ

�
þ xða2Þ � xðtÞ

p

G
�
xða2Þ

�
� G

�
xðtÞ

�
xða2Þ � xðtÞ � pM

� �

b
1

p 0
�
G
�
xða2Þ

�
� G

�
xðtÞ

��
þ xða2Þ � xðtÞ

p

�
gðxÞ � pM

�
;

where xðtÞa xaxða2Þ. It follows by (2.5) that

ðx 0Þp ¼ jyjp
0
¼ jx 0jpbG

�
xða2Þ

�
� G

�
xðtÞ

�
:

Hence

x 0
b

�
G
�
xða2Þ

�
� G

�
xðtÞ

��1=p
for all t a ½a1; a2½. Thus

x 0
�
G
�
xða2Þ

�
� G

�
xðtÞ

��1=p b 1
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for all t a ½a1; a2½. Using (2.4) and the inequality xða2ÞbR0 in A2, we get by

change of variable

J ¼ measðJÞ ¼ a2 � a1 ¼
ð a2

a1

1 ds

a

ð a2

a1

x 0ðsÞ ds�
G
�
xða2Þ

�
� G

�
xðsÞ

��1=p

¼
ð xða2Þ

xða1Þ

dx�
G
�
xða2Þ

�
� GðxÞ

�1=p

a

ð xða2Þ

0

dx�
G
�
xða2Þ

�
� GðxÞ

�1=p ¼ tG
�
xða2Þ

�
ðp 0Þ 1

p

a e:

Similarly we can obtain the same estimate if zðtÞ a A3;A5;A6 for t a J. Thus it

follows from (2.8) that

T < e
X6

i¼1

n�
i ;

which implies that

T < 6eðn� þ 1Þ:

Here n� ¼ minfn�
i ; 1a ia 6g. Consequently, we conclude from (2.7) that

jyðT ; zÞ � yð0; zÞj
2p

>
T

6e
� 3;

where zð0Þ ¼ rbR2. Finally, by the definition of n�ðrÞ, we have

n�ðrÞb
T

6e
� 3

 �
;

where ½s� is the integer part of s a R. When r ! þl, we have e ! 0þ, so we con-

clude that

lim
r!þl

n�ðrÞ ¼ þl: r

To complete the proof one uses standard approximation and compactness

arguments to obtain the existence of T-periodic solutions as fixed points of the

Poincaré return map associated to the planar system (2.1). The argument is

319On periodic solutions of a nonlinear singular di¤erential equation



entirely similar to the proof of Corollary 1 in [3], the main hypothesis needed

being condition (2.3) on the rotation number of the solutions of the planar system

(2.1). r
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