
Portugal. Math. (N.S.) Portugaliae Mathematica
Vol. 65, Fasc. 3, 2008, 387–429 6 European Mathematical Society

Sharp estimates for periodic solutions
to the Euler–Poisson–Darboux equation

Paulo Amorim and Philippe G. LeFloch

(Communicated by João Paulo Dias)

Abstract. We establish sharp estimates for distributional solutions to the Euler–Poisson–
Darboux equation posed in a periodic domain. These equations are highly singular,
and setting the Cauchy problem requires a precise understanding of the nature of the sin-
gularities that may arise in weak solutions. We consider initial data in a space of func-
tions with fractional derivatives such that weak solutions are solely integrable, and we
derive sharp continuous dependence estimates for solutions to the initial-value problem.
Our results strongly depend on a key parameter arising in the Euler–Poisson–Darboux
equation.
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1. Introduction

1.1. Aim of this paper. In this paper we establish sharp regularity estimates for

periodic solutions to the (highly singular) Cauchy problem associated with the

Euler–Poisson–Darboux (EPD) equation

uttðt; yÞ þ
2o

t
utðt; yÞ � uyyðt; yÞ ¼ 0; ð1Þ

utð0; yÞ ¼ u1ðyÞ; uð0; yÞ ¼ u2ðyÞ; ð2Þ

where o is a real parameter, and ðt; yÞ a ð0;þlÞ � ð0; 2pÞ. Since this is a singular

initial-value problem, it is not surprising that the solutions of this equation are sin-

gular (in some sense) as one approaches the singularity t ¼ 0. In this perspective,

the initial data u1, u2 may be regarded as the coe‰cients of a singular asymptotic

expansion of the solution as t ! 0. Solving the above Cauchy problem is equiva-

lent to validating such an asymptotic expansion. Note that, at this stage, (2) is



only defined formally and, as we will see, the parameter o should be involved in a

rigorous formulation of the initial data.

One central question of interest in the present paper concerns the choice of ap-

propriate spaces of initial data u1, u2; we are especially interested in ensuring that

solutions to the above Cauchy problem belong to the space L1. To this end, we

introduce an appropriate class of function spaces, denoted below by W o;1
per ð0; 2pÞ,

which are variants of Sobolev spaces and yield us the desired optimal regularity

statement, i.e., the solution operator associated with (1)–(2) maps W o;1
per ð0; 2pÞ

onto a subset of L1. We recall that EPD equations provide a typical example of

singular Cauchy problem, and have served as a paradigm for the theory of singu-

lar and degenerate Cauchy problems. For various results on such equations, see

the book [4] as well as [1], [2], [5].

1.2. Main result of this paper. To begin with let us assume that u1 ¼ 0 and start

with the observation that the function

t1�2oðt2 � y2Þo�1
þ

is a solution to the EPD equation (1) in the classical sense, at least away from the

singular lines t ¼ jyj. Here, fþ denotes the positive part of f . Let u2 be any su‰-

ciently smooth, 2p-periodic function. Since the equation under consideration is

linear, the convolution

U o
2 ðt; yÞ :¼

ð
R

t1�2o
�
t2 � ðy� y 0Þ2

�o�1

þ u2ðy 0Þ dy 0 ð3Þ

is still a solution to (1), at least for those values of o for which this integral is well-

defined in a classical sense. Next, by a change of variables in (3), we obtain

U o
2 ðt; yÞ ¼

ð1
�1

ð1� x2Þo�1
þ u2ðyþ txÞ dx ð4Þ

and, moreover,

Co�1U
o
2 ð0; yÞ ¼ u2ðyÞ

with Co�1 ¼
�Ð 1

�1ð1� x2Þo�1
þ dx

��1
, as can easily be seen by letting t tend to zero.

At this stage, a natural question arises whether one can still give an appropri-

ate meaning to the expression (4) when the function ð1� x2Þo�1
þ is not integrable

and, if we can do so, whether this expression still provides a solution (in a suitable

sense) to the equation (1). As we show here, the answer is closely related to prop-

erly choosing the regularity space for the data u1. With this in mind, our objec-

tives are describing such an optimal function space, deriving regularity estimates
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for general solutions, and rigorously validating the corresponding asymptotic ex-

pansion.

The key point to observe is that the solution given by (4), for instance, takes

the form of a scaled convolution in which the convolution kernel ð1� x2Þo�1
þ has

singularities of the type xo�1
þ . It is well known [6] that convolving a distribu-

tion u with a (suitably normalized) kernel of the form xo�1
þ amounts to taking

a fractional derivative (or integral) of order �o of u, which we denote here by

D�ou.

In view of this fact, when trying to determine the optimal space E ¼ EðoÞ for
the data u2 and when imposing that the formal solution (4) remains in L1ð0; 2pÞ
for t > 0, one should use the close relation of these kernels with fractional deriva-

tives and fractional integrals. That is, we need a rigorous version of the formal

argument

U o
2 ðtÞPD�ou2 a L1ð0; 2pÞ () u2 a EðoÞ;

which suggests that EðoÞ should be a suitable generalization of the Sobolev spaces

Wk;1 of distributions u such that Dku is an integrable function.

This leads us here to define the spaces W o;1
per ð0; 2pÞ which are suitable variants

of the usual Sobolev spaces for periodic functions. They allow us, on one hand, to

validate an asymptotic expansion for solutions with non-smooth initial data, and

on the other hand, to determine the space of initial data for which solutions re-

main integrable for all positive times.

Observe next that the function

ðt2 � y2Þ�o
þ ;

and, similarly, the convolution

U o
1 ðt; yÞ ¼

ð1
�1

t1�2oð1� x2Þ�o
þ u1ðyþ txÞ dx; ð5Þ

are also, formally at least, solutions of the EPD equation. Moreover, we have

C�ot
2o�1U o

1 ðt; yÞ ! u1ðyÞ;
t2oð1� 2oÞ�1

C�oU
o
1; tðt; yÞ ! u1ðyÞ;

provided these expressions make sense. This shows that for smooth data u1, u2 and

for o a ð0; 1Þ, the function

uðt; yÞ :¼ C�oU
o
1 ðt; yÞ þ Co�1U

o
2 ðt; yÞ ð6Þ

is a solution to the EPD equation (2), and the asymptotic expansions
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uðt; yÞ � t1�2ou1ðyÞ � u2ðyÞ ¼ oð1Þ; t ! 0;

t2oð1� 2oÞ�1
utðt; yÞ � u1ðyÞ ¼ oð1Þ; t ! 0;

ð7Þ

hold pointwise. In this paper we generalize this result to non-smooth initial data

and general exponents o.

1.3. Outline of this paper. In Section 2 below, we define the singular distribu-

tions required for defining the fundamental kernels to the equation (1) and the

fractional regularity spaces W l;1
per ð0; 2pÞ. First we consider the classical fractional

derivative kernel Fl ¼ xl�1
þ =GðlÞ, whose main properties we recall. Next, we con-

sider the truncated distribution gFl, where g is a suitable cut-o¤ function. This

distribution allows us to introduce fractional derivatives of periodic functions

which, due to support restrictions, cannot otherwise be convolved with the tradi-

tional fractional derivative kernel. Several properties of these distributions are

described in Lemma 2.2 below. We then consider the distribution Cl, which is

a normalized version of the singular distribution ð1� x2Þl�1
þ . This distribution

essentially represents the explicit solutions to the EPD equation, as shown in (4)

and (5) above.

Next, in Section 3 we provide the definition of the spaces W l;1
per ð0; 2pÞ, which

relies on the truncated distribution gF�l. We study basic properties of these

spaces in Lemmas 3.1 and 3.2 and then derive key estimates relating the distribu-

tion C�l with the spaces W l;1
per ð0; 2pÞ. These estimates take the form

kC�l � TkL1ð0;2pÞ k kTkl;1; ð8Þ

where T is a periodic distribution. Here and in what follows the constant implied

in the notationk is independent of T . This estimate provides a continuous em-

bedding of the space W l;1
per ð0; 2pÞ into the space of periodic distributions T for

which C�l � T a L1ð0; 2pÞ. Since the solutions of the EPD equation are closely

related to the convolution appearing in this estimate, it is this estimate which ulti-

mately yields the optimal regularity result of interest.

Finally, in Section 4 we are in a position to handle the EPD equation (1) and

we rigorously define its solutions using the singular distributions Co. The formula

here takes the form

Qo ¼ t1�2os1=tðC1�o � stu1Þ þ s1=tðCo � stu2Þ;

where s is a scaling operator. This formula provides a rigorous meaning to the

formal expression (6) for arbitrary parameter values o and non-smooth initial

data u1, u2. We then derive our key estimates, in the spirit of (8). All these results

come together in our main result, Theorem 4.4, where for all values of o outside a
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discrete exceptional set E, we validate asymptotic expansions for solutions to the

EPD equation.

The analysis outlined above gives only partial results for the case o ¼ 1=2, and

does not allow us to consider the case o a E, since the distribution Co is not de-

fined for these values. Therefore, the final two sections of this paper deal with

these exceptional cases; see the discussion in Section 5 and Theorem 6.1.

2. A class of singular distributions

2.1. The distributions Fl. In this section, we present standard material about

singular distributions in one space variable. We refer to Gelfand–Shilov [6] and

Hörmander [7] for further details. We denote by DðRÞ and D 0ðRÞ the space

of Cl functions with compact support and the space of distributions on R,

respectively. In particular, dðkÞ stands for the k-th derivative of the Dirac dis-

tribution, that is, 3dðkÞ; j4 ¼ ð�1ÞkjðkÞð0Þ. We also set

N :¼ f1; 2; 3; . . .g; N0 :¼ NA f0g; Z :¼ f. . . ;�1; 0; 1; . . .g;

and ½m� is the integer part of m satisfying by definition ½m�am < ½m� þ 1.

We recall some properties of the gamma and beta functions which will be use-

ful throughout. The gamma function is defined by GðlÞ ¼
Ðþl
0 e�xxl�1 dx for

l > 0 and using that

Gðlþ 1Þ ¼ lGðlÞ; �l a RnN0;

(which implies Gðk þ 1Þ ¼ k! for k ¼ 0; 1; 2; . . .) this function can be extended by

analytic continuation to all l a Rn�N0. The Gamma function blows up at every

non-positive integer �k and

lim
l!�k

ðlþ kÞGðlÞ ¼ ð�1Þk=k!; k a N0; ð9Þ

and satisfies the duplication formula

GðlÞGðlþ 1=2Þ ¼ 21�2l
ffiffiffi
p

p
Gð2lÞ: ð10Þ

Furthermore, if a, b and aþ b are not negative integers we define the beta

function by

Bða; bÞ ¼ GðaÞGðbÞ
Gðaþ bÞ ;

which is also be given by the integral
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Bða; bÞ ¼
ð1
0

xa�1ð1� xÞb�1
dx; a; b > 0:

By taking a ¼ b and using the duplication formula (10) we find

Bða; aÞ ¼ 21�2aBða; 1=2Þ: ð11Þ

Recall that the convolution of two distributions f , g satisfying certain assump-

tions on their support (either one of the supports is bounded or they are both

bounded on the same side) is the distribution f � g defined by

3 f � g; j4 :¼ 3 f n g; jðxþ yÞ4 ¼ 3 f ; 3g; jðxþ yÞ44; j a DðRÞ: ð12Þ

Denote by fþ ¼ maxð f ; 0Þ the positive part of a function f . We want to de-

fine the ‘‘function’’ xl�1
þ as a distribution normalized to be of unit mass, that is

formally:

Fl ¼
xl�1
þ

GðlÞ ; �l B N0;

dðkÞ; �l ¼ k a N0:

8><
>: ð13Þ

The following proposition provides a rigorous definition.

Proposition 2.1 (Definition and properties of the distributions Fl). The following

formula defines a one-parameter family of distributions supported on the half-line

½0;lÞ:

Fl :¼
ð�1Þk

Gðlþ kÞ

ð
R

xl�1þk
þ jðkÞðxÞ dx; �l B N0; k :¼ ½�lþ 1�þ;

ð�1ÞnjðnÞð0Þ; �l ¼ n a N0;

8><
>:

for j a DðRÞ. Moreover, they satisfy the normalization 3Fl; e
�x4 ¼ 1 and, pro-

vided the convergence, derivative, and convolution are understood in the sense of dis-

tributions, the following properties hold for all l; l 0 a R:

(1) Fl depends continuously upon l, that is, liml 0!l Fl 0 ¼ Fl,

(2) Fl �Fl 0 ¼ Flþl 0 ,

(3)
d

dx
Fl ¼ Fl�1.

Proof. Step 1. Defining xl�1
þ as a finite part. First of all, when l > 0 the function

xl�1
þ is locally integrable and, therefore, determines a distribution on R. For la 0

however, the function xl�1
þ is not integrable at the origin. For values �l a RnN0
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with k :¼ ½�lþ 1�þ (so that l� 1þ k a ð�1; 0Þ) we can introduce a distribution

still denoted by xl�1
þ by

3xl�1
þ ; j4 :¼ ð�1Þk

ðl� 1þ kÞ . . . l

ðþl

0

xl�1þkjðkÞðxÞ dx ð14Þ

for all j a DðRÞ. By integration by parts an equivalent definition of the distribu-

tion xl�1
þ is found:

3xl�1
þ ; j4 ¼

ðþl

0

xl�1 jðxÞ � jð0Þ � xj 0ð0Þ � � � � � xk�1

ðk � 1Þ! j
ðk�1Þð0Þ

 !
dx:

To motivate the above definition, for �l a RnN0 with k :¼ ½�lþ 1�þ we can

compute

3xl�1þk
þ ; jðkÞ4 ¼

ð
R

xl�1þk
þ jðkÞðxÞ dx ¼ lim

e!0

ðþl

e

xl�1þkjðkÞðxÞ dx

and, by integrating by parts,ðþl

e

xl�1þkjðkÞðxÞ dx

¼ �ðlþ k � 1Þ
ðþl

e

xlþk�2jðk�1ÞðxÞ dx� elþk�1jðk�1ÞðeÞ

¼ ðlþ k � 1Þðlþ k � 2Þ
ðþl

e

xlþk�3jðk�2ÞðxÞ dx� elþk�1jðk�1ÞðeÞ

þ ðlþ k � 1Þelþk�2jðk�2ÞðeÞ;

and so on, untilðþl

e

xl�1þkjðkÞðxÞ dx

¼ ð�1Þkðlþ k � 1Þðlþ k � 2Þ . . . l
ðþl

e

xl�1jðxÞ dx

� elþk�1jðk�1ÞðeÞ þ ðlþ k � 1Þelþk�2jðk�2ÞðeÞ þ � � �

þ ð�1Þk�1ðlþ k � 1Þ . . . ðlþ 1ÞeljðeÞ:

In the above identity, we observe that the first singular term (for instance)

takes the form

elþk�1jðk�1ÞðeÞ ¼ elþk�1
�
jðk�1ÞðeÞ � jðk�1Þð0Þ

�
þ elþk�1jðk�1Þð0Þ

¼ C0e
lþk�1 þ OðelþkÞ;
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where Ci (depends on j and) denote constants that may change at each occurrence

and can always be computed explicitly. Similarly, each singular term in el�1þj

( j ¼ 1; . . . ; k) takes the form

Cje
lþj�1 þ � � � þ Cke

lþk�1 þ OðelþkÞ;

so that clearly the most singular term is of the order el, as expected.

Therefore, we may writeðþl

e

xl�1jðxÞ dx ¼ C1e
l þ � � � þ Cke

lþk�1

þ ð�1Þk

ðlþ k � 1Þ . . . l

ðþl

e

xlþk�1jðkÞðxÞ dxþ OðelþkÞ:

Note that the first k terms contain singular powers of e, while the other ones tend

to zero with e (since lþ k > 0). This leads us to define the distribution xl�1
þ , for

l < 0, �l a RnN, as the coe‰cient of the finite term in the above expansion of the

integral and precisely leads us to (14). (The above derivation also justifies the ter-

minology ‘‘finite part’’ of the divergent integral
Ðþl
0 xl�1jðxÞ dx).

Step 2. Defining the distribution Fl. Observing that the expression (14) is singular

when �l a N, it is convenient to normalize the distribution xl�1
þ with the factor

1=GðlÞ. This leads us precisely to the definition (13) where the second line in (13)

will now be justified as we check the properties of Fl stated in the proposition.

Note that the definition (13) may be restated as

3Fl; j4 :¼ ð�1Þk3Flþk; f
ðkÞ4; ð15Þ

where k is such that lþ kb 0.

If l is not a negative integer or zero, the first result is clear from (14) and the

continuity of the gamma function. If �l ¼ n a N0, the function l 7! 3xl�1
þ ; j4

has a simple pole at each such value of l. At each such value, the residue is easily

computed from (14) to be

lim
l 0!�n

ðl 0 þ nÞ3xl 0�1
þ ; j4 ¼ jðnÞð0Þ

n!
¼ ð�1Þn

n!
3dðnÞ; j4:

Therefore, using (9), in the sense of distributions we find for �l ¼ n

lim
l 0!l

Fl 0 ¼ lim
l 0!l

1

Gðl 0Þ
xl

0�1
þ

¼ ð�1Þn

n!
dðnÞ lim

l 0!l

1

Gðl 0Þðl 0 þ nÞ
¼ dðnÞ ¼ Fl;

which establishes the item (1) of the proposition.
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The second claim is contained in Lemma 2.2 below. For a more direct proof,

see [6]. Finally, the third claim is actually a particular case of the second, since

d

dx
Fl ¼ d 0 �Fl ¼ F�1 �Fl ¼ Fl�1:

Alternatively, we may also compute

d

dx
Fl ¼

d

dx

xl�1

GðlÞ ¼
ðl� 1Þxl�2

GðlÞ ¼ xl�2

Gðl� 1Þ ¼ Fl�1;

which is easily justified in the sense of distributions by relying on the expression

(14) if �l B N0, or on (13) otherwise. This completes the proof of Proposition 2.1.

r

2.2. The truncated distribution Flg. In this section we introduce a variant of

the distribution Fl, which consists of multiplying it by a regular cut-o¤ function.

The aim is to obtain distributions with the same regularity, but with compact sup-

port.

For definiteness, we choose the cut-o¤ functions to be regularizations of the

characteristic function of the interval ð�l; 1Þ, wð�l;1Þ. Let re denote the standard

mollifier function, and set

g :¼ ra � wð�l;1Þ; ð16Þ

for some fixed a a ð0; 1Þ. Thus, we consider the distributions Flg, which are sim-

ply the product of Fl by the smooth function g.

The group property with respect to the convolution will be lost, so we deter-

mine the resulting error term in the following lemma.

Lemma 2.2. For all m > lb 0 one has the (semi-group) property

F�lg �Fmg ¼ Fm�ggm;�l; ð17Þ

and for m ¼ l,

F�lg �Flg ¼ dþ gl; ð18Þ

where gl, gm;�l are smooth functions with compact support which vanish for

x > 2þ 2a: Moreover, supp gl H ð1� a; 2þ 2aÞ, and if �lþ k a ð0; 1� one has

kglkL1ðRÞ k a�k; ð19Þ

where a is given in (16).
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Proof. Suppose first that l a ð0; 1Þ. and take m > l. For all j a DðRÞ, according
to (12) and (15), we have

3F�lg �Fmg; j4 ¼ 3F�lðxÞnFmðyÞ; gðxÞgðyÞjðxþ yÞ4
¼ �3F�lþ1ðxÞnFmðyÞ; g 0ðxÞgðyÞjðxþ yÞ þ gðxÞgðyÞj 0ðxþ yÞ4;

and since �lþ 1 > 0, this expression is an actual integral:

� 1

Gð1� lÞGðmÞ

ð
R

ð
R

x�l
þ y

m�1
þ
�
g 0ðxÞgðyÞjðxþ yÞ þ gðxÞgðyÞj 0ðxþ yÞ

�
dx dy:

Next, performing the changes of variables xþ y ¼ s and r ¼ y=s leads to

� 1

Gð1� lÞGðmÞ

ðl
0

sm�l

ð1
0

ð1� rÞ�l
rm�1

�
g 0
�
sð1� rÞ

�
gðsrÞjðsÞ

þ g
�
sð1� rÞ

�
gðsrÞj 0ðsÞ

�
dr ds:

Integration by parts in the second term and straightforward calculation yield

3F�lg �Fmg; j4

¼ Gðm� lþ 1Þ
Gð1� lÞGðmÞ

� ðl
0

Fm�lþ1ðsÞjðsÞ
ð1
0

ð1� rÞ�l
rm
�
g 0ðsrÞg

�
sð1� rÞ

�
� gðsrÞg 0

�
sð1� rÞ

��
dr ds

þ
ðl
0

Fm�lðsÞjðsÞ
ð1
0

ð1� rÞ�l
rm�1gðsrÞg

�
sð1� rÞ

�
dr ds

�
: ð20Þ

Thus, we find

F�lg �Fmg ¼ Fm�lgm;�l;

with

gm;�lðsÞ ¼
Gðm� lþ 1Þ
Gð1� lÞGðmÞ

� s

m� l

ð1
0

ð1� rÞ�l
rm
�
g 0ðsrÞg

�
sð1� rÞ

�
� gðsrÞg 0

�
sð1� rÞ

��
dr

þ
ð1
0

ð1� rÞ�l
rm�1gðsrÞg

�
sð1� rÞ

�
dr
�
:

Since gðsÞ ¼ 0 for s > 1þ a and g 0ðsÞ is concentrated on ð1� a; 1þ aÞ, one checks
immediately that the (smooth) function gm;�l vanishes for s > 2þ 2a. Moreover,
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if we put gC 1 (so that Flg ¼ Fl), we would find gm;�lC 1, which is consistent

with the group property for Fl in Proposition 2.1. This completes the proof

of (17).

To derive (18) we return to (20) and pass to the limit m ! l. Using the conti-

nuity (with respect to l) of the distribution Fl, the first double integral converges

to

3gl; j4 :¼
D
F1

ð1
0

ð1� rÞ�l
rl

Gð1� lÞGðlÞ
�
g 0ðsrÞg

�
sð1� rÞ

�
� gðsrÞg 0

�
sð1� rÞ

��
dr; j

E
;

and this distribution is actually a smooth function supported in ð1� a; 2þ 2aÞ.
Deriving kglkL1ðRÞ k 1=a form this expression is immediate, using the properties

of the beta function and the bound jg 0jaC=a.

For the second double integral in (20), observe, on the one hand, that for any

l a ð0; 1Þ, the function

Gðm� lþ 1Þ
Gð1� lÞGðmÞ

ð1
0

ð1� rÞ�l
rm�1gðsrÞg

�
sð1� rÞ

�
dr

is unity for s < 1� a, since in that range gðsrÞg
�
sð1� rÞ

�
¼ 1 for all r a ð0; 1Þ

and from the properties of the beta function. Since, on the other hand,

Fm�l ! F0 ¼ d, passing to the limit gives (18). This completes the proof of the

lemma for l a ð0; 1Þ.
Extending the result to all l > 0 is done by performing similar calculations for

l a ðk; k þ 1Þ, successively, using the relation (15). The functions appearing in-

stead of gm;�l have correspondingly more complex expressions, involving g and

its derivatives up to the order k þ 1, but similar support and smoothness proper-

ties, inherited in the same way from the properties of the function g and its

derivatives. For completeness, we provide the expression of gl for l a ð1; 2Þ:

glðsÞ ¼ s

ð1
0

ð1� rÞ1�l
rlþ1

Gð2� lÞGðlÞ
�
g 00
�
sð1� rÞ

�
gðsrÞ

� 2g 0
�
sð1� rÞ

�
g 0ðsrÞ þ g

�
sð1� rÞ

�
g 00ðsrÞ

�
dr

þ
ð1
0

ð1� rÞ1�l
rl

Gð2� lÞGðlÞ 2
�
g
�
sð1� rÞ

�
g 0ðsrÞ � g 0

�
sð1� rÞ

�
gðsrÞ

�
dr: ð21Þ

As in the case l a ð0; 1Þ, the bound (19) follows from the properties of the beta

function and from jg 00jaCa�2. This completes the proof of Lemma 2.2. r

Remark 2.3. Only minor changes to the proof of the previous lemma would lead

to the following generalization of (18): for all smooth function a
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ðF�lgÞ � ðFlagÞ ¼ að0ÞdþF1Al;

where the (smooth) function F1Al is now supported in ð0; 2þ 2aÞ.

2.3. The distribution Cl. Given two reals a; b a R we define the ‘‘scaling-

translation’’ operator f a DðRÞ 7! ta;bf a DðRÞ by

ðta;bfÞðxÞ ¼ fðaxþ bÞ; x a R;

and, by duality, we define the operator T a D 0ðRÞ 7! ta;bT a D 0ðRÞ by

3ta;bT ; f4 :¼ T ;
1

a
t1=a;�b=af

� 	
; f a DðRÞ:

For b ¼ 0, we have the scaling operator

sajðxÞ :¼ ta;0jðxÞ ¼ jðaxÞ:

Further, we denote by w1 the characteristic function wð�l;1Þ, and we define the set

of exceptional values as

E :¼ f�1=2;�3=2; . . .g:

Proceeding as in the proof of Proposition 2.1 one can view the formal expres-

sions ð1� x2Þl�1
þ as singular distributions. (See (24)–(25) below for the explicit

formula.) Then, after normalization, we arrive at the following one-parameter

family of distributions supported on the interval ½�1; 1�:

Cl :¼
Cl�1ð1� x2Þl�1

þ ; �l a RnN0; l B E;

p�1=2Gð�nþ 1=2Þð1þ jxjÞ�n�1�dðnÞx¼�1 þ ð�1ÞndðnÞx¼1

�
; �l ¼ n a N0;

(

ð22Þ

which are defined for all values except l a E. Here, we have set

Cl�1 :¼
Gðlþ 1=2Þ
GðlÞGð1=2Þ :

Proposition 2.4 (Properties of the distributions Cl). In the sense of distributions

and for all l a RnE the following properties hold:

(1) Cl ¼ p�1=2Gðlþ 1=2Þð1þ jxjÞl�1�t1;1�w1ðxÞFl

�
þ t�1;1

�
w1ðxÞFl

��
:

(2) Cl depends continuously upon l, that is, liml 0!l C
0
l ¼ Cl.

(3) For l ¼ 1=2, one may define the distribution ~CC1=2 :¼ C1=2 lnð1� x2Þ as the dis-
tributional limit
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lim
l 0!1=2

Cl 0 �C1�l 0

1� 2l 0 ¼ C1=2 ln
�
K1=2ð1� x2Þ

�
; ð23Þ

where the constant K1=2 is defined by

lnK1=2 :¼ �3C1=2 lnð1� x2Þ; 14:

(4)
d

dx
Cl ¼ ð1� 2lÞxCl�1.

Remark 2.5. As shown in the proof given below, the (unnormalized) distributions

ð1� x2Þl�1
þ are actually defined for l a E. However, our normalization constants

Cl�1 blow up for exactly these values, so that the distributions Cl remain unde-

fined for these values. In fact, it is not possible to provide a normalization ensur-

ing continuity for all values of the parameter l.

Proof. Step 1. Definition of ð1� x2Þl�1
þ . We begin with the observation that for

l B f0;�1g the function x 7! ð1� x2Þl�1
þ satisfies the algebraic equation

ð1� x2Þl�1
þ ¼ 2lþ 1

2l
ð1� x2Þlþ þ

�
4lðlþ 1Þ

��1 d 2

dx2
ð1� x2Þlþ1

þ :

This elementary fact can be used to define the distribution associated with the

function ð1� x2Þl�1
þ whenever l < 0 and therefore the functions are not locally

integrable, as follows.

Suppose first that l > 0. Multiplying the above identity by a test function

j a DðRÞ, integrating over R and using integration by parts twice in the last

term, we obtainð
R

ð1� x2Þl�1
þ jðxÞ dx ¼ 2lþ 1

2l

ð
R

ð1� x2ÞlþjðxÞ dx

þ
�
4lðlþ 1Þ

��1
ð
R

ð1� x2Þlþ1
þ j 00ðxÞ dx:

Observe that all of these integrals exist in a classical sense since l > 0.

Suppose next that l a ð�1; 0Þ. We can no longer integrate as above, but we

may nevertheless set

3ð1� x2Þl�1
þ ; j4 :¼ 2lþ 1

2l
3ð1� x2Þlþ; j4

þ
�
4lðlþ 1Þ

��1
3ð1� x2Þlþ1

þ ; j 004; ð24Þ

which defines ð1� x2Þl�1
þ as a distribution.
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It is now clear that (24) may be used as a recursive formula to define the distri-

butions ð1� x2Þl�1
þ for any l < 0, �l B N0. Indeed, let k :¼ ½�l� 1� be such that

l� 1þ k a ð�1; 0Þ, and let us iterate the equation (24) on each term in the right-

hand side to obtain

3ð1� x2Þl�1
þ ; j4 ¼

D
ð1� x2Þl�1þk

þ ;
Xkþ1

j¼0

ajðlÞjð jÞ
E

þ
D
ð1� x2Þlþk

þ ;
Xkþ1

j¼0

bjðlÞjð jÞ
E
; ð25Þ

for some reals ajðlÞ, bjðlÞ. Clearly, in view of (24), these constants clearly blow up

as one approaches �l a N0. The above expansion is not unique; for instance, in

(24) one could integrate by parts once more the right-hand side and obtain equiv-

alent expressions involving higher derivatives of j.

Step 2. Normalizing the distribution ð1� x2Þl�1
þ . We impose on the one hand that

the normalized distribution, when applied to a function constant on ð�1; 1Þ, re-
turns that same constant, and on the other hand, that the singularities generated

by the ajðlÞ, bjðlÞ when l a N0, are eliminated (see (25) above). To this end, we

define the normalization constants

Cl�1 ¼
� ð1

�1

ð1� x2Þl�1
þ dx

��1

:

For those values of l for which this integral converges it is easy to see that

Cl�1 ¼ 21�2lBðl; lÞ�1. Using the definition of the beta function in terms of the

gamma function and the formula (11), we find

Cl�1 ¼ Bðl; 1=2Þ�1 ¼ Gðlþ 1=2Þ
GðlÞGð1=2Þ : ð26Þ

This expression may then be considered for any l for which the right-hand side

above is defined, that is, for l B E. Note that Cl�1 blows up for these values of

l. Observe also that C�k ¼ 0 if k is a positive integer, and that if l B E,

Cl

Cl�1
¼ 2lþ 1

2l
: ð27Þ

After an easy computation, (24) becomes

Cl ¼ Clþ1 þ aðlÞC 00
lþ2;

or, for j a DðRÞ,

400 P. Amorim and P. G. LeFloch



3Cl; j4 ¼ 3Clþ1; j4þ aðlÞ3Clþ2; j
004;

with

aðlÞ :¼
�
ð2lþ 1Þð2lþ 3Þ

��1
:

In analogy with (25), we may iterate the formula above and obtain an induction

relation used to define Cl when lþ k a ð0; 1Þ,

Cl ¼
Xk
j¼0

bjðlÞC
ð jÞ
lþk þ

Xkþ1

j¼2

hjðlÞC
ð jÞ
lþkþ1 ð28Þ

or, for j a DðRÞ,

3Cl; j4 ¼
D
Clþk;

Xk
j¼0

bjðlÞjð jÞ
E
þ
D
Clþkþ1;

Xkþ1

j¼2

hjðlÞjð jÞ
E
:

Here, the coe‰cients bjðlÞ, hjðlÞ, which clearly blow up for l a E, satisfy

bjðlÞ; hjðlÞ ¼ 0 if j is odd:

Step 3. Proof of the proposition. To show claim (1) of the proposition, we begin

by expressing the distribution ð1� x2Þl�1
þ in terms of the distribution xl�1

þ . For all

j a DðRÞ (recall the notation w1 ¼ wð�l;1Þ),

3ð1� x2Þl�1
þ ; j4 ¼



xl�1
þ ; ð2� xÞl�1w1ðxÞ

�
jðx� 1Þ þ jð1� xÞ

��
¼


ð1þ jxjÞl�1�

t1;1
�
xl�1
þ w1ðxÞ

�
þ t�1;1

�
xl�1
þ w1ðxÞ

��
; j
�
: ð29Þ

To show this, we rely on the uniqueness of analytic continuation. First, consider

the function of a complex variable

C C l 7! 3ð1� x2Þl�1
þ ; j4:

Observe now that if <ðlÞ > 0 (here < denotes the real part), the above function is

analytic, and the equation (29) is valid (by linear changes of variables in the inte-

gral expressions). Therefore, by uniqueness of analytic continuation, the equation

(29) holds for �<ðlÞ B N. This completes the derivation of claim (1).

In view of (13), (29) and Gð1=2Þ ¼
ffiffiffi
p

p
, we immediately find

lim
l!�n

3Cl; j4 ¼ Gð�nþ 1=2Þ
Gð1=2Þ 3ð1þ jxjÞ�n�1

þ ðt1;1dðnÞ þ t�1;1d
ðnÞÞ; j4

¼ p�1=2Gð�nþ 1=2Þ


ð1þ jxjÞ�n�1

þ
�
d
ðnÞ
x¼�1 þ ð�1ÞndðnÞx¼1

�
; j
�
: ð30Þ

Claim (2) is thus established.
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Next, we note that we can define the distribution ð1� x2Þl�1 lnð1� x2Þ, at least
for �l B N0. This may be done simply by observing that for such values of l, and

for any j a DðRÞ, the function l 7! 3ð1� x2Þl�1; j4 is analytic and

3ð1� x2Þl�1 lnð1� x2Þ; j4 ¼ d

dl
3ð1� x2Þl�1; j4:

We denote these distributions (multiplied by the normalization constant Cl�1) by
~CCl. Let us now show the third claim of the lemma, (23). For this, simply note

that the quotient indicated is equal to d
dl
Cl=l¼1=2. The result follows by comput-

ing this derivative:

d

dl
Cl ¼ Cl lnð1� x2Þ þ ð1� x2Þl�1 d

dl
Cl�1

¼ Cl lnð1� x2Þ � 3lnð1� x2ÞCl; 14Cl;

which, for the value l ¼ 1=2, gives (23) (in this computation we have omitted for

simplicity the test function j).

Finally, consider claim (4). First, note that for �l a N0 and l ¼ 1, this may be

checked directly from (22). Otherwise, then the claim will follow if we show that,

in the sense of distributions,

d

dx
ð1� x2Þl�1 ¼ �2ðl� 1Þxð1� x2Þl�2: ð31Þ

In that case, for l B E, and using also (27), we find

d

dx
Cl ¼

d

dx
Cl�1ð1� x2Þl�1

¼ ð1� 2lÞCl�2xð1� x2Þl�2 ¼ ð1� 2lÞxCl�1:

Now, (31) is clearly true if l > 1, since the distributions in this case reduce to reg-

ular functions. Suppose next that l a ð0; 1Þ. Then, a straightforward computation

using the relation (24) shows (31). Clearly, one may now proceed similarly for

l a ð�1; 0Þ, and so on, for all l B E. This completes the proof of Proposition 2.4.

r

3. Estimates in fractional Sobolev spaces

3.1. Notation and definition. Following Gelfand–Shilov [6], the derivative of

order l of a distribution T supported on the half-line Rþ is defined by convolution

with the kernel F�l (given in (13) above):

DlT :¼ F�l � T :
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For l > 0 we also use the notation

I lT :¼ D�lT ;

and refer to I lT as the integral of order l of the distribution T . We also use the

short-hand notation T ðlÞ instead of DlT .

Using this notion of fractional derivative, one cannot define the derivative of a

periodic distribution T , since suppT QRþ (apart from the trivial case T ¼ 0).

One way to extend the notion of fractional derivative to periodic distributions is

to replace the convolution kernel Fl with a new kernel having the same type of

singularity at zero, but having compact support. This is done simply by multiply-

ing Fl by a cut-o¤ function. This procedure has the advantage that the convolu-

tion of T with the new kernel still is a periodic distribution and, since F�k has

compact support if k a N0, this notion of fractional derivative is consistent with

usual (integer-order) derivative.

Recall from (16) the definition of the cut-o¤ functions g,

g :¼ ra � wð�l;1Þ:

Given lb 0, the periodic fractional Sobolev space of order l, denoted by

W l;1
per ð0; 2pÞ, consists of all periodic distributions T a D 0

perð0; 2pÞ such that

ðgF�lÞ � T belongs to the Lebesgue space L1ð0; 2pÞ, that is,

W l;1
per ð0; 2pÞ :¼ fT a D 0

perð0; 2pÞ : ðgF�lÞ � T a L1ð0; 2pÞg:

Similarly, we define (for lb 0) the negative Sobolev spaces

W�l;1
per ð0; 2pÞ :¼ fT a D 0

perð0; 2pÞ : ðgFlÞ � T a L1ð0; 2pÞg:

Now we define the norms associated with these spaces, for all l > 0,

kTkl;1 :¼ kðgF�lÞ � TkL1ð0;2pÞ þ kTkL1ð0;2pÞ; ð32Þ

kTk�l;1 :¼ kðgFlÞ � TkL1ð0;2pÞ þ kgl � TkL1ð0;2pÞ; ð33Þ

where gl is the function given by (18) in Lemma 2.2. Also, define the semi-norms

jT jel;1 :¼ kðgFHlÞ � TkL1ð0;2pÞ:

Note that for all periodic functions T a L1ð0; 2pÞ and all integrable functions g

with compact support, one has

kg � TkL1ð0;2pÞa kgkL1ðRÞkTkL1ð0;2pÞ:

The above definitions are justified by the following result.
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Lemma 3.1. Let k a N0.

(1) The space W k;1
per ð0; 2pÞ coincides with the usual Sobolev space W k;1ðS1Þ of func-

tions on the sphere S1 whose k-th distributional derivative is in L1ðS1Þ.
(2) For every lb 0, the space W�l;1

per ð0; 2pÞ coincides with the space given by

fT a D 0
perð0; 2pÞ : f ; g a L1ð0; 2pÞ;T ¼ ðgF�lÞ � f � gg:

Moreover, one may take

f ¼ ðgFlÞ � T ; g ¼ gl � T ;

with gl given in Lemma 2.2.

(3) For every real lam, one has the continuous embedding

W m;1
per HW l;1

per :

Proof. The first claim is simply a consequence of the fact that, since gð0Þ ¼ 1,

F�k ¼ F�kg.

To deal with the second claim, suppose that T a W�l;1
per ð0; 2pÞ. Set f :¼

ðFlgÞ � T a L1ð0; 2pÞ, g :¼ gl � T (cf. (18)). Using Lemma 2.2, we find

ðgF�lÞ � f ¼ ðgF�lÞ � ðFlgÞ � T ¼ d � T þ gl � T ¼ T þ g:

which establishes one inclusion in (2). For the other inclusion, suppose that

T ¼ ðgF�lÞ � f � g, with f ; g a L1ð0; 2pÞ. Then, from Lemma 2.2, we find

ðgFlÞ � T ¼ d � f þ gl � f � ðgFlÞ � g a L1ð0; 2pÞ:

This shows the second claim of the lemma.

We now turn to the proof of the lemma’s last claim. Let l; mb 0, and let

us first check that W�l;1
per ð0; 2pÞHW�m;1

per ð0; 2pÞ, with continuous embedding, if

l < m. Let T a W�m;1
per ð0; 2pÞ. Using Lemma 2.2 we find

kTk�m;1 ¼ kðgFmÞ � TkL1ð0;2pÞ þ kgm � TkL1ð0;2pÞ

a kðgF�lÞ � ðgFmÞ � ðgFlÞ � TkL1ð0;2pÞ þ kgl � ðgFmÞ � TkL1ð0;2pÞ

þ kgm � TkL1ð0;2pÞ;

thus

kTk�m;1a kFm�lgm;�lkL1ðRÞkðgFlÞ � TkL1ð0;2pÞ þ kFmgkL1ðRÞkgl � TkL1ð0;2pÞ

þ kðgF�lÞ � gm � ðgFlÞ � TkL1ð0;2pÞ þ kgl � gm � TkL1ð0;2pÞ
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and so

kTk�m;1a kFm�lgm;�lkL1ðRÞkðgFlÞ � TkL1ð0;2pÞ þ kFmgkL1ðRÞkgl � TkL1ð0;2pÞ

þ kðgF�lÞ � gmkL1ðRÞkðgFlÞ � TkL1ð0;2pÞ þ kgmkL1ðRÞkgl � TkL1ð0;2pÞ

k kðgFlÞ � TkL1ð0;2pÞ þ kgl � TkL1ð0;2pÞ ¼ kTk�l;1:

This shows the desired result for negative Sobolev spaces. Now, suppose

T a W m;1
per ð0; 2pÞ. Again using Lemma1 2.2, we find

kTkl;1 ¼ kðgF�lÞ � TkL1ð0;2pÞ þ kTkL1ð0;2pÞ

a kðgFmÞ � ðgF�lÞkL1ðRÞkðgF�mÞ � TkL1ð0;2pÞ

þ kgm � ðgF�lÞkL1ðRÞkTkL1ð0;2pÞ þ kTkL1ð0;2pÞ

and thus

kTkl;1 k kðgF�mÞ � TkL1ð0;2pÞ þ kTkL1ð0;2pÞ ¼ kTkm;1:

This completes the proof of Lemma 3.1. r

We now establish an alternative characterization of the spaces W l;1
per ð0; 2pÞ, for

lb 0. In particular, we show that T a W l;1
per ð0; 2pÞ if and only if the (classical)

fractional derivative of Tc is integrable for every c a DðRÞ.

Lemma 3.2. Supposing that lb 0, one has

W l;1
per ð0; 2pÞ ¼ fT a D 0

perð0; 2pÞ : F�l � ðTcÞ a L1ð0; 2pÞ;c a DðRÞg:

Proof. Suppose that T a W l;1
per ð0; 2pÞ. This is equivalent to saying that

T a L1ð0; 2pÞ and ðgF�lÞ � T a L1ð0; 2pÞ (cf. (32)). We want to show that

kF�l � ðTcÞkL1ð0;2pÞ k kTkl;1:

We have

kF�l � ðTcÞkL1ð0;2pÞa
���ð1� gÞF�l

�
� ðTcÞ

��
L1ð0;2pÞ þ kðgF�lÞ � ðTcÞkL1ð0;2pÞ:

Now, the first term in the right-hand side is bounded by CðcÞkTkL1ð0;2pÞ, since
Tc a L1ðRÞ and ð1� gÞF�l a L1

loc. Next, consider the second term. Observe

that when l a N, the result is obvious since in that case Flg ¼ dðkÞ, and

T a Wk;1
per ð0; 2pÞ. Suppose, then, that l a ð0; 2Þnf1g (the general case follows

similarly). For j a DðRÞ we have
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3ðgF�lÞ � ðTcÞ; j4 ¼ 3F�l nT ;cðyÞgðxÞjðxþ yÞ4
¼


F�l nT ;

�
cðxþ yÞ � xc 0ðxþ yÞ

þ x2c 00ðxÞ
�
gðxÞjðxþ yÞ

�
thus

3ðgF�lÞ � ðTcÞ; j4 ¼ 3F�l nT ;cðxþ yÞgðxÞjðxþ yÞ4
� ð1� lÞ3F�lþ1 nT ;c 0ðxþ yÞgðxÞjðxþ yÞ4
þ ð1� lÞð2� lÞ3F�lþ2 nT ;c 00ðxÞgðxÞjðxþ yÞ4;

for some x depending on x, y. This gives after a change of variable is the last

term,

3ðgF�lÞ � ðTcÞ; j4 ¼


c
�
ðgF�lÞ � T

�
; j
�
� ð1� lÞ



c 0�ðgF�lþ1Þ � T

�
; j
�

þ ð1� lÞð2� lÞ
ð
R

jðsÞ
ð
R

ðgF�lþ2Þðs� yÞTðyÞcðxÞ dy ds:

Therefore, we find

kðgF�lÞ � ðTcÞkL1ð0;2pÞ

a
��c�ðgF�lÞ � T

���
L1ð0;2pÞ þ j1� lj

��c 0�ðgF�lþ1Þ � T
���

L1ð0;2pÞ

þ j1� ljð2� lÞ
ð2p
0

ð
R

ðgF�lþ2Þðy� yÞTðyÞc 00ðxÞ dy
 dy:

Thus

kðgF�lÞ � ðTcÞkL1ð0;2pÞ

a kckLlkðgF�lÞ � TkL1ð0;2pÞ þ j1� lj kc 0kLlkðgF�lþ1Þ � TkL1ð0;2pÞ

þ j1� ljð2� lÞkc 00kLlkðgF�lþ2Þ � jT j kL1ð0;2pÞ:

For the second term, using Lemma 3.1 we find

kðgF�lþ1Þ � TkL1ð0;2pÞa kTkl�1;1 k kTkl;1:

For the last term, observe that gF�lþ2 a L1ðRÞ, and so this term is bounded by

j1� ljð2� lÞkc 00kLlkðgF�lþ2ÞkL1ðRÞkTkL1ð0;2pÞ k kTkl;1:

This shows one inclusion.
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Next, we must show that ðF�lgÞ � T is in L1ð0; 2pÞ if for all c a DðRÞ, we
have F�l � ðTcÞ a L1ð0; 2pÞ. We choose c ¼ 1 on ð�2p; 2pÞ and observe that in

the interval ð0; 2pÞ one has

ðF�lgÞ � T ¼ ðF�lgÞ � ðTcÞ ¼ F�l � ðTcÞ þ
�
F�lðg� 1Þ

�
� ðTcÞ;

which is a sum of integrable functions, since, as above, the second term is locally

integrable. This concludes the proof of Lemma 3.2. r

3.2. Key L1 estimates on the distributions Cl. The basic idea for the following

results is that the singularities of the formal expressions defining the distribu-

tions Fl and Cl coincide. We now obtain a continuous embedding of the

space W�l;1
per ð0; 2pÞ into the space of periodic distributions T for which

Cl � T a L1ð0; 2pÞ. Thus, we seek for estimates of the form

kCl � TkL1ð0;2pÞ k kTk�l;1:

Proposition 3.3. Suppose that lb 0 and l B �E.

(1) If T a W l;1
per ð0; 2pÞ, then

kC�l � TkL1ð0;2pÞ k kTkl;1 :¼ kðgF�lÞ � TkL1ð0;2pÞ þ kTkL1ð0;2pÞ: ð34Þ

(2) If T a W�l;1
per ð0; 2pÞ, then

kCl � TkL1ð0;2pÞ k kTk�l;1 :¼ kðgFlÞ � TkL1ð0;2pÞ þ kgl � TkL1ð0;2pÞ: ð35Þ

Proof. Consider first the estimate (34). From Proposition 2.4, we find

C�l ¼
Gð1=2� lÞffiffiffi

p
p ð1þ jxjÞ�l�1�t1;1ðgF�lÞ þ t�1;1ðgF�lÞ

�
;

which gives

kC�l � TkL1 k
���ð1þ jxjÞ�l�1

t1;1ðgF�lÞ
�
� T
��
L1

þ
���ð1þ jxjÞ�l�1t�1;1ðgF�lÞ

�
� T
��
L1 :

Now, since T is periodic, the first term (for instance; the other term is treated sim-

ilarly) equals��t1;1�ð1þ jx� 1jÞ�l�1ðgF�lÞ � T
���

L1 ¼ kða�lgF�lÞ � TkL1 ;

where a�lðxÞ :¼ ð2� xÞ�l�1. Next, from Lemma 3.1, one has ðgF�lþmÞ � T a
L1ð0; 2pÞ for any m > 0, since T a W l;1

per ð0; 2pÞ. Therefore we find, Taylor devel-

oping a�l around x ¼ 0, and proceeding as in the proof of Lemma 3.2,
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kðgF�la�lÞ � TkL1 a
��gF�l

�
a�lð0Þ þ xa 0

�lð0Þ þ � � � þ Oðxkþ1Þ
�
� T
��
L1

and thus

kðgF�la�lÞ � TkL1 a ja�lð0Þj kgF�l � TkL1 þ ja 0
�lð0Þj kgF�lþ1 � TkL1 þ � � �

þ jaðkÞ�lð0Þj kgF�lþk � TkL1 þ CkgF�lþkþ1kL1kTkL1 ;

with k large enough so that �lþ k þ 1 > 0. This completes the proof of (34).

Finally, splitting the distribution Cl, we see that, to show (35), it is enough to

estimate kðFlalgÞ � TkL1ð0;2pÞ. Using Lemma 2.2 and Remark 2.3 we get

kðFlalgÞ � TkL1ð0;2pÞa kF�lg �Flag �Flg � TkL1ð0;2pÞ þ kgl �Flag � TkL1ð0;2pÞ

thus

kðFlalgÞ � TkL1ð0;2pÞ

a
�
alð0Þ þ kF1AlkL1ðRÞ

�
kðFlgÞ � TkL1ð0;2pÞ þ kFlagkL1ð0;2pÞkgl � TkL1ð0;2pÞ

k kTk�l;1:

This completes the proof of Proposition 3.3. r

3.3. Key L2 estimates on the distributions Cl. The additional structure pro-

vided by the Fourier transform in L2 allows us to apply a completely di¤erent

method to derive estimates on the distributions Cl. In fact, we show that the

space of periodic distributions which are in L2ð0; 2pÞ after convolution with the

distributions C�l is precisely the classical Sobolev space H l
perð0; 2pÞ.

We begin by recalling the definition of the Sobolev spaces H l
perð0; 2pÞ. First,

note that if T is a periodic distribution, then we may define its Fourier coe‰cients

cn, n a Z and its continuous Fourier transform is given by

T̂T ¼
X
n AZ

dx¼2pncn:

The rate of decay of jcnj is a measure of the regularity and integrability properties

of T . For instance, T a L2ð0; 2pÞ i¤
P

n AZ jcnj
2 < l, and moreover one hasP

n AZ jcnj
2 ¼ kTkL2ð0;2pÞ. The Sobolev spaces H l

perð0; 2pÞ are defined for l a R as

H l
perð0; 2pÞ :¼

n
T a D 0

perð0; 2pÞ :
X
n AZ

ð1þ jnj2Þljcnj2 < l
o
;

with norm given by

408 P. Amorim and P. G. LeFloch



kTkH l ¼
X
n AZ

ð1þ jnj2Þljcnj2:

Note that this definition makes sense for all l a R, giving a single, coherent defini-

tion of a scale of Sobolev spaces.

Proposition 3.4. For every l a R, l B �E, one has

fT a D 0
perð0; 2pÞ : C�l � T a L2ð0; 2pÞg ¼ H l

perð0; 2pÞ;

and

kC�l � TkL2ð0;2pÞ k kTkH l :

Proof. Suppose that C�l � T a L2ð0; 2pÞ. Since it is periodic, we must have

F ðC�l � TÞ ¼
P

n AZ d2pndn, for some dn a C with
P

n AZ jdnj
2 < l. On the other

hand, since T is periodic with Fourier coe‰cients cn,

FðC�l � TÞ ¼ F ðC�lÞFðTÞ ¼ ĈC�l

X
n AZ

d2pncn ¼
X
n AZ

d2pnancn;

where an :¼ ĈC�lð2pnÞ. Now the key point is that the explicit formula of ĈC�lðsÞ is
known [6]:

ĈC�lðsÞ ¼ Gð1=2� lÞðs=2Þlþ1=2
J�l�1=2ðsÞ;

where Ja denotes the Bessel functions. For our purposes, it is enough to know that

Ja satisfies

s�aJaðsÞ a ClðRÞ; and jJaðsÞjP 1=
ffiffi
s

p
; s ! l

for all a. From this it is easily deduced that

janjk ð1þ jnjÞl:

Now observe that there exist constants A;B > 0 such that

A
X
n AZ

ð1þ jnjÞ2ljcnj2a
X
n AZ

ð1þ jnj2Þljcnj2aB
X
n AZ

ð1þ jnjÞ2ljcnj2:

The first statement of the proposition follows immediately, since it is equivalent to

saying X
n AZ

d2pnjdnj2 < l ()
X
n AZ

ð1þ jnj2Þljcnj2 < l;
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while the desired estimate follows from Parseval’s identity. This completes the

proof of Proposition 3.4. r

4. Euler–Poisson–Darboux equation (generic case)

4.1. General formula. We are in a position to now validate a formal expansion

near the coordinate singularity. The solutions are suitable translates and rescal-

ings of the distributions Co investigated in the previous sections. Here, we pro-

vide new regularity estimates for the solutions of the EPD equation involving the

scale of Sobolev-type spaces presented in the previous section.

Consider the Euler-Poisson-Darboux equation

Qtt þ
2o

t
Qt �Qyy ¼ 0; ð36Þ

in which o is a constant. If Q satisfies (36), we write PoðQÞ ¼ 0. Let o a R.

Then, it is easy to check that the two functions

ðt2 � y2Þ�o
þ ; t1�2oðt2 � y2Þo�1

þ

are solutions of the equation (36). In consequence, at least formally, the general

solutions are given by the convolution

Qðt; yÞ ¼ C

ð
R

u1ðy 0Þ
�
t2 � ðy� y 0Þ2

��o

þ dy 0

þ C 0
ð
R

u2ðy 0Þt1�2o
�
t2 � ðy� y 0Þ2

�o�1

þ dy 0 ð37Þ

in which the constants C, C 0 are arbitrary. The change of variables x ¼ ðy 0 � yÞ=t
yields

Qðt; yÞ ¼ C

ð1
�1

u1ðyþ txÞt1�2oð1� x2Þ�o
dx

þ C 0
ð1
�1

u2ðyþ txÞð1� x2Þo�1
dx: ð38Þ

When o a ð0; 1Þ (so that both integrals exist), this can be written as

Qoðt; yÞ ¼ t1�2o3C1�o; u1ðyþ t � Þ4þ 3Co; u2ðyþ t � Þ4; ð39Þ

by choosing C ¼ C�o and C 0 ¼ Co�1 (cf. (26)). This may be written as a con-

volution in two equivalent ways, as follows (recall the scaling operator

safðxÞ ¼ fðaxÞ).
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QoðtÞ ¼ t1�2os1=tðC1�o � stu1Þ þ s1=tðCo � stu2Þ

¼ t�2oðs1=tC1�oÞ � u1 þ t�1ðs1=tCoÞ � u2: ð40Þ

Any of these two expressions is well defined for any value of o except o a E.

Moreover, we may take u1;2 to be any distribution, and the convolution still

makes sense. When o a ð0; 1Þ and u1;2 are bounded functions, these expressions

reduce to the explicit solutions presented above.

We must still check that these convolutions are indeed weak solutions (in the

sense of distributions) to the equation (36).

Proposition 4.1. Given o a RnE and any two distributions u1; u2 a D 0
perð0; 2pÞ, the

formula (39) defines a distributional solution Q a D 0
per

�
Rþ � ð0; 2pÞ

�
of (36), that is,

PoðQÞ ¼ 0

in the sense of distributions.

Proof. From (40), we see that Q is a solution of the equation (36) provided

Poðt�2os1=tC1�oÞ þPoðt�1s1=tCoÞ ¼ 0;

because since Po is a linear operator, we have Poð f � gÞ ¼ ðPof Þ � g.
Consider for instance the second term, and set x ¼ x=t. Then, we have

xt ¼ � 1

t
x; xx ¼

1

t
; CoðxÞx ¼ � 1

t
xC 0

oðxÞ;

where the notation CoðxÞ is just shorthand for s1=tCo. Using these properties, we

easily compute

Po 1

t
CoðxÞ

� �
¼ 1

t3

�
ð2� 2oÞCoðxÞ þ ð4� 2oÞxC 0

oðxÞ � ð1� x2ÞC 00
oðxÞ

�
:

Next, we use the relations valid in the sense of distributions,

C 0
oðxÞ ¼ ð1� 2oÞxCo�1ðxÞ;

C 00
oðxÞ ¼ ð1� 2oÞCo�1ðxÞ þ ð1� 2oÞð3� 2oÞx2Co�2ðxÞ;

CoðxÞ ¼
1� 2o

2� 2o
ð1� x2ÞCo�1ðxÞ

(cf. Proposition 2.4 and (27)) to write the expression above in terms of, say, Co�2

only. The result is readily seen to be zero. r
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4.2. Key estimates. Now that we know that Qoðt; yÞ is a solution (in the sense

of distributions) to the EPD equation (36), it is natural to ask in what sense are the

initial data approached. Equivalently, one seeks to validate certain asymptotic

expansions. In our case, if the functions u1, u2 are smooth and o a ð0; 1Þ, one
can check by Taylor expansion that the solution Qo given by (40) satisfies the

asymptotic expansion

Qoðt; yÞ � t1�2ou1ðyÞ � u2ðyÞ ¼ oð1Þ; t ! 0: ð41Þ

Our main objective in this section is twofold: on the one hand, we determine

what is the minimal regularity one must suppose on the data u1, u2 so that the so-

lution Qo in an integrable function. On the other hand, we generalize the asymp-

totic expansion above to non-smooth data u1, u2 and all values of the parameter o

(except o a E– see the next section). Both these questions are answered using the

Sobolev-type spaces presented in the previous section.

It is convenient to consider the following decomposition of Qo,

Qo ¼ t1�2os1=tðC1�o � stu1Þ þ s1=tðCo � stu2Þ
¼ Qo

1 ðt; u1Þ þQo
2 ðt; u2Þ: ð42Þ

Also, denote C t
o :¼ ð1=tÞs1=tCo, and observe that

s1=tðCo � stuÞ ¼ C t
o � u:

We begin by ensuring that the solution Qo is integrable, by choosing the appropri-

ate spaces for the data u1, u2.

Lemma 4.2. For all o a RnE one has the following estimates: If ob 0 and

u a W�o;1
per ð0; 2pÞ, then

ks1=tðCo � stuÞkL1ð0;2pÞ k t�okuk�o;1;

ks1=tðCo � stuÞk�o;1 k kuk�o;1:

If o < 0 and u a W�o;1
per ð0; 2pÞ, then

ks1=tðCo � stuÞkL1ð0;2pÞ k t�ojuj�o;1 þ kukL1ð0;2pÞ

¼ Oð1Þkuk�o;1:

Proof. Throughout the proof, we suppose that o is not a negative integer or zero,

since in that case the proof is easier.

Consider the case o > 0 and fix u a W�o;1
per ð0; 2pÞ. First, note that

ks1=tðCo � stuÞkL1ð0;2pÞ ¼ tkCo � stukL1ð0;2p=tÞ:
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Next, remark that the distribution stu is 2p=t-periodic, so we may apply the esti-

mate (34) in Proposition 3.3 to obtain

tkCo � stukL1ð0;2p=tÞ k tkstukW�o; 1
per ð0;2p=tÞ

¼ tkFog � stukL1ð0;2p=tÞ þ tkgo � stukL1ð0;2p=tÞ

¼ t�1ks1=tðFogÞ � ukL1ð0;2pÞ þ t�1ks1=tgo � ukL1ð0;2pÞ

¼ t�okðFos1=tgÞ � ukL1ð0;2pÞ þ t�1ks1=tgo � ukL1ð0;2pÞ:

Now using (18) in Lemma 2.2 we get

tkCo � stukL1ð0;2p=tÞ k t�okF�og � ðFos1=tgÞ �Fog � ukL1ð0;2pÞ

þ t�okðFos1=tgÞkL1ðRÞkgo � ukL1ð0;2pÞ

þ t�1kF�og � s1=tgokL1ðRÞkFog � ukL1ð0;2pÞ

þ t�1ks1=tgokL1ðRÞkgo � ukL1ð0;2pÞ: ð43Þ

To treat the first term, we note that according to Lemma 2.2,

F�og � ðFos1=tgÞ ¼ F�og �FogþF�og � ½Foðs1=tg� gÞ�
¼ dþ go þF�og �Foðs1=tg� gÞ:

This means that

t�okF�og � ðFos1=tgÞ �Fog � ukL1ð0;2pÞ

a t�okuk�o;1 þ t�okF�og �Foðs1=tg� gÞkL1ðRÞkFog � ukL1ð0;2pÞ;

so that we need to bound the term kF�og �Foðs1=tg� gÞkL1ðRÞ uniformly with

respect to t. Note that this is, for each t, in DðRÞ. To achieve this, reproduce

the proof of Lemma 2.2 replacing Foðs1=tg� gÞ for Fog. We present the case

o a ð1; 2Þ, which employs all the arguments necessary to treat the general case.

We find, then,

F�og �Foðs1=tg� gÞðsÞ ¼ ~ggoðs; tÞ;

with ~ggo given by (21) with ðs1=tg� gÞðsrÞ and its derivatives replacing gðsrÞ and its

derivatives at every occurrence (but not g
�
sð1� rÞ

�
). To bound the term under

analysis, consider for instance the termðl
0

s


ð1
0

ð1� rÞ1�l
rlþ1

Gð2� lÞGðlÞ g
�
sð1� rÞ

�
ðs1=tg� gÞ00ðsrÞ

�
dr

 ds;
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which is easily seen to be the most singular. Now, g
�
sð1� rÞ

�
a 1, and the func-

tion of r inside the integral has a finite integral, from the properties of the beta

function. Therefore, it is enough to bound the term

ðl
0

sjðs1=tgÞ00ðsÞj ds:

Now note that the integrand is actually supported in
�
tð1� aÞ; tð1þ aÞ

�
, where a

is the fixed constant given by (16), and that

max
s

jðs1=tgÞ00ðsÞj ¼ max
s

jt�2g 00ðsÞj ¼ ðatÞ�2:

These facts give ðl
0

sjðs1=tgÞ00ðsÞj dsk
ð tð1þaÞ

tð1�aÞ
ðatÞ�2

s ds ¼ Oð1Þ:

This takes care of the first term in (43). Next, observe that the facts

1

t
ks1=t f kL1ðRÞ ¼ k f kL1ðRÞ; t�oFos1=tg ¼

1

t
s1=tðFogÞ

allow us to bound the second and fourth terms of (43) by Ct�okuk�o;1. Finally,

for the third term we find

t�1kF�og � s1=tgokL1ðRÞ ¼ t�okF�ostg � gokL1ðRÞ

a t�okF�og � gokL1ðRÞ þ t�okF�oðg� stgÞ � gokL1ðRÞ:

Now, since the function go has compact support (see Lemma 2.2), the first term is

actually in DðRÞ. Thus,

t�okF�oðg� stgÞ � gokL1ðRÞa t�okF�oðg� stgÞkL1ðRÞkgokL1ðRÞ

a t�o

ðð1þaÞ=t

1�a

F�okgokL1ðRÞ

k ð1� t�oÞkgokL1ðRÞ:

This allows us to bound the third term in (43) by t�okuk�o;1. This completes the

proof of the first inequality of the lemma. For the second inequality, observe that

ks1=tðCo � stuÞk�o;1 ¼ kC t
o �Fog � ukL1ð0;2pÞ þ kgo �C t

o � ukL1ð0;2pÞ

k kuk�o;1;
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Since C t
o is integrable for o > 0. This completes the derivation of the second in-

equality of the lemma.

Suppose, then, that o < 0. Again by Proposition 3.3, and methods similar to

the foregoing proof, we find

ks1=tðCo � stuÞkL1ð0;2pÞa tkstukW�o; 1
per ð0;2p=tÞ

¼ tkðgFoÞ � stukL1ð0;2p=tÞ þ kukL1ð0;2pÞ

a t�okðgFoÞ � ukL1ð0;2pÞ

þ t�okFoðg� s1=tgÞkL1ðRÞkukL1ð0;2pÞ þ kukL1ð0;2pÞ:

The third estimate of the lemma now follows from

t�okFoðg� s1=tgÞkL1ðRÞa t�o

ð1þa

tð1�aÞ

xo�1

GðoÞ ¼
Oð1Þ

Gðoþ 1Þ ðt
�o � 1Þ

and from kðgFoÞ � ukL1ð0;2pÞ ¼ juj�o;1. This completes the proof of Lemma 4.2.

r

The following lemma will be the basis of our proof of the asymptotic expan-

sions in Theorem 4.4.

Lemma 4.3. Let o a RnE. If ob 0 and u a W�oþ1;1
per ð0; 2pÞ, then

ks1=tðCo � stuÞ � uk�o;1 k tkuk�oþ1;1: ð44Þ

If oa 0 and u a Wk;1
per ð0; 2pÞ, with k a N0 and oþ k a ð0; 1�, then

ks1=tðCo � stuÞ � ukL1ð0;2pÞ k tku 0kk�1;1: ð45Þ

Proof. Once again, if o is a non-positive integer, the proof is simpler and we omit

it. To obtain (44), we set C t
o :¼ ð1=tÞs1=tCo, and recall the definition of the neg-

ative Sobolev spaces and norms (32). We find

kC t
o � u� uk�o;1

a kC t
o � ðgFo � uÞ � gFo � ukL1ð0;2pÞ þ kC t

o � ðgo � uÞ � go � ukL1 :

Now observe that, for f a W 1;1
per ð0; 2pÞ and ob 0,

kC t
o � f � f kL1ð0;2pÞ ¼

ð2p
0

ð1
�1

CoðxÞ
�
f ðyþ txÞ � f ðyÞ

�
dx
 dy

a

ð1
�1

tjxjCoðxÞ
ð2p
0

f ðyþ txÞ � f ðyÞ
tx


 dx dy:
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Thus

kC t
o � f � f kL1ð0;2pÞa tkxCokL1ðRÞk f 0kL1ð0;2pÞ: ð46Þ

The function gFo � u is in W 1;1
per ð0; 2pÞ, by Lemma 3.1, and go � u is smooth.

Therefore, we may apply (46) and find

kC t
o � u� uk�o;1

a tkxCokL1ðRÞ
�
kðgFo � uÞ0kL1ð0;2pÞ þ kðgo � uÞ0kL1ð0;2pÞ

�
a tkxCokL1ðRÞðkgFo�1 � ukL1ð0;2pÞ þ kg 0Fo � ukL1ð0;2pÞ þ kg 0o � ukL1ð0;2pÞÞ:

To complete the proof of (44), we only need to bound the last two terms by

kuk�oþ1;1. For this, note that g 0o and g 0Fo are in DðRÞ. Let r a DðRÞ. We have

from Lemma 2.2,

kr � ukL1ð0;2pÞa kgFo�1 � gF1�o � r � ukL1ð0;2pÞ þ kgo�1 � r � ukL1ð0;2pÞ

a kr � gF1�okL1ðRÞkgFo�1 � ukL1ð0;2pÞ þ krkL1ðRÞkgo�1 � ukL1ð0;2pÞ

¼ Cðr;oÞkuk�oþ1;1:

This completes the proof of the estimate (44).

We now turn to the proof of (45). Let o < 0 and k a N0 such that

oþ k a ð0; 1�. First, observe that

t�1s1=tC
ð jÞ
o ¼ t j�1ðs1=tCoÞð jÞ:

Using this fact and the relations (28) we find

C t
o � u ¼ t�1s1=t

�Xk
j¼0

bjC
ð jÞ
oþk

�
� uþ t�1s1=t

�Xkþ1

j¼2

hjC
ð jÞ
oþkþ1

�
� u

¼ t�1ðs1=tCoþkÞ � uþ
Xk
j¼1

bj t
j�1ðs1=tCoþkÞð jÞ � u

þ
Xk
j¼1

hjþ1t
j�1ðs1=tC 0

oþkþ1Þ
ð jÞ � u:

Thus

C t
o � u ¼ t�1ðs1=tCoþkÞ � uþ

Xk
j¼1

bj t
j�1ðs1=tCoþkÞ � uð jÞ

þ
Xk
j¼1

hjþ1t
j�1ðs1=tC 0

oþkþ1Þ � uð jÞ:
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Finally, this gives

kC t
o � u� ukL1 a kC t

oþk � u� ukL1 þ
Xk
j¼1

bj t
j�1ks1=tCoþk � uð jÞkL1

þ
Xk
j¼1

hjþ1t
j�1ks1=tC 0

oþkþ1 � uð jÞkL1

and so

kC t
o � u� ukL1 a tkxCoþkkL1ðRÞku 0kL1ð0;2pÞ

þ
Xk
j¼1

ðbjkCoþkkL1ðRÞ þ hjþ1kC 0
oþkþ1kL1ðRÞÞt jkuð jÞkL1ð0;2pÞ

k tku 0kk�1;1;

where we have also used (46). This completes the proof of Lemma 4.3. r

We now validate the asymptotic expansion (41) for non-smooth data, in the

appropriate fractional Sobolev spaces. We see that in order to ensure their valid-

ity, we must take the data u1;2 in a space which is more regular, as is natural.

Theorem 4.4. Let o a RnE and o ¼ minðo� 1;�oÞ. Let Qo be the solution of

the EPD equation given by (42).

1. If ðu1; u2Þ a W o�1;1
per �W�o;1

per , then for every t > 0, the operator

ðu1; u2Þ 7!
�
Qo

1 ðt; u1Þ;Qo
2 ðt; u2Þ

�
maps W o�1;1

per �W�o;1
per into

�
L1ð0; 2pÞ

�2
, and the following estimates hold:

kQoðtÞkL1ð0;2pÞ k

t�oku1ko�1;1 þ t�oju2j�o;1 þ ku2kL1 ; oa 0

t�oðku1ko�1;1 þ ku2k�o;1Þ; o a ð0; 1Þ
t1�2oku1ko�1;1 þ t�oku2k�o;1; ob 1;

8><
>: ð47Þ

kQoðtÞko;1 k t1�2oku1ko�1;1 þ ku2k�o;1: ð48Þ

2. Suppose, in addition, that ðu1; u2Þ a W o;1
per �W 1�o;1

per , and let k a Z be such that

oþ k a ð0; 1�. Then for every t > 0, we have the asymptotic expansions

kQoðtÞ � t1�2ou1ðtÞ � u2ko;1 k
t2�2oku1ko;1 þ tku2kk;1; oa 0

t2�2oku1ko;1 þ tku2k1�o;1; o a ð0; 1Þ
t2�2oku1k�k;1 þ tku2k1�o;1; ob 1:

8><
>: ð49Þ

We now estimate the spatial derivatives of the solutions.
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Theorem 4.5. Let o a RnE and o ¼ minðo� 1;�oÞ. Let Qo be the solution of

the EPD equation given by (42).

1. If ðu1; u2Þ a W o�1;1
per �W�o;1

per , then for every t > 0, the operator

ðu1; u2Þ 7!
�
ðQo

1 Þyðt; u1Þ; ðQo
2 Þyðt; u2Þ

�
maps W o�1;1

per �W�o;1
per into

�
W�1;1

per ð0; 2pÞ
�2
, and the estimates (47) in Theorem 4.4

hold with kQoðtÞkL1ð0;2pÞ replaced by kQo
y ðtÞk�1;1.

2. Suppose, in addition, that ðu1; u2Þ a W o;1
per �W 1�o;1

per , and let k a Z be such

that oþ k a ð0; 1�. Then, for every t > 0, QoðtÞ a L1ð0; 2pÞ and

kQo
y ðtÞkL1ð0;2pÞ k

t�oku1ko;1 þ t�oju2j1�o;1 þ ku2kL1 ; oa 0

t�oðku1ko;1 þ ku2k1�o;1Þ; o a ð0; 1Þ
t1�2oku1ko;1 þ t�oku2k1�o;1; ob 1:

8><
>:

Moreover, the following asymptotic expansion holds

kQo
y ðtÞ � t1�2ou 0

1ðtÞ � u 0
2ko�1;1 k

t2�2oku1ko;1 þ tku2kk;1; oa 0

t2�2oku1ko;1 þ tku2k1�o;1; o a ð0; 1Þ
t2�2oku1k�k;1 þ tku2k1�o;1; ob 1:

8><
>:

For the time derivatives, we have the following result.

Theorem 4.6. Let o a RnE, k a Z such that

oþ k a ð0; 1Þ; o ¼ minðo� 1;�oÞ:

Let Qo be the solution of the EPD equation given by (42). Then there is a locally

bounded function hðoÞ with hð�nÞ ¼ 0 for all n a N0 such that

1. If ðu1; u2Þ a W o;1
per �W 1�o;1

per , one has

t

1� 2o
qtQ

o
���� ����

L1ð0;2pÞ
k

t1�oku1ko;1 þ t�oju2j1�o;1 þ hðoÞku2kL1 ; oa 0

t1�2oku1ko;1 þ t�oku2k1�o;1; o > 0:

(

2. Suppose that ðu1; u2Þ a W oþ1;1
per �W 1�o;1

per ð0; 2pÞ. Then, one has the asymp-

totic expansions

t

1� 2o
qtQ

o � t1�2ou1

���� ����
minðo;0Þ

k

t2�2oku1koþ1;1 þ t�oju2j1�o;1 þ hðoÞku2kL1 ; oa 0

t2�2oku1k1�k;1 þ ku2k1�o;1; o a ð0; 1Þ

t2�2oku1k1�k;1 þ t1�oku2k1�o;1; ob 1:

8>><
>>:
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Proof of Theorem 4.4. The asymptotic expansions (49) are a consequence of the

following estimates, which in turn are obtained immediately from lemmas 4.2 and

4.3: If oa 0, then

kQo
1 � t1�2ou1ko�1;1 k t2�2oku1ko;1;

kQo
2 � u2kL1ð0;2pÞ k tku2kk;1:

If o a ð0; 1Þ, then

kQo
1 � t1�2ou1ko�1;1 k t2�2oku1ko;1;

kQo
2 � u2k�o;1 k tku2k1�o;1:

If ob 1, then

kQo
1 � t1�2ou1kL1ð0;2pÞ k t2�2oku1k�k;1;

kQo
2 � u2k�o;1 k tku2k1�o;1:

Also, the estimates (47), (48) are a consequence of Lemma 4.2. r

Theorem 4.5 is checked similarly. For the proof of Theorem 4.6, note the fol-

lowing relation

qtC
t
o ¼ 2o� 1

t
ðC t

o�1 �C t
oÞ;

which holds in the sense of distributions and is used to compute the time deriva-

tives of the solution. The estimates in Theorem 4.6 are then deduced from lemmas

4.2 and 4.3. The only thing to note is the function hðoÞ. It comes from perform-

ing the estimates in Theorem 4.6 in the particular cases o ¼ �n. In these cases,

cancellation of the terms of first order ku2kL1 occurs, which accounts for the func-

tion h. See below for some explicit calculations.

Finally, similar results may be obtained for data in the spaces H l
perð0; 2pÞ

studied in Section 3.3. We omit these results for the sake of brevity.

4.3. Some particular values of o. The results of the preceding theorems are

clarified by considering some particular values of the parameter o, where explicit

calculations may be done. Foremost is the case o ¼ 0, which corresponds to the

wave equation. In that case, the explicit solution is well known and is given by

Q0 ¼ t

2

ð1
�1

u1ðyþ txÞ dxþ 1

2

�
u2ðyþ tÞ þ u2ðy� tÞ

�
: ð50Þ
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Alternatively, one may use the formula for C0 given by (22) and the definition

of Qo in (42) to arrive at (50), when u1 is integrable. However, the formulas

(22), (42) allow for distributions u1 with less regularity, namely in the space

W�1;1
per ð0; 2pÞ. We must now write

tC t
1 � u1ðyÞ

instead of the integral in (50) (recall that C t
o ¼ ð1=tÞs1=tCo). The kernel C1 is

simply wð�1;1Þ=2.
In the case o ¼ 0, the second claim of Theorem 4.4 states that if ðu1; u2Þ a

L1ð0; 2pÞ �W 1;1
per ð0; 2pÞ, then

kQ0 � tu1 � u2k�1;1 k t2kukL1 þ tku2k1;1:

This should be compared with the fact that using elementary methods one

may take (more regular) data ðu1; u2Þ a W 1;1
per ð0; 2pÞ �W 2;1

per ð0; 2pÞ, for which (50)

makes sense, and obtain the estimate

kQ0 � tu1 � u2kL1 k t2kuk1;1 þ tku2k2;1:

Here, we see that in order to be able to consider data with less regularity, the

asymptotic development takes place in a larger space. The interest in this case

lies in the fact that the estimate for u1 is not easily obtainable by elementary

techniques. Indeed, since u1 is just a distribution, one cannot work directly with

integral expressions such as (50). Our analysis is therefore necessary to obtain reg-

ularity estimates.

We now examine the case o ¼ �1, where similar observations apply. Accord-

ing to the formulas (22), (42), the solution of the EPD equation (42) is now given

by

Q�1 ¼ t3C t
2 � u1 þ

1

2

�
u2ðyþ tÞ þ u2ðy� tÞ

�
þ t

2

�
u 0
2ðyþ tÞ � u 0

2ðy� tÞ
�
;

withC2ðxÞ ¼ ð1� x2Þþ=2 and ðu1; u2Þ a W�2;1
per ð0; 2pÞ �W 1;1

per ð0; 2pÞ. By Theorem
4.4, Q�1 is in L1ð0; 2pÞ. Other explicit solutions may be computed similarly.

5. Euler–Poisson–Darboux equation (exceptional exponents)

The expression (39) handles separately the two fundamental kernels, but does not

show clearly how the solution depends on the parameter o. In fact, we now re-

write (39) in a di¤erent form allowing us to pass to the limit when o ! 1=2, using

the continuity results in Lemma 2.4.
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To achieve this, observe that according to Lemma 2.4,

Co �C1�o

1� 2o
! C1=2 ln

�
K1=2ð1� x2Þ

�

in the sense of distributions when o ! 1=2. In addition, as we will see in Section

6, this distribution is a solution of the EPD equation with o ¼ 1=2. Thus, given

initial data c, q, we need only choose u1, u2 in (39) appropriately so that the above

quotient will arise. This leads us to the choice

u1ðxÞ ¼
cðxÞ
1� 2o

; u2ðxÞ ¼ qðxÞ � cðxÞ
1� 2o

:

Thus, given two functions q, c, the solution of (36) for o a ð0; 1Þnf1=2g is

given by

Qoðt; yÞ :¼ t1�2o

1� 2o
3C1�o;c4þ Co; q�

c

1� 2o

� 	

¼ 3Co; q4þ t1�2o � 1

1� 2o
3C1�o;c4þ C1�o �Co

1� 2o
;c

� 	
: ð51Þ

Taking the limit o ! 1=2 in (51) we obtain

Q1=2ðt; yÞ ¼ 3C1=2; qðyþ t � Þ4þ


C1=2 ln

�
tK1=2ð1� x2Þ

�
;cðyþ t � Þ

�
; ð52Þ

which is the solution for o ¼ 1=2.

Considering the other exceptional values o ¼ �1=2;�3=2; . . . , we can gener-

alize (51) as follows:

Proposition 5.1. Let uðt; yÞ be a solution of the EPD equation (36), that is,

PoðuÞ ¼ 0. Then the function

vðt; yÞ ¼ Go
�
uðt; yÞ

�
:¼ ð2o� 1Þuðt; yÞ þ t

q

qt
uðt; yÞ ð53Þ

satisfies Po�1ðvÞ ¼ 0.

This result can be checked by direct substitution of v into the equation (36) and

is valid for all o a R. Therefore, it may be used to define solutions of Po�1 from

solutions of Po. For instance, take o� 1 ¼ �1=2. Recall that C�1=2 is not
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defined, so it is not a solution of P�1=2. Let us apply Lemma 5.1 with u given by

(52). For the first term we find

G1=2
�
3C1=2; qðyþ t � Þ4

�
¼ t

q

qt
3C1=2; qðyþ t � Þ4

¼ t3xC1=2; q
0ðyþ t � Þ4 ¼ t2

2
3C3=2; q

00ðyþ t � Þ4

and for the second,

G1=2
�

C1=2 ln

�
tK1=2ð1� x2Þ

�
;cðyþ t � Þ

��
¼ t

q

qt



C1=2 ln

�
tK1=2ð1� x2Þ

�
;cðyþ t � Þ

�
¼ 3C1=2;cðyþ t � Þ4þ t



xC1=2 ln

�
tK1=2ð1� x2Þ

�
;c 0ðyþ t � Þ

�
:

So that a solution of P�1=2ðuÞ ¼ 0 is given by

Q�1=2ðt; yÞ ¼ t2

2
3C3=2; q

00ðyþ t � Þ4

þ 3C1=2;cðyþ t � Þ4þ t


xC1=2 ln

�
tK1=2ð1� x2Þ

�
;c 0ðyþ t � Þ

�
:

Clearly, this procedure may be iterated to find solutions of Po ¼ 0 for

o ¼ �3=2;�5=2; . . . . Such solutions consist of a term Ct1�2o3C1�o; q
ð2kÞ4,

with 1� o� k a ð0; 1Þ, which vanishes when t ! 0 since 1� 2o > 0, a term

C3C1=2;c4, and terms of the form Cta


xbC1=2 ln

�
tK1=2ð1� x2Þ

�
;cðkÞ�, with

ta ! 0. Therefore, for o ¼ �3=2;�5=2; . . . , we have Qoðt; yÞ ! CcðyÞ. An ex-

plicit formula for this constant can be found in [2]. Note that only when o ¼ 1=2

does the solutions blows-up as ln t when t ! 0.

6. A special case of interest

Here, we search for functions P : Rþ � ½0; 2p� that are periodic in space and satisfy

the equation

Ptt þ
1

t
Pt � Pyy ¼ 0: ð54Þ

We begin the discussion by constructing solutions with bounded variation when

the data have bounded variation (Theorem 6.1), and next we determine the

optimal regularity assumption on the data ensuring that solutions have bounded

variation.
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It is straightforward to check that, given arbitrary smooth and periodic func-

tions v; j : ½0; 2p� ! R representing the singular behavior of the solution on the

line t ¼ 0, the explicit formula

Pðt; yÞ ¼ 1

p

ð yþt

y�t

vðy 0Þ ln
K1=2

t

�
t2 � ðy� y 0Þ2

�� ��
t2 � ðy� y 0Þ2

��1=2
dy 0

þ 1

p

ð yþt

y�t

jðy 0Þ
�
t2 � ðy� y 0Þ2

��1=2
dy 0 ð55Þ

makes sense and yields a 2p-periodic solution of the equation (54). Here,

lnK1=2 :¼ �ð1=pÞ
ð yþt

y�t

ln 1� ðy� y 0Þ2

t2

 !�
t2 � ðy� y 0Þ2

��1=2
dy 0

¼ �ð1=pÞ
ð1
�1

ð1� x2Þ�1=2 lnð1� x2Þ dx

is a normalization constant. By formally expanding Pðt; yÞ when t ! 0 and as-

suming that the data v and j are smooth, we can check that the following expan-

sion holds in the pointwise sense,

lim
t!0

�
Pðt; yÞ � vðyÞ ln t� jðyÞ

�
¼ 0; y a ½0; 2p�:

We are interested in extending this result to data and solutions with weaker regu-

larity, especially solutions that are solely in the space BVperð0; 2pÞ of 2p-periodic
functions with bounded total variation. We will see that the condition at t ¼ 0

must be relaxed and holds only in the L1 sense.

To recast (55) in the distributional framework developed in Section 2, we per-

form the change of variable x ¼ ðy� y 0Þ=t and rewrite the formula (55) in the

form

Pðt; yÞ ¼ 1

p

ð1
�1

vðyþ txÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p ln
�
tK1=2ð1� x2Þ

�
dxþ 1

p

ð1
�1

jðyþ txÞffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

p dx: ð56Þ

Recalling the definition of the distributions Co, (22), we note that the distribution

C1=2 is a regular function and we may write

Pðt; yÞ ¼


C1=2 ln

�
tK1=2ð1� x2Þ

�
; ðtt;yÞv

�
þ 3C1=2; ðtt;yÞj4; ð57Þ

lnK1=2 :¼ �3C1=2 lnð1� x2Þ; 14;

where we recall that

ðtt;yÞvðxÞ ¼ vðyþ txÞ; x a ½0; 2p�:
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We investigate the regularity of P in terms of the regularity of the data v, j and

validate the above expansion of P near the line t ¼ 0. In turn, this result may be

used to find regularity estimates for the exceptional solutions of (36) constructed in

Proposition 5.1.

Theorem 6.1. Given any data v; j a BVperð0; 2pÞ, the explicit formula (55) defines

a solution P a Ll
�
e;l;BVperð0; 2pÞ

�
( for every e > 0) of the Euler-Poisson-

Darboux equation (55) which satisfies the given data at t ¼ 0 in the L1 sense, as fol-

lows: define ~PP by

~PPðt; yÞ :¼ Pðt; yÞ � vðyÞ ln t� jðyÞ:

Then, ~PP satisfies the time and space estimates ð0 < t < t 0Þ

TV
�
~PPðtÞ

�
a 2ðjln tj þ lnK0ÞTVðvÞ þ 2TVðjÞ ð58Þ

~PPðtÞ � ~PPðt 0Þ
t� t 0

����
����
L1ð0;2pÞ

a
2

p
jln tj þ t 0

t
þ lnK0 þ 2

� �
TVðvÞ þ 2

p
TVðjÞ: ð59Þ

Moreover, Pt exists in a classical sense for almost all ðt; yÞ, and

ktPtðtÞ � vkL1ð0;2pÞ k tjln tjTVðvÞ þ tTVðjÞ: ð60Þ

Also, one has

k ~PPðtÞkL1ð0;2pÞa
2 t

p
ðjln tj þ lnK0 þ 2ÞTVðvÞ þ 2t

p
TVðjÞ ð61Þ

and

~PPy

jln tj *
�
0 in the weak-star sense of measures as t ! 0: ð62Þ

Since (54) is a linear equation we immediately deduce from (61) the following

continuous dependence property

kPðtÞ � P 0ðtÞkL1ð0;2pÞa ðln tÞkv� v 0kL1ð0;2pÞ þ kj� j 0kL1ð0;2pÞ

þ 2 t

p
ðjln tj þ jlnK0j þ 2ÞTVðv� v 0Þ

þ 2t

p
TVðj� j 0Þ; ð63Þ

valid for any two solutions P, P 0 associated with data v, j and v 0, j 0, respec-
tively.
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Proof. The identities

1

p

ð1
�1

jxjð1� x2Þ�1=2
dx ¼ 2

p
;

1

p

ð1
�1

jx lnð1� x2Þjð1� x2Þ�1=2
dx ¼ 4

p
;

ð1
�1

ð1� x2Þ�1=2
dx ¼ p

will be used throughout this proof. Consider a continuous test function c on

S1. Let ta f denote the function y 7! f ðyþ aÞ. Then, it is easy to see that if

f a BVðS1Þ, we have

3qyðta f Þ;c43 fy; t�ac4:

Therefore, we find

3 ~PPy;c4 ¼ 3Py � vy ln t� jy;c4

¼ 1

p

ð1
�1

3txtðvyÞ � vy;c4 ln tð1� x2Þ�1=2
dx

þ 1

p

ð1
�1

3txtðvyÞ;c4 ln
�
K0ð1� x2Þ

�
ð1� x2Þ�1=2

dx

þ 1

p

ð1
�1

3txtðjyÞ � jy;c4ð1� x2Þ�1=2
dx

thus

3 ~PPy;c4 ¼ 3Py � vy ln t� jy;c4

¼ 1

p

ð1
�1

3vy; t�xtc� c4 ln tð1� x2Þ�1=2
dx

þ 1

p

ð1
�1

3vy; t�xtc4 ln
�
ð1� x2ÞK0

�
ð1� x2Þ�1=2

dx

þ 1

p

ð1
�1

3jy; t�xtc� c4ð1� x2Þ�1=2
dx:

To derive the estimate (58) we observe that

TV
�
~PPðtÞ

�
¼ sup

c ACðS 1Þ
kckl¼1

j3 ~PPyðtÞ;c4j

a
1

p
sup

kckl¼1

ð1
�1

j3vy; t�txc� c4 ln tjð1� x2Þ�1=2
dx
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þ 1

p
sup

kckl¼1

ð1
�1

3vy; t�txc4 ln
�
K0ð1� x2Þ

�ð1� x2Þ�1=2
dx

þ 1

p
sup

kckl¼1

ð1
�1

j3jy; t�txc� c4jð1� x2Þ�1=2
dx

thus

TV
�
~PPðtÞ

�
a 2TVðvÞ þ 2TVðvÞ lnK0 þ 2TVðjÞ:

Consider now the estimate (62). Since

1

p

ð1
�1

ln
�
K0ð1� x2Þ

�
ð1� x2Þ�1=2

dx ¼ 0; ð64Þ

we may write

j3 ~PPy; j4ja
1

p

ð1
�1

3vy; t�xtc� c4 ln
�
tK0ð1� x2Þ

�ð1� x2Þ�1=2
dx

þ 1

p

ð1
�1

j3jy; t�xtc� c4jð1� x2Þ�1=2
dx

thus

j3 ~PPy; j4jaTVðvÞ 1
p

ð1
�1

sup
y AS 1

jcðy� xtÞ � cðyÞj
ln�tð1� x2ÞK0

�ð1� x2Þ�1=2
dx

þ TVðjÞ 1
p

ð1
�1

sup
y AS 1

jcðy� xtÞ � cðyÞjð1� x2Þ�1=2
dx:

Now, given any e > 0, we may find d small enough so that jln tj�1
a 1 if t < d, and

(since c is uniformly continuous), supy AS1 jcðy� y 0Þ � cðyÞj < e for all jy 0j < d.

Take t < d, so that jtxja t < d. We obtain

j3 ~PPy;c4j=jln tja eTVðjÞ þ eTVðvÞð1þ 2jlnK0jÞk e;

which gives (62).

To derive (59), we observe that

Pðt; yÞ � Pðt 0; yÞ
t� t 0

¼ 1

p

ð1
�1

jðyþ txÞ � jðyþ t 0xÞ
t� t 0

ð1� x2Þ�1=2
dx

þ 1

p

ð1
�1

vðyþ txÞ ln t� vðyþ t 0xÞ ln t 0
t� t 0

ð1� x2Þ�1=2
dx
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þ 1

p

ð1
�1

vðyþ txÞ � vðyþ t 0xÞ
t� t 0

ln
�
K0ð1� x2Þ

�
ð1� x2Þ�1=2

dx

¼: Aþ Bþ C:

For the first term on the right-hand side above we can write

kAkL1ð0;2pÞa
1

p

ð1
�1

ð2p
0

jðyþ txÞ � jðyþ t 0xÞ
xt� xt 0


 jxjð1� x2Þ�1=2

dx

aTVðjÞ 1
p

ð1
�1

jxjð1� x2Þ�1=2
dx ¼ 2

p
TVðjÞ:

On the other hand, a straightforward computation yields

B� ln t� ln t 0

t� t 0
vðyÞ 1

p

ð1
�1

vðyþ txÞ � vðyþ t 0xÞ
t� t 0

ln tð1� x2Þ�1=2
dx

þ 1

p

ð1
�1

ln t� ln t 0

t� t 0
�
vðyþ t 0xÞ � vðyÞ

�
ð1� x2Þ�1=2

dx

and thus

B� ln t� ln t 0

t� t 0
vð�Þ

����
����
L1ð0;2pÞ

a jln tjTVðvÞ 1
p

ð1
�1

jxjð1� x2Þ�1=2
dx

þ 1

p

ð1
�1

1

t

ð2p
0

vðyþ t 0xÞ � vðyÞ
t 0x

t 0x


ð1� x2Þ�1=2

dx

¼ 2

p
jln tj þ t 0

t

� �
TVðvÞ:

Finally, for third term we have

kCkL1ð0;2pÞa
4

p
TVðvÞ þ 2

p
jlnK0jTVðvÞ:

Combining the above estimates gives (59).

To show (61), we note that

~PPðt; yÞ ¼ 1

p

ð1
�1

�
jðyþ txÞ � jðyÞ

�
ð1� x2Þ�1=2

dx

þ 1

p

ð1
�1

�
vðyþ txÞ � vðyÞ

�
ln tð1� x2Þ�1=2

dx

þ 1

p

ð1
�1

�
vðyþ txÞ � vðyÞ

�
ln
�
K0ð1� x2Þ

�
ð1� x2Þ�1=2

dx;
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where we have used (64). Integrating over the interval ½0; 2p� we obtain

k ~PPðtÞkL1ð0;2pÞa
1

p

ð1
�1

ð2p
0

jðyþ txÞ � jðyÞ
tx


tjxjð1� x2Þ�1=2

dy dx

þ 1

p

ð1
�1

ð2p
0

vðyþ txÞ � vðyÞ
tx


 tjx ln tjð1� x2Þ�1=2

dy dx

þ 1

p

ð1
�1

ð2p
0

vðyþ txÞ � vðyÞ
tx


tx ln�ð1� x2ÞK0

�ð1� x2Þ�1=2
dy dx:

Hence

k ~PPðtÞkL1ð0;2pÞa
2t

p
TVðjÞ þ 2t

p
jln tjTVðvÞ þ 4t

p
TVðvÞ þ 2t

p
jlnK0jTVðvÞ;

which is (61). This completes the proof of Theorem 6.1. r
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