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Abstract. We establish sharp estimates for distributional solutions to the Euler—Poisson—
Darboux equation posed in a periodic domain. These equations are highly singular,
and setting the Cauchy problem requires a precise understanding of the nature of the sin-
gularities that may arise in weak solutions. We consider initial data in a space of func-
tions with fractional derivatives such that weak solutions are solely integrable, and we
derive sharp continuous dependence estimates for solutions to the initial-value problem.
Our results strongly depend on a key parameter arising in the Euler—Poisson—Darboux
equation.
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1. Introduction

1.1. Aim of this paper. In this paper we establish sharp regularity estimates for
periodic solutions to the (highly singular) Cauchy problem associated with the
Euler—Poisson—Darboux (EPD) equation

(1, 0) +27°"u,(z, 0) — (1, 0) = 0, (1)
u(0,0) = uy(0),  u(0,0) =uy(0), (2)

where w is a real parameter, and (¢, 0) € (0,4+00) x (0,2n). Since this is a singular
initial-value problem, it is not surprising that the solutions of this equation are sin-
gular (in some sense) as one approaches the singularity = 0. In this perspective,
the initial data u;, u, may be regarded as the coefficients of a singular asymptotic
expansion of the solution as t — 0. Solving the above Cauchy problem is equiva-
lent to validating such an asymptotic expansion. Note that, at this stage, (2) is
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only defined formally and, as we will see, the parameter « should be involved in a
rigorous formulation of the initial data.

One central question of interest in the present paper concerns the choice of ap-
propriate spaces of initial data u;, uy; we are especially interested in ensuring that
solutions to the above Cauchy problem belong to the space L'. To this end, we
introduce an appropriate class of function spaces, denoted below by W];‘e’*rl (0,2n),
which are variants of Sobolev spaces and yield us the desired optimal regularity
statement, i.e., the solution operator associated with (1)—(2) maps W§§;1(072n)
onto a subset of L!. We recall that EPD equations provide a typical example of
singular Cauchy problem, and have served as a paradigm for the theory of singu-
lar and degenerate Cauchy problems. For various results on such equations, see

the book [4] as well as [1], [2], [5]

1.2. Main result of this paper. To begin with let us assume that #; = 0 and start
with the observation that the function

t172w(t2 _ 82):&_)71

is a solution to the EPD equation (1) in the classical sense, at least away from the
singular lines £ = |f]. Here, f denotes the positive part of f. Let u, be any suffi-
ciently smooth, 2z-periodic function. Since the equation under consideration is
linear, the convolution

UL (t,0) = JR 172 - (0 - 9’)2)1”*1@(0’) do’ (3)

is still a solution to (1), at least for those values of @ for which this integral is well-
defined in a classical sense. Next, by a change of variables in (3), we obtain

1
UL (1,0) = J1(1 — X2 Uy (0 + 1x) dx (4)

and, moreover,
Cor 1 U2(0,0) = u5(0)

with C,, g = (1, (1 — x2) ¢! dx)fl, as can easily be seen by letting 7 tend to zero.

At this stage, a natural question arises whether one can still give an appropri-
ate meaning to the expression (4) when the function (1 — x?)?~" is not integrable
and, if we can do so, whether this expression still provides a solution (in a suitable
sense) to the equation (1). As we show here, the answer is closely related to prop-
erly choosing the regularity space for the data »;. With this in mind, our objec-

tives are describing such an optimal function space, deriving regularity estimates
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for general solutions, and rigorously validating the corresponding asymptotic ex-
pansion.

The key point to observe is that the solution given by (4), for instance, takes
the form of a scaled convolution in which the convolution kernel (1 — xz)fﬁ_1 has
singularities of the type x¢~'. It is well known [6] that convolving a distribu-
tion u with a (suitably normalized) kernel of the form x¢~! amounts to taking
a fractional derivative (or integral) of order —w of u, which we denote here by
D™ %u.

In view of this fact, when trying to determine the optimal space E = E(w) for
the data u, and when imposing that the formal solution (4) remains in L'(0, 27)
for ¢ > 0, one should use the close relation of these kernels with fractional deriva-
tives and fractional integrals. That is, we need a rigorous version of the formal
argument

UL(t) ~ D™ uy € L'(0,27) <= u; € E(w),

which suggests that E(w) should be a suitable generalization of the Sobolev spaces
W1 of distributions u such that D*u is an integrable function.

This leads us here to define the spaces ng‘;’rl (0,27) which are suitable variants
of the usual Sobolev spaces for periodic functions. They allow us, on one hand, to
validate an asymptotic expansion for solutions with non-smooth initial data, and
on the other hand, to determine the space of initial data for which solutions re-
main integrable for all positive times.

Observe next that the function

( t2 . 02)—(0

+

and, similarly, the convolution

1
UP(t,0) = J 1 721 — x?) 7 ui (0 + tx) d, (5)

are also, formally at least, solutions of the EPD equation. Moreover, we have

C_,27 UC(1,0) — uy (0),
(1 = 20) "' C_o, UP,(1,0) — i (0),

provided these expressions make sense. This shows that for smooth data u, u, and
for w € (0, 1), the function

u(t,0) .= C_,U(1,0) + C,_1 Uy (1, 0) (6)

is a solution to the EPD equation (2), and the asymptotic expansions
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u(t,0) — ' 2°u (0) — u2(0) = o(1), t—0,

(7)
221 = 20) uy(1,0) — ur (0) = o(1), ¢ —0,
hold pointwise. In this paper we generalize this result to non-smooth initial data
and general exponents w.

1.3. Outline of this paper. In Section 2 below, we define the singular distribu-
tions required for defining the fundamental kernels to the equation (1) and the
fractional regularity spaces W;grl (0,27). First we consider the classical fractional
derivative kernel @, = x*~!/T'(1), whose main properties we recall. Next, we con-
sider the truncated distribution y®;, where y is a suitable cut-off function. This
distribution allows us to introduce fractional derivatives of periodic functions
which, due to support restrictions, cannot otherwise be convolved with the tradi-
tional fractional derivative kernel. Several properties of these distributions are
described in Lemma 2.2 below. We then consider the distribution ¥, which is
a normalized version of the singular distribution (1 — x?) fl. This distribution
essentially represents the explicit solutions to the EPD equation, as shown in (4)
and (5) above.

Next, in Section 3 we provide the definition of the spaces W:!(0,2x), which
relies on the truncated distribution y®_,. We study basic properties of these
spaces in Lemmas 3.1 and 3.2 and then derive key estimates relating the distribu-
tion ¥_; with the spaces W/;!(0,2r). These estimates take the form

[W_; * THLI(O,zn) ST, ®)

where T is a periodic distribution. Here and in what follows the constant implied
in the notation < is independent of 7. This estimate provides a continuous em-
bedding of the space Wpie'fr1 (0,27) into the space of periodic distributions 7' for
which W_; + T e L'(0,27). Since the solutions of the EPD equation are closely
related to the convolution appearing in this estimate, it is this estimate which ulti-
mately yields the optimal regularity result of interest.

Finally, in Section 4 we are in a position to handle the EPD equation (1) and
we rigorously define its solutions using the singular distributions ¥,,. The formula
here takes the form

0 = 1172(00'1/1(‘}’1*“1 * auy) + U]/,(‘I’w * Oyl

where o is a scaling operator. This formula provides a rigorous meaning to the
formal expression (6) for arbitrary parameter values » and non-smooth initial
data u;, u,. We then derive our key estimates, in the spirit of (8). All these results
come together in our main result, Theorem 4.4, where for all values of w outside a
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discrete exceptional set &, we validate asymptotic expansions for solutions to the
EPD equation.

The analysis outlined above gives only partial results for the case w = 1/2, and
does not allow us to consider the case w € &, since the distribution ¥, is not de-
fined for these values. Therefore, the final two sections of this paper deal with
these exceptional cases; see the discussion in Section 5 and Theorem 6.1.

2. A class of singular distributions

2.1. The distributions ®,. In this section, we present standard material about
singular distributions in one space variable. We refer to Gelfand—Shilov [6] and
Hormander [7] for further details. We denote by Z(R) and 2'(R) the space
of C* functions with compact support and the space of distributions on R,
respectively. In particular, 6% stands for the k-th derivative of the Dirac dis-
tribution, that is, <6, p> = (—1)%p®) (0). We also set

N:={1,2,3,...}, No:=Nu{0}, zZ:={..,-1,01,...},

and [z is the integer part of u satisfying by definition [u] < u < [¢] + 1.

We recall some properties of the gamma and beta functions which will be use-
ful throughout. The gamma function is defined by I'(2) = [, e <¢* ' d& for
A > 0 and using that

T(A+1)=iT(A), —4ieR\N,

(which implies I'(k + 1) = k! for £k =0,1,2,...) this function can be extended by
analytic continuation to all A € R\—N,. The Gamma function blows up at every
non-positive integer —k and

Jim (2+k)T(2) = (=D)*/k!, ke Ny, (9)

and satisfies the duplication formula
C(A)T(A+1/2) =2""2/zT(27). (10)

Furthermore, if @, b and a + b are not negative integers we define the beta
function by
[(a)T(b)

B(a,b) :m;

which is also be given by the integral
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1
meyi[y*ufgﬂ*ﬁ, a,b > 0.
0
By taking a = b and using the duplication formula (10) we find
B(a,a) = 2'"%B(a,1)2). (11)

Recall that the convolution of two distributions f, g satisfying certain assump-
tions on their support (either one of the supports is bounded or they are both
bounded on the same side) is the distribution f * g defined by

frg,00 ={f®gox+y)>=_f{g,0(x+y)>>, ¢eZR). (12)

Denote by f, = max(f,0) the positive part of a function f. We want to de-

fine the “function” i‘l as a distribution normalized to be of unit mass, that is

formally:
i-1
2+ ) é¢N
o, -{TG) HEN (13)
6% —i=keN,.

The following proposition provides a rigorous definition.

Proposition 2.1 (Definition and properties of the distributions ®,). The following
formula defines a one-parameter family of distributions supported on the half-line
[0, c0):

(—D* i—1+k (k) L
D, = mJR TR de, —A¢ N, k= [-2+ 1],
(*l)ﬂ(p(n)(())’ _J=neN,,

for 9 € Z(R). Moreover, they satisfy the normalization {®;,e » =1 and, pro-
vided the convergence, derivative, and convolution are understood in the sense of dis-
tributions, the following properties hold for all 1,2 € R:

(1) @, depends continuously upon 2, that is, lim;_, ®, = ®,,
(2) ©;xD; =Dy,

d
3) d_é(b/l =®d;_;.

Proof. Step 1. Defining ffl as a finite part. First of all, when A > 0 the function

fjl is locally integrable and, therefore, determines a distribution on R. For 1 <0

however, the function ffl is not integrable at the origin. For values —4 € R\N
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with k := [+ 1], (so that A — 1 +k € (—1,0)) we can introduce a distribution
still denoted by & i‘l by

-1 (1" T sk (k)
&L ’¢>'_—(A—1+k)...z . ¢ H(E) de (14)

for all p € 2(R). By integration by parts an equivalent definition of the distribu-
tion ffl is found:

-1 +oo | ék 1
Gy =] E 00 - 00 - &(0) - e O
0 (k—1)
To motivate the above definition, for —4 € R\Ny with k := [-1 4 1], we can
compute

<éf1+k,(ﬂ<k)> _ JR éi_wkq)(k)(é) dé — ﬁlj% J+°o g1k (2) ¢

&

and, by integrating by parts,

JJrOC é/l—l-!—k(ﬂ(k)(é) dé

&

7(/“L+k7 I)J él+k 2 (k—1) <é) dé ).+kfl(/)(kfl)(8)

€

:(/1+k—1)(/1+k—2)J Rk £y gz — iRl k=1 ()

+ (A +k — 1" 2902 (),

and so on, until
+oo Lk
| e ae

= (- A+ k- 1)(;»+k—2)...zj+oo (&) dé
_8).+k71(p(k 1) ( ) (/l—i-k ) ).+k72(p(k72)(8) 4
+ (=D k=1) ... (A+ Detple).

In the above identity, we observe that the first singular term (for instance)
takes the form

8/1+k—lgo(k—l)<8) _ gﬂu-&-k—l ((o(k—l)(g) _ (0<k_1)(0)) + gl+k—1¢(k—1)(0)
_ CogflJrk—l 4 @(E;L+k)’
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where C; (depends on ¢ and) denote constants that may change at each occurrence
and can always be computed explicitly. Similarly, each singular term in &*~'*/
(j=1,...,k) takes the form

Cfgi-kj—l ot Ckgl-kk—l + (9(8/1-#/()7

so that clearly the most singular term is of the order &*, as expected.
Therefore, we may write

-+o0
J Elp(&)de = Cret + -+ Gt

&

(_l)k +o0 ke (k) -
+WJ ST dE+ 0.

Note that the first & terms contain singular powers of ¢, while the other ones tend
to zero with ¢ (since A+ k > 0). This leads us to define the distribution éfl, for
A <0, —4 € R\N, as the coefficient of the finite term in the above expansion of the
integral and precisely leads us to (14). (The above derivation also justifies the ter-

minology ‘“finite part’ of the divergent integral J"J e (&) dé).

Step 2. Defining the distribution ®,. Observing that the expression (14) is singular
when —A € N, it is convenient to normalize the distribution & i‘l with the factor
1/T(A). This leads us precisely to the definition (13) where the second line in (13)
will now be justified as we check the properties of @, stated in the proposition.
Note that the definition (13) may be restated as

<(D;»a(p> = (_1)k<®l+ka¢(k)>a (15)

where k is such that 1+ & > 0.

If 2 is not a negative integer or zero, the first result is clear from (14) and the
continuity of the gamma function. If —4 =n € Ny, the function 1 — <éi‘l,go>
has a simple pole at each such value of 4. At each such value, the residue is easily
computed from (14) to be

lim (A +n)<EX gy = @™, p).

!

MN——n n! n

p"(0) _(=1)"
1

Therefore, using (9), in the sense of distributions we find for -4 =n

. 1
pm ®r = b vy
(71)71 (n) 1; 1 (n)
_ 50 lim — s — @
n TGN ) &

which establishes the item (1) of the proposition.
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The second claim is contained in Lemma 2.2 below. For a more direct proof,
see [6]. Finally, the third claim is actually a particular case of the second, since

d
dfé(DA :5/ *(D/Q = (I)_l *(D,1 = (DA‘—L

Alternatively, we may also compute

d B d é/lfl B (/1— 1)5/172 B 6/172 o
ag ¥ = e r(z) () TG-1) -1,

which is easily justified in the sense of distributions by relying on the expression
(14) if —2 ¢ No, or on (13) otherwise. This completes the proof of Proposition 2.1.
Ul

2.2. The truncated distribution @;y. In this section we introduce a variant of
the distribution ®;, which consists of multiplying it by a regular cut-off function.
The aim is to obtain distributions with the same regularity, but with compact sup-
port.

For definiteness, we choose the cut-off functions to be regularizations of the
characteristic function of the interval (oo, 1), (_.. 1). Let p, denote the standard
mollifier function, and set

V= Py K K (oo, 1) (16)

for some fixed a € (0,1). Thus, we consider the distributions ®,y, which are sim-
ply the product of ®; by the smooth function 7.

The group property with respect to the convolution will be lost, so we deter-
mine the resulting error term in the following lemma.

Lemma 2.2. For all x> 2 > 0 one has the (semi-group) property
DOy * Oy = Cuyyy s (17)
and for = 4,
O_;yxQyy =09+, (18)

where y;, y, _; are smooth functions with compact support which vanish for
x> 2+ 2a. Moreover, suppy, < (1 —a,2 + 2a), and if =1+ k € (0, 1] one has

17l 1y < @™, (19)

where a is given in (16).
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Proof. Suppose first that 1 € (0, 1). and take 4 > 4. For all p € Z(R), according
to (12) and (15), we have

Dy * @y, 0> =D (x) @ Du(y), 7(X)y(¥)p(x + »)>
= (D11 (%) @ Du(¥), 7' (X)y(¥)p(x 4+ ¥) + p(x)(»)0 (x + ),

and since —4 + 1 > 0, this expression is an actual integral:

1
T =) (x)

Next, performing the changes of variables x + y = s and r = y/s leads to

J R J R VNG ()0l + 3) + 7(x0)2(0)e’ (x + ) dx dy.

‘fﬁt%?@ﬂ?“”ﬂﬂ—ﬁ4ﬂ*@%0—wwwmw
4 7(s(1 1) o(er)o (1) drds.
Integration by parts in the second term and straightforward calculation yield
(@ * Py, )
= U ([ @000 [ 0= o1 )
—(sr)y' (s(1 = r))] drds

1 -
(1— r)7’°r”*1y(sr)y(s(1 —r))dr ds). (20)

+jm®wxﬁmwj

0 0

Thus, we find
(D—ﬂy * (D,uy = (D,u—ﬂy,u,—/l?

with

- (8) = 1“((1 - z)r(u)) (70 -0 reenmea -
—(sr)y" (s(1 = r))) dr

+ Jl(l - r)f’lr”’ly(sr)y(s(l -)) dr).

0

Since y(s) = 0 for s > 1 + a and y'(s) is concentrated on (1 — @, 1 + a), one checks
immediately that the (smooth) function y, _, vanishes for s > 2 4 2a. Moreover,
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if we put y =1 (so that ®;y = @;), we would find y, _, =1, which is consistent
with the group property for ®; in Proposition 2.1. This completes the proof
of (17).

To derive (18) we return to (20) and pass to the limit 4 — A. Using the conti-
nuity (with respect to 4) of the distribution @,, the first double integral converges
to

! (1— r)*iri

) = <<D1 L F AT (7" (sr)y(s(1 = r)) = p(sr)y" (s(1 = 7)) dw>,

and this distribution is actually a smooth function supported in (1 —a,2 + 2a).
Deriving ||| 1(r) < 1/a form this expression is immediate, using the properties
of the beta function and the bound |y’| < C/a.

For the second double integral in (20), observe, on the one hand, that for any
A€ (0,1), the function

C(u—A+1) (! e
ML(I —7) Ayl ly(sr)y(s(l — r)) dr

is unity for s < 1—a, since in that range y(sr)y(s(1 —r)) =1 for all r e (0,1)
and from the properties of the beta function. Since, on the other hand,
®,_; — @y =0, passing to the limit gives (18). This completes the proof of the
lemma for A € (0, 1).

Extending the result to all 4 > 0 is done by performing similar calculations for
A€ (k,k+ 1), successively, using the relation (15). The functions appearing in-
stead of y, _, have correspondingly more complex expressions, involving y and
its derivatives up to the order k + 1, but similar support and smoothness proper-
ties, inherited in the same way from the properties of the function y and its
derivatives. For completeness, we provide the expression of y; for 4 € (1,2):

Lop = )4
2090 =s | Sy 061 =)o
=29 (s(1 = 1))y'(sr) + (s(1 = r))y" (s7)) dr
1 (1 o r)l—/tr),
+ L mZ(y(s(l =)y (sr) = ' (s(1 = r))p(sr)) dr. (21)

As in the case 1 € (0, 1), the bound (19) follows from the properties of the beta
function and from |y”| < Ca=2. This completes the proof of Lemma 2.2. O

Remark 2.3. Only minor changes to the proof of the previous lemma would lead
to the following generalization of (18): for all smooth function o
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(D7) * (Do) = 1(0)d + D1 4,,
where the (smooth) function ®;A4; is now supported in (0,2 + 2a).

2.3. The distribution ¥;. Given two reals a,b € R we define the “scaling-
translation” operator ¢ € Z(R) — 7,6 € Z(R) by

(Ta,b¢)(é) = ¢(aé + b)’ CeR,

and, by duality, we define the operator T' € 2'(R) — 7,,T € 2'(R) by

1
<Ta,bT7¢> ::<T7arl/a,b/a¢>7 ¢E @(R)
For b = 0, we have the scaling operator

0.9(&) = 14,00(&) = p(al).

Further, we denote by x,; the characteristic function y_, ), and we define the set
of exceptional values as

&:={-1/2,-3/2,..}.

Proceeding as in the proof of Proposition 2.1 one can view the formal expres-
sions (1 — &?) fl as singular distributions. (See (24)—(25) below for the explicit
formula.) Then, after normalization, we arrive at the following one-parameter
family of distributions supported on the interval [—1, 1]:

Ci(1 -1, 2 eR\No, 1¢6,
2P (—n 4+ 1/2) (L4 [E) " 08, + (=1)"0), —i=ne Ny,
' (22)

VY, .=

which are defined for all values except 4 € &. Here, we have set

o . TG+1/2)
ST T)(1)2)

Proposition 2.4 (Properties of the distributions V). In the sense of distributions
and for all 1. € R\& the following properties hold:

(1) ¥ =7 2T+ 1/2) 0+ D" (01 (1 (E)P2) + 711 (0(9)9,))
(2) ¥, depends continuously upon A, that is, lim;_; ¥, = ¥,.

(3) For . =1/2, one may define the distribution ‘?1/2 =¥, In(l - &) as the dis-
tributional limit
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R SR SUY
Jim S = Ve n(Kia(l - &), 23)
where the constant K, is defined by

InK ) == —{¥pn(l - &), 1.

4) dfé‘f’z =(1-22)¢¥;-1.

Remark 2.5. As shown in the proof given below, the (unnormalized) distributions
(1— &2 ) fl are actually defined for 1 € &. However, our normalization constants
C;_1 blow up for exactly these values, so that the distributions ¥, remain unde-
fined for these values. In fact, it is not possible to provide a normalization ensur-

ing continuity for all values of the parameter A.

1

.. 2\ . . . )
Proof. Step 1. Definition of (1 —&°)' . We begin with the observation that for

4 ¢ {0, —1} the function & — (1 — &?) i_l satisfies the algebraic equation
24+1

2yA=1
(l_é)Jr 2/1

2
(1-&)% 4 (422 +1)) " 5_52(1 i
This elementary fact can be used to define the distribution associated with the
function (1 — &?) fl whenever 4 < 0 and therefore the functions are not locally
integrable, as follows.

Suppose first that 4 > 0. Multiplying the above identity by a test function
¢ € 2(R), integrating over R and using integration by parts twice in the last
term, we obtain

JRU—:Z) (&) dé = szljR(l—éz)iw(é)dé

@A) jﬂa — &)y (&) de.

Observe that all of these integrals exist in a classical sense since 4 > 0.
Suppose next that 2 € (—1,0). We can no longer integrate as above, but we
may nevertheless set

(1= gy =

-1

+ (40 + 1) K1 =N 0", (24)

which defines (1 — &) f:l as a distribution.
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It is now clear that (24) may be used as a recursive formula to define the distri-
butions (1 — fz)fl for any A < 0, —1 ¢ Ny. Indeed, let k := [-1 — 1] be such that
A —1+ke (—1,0), and let us iterate the equation (24) on each term in the right-
hand side to obtain

) k+1 )
=)y = (1= a(2)e)
j=0

k+1 )
# {02 S h) 25

for some reals a;(4), b;j(4). Clearly, in view of (24), these constants clearly blow up
as one approaches —4 € Ny. The above expansion is not unique; for instance, in
(24) one could integrate by parts once more the right-hand side and obtain equiv-
alent expressions involving higher derivatives of ¢.

Step 2. Normalizing the distribution (1 — 52) fl. We impose on the one hand that
the normalized distribution, when applied to a function constant on (—1, 1), re-
turns that same constant, and on the other hand, that the singularities generated
by the a;(4), b;j(4) when A € Ny, are eliminated (see (25) above). To this end, we
define the normalization constants

! -1
G =(| a-arta)
-1
For those values of A for which this integral converges it is easy to see that
C,_1 =2""2B(},7)"". Using the definition of the beta function in terms of the
gamma function and the formula (11), we find

L _T(+1)/2)

Cio1 =BG/ = 55y

(26)
This expression may then be considered for any A for which the right-hand side
above is defined, that is, for 1 ¢ &. Note that C;,_; blows up for these values of
A. Observe also that C_; = 0 if k is a positive integer, and that if 1 ¢ &,

G 241
G 2

(27)

After an easy computation, (24) becomes
¥, = ‘PA+1 =+ OC(;») 1/4_27

or, for 9 € Z(R),
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<\Pb ¢> = <\P/1+1 ’ §0> + o‘(;”)<lP/1+27 (D//>7
with
a(2) = (2A+1)22+3)) "

In analogy with (25), we may iterate the formula above and obtain an induction
relation used to define ¥, when A+ k € (0, 1),
k 0 k+1 0
Y= Z'Bj(’l)q’ﬁk + Z () (28)
j=0 J=2

or, for ¢ € Z(R),

k+1

<"Pl7 §0> = <‘P,{+k, ﬂ/(/l)¢<1)> 4 <Ti+k+lyz 77/(/1)¢U>>
Jj=2

k
=0

Here, the coeflicients f3;(4), n;(4), which clearly blow up for 4 € &, satisfy

Bi(2),m(2) =0 if jis odd.

Step 3. Proof of the proposition. To show claim (1) of the proposition, we begin
by expressing the distribution (1 — &?) fl in terms of the distribution & fl. For all

¢ € Z(R) (recall the notation y; = x(_. 1)),

(1= ey = (EL 2= () (p(E = 1) +9(1 - &)))
= {(1+1) " (rra (€70 @) + 11 (€71 0109)),0). - (29)

To show this, we rely on the uniqueness of analytic continuation. First, consider
the function of a complex variable

Caim (1= 0.

Observe now that if R(4) > 0 (here R denotes the real part), the above function is
analytic, and the equation (29) is valid (by linear changes of variables in the inte-
gral expressions). Therefore, by uniqueness of analytic continuation, the equation
(29) holds for —R(1) ¢ N. This completes the derivation of claim (1).

In view of (13), (29) and I'(1/2) = /=, we immediately find

. ;o T(=n+1/2)
LA VY

=2 20(=n+ 1/2)((1+ )7 02, + (=1)"%,),0).  (30)

S

1+ 1D 10" +721,10™), )

Claim (2) is thus established.
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Next, we note that we can define the distribution (1 — &2)*" In(1 — £2), at least
for —4 ¢ No. This may be done simply by observing that for such values of 4, and
for any ¢ € Z(R), the function 4 — {(1 — &2)*~", ) is analytic and

(1= &Y (1= &),95 = $C(1 - g,

We denote these distributions (multiplied by the normalization constant C;_1) by
¥,. Let us now show the third claim of the lemma, (23). For this, simply note
that the quotient indicated is equal to %‘I’ 2 =1 /2- The result follows by comput-
ing this derivative:
d

E‘P}v =¥, In(1 — &)+ (1 — &)

i d
A lﬁC/171

=W,In(1 — &%) = n(l — Y, DY,

which, for the value 2 = 1/2, gives (23) (in this computation we have omitted for
simplicity the test function ¢).

Finally, consider claim (4). First, note that for —1 € Ny and 4 = 1, this may be
checked directly from (22). Otherwise, then the claim will follow if we show that,
in the sense of distributions,

d

2 — &) =20 - el - ) (31)

In that case, for A ¢ &, and using also (27), we find

d d
ae '

= (1=22)Cy2&(1 = EH* 2 = (1 = 20)EW,_,.

Cya(1— ¢3!

Now, (31) is clearly true if A > 1, since the distributions in this case reduce to reg-
ular functions. Suppose next that A € (0,1). Then, a straightforward computation
using the relation (24) shows (31). Clearly, one may now proceed similarly for
/€ (—1,0), and so on, for all 1 ¢ &. This completes the proof of Proposition 2.4.

O

3. Estimates in fractional Sobolev spaces

3.1. Notation and definition. Following Gelfand—Shilov [6], the derivative of
order A of a distribution 7" supported on the half-line R" is defined by convolution
with the kernel ®_; (given in (13) above):

D'T:=®_,«T.
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For 4 > 0 we also use the notation
I"T := DT,

and refer to I*T as the integral of order A of the distribution 7. We also use the
short-hand notation 7*) instead of D*T.

Using this notion of fractional derivative, one cannot define the derivative of a
periodic distribution 7', since supp T’ ¢ R* (apart from the trivial case T = 0).
One way to extend the notion of fractional derivative to periodic distributions is
to replace the convolution kernel ®, with a new kernel having the same type of
singularity at zero, but having compact support. This is done simply by multiply-
ing @, by a cut-off function. This procedure has the advantage that the convolu-
tion of 7" with the new kernel still is a periodic distribution and, since ®_; has
compact support if k € Ny, this notion of fractional derivative is consistent with
usual (integer-order) derivative.

Recall from (16) the definition of the cut-off functions 7,

V= Pa* A1)

Given /4 >0, the periodic fractional Sobolev space of order A, denoted by
W%1(0,27), consists of all periodic distributions T € 2/ (0,2z) such that

per per

(y®_,) * T belongs to the Lebesgue space L'(0,27), that is,

wi0,27) :={T e 2/ .(0,2n) : (y®_;) + T e L'(0,27)}.

per per

Similarly, we define (for 4 > 0) the negative Sobolev spaces

W 10,27) :={T € 2! _.(0,2n) : (y®;)« T e L'(0,27)}.

per per
Now we define the norms associated with these spaces, for all 4 > 0,
17150 = 1OP-2) * TllL10,20) + 1Tl 10,205 (32)
IT1 1 = NP2 * Tll 2o, 0m) + 172 % Tll 10,27 (33)
where y, is the function given by (18) in Lemma 2.2. Also, define the semi-norms
1T 51 = 1(r®P52) * Tll 110,20

Note that for all periodic functions T € L'(0,27) and all integrable functions g
with compact support, one has

g% Tll 10,22 < N9l 1wy I T Ml 10, 20)-

The above definitions are justified by the following result.
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Lemma 3.1. Let k € N,

(1) The space Wé"e’rl (0,27) coincides with the usual Sobolev space W*'(S') of func-

tions on the sphere S' whose k-th distributional derivative is in L'(S").
(2) For every A >0, the space W&fvl(o, 27) coincides with the space given by

{T ez, (02r): f,ge L'(0,2n),T = (yd_,) * [ — g}.

per

Moreover, one may take

f = (yCI);') * T, g=7,*T,

with y, given in Lemma 2.2.

(3) For every real 2 < p, one has the continuous embedding

whil < whl

per per *

Proof. The first claim is simply a consequence of the fact that, since y(0) = 1,
(D_k = (D_ky. )
To deal with the second claim, suppose that T e Wp*e”fl(O,Zn). Set [ :=

T

(D7) T e L'(0,27), g := y, * T (cf. (18)). Using Lemma 2.2, we find
(@) * [ = (y®p) * () x T =05 T+, T =T +g.

which establishes one inclusion in (2). For the other inclusion, suppose that
T = (y®_;) * f — g, with f,g € L'(0,27). Then, from Lemma 2.2, we find

(@)« T =08 f+7y,xf — (y®;) xg € L'(0,2n).

This shows the second claim of the lemma.
We now turn to the proof of the lemma’s last claim. Let 4, > 0, and let

us first check that W, J'(0,27) = W, /'(0,2x), with continuous embedding, if

J < u Let T e W1(0,2n). Using Lemma 2.2 we find

per
ITN 1 = 10Dw) * Tl £10,22) + [17% Tl 110,20
< P-z) * (7@u) * (vP2) * Tl 10,2 + 172 % (0Pp) * Tl 10,20)
1170 % Tll 210,205
thus
1701 < NPu—r7, il 1wy (v D2) * Tll 110,20y + 1Ll w17 % Tl 210,20
+ N P-s) * 7 % (7P2) * Tl £1¢0,20) + 172 % 70 * Tl 210,20
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and so

N7t < NP7, —all L1y (¥ P2) * Tll 110,22y + 1Pl (o172 % Tl 210,20
FNP-2) * Vull Ly (0 D2) * Tll 110,20y + 17ll Loy 172 % Tll 210,20
S ®2) * Tllpio,20) + 172 % TllLi0,0 = 1T 111

This shows the desired result for negative Sobolev spaces. Now, suppose
T € WH1(0,2n). Again using Lemmal 2.2, we find

per

17150 = [1(®-2) * Tll 210,20 T 1 Tl 210,20
< [[@u) * GPL2)ll 1) [ (¥P—0) * Tl £10,20)
170 = P @) 1T 10,22y + 1 TN 210,20

and thus

1T 0 S 1OP-w) * Tlizio,2m) + 1T 210,20 = 1T 1],11-
This completes the proof of Lemma 3.1. O

We now establish an alternative characterization of the spaces Wpﬂgrl (0,2n), for
4 =0. In particular, we show that 7 e W (0,27) if and only if the (classical)
fractional derivative of T is integrable for every ¥ € Z(R).

Lemma 3.2. Supposing that A > 0, one has

W5l (0,2m) ={T € 2},,(0,21) : D_; * (Ty) € L'(0,27),¢ € Z(R)}.

per per

Proof. Suppose that T € ere’rl (0,27).  This is equivalent to saying that
T e L'(0,27) and (y®_;) * T e L'(0,2n) (cf. (32)). We want to show that

[, * (T‘P)”Ll(o,zn) <750

We have

1D (TY) 110,20 < [1((1 = 2)P2) * (TV)]] 119,20 + N0P2) % (T 10, 20)-

Now, the first term in the right-hand side is bounded by C()[|T[|11 (9 27> Since
Ty e LY(R) and (1 —y)®_; e L} . Next, consider the second term. Observe
that when 4 e N, the result is obvious since in that case <I);,V=5<k), and
Te W]férl (0,27). Suppose, then, that A€ (0,2)\{1} (the general case follows

similarly). For ¢ € 2(R) we have
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Ly@_y) * (T), 0> =D, @ T, h(y)y(x)p(x + »))
= (O, T, (Y(x+y) —xy'(x+ )
+X7Y"(E)y(x)p(x + »))

thus

L(y®_y) * (TY), 0> =<D_; @ T, Y (x+ y)yp(x)p(x+ y))
— (1= 2P ® T ¥ (x4 p)y(x)p(x + )
+ (1 =2 =P @ T, Y " (E)y(x)p(x + y)>,

for some ¢ depending on x, y. This gives after a change of variable is the last
term,

Ly®_;) * (TY), 0> = W ((p®@-;) * T),0) — (1 = )Y ((yP_s1) * T), p)
(- 2= j o(s) jR<y<DM><s N TOW(E) dyds.

Therefore, we find

(D7) = (T 1(0,20)
= Hlﬁ((y(l),ﬂ) * T)HLl(o,zn) + 1 =4 H‘pl((yq)*iﬂ) * T)HLI(O,zn)

+1-2](2-2) Ln

jR@cD_m)(e DT dy| do.
Thus

[G®—2) * (TY)l 10, 20)
< Wl o 1 ®-2) 5 Tl 10,2y + 11 = AW N o 1P —41) * Tl 10,20
1= 212 = DI 1 GP—se2) # [T 10,20

For the second term, using Lemma 3.1 we find

[(y®_s11) * THL‘(0,27Z) < HT||,171,1 S HTH).,I'

For the last term, observe that y®_;,, € L'(R), and so this term is bounded by

1= 212 = DI 1 P ) I Tl 10,20 S N T M-

This shows one inclusion.
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Next, we must show that (®_;) * T is in L'(0,2x) if for all y € Z(R), we
have ® ; x (T) e L'(0,2%). We choose y = 1 on (—27,27) and observe that in
the interval (0, 27) one has

(@) T = (P_yp) * (Tyh) = @+ (Th) + (P_s(y — 1)) * (TY),

which is a sum of integrable functions, since, as above, the second term is locally
integrable. This concludes the proof of Lemma 3.2. |

3.2. Key L' estimates on the distributions W;. The basic idea for the following
results is that the singularities of the formal expressions defining the distribu-
tions ®; and ¥, coincide. We now obtain a continuous embedding of the
space Wp‘eﬁ’l(O,Zn) into the space of periodic distributions 7 for which
W, « T e L'(0,27). Thus, we seek for estimates of the form

¥ * T||Ll(0,2n) S ||T||7;.,1-
Proposition 3.3. Suppose that 2. >0 and 1. ¢ —&.
(1) If T e Wi (0,2n), then
[W_7 * T||L1(o,2n> ST, = [1(y®-2) = T||L1(0.2n) + ”T”L‘(O,Zn)' (34)

(2) If T e Woi'(0,2n), then

[V T||L1(0,2n) S ||T||—)~,1 = [ (y®,) * T||L1(0,27z) + |ly; * T||L1(O72n)' (35)
Proof. Consider first the estimate (34). From Proposition 2.4, we find

VY., = W(l H1EN) T (11 (@) + T (D)),

which gives

W Tl s (4 1ED T o (p®0) + T,
+ @+ 1) e @) « T,

Now, since T is periodic, the first term (for instance; the other term is treated sim-
ilarly) equals

e (L1 = 1) @) « T) || = (esy®-3) # Tl

where o_,(¢) == (2—&)*'. Next, from Lemma 3.1, one has (yO_jqpu) x T €
L'(0,2n) for any u > 0, since T € W/;!(0,27). Therefore we find, Taylor devel-

per
oping o, around & = 0, and proceeding as in the proof of Lemma 3.2,
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1@ o) 5 Tl < [y (25(0) + &0, (0) + -+ + O(E)) + T,
and thus

1@ 0 3) % Tl < o s (0)] [[p@ s % Tl + |, (0)] [y # Tl + -
k
+ 0Oy * Tl + Clly®_sarll 1T 1

with k large enough so that —4 4+ k 4+ 1 > 0. This completes the proof of (34).
Finally, splitting the distribution ¥, we see that, to show (35), it is enough to
estimate |(®;0;)) * T| 11,2, Using Lemma 2.2 and Remark 2.3 we get

[(@roiy) * Tll 110,20y < NPz Droty @y % Tl 119 20y + 172 % Loy * T 110,20

thus

[[(@z027) = T||L1(0,2n)
< (2:(0) + Hq)lA?»HL‘(R))H((D?»y) * Tl 10,20 + 1909 10,2 172 % Tll 110,20

ST 0
This completes the proof of Proposition 3.3. O

3.3. Key L? estimates on the distributions ¥;. The additional structure pro-
vided by the Fourier transform in L? allows us to apply a completely different
method to derive estimates on the distributions ¥;. In fact, we show that the
space of periodic distributions which are in L?(0,2r) after convolution with the
distributions ¥ _ is precisely the classical Sobolev space H;'er(O, 27).

We begin by recalling the definition of the Sobolev spaces Héer(O, 2m). First,
note that if 7" is a periodic distribution, then we may define its Fourier coefficients
¢n, € Z and its continuous Fourier transform is given by

T = 25522711101-

nezZ

The rate of decay of |¢,| is a measure of the regularity and integrability properties
of T. For instance, T € L*(0,2n) iff Y, .5 lea]? < o0, and moreover one has
Yonez leal? = || T|12(0,27)- The Sobolev spaces Hlfer(O, 2n) are defined for A € R as

H.,(0,27) == {T € 71,(0,2m) : S (1 + ) el < oo},

ne”Z

with norm given by
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we=_(1+ 1) e,

neZ

7]

Note that this definition makes sense for all /4 € R, giving a single, coherent defini-
tion of a scale of Sobolev spaces.

Proposition 3.4. For every A € R, A ¢ —&, one has

{T € 2},(0,2n) : ¥_; « T € L*(0,2m)} = H/,.(0,2n),

per
and
W% Tll 20,00 S 1T M2

Proof. Suppose that W_; x T e L*(0,2n). Since it is periodic, we must have
FW_;*T)=>",.702mdy, for some d, € C with )", _, |d,1|2 < o0. On the other
hand, since T is periodic with Fourier coefficients ¢,

F(‘P,,{ * T) = F("Pf,l)F(T) = li]f/L 25271115'71 = Z(SZnnancna
neZ neZ

where a, := W_;(27n). Now the key point is that the explicit formula of ¥_(s) is
known [6]:

W) = T(1/2 = D)/ (),

where J, denotes the Bessel functions. For our purposes, it is enough to know that
J, satisfies

s T,(s) e C*(R), and |J,(s)] ~1/vs, s— o0
for all o. From this it is easily deduced that
| < (14 |n])".

Now observe that there exist constants 4, B > 0 such that

AY (L ) e < YO (1+ ) enl® < BY (1 + n) el

neZ neZ neZ

The first statement of the proposition follows immediately, since it is equivalent to
saying

Y dmldi* < o0 = D (14 el < oo,

neZ neZ
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while the desired estimate follows from Parseval’s identity. This completes the
proof of Proposition 3.4. O

4. Euler—Poisson—-Darboux equation (generic case)

4.1. General formula. We are in a position to now validate a formal expansion
near the coordinate singularity. The solutions are suitable translates and rescal-
ings of the distributions ¥, investigated in the previous sections. Here, we pro-
vide new regularity estimates for the solutions of the EPD equation involving the
scale of Sobolev-type spaces presented in the previous section.

Consider the Euler-Poisson-Darboux equation

2
O + Ta) Or—Qp=0, (36)

in which w is a constant. If Q satisfies (36), we write 2“(Q) =0. Let w € R.
Then, it is easy to check that the two functions

_ 2 —1
(Z2 _ 02)+w’ [1 Z(J(ZZ _ OZ)f

are solutions of the equation (36). In consequence, at least formally, the general
solutions are given by the convolution

0(t,0) = cj w (0') (= (0—6')), " ao’

R

+C’ JR ur (0)e' 22 (2 — (0 — 0)?) f‘l do’ (37)

in which the constants C, C’ are arbitrary. The change of variables x = (0’ — 0)/¢
yields

1
0(1,0) = cJ (0 + 0)1'22(1 — x2)° dx
-1
1
+ C’J (04 tx)(1 — x*)* " dx. (38)
-1
When o € (0,1) (so that both integrals exist), this can be written as

Qw(ty 9) = Z]_2w<\Pl—wa u1<6 +i- )> + <Twau2(0 +1- )>7 (39)

by choosing C = C_,, and C' = C,_; (cf. (26)). This may be written as a con-
volution in two equivalent ways, as follows (recall the scaling operator

gap(x) = P(ax)).
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0°(t) = tlizwal/z(‘l’lw x o) + 01/, (Vo * o)

= l_zw(O'l/t"Pl_w) * U + I_I(O'l/["Pw) * Up. (40)

Any of these two expressions is well defined for any value of w except w € &.
Moreover, we may take u;, to be any distribution, and the convolution still
makes sense. When w € (0,1) and u; » are bounded functions, these expressions
reduce to the explicit solutions presented above.

We must still check that these convolutions are indeed weak solutions (in the
sense of distributions) to the equation (36).

Proposition 4.1. Given » € R\& and any two distributions uy,uy € 7,,.(0,2n), the
Jformula (39) defines a distributional solution Q € per(R+ x (0,27)) of (36), that is,

2°(0) =0

in the sense of distributions.

Proof. From (40), we see that Q is a solution of the equation (36) provided
2°(t 01, ¥1_0) + 2°(t " 01/, ¥0) =0,

because since 2 is a linear operator, we have 2“(f x g) = (2“f) x ¢.
Consider for instance the second term, and set ¢ = x/¢. Then, we have

1 1 1

ét:_féa éx:77 Tw(f)x: _;é\{'(l‘)(é%

where the notation ‘¥,,(&) is just shorthand for oy /,'¥,,. Using these properties, we
easily compute

7 (100) = 5 (2 - 20090(&) + (4~ 20000 — (1 - W)

Next, we use the relations valid in the sense of distributions,

W) = (1 - 20)E%, 1 (£),
W) = (1= 20) Wt (&) + (1 — 20)(3 — 20)E2 ¥, (),
W (&) = 21— 2w, ()

2—2w

(cf. Proposition 2.4 and (27)) to write the expression above in terms of, say, ¥,,_»
only. The result is readily seen to be zero. |



412 P. Amorim and P. G. LeFloch

4.2. Key estimates. Now that we know that Q“(z,0) is a solution (in the sense
of distributions) to the EPD equation (36), it is natural to ask in what sense are the
initial data approached. Equivalently, one seeks to validate certain asymptotic
expansions. In our case, if the functions u, u; are smooth and w € (0, 1), one
can check by Taylor expansion that the solution Q“ given by (40) satisfies the
asymptotic expansion

0°(t,0) — t'1"2°uy (0) —up(0) = 0(1), t—0. (41)

Our main objective in this section is twofold: on the one hand, we determine
what is the minimal regularity one must suppose on the data u;, u, so that the so-
lution Q¢ in an integrable function. On the other hand, we generalize the asymp-
totic expansion above to non-smooth data u;, u, and all values of the parameter w
(except w € &— see the next section). Both these questions are answered using the
Sobolev-type spaces presented in the previous section.

It is convenient to consider the following decomposition of Q%,

Q‘*” = [172“)0'1/,(\1’1,“, * a,ul) =+ 0'1/,(‘1’&, * a,uz)
= Qiy(l; u1) + Qéu(l; uz). (42)
Also, denote ¥/ := (1/t)a,,,¥,,, and observe that
o /
01//(Po * o) =P, *u.

We begin by ensuring that the solution Q¢ is integrable, by choosing the appropri-
ate spaces for the data uy, u.

Lemma 4.2. For all w € R\& one has the following estimates: If @ >0 and
ue W;20,2n), then

per
o1/ (Yo * o)l L10,2m) S € Nutll 515

llor(We * Glu)”fw,l S ||”||7w,1-

Ifo<0andue Wp’ei"’l(O7 2n), then

lo1/i(Ye x aat)l| 110,00 S Tl 1 + [l £1(0,20)
= 0()lull_,,-
Proof. Throughout the proof, we suppose that @ is not a negative integer or zero,

since in that case the proof is easier.
Consider the case w > 0 and fix u € W 1(0,2x). First, note that

per

||01/t(‘Pw * Uz”)”Ll(o,zn) = 1[|W, * Uz”HLI(o,zn/z)-
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Next, remark that the distribution o,u is 27/ t-periodic, so we may apply the esti-
mate (34) in Proposition 3.3 to obtain
Wo * ol 10,200 S f||0'r“||wp;;v~l(o,zn/;)
= 1] ®oy * ouutl| 110, 22/0) + Ve * Tettll £10,2270)
=1 M|o1/ (Do) * ul[11(0,20) o1 * ull11(0,20)
= |(@uo17) * ull p1(0,2m) + 110170 * tll 10,20

Now using (18) in Lemma 2.2 we get

Yo * ol 110, 22/0) S T NP0y * (PoT1/17) * Py * ulll 110, 2
+ [ Poo1/) i) 17e * Ul 10,20
1Dy 01170l L1 ) 1Pwy * ull 110, 2)
+ ol 17 * ullLio,20)- (43)
To treat the first term, we note that according to Lemma 2.2,

D_,y = ((Dwal/ty) =0,y xPyy + Dy * [(Dw(o-l/ty - ')))]
=0 + Yo + (D—wV * (I)w(al/ly - y)

This means that

@y * (Poo1/:7) * Doy * ull 110,20
S Cull gy + NPy * P17 — V)l 1) | Peo? * ull 110, 21

so that we need to bound the term [|®_yy * @y, (0177 — 7)1y uniformly with
respect to . Note that this is, for each ¢, in Z(R). To achieve this, reproduce
the proof of Lemma 2.2 replacing @, (a7 — y) for ®,y. We present the case
w € (1,2), which employs all the arguments necessary to treat the general case.
We find, then,

D_,y * (Dw(o'l/ty - V)(S) = ?w(& t)’

with 7,, given by (21) with (g, — 7)(sr) and its derivatives replacing y(sr) and its
derivatives at every occurrence (but not y(s(1 —r))). To bound the term under
analysis, consider for instance the term

o0 1 (1 _ V)l_)"r;*'H )
Jo ’ Lmﬂsﬂ — 1) (oui — )" (sr)) dr| ds,
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which is easily seen to be the most singular. Now, y(s(l —7r)) <1, and the func-
tion of r inside the integral has a finite integral, from the properties of the beta
function. Therefore, it is enough to bound the term

jw Sl(on)"(5)] ds.
0

Now note that the integrand is actually supported in (#(1 — a), #(1 + a)), where a
is the fixed constant given by (16), and that

max|(o1/7)" ()] = max|e 2" (s)] = (ar) >

These facts give
o " t(1+a) o
J s|(ary) (s)] ds < J( >(at) sds = 0(1).
0 t(l—a

This takes care of the first term in (43). Next, observe that the facts

1 By 1
;Hal/z‘fHLl([R{) = fllpiwy: T Puoryy = 701/1(‘1%?)

allow us to bound the second and fourth terms of (43) by Ct=?||u||
for the third term we find

ol Finally,
@y = odollim =171 P-wo * 0l LR

S Py * Vollpymy + NP0y = 0) * 70l L1w)-

Now, since the function y,, has compact support (see Lemma 2.2), the first term is
actually in Z(R). Thus,

NP0y =) * Vol < CNP-0(y = oL@ 170l (w)

(e
<1 j ® o7l

1—a

S (1 - t7(U)||y(u||Ll(R)'

This allows us to bound the third term in (43) by 7~||u||_,, ;. This completes the
proof of the first inequality of the lemma. For the second inequality, observe that

lo1//(Yo * o), 1 = [P, * @, uHLl(OAZn) + 1170 * P, * “||L1(0,2n)

S Jlull-

w, 1
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Since W/, is integrable for @ > 0. This completes the derivation of the second in-
equality of the lemma.

Suppose, then, that w < 0. Again by Proposition 3.3, and methods similar to
the foregoing proof, we find

lo1//(Yo * o) || 110,20 < t||a,u||Wp;?,1<072n/t)
= t|(yPo) * osutll 110, 22/0) + 11l L1(0,27)
< (yDe) * ull 119, 20)
+ 0 Po (7 = a1y |y 12l 210,20y + Nutll 10,22

The third estimate of the lemma now follows from

JHH x“”l @(1)

— (t—(l) _ 1)

1| e, (y — o117 <"
(| Do ( )L w) (-a T(@) T(o+1)

and from [|(y®,) * ul|1(g 2z) = [1|_, ;- This completes the proof of Lemma 4.2.
O

The following lemma will be the basis of our proof of the asymptotic expan-
sions in Theorem 4.4.

Lemma 4.3. Let w € R\&. If o >0 and u e W *+11(0,2xn), then

per
lo1/(Wer x o) —ul|_, < tlull g - (44)

If o <0andue WKI(0,2n), with k € Ng and o + k € (0, 1], then

per
lo1/( P * ott) = ull 19 2y S 2|t 11,1 (45)

Proof. Once again, if @ is a non-positive integer, the proof is simpler and we omit
it. To obtain (44), we set ¥, := (1/1)0//¥,, and recall the definition of the neg-
ative Sobolev spaces and norms (32). We find

15, *u—ull

< IWG % (7Po % u) = 9P 5l 19 2y + 1V, 5 (7o % 4) = 70 % 1 1

Now observe that, for f € WL1(0,27) and @ > 0,

per

1
J_l W, (x) (£(0 + tx) — £(0)) dx| d0
S0+ 1x)— f(0)

tx

2n
G+ f = Flluaan = |,

dx do.

< Jll W, () Jj
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Thus

15, % f = fllroom < UXPolli@llf 0,20 (46)

The function y®,, *u is in W!(0,27), by Lemma 3.1, and y,, * u is smooth.
Therefore, we may apply (46) and find

||\P(l;) *U— u‘lfw,l
< t1xPoll i r) (10Po * 1)1l 110,22y + 1V * 1)1 10,2))
< 1|30l 21 ry (7Pt * Ull 110, 20) + 117" Poo % Ull 110,20y + 1176 * Ul £1(0,20))-

To complete the proof of (44), we only need to bound the last two terms by
|ull_(y1,1- For this, note that y,, and y'®,, are in Z(R). Let p € Z(R). We have
from Lemma 2.2,

1P * ullL10,20) < [[VPo1 % yP1—w * p* Ul 110 20) + Vo1 * P * Ul £1(0,20)
< [lp = Vq)l—w”Ll(R)HV(Dw—l * “HLl(o,zn) + HpHL‘(R)HVw—l * “HU(O,zn)
= C(P, w)HuH—w-H,I'

This completes the proof of the estimate (44).
We now turn to the proof of (45). Let w <0 and ke Ny such that
o+ k € (0,1]. First, observe that

01, PY =t (01, Y. )

Using this fact and the relations (28) we find
Vo, ku=1" UW(Zﬁ \Pw+k) fu+1 ‘71/!(2’7/ (u+k+1) u

= t—l(Gl/xT(u+k) * U+ Z'lej_l(al/zlyw+k)(j) U
J=1

+ Z 77]+1t 01/1 w+k+l)(j) *U.

Thus

k
W.oku= ! (01 ¥Yoik) *u+ Zﬁjtﬁl (017 ¥ork) * uy)
j=1

+ Z”]Ht ! (@1 ¥l 1) * u/
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Finally, this gives
k

[P, =l < Wy, % u — ul| 0 + Z/’)jt‘iil llor /¥ ok * U
=

k
- ,
+ Z”jﬂt‘] ||O-1/t\P(/o+k+l * ”('/)HLI
=1
and so

W, u—ullpr < UXPosill iy llu 1|21 (0,20)

k
+ Z(ﬁjH‘PmkHU(R) 1 ¥ a1 ||L1<R))t"||“(])||L1(o.,2n)
j=1
][ PR
where we have also used (46). This completes the proof of Lemma 4.3. O

We now validate the asymptotic expansion (41) for non-smooth data, in the
appropriate fractional Sobolev spaces. We see that in order to ensure their valid-
ity, we must take the data u , in a space which is more regular, as is natural.

Theorem 4.4. Let w € R\& and @ = min(w — 1,—w). Let Q% be the solution of
the EPD equation given by (42).
L If (uy,u0) € WO x W21 then for every t > 0, the operator

per per

(ur,u2) — (O (t;ur), 0% (t;u2))
maps Wbt x W@V into (L' (O,Zn))z, and the following estimates hold:

per per
t_w”ul ||w—17l + Z_w|uZ|_w71 + ||U2||L1, w<0
”Qw(t)”]‘l(o’zn) S tiw(Hul”m—l.l + Hu2||—w,1)7 w € (0, 1) (47)
720 [l oy g + ]l g1 w>1,
10°(N)llg,1 = 12 lellpg 1 + lle2ll s, 1 (48)

2. Suppose, in addition, that (u,u;) € ng;l X Wplej‘”*l, and let k € 7 be such that

o+ k € (0,1]. Then for every t > 0, we have the asymptotic expansions

Zz*sz]’lle:l +t||u2||k,la w<0
10°(t) = ' 2ur(t) — ol < S 272Nl + tlally 1, @€ (0,1) (49)
22|l gy + el s @ =1

We now estimate the spatial derivatives of the solutions.
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Theorem 4.5. Let w € R\& and @ = min(w — 1, —w). Let Q® be the solution of
the EPD equation given by (42).

L If (uy,up) € Wp“e’;l’l X Wl;‘r”*l, then for every t > 0, the operator

(t1,12) = ((OF)y(t;01), (05) (15 u2))

maps W H 1 s Wi tinto (W01 (0, 27))°, and the estimates (47) in Theorem 4.4
hold with ||Q® ()| 11 o,2x) replaced by || Qg (1)]|_y ;-

2. Suppose, in addition, that (uy,uy) € W' x W) !, and let k € Z be such
that w + k € (0,1]. Then, for every t > 0, Q“(t) € L'(0,2r) and

Nl A 2]y 1+ [u2f] s 0 <0
105 (D L1(0.2m) S Utttlloy 1 + [le2lly 1) we (0,1)
2Nyl + 2l 1 w =1

Moreover, the following asymptotic expansion holds

[272w||”1||w,1 + tllualg 1 w<0
105 (1) — ' ui(t) =yl 511 < 27Nl 1 + tlally o,y @€ (0,1)

[27201””1”—1(,1 +tlually (1, @ =1

For the time derivatives, we have the following result.
Theorem 4.6. Let v € R\&, k € Z such that
w+ke(0,1), @&=min(w-1,—w).

Let Q% be the solution of the EPD equation given by (42). Then there is a locally
bounded function n(w) with n(—n) = 0 for all n € Ny such that
LIf (u,up) € W x Wple;“’*l, one has

per

t w
Hl — ZwatQ

[Nl + i+ a@)], @ <0
L0209 > |2l + llell >0,

2. Suppose that (uy,uy) € ngjlsl X Wple;“’*l(0,27z). Then, one has the asymp-
totic expansions

t
0,.0% — tl*Zwu
Hl — 2w ’Q ! min(w,0)
20Ny lgyy1, g + N2l g + (@) |2l @ <0
SNl gy + el o e (0,1)

’272w||”1||1—k,1 + 1ol 1 w =1
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Proof of Theorem 4.4. The asymptotic expansions (49) are a consequence of the
following estimates, which in turn are obtained immediately from lemmas 4.2 and
4.3: If o <0, then

107 — '],y 4 < 27l 1

105 — w2l 110,20y S tllaly -
If w € (0,1), then

10y — ' *uy 11 = 272N,

107 — 2] 1 S tualli -

If o > 1, then
1-2 2-2
107 — " urll 1o, 2m) < 07 Munnl| g1
105 — w2l 1 S tlually—,1-
Also, the estimates (47), (48) are a consequence of Lemma 4.2. O

Theorem 4.5 is checked similarly. For the proof of Theorem 4.6, note the fol-
lowing relation

200 — 1

af‘P(ﬁ) = (lpti)fl - \P(,u)v
which holds in the sense of distributions and is used to compute the time deriva-
tives of the solution. The estimates in Theorem 4.6 are then deduced from lemmas
4.2 and 4.3. The only thing to note is the function 77(w). It comes from perform-
ing the estimates in Theorem 4.6 in the particular cases @ = —n. In these cases,
cancellation of the terms of first order ||u»||,: occurs, which accounts for the func-
tion 7. See below for some explicit calculations.

Finally, similar results may be obtained for data in the spaces H;ér(0,27r)
studied in Section 3.3. We omit these results for the sake of brevity.

4.3. Some particular values of @w. The results of the preceding theorems are
clarified by considering some particular values of the parameter w, where explicit
calculations may be done. Foremost is the case « = 0, which corresponds to the
wave equation. In that case, the explicit solution is well known and is given by

1
0" = ;Jl ui (0 + tx) dx+% (u2(0 4 1) + u2(0 — 1)). (50)
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Alternatively, one may use the formula for ¥, given by (22) and the definition
of 0® in (42) to arrive at (50), when u; is integrable. However, the formulas
(22), (42) allow for distributions u; with less regularity, namely in the space
W '(0,27). We must now write

Z\P][ * u1(0)

instead of the integral in (50) (recall that W/ = (1/t)01/,¥,). The kernel ¥ is
simply X(fl,l)/z
In the case w = 0, the second claim of Theorem 4.4 states that if (u;,u) €
L'(0,27) x Wl (0,2n), then
10" — tur —wa| _y 4 < Pllud] o+ tlla] -

This should be compared with the fact that using elementary methods one
may take (more regular) data (u1,up) € W' (0,27) x W 1(0,27), for which (50)
makes sense, and obtain the estimate

10° =ty —us 1 < 12||”||1,1 + tllua |l ;-

Here, we see that in order to be able to consider data with less regularity, the
asymptotic development takes place in a larger space. The interest in this case
lies in the fact that the estimate for u; is not easily obtainable by elementary
techniques. Indeed, since u; is just a distribution, one cannot work directly with
integral expressions such as (50). Our analysis is therefore necessary to obtain reg-
ularity estimates.

We now examine the case w = —1, where similar observations apply. Accord-
ing to the formulas (22), (42), the solution of the EPD equation (42) is now given
by

O ' =r¥lxuy —|—%(u2(0 + 1) +ux (0 — 1)) +%(u§(0 +1) —ub(0— 1)),

with W>(x) = (1 — x?), /2 and (u1,u2) € W, 21(0,27) x W1 1(0,2n). By Theorem

per per

4.4, 07 'isin L'(0,27). Other explicit solutions may be computed similarly.

5. Euler—Poisson—Darboux equation (exceptional exponents)

The expression (39) handles separately the two fundamental kernels, but does not
show clearly how the solution depends on the parameter @. In fact, we now re-
write (39) in a different form allowing us to pass to the limit when w — 1/2, using
the continuity results in Lemma 2.4.
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To achieve this, observe that according to Lemma 2.4,
— \Pl/2 ll'l(Kl/z(l — Xz))

in the sense of distributions when w — 1/2. In addition, as we will see in Section
6, this distribution is a solution of the EPD equation with @ = 1/2. Thus, given
initial data , ¢, we need only choose u;, u, in (39) appropriately so that the above
quotient will arise. This leads us to the choice

Thus, given two functions ¢, y, the solution of (36) for w € (0, 1)\{1/2} is
given by

w” t172w w
Q (tag) = 1 _2w<‘P1w7w>+<\Pw7q_ 1 —2(1)>
1200 _ 1 ¥ e — \Ilw
:<‘Pw7Q>+tl_ﬁ<\le7W>+<ﬁa¢>- (51)

Taking the limit @ — 1/2 in (51) we obtain

0'2(1,0) = (¥1/2,q(0+ 1))+ (P1pIn(tKy o (1 — x2)), (0 + 1)), (52)
which is the solution for w = 1/2.

Considering the other exceptional values w = —1/2,-3/2,..., we can gener-
alize (51) as follows:

Proposition 5.1. Let u(t,0) be a solution of the EPD equation (36), that is,
P(u) = 0. Then the function

v(t,0) =9 (u(t,0)) :== 2w — Du(1,0) + t%u(l, 0) (53)

satisfies 7“7 (v) = 0.

This result can be checked by direct substitution of v into the equation (36) and
is valid for all € R. Therefore, it may be used to define solutions of 2“~! from
solutions of #“. For instance, take @ — 1 = —1/2. Recall that ¥_,/, is not



422 P. Amorim and P. G. LeFloch

defined, so it is not a solution of 2~1/2

(52). For the first term we find

. Let us apply Lemma 5.1 with u given by

0

2
=tx¥10,q'(0+1-)) = 5(‘1’3/2,11”(94' 1)

and for the second,

GU2((P1 ) In(tKy 2 (1 = X)), (0 +1-)))
= l%<‘1"1/2 ln(lK1/2(1 — xz)),tﬁ(ﬁ—i- t- )>
= <“P1/2,lp(9+ t- )> -+ t<X"P1/2 11'1([[(1/2(1 — Xz)),lpl(0+ t- )>

So that a solution of 271/2(u) = 0 is given by

2
0712 (1,0) =5y (04 1))

+ Py (0 + 1))+ t(x¥y pIn(1Ky o (1 — x7)) ' (0 +1-)).

Clearly, this procedure may be iterated to find solutions of 2“ =0 for
®=—-3/2,-5/2,.... Such solutions consist of a term Ct'">*(¥;_,, ¢,
with 1 —w —k € (0,1), which vanishes when 7 — 0 since 1 —2w >0, a term
C{¥1/2,¥), and terms of the form Cr?(x"¥,,In(tK;;(1 - x2)),y"), with
t* — 0. Therefore, for w = —3/2,-5/2,..., we have Q“(¢,0) — Cy/(0). An ex-
plicit formula for this constant can be found in [2]. Note that only when w = 1/2
does the solutions blows-up as Inz when ¢ — 0.

6. A special case of interest

Here, we search for functions P : R, x [0, 27] that are periodic in space and satisfy
the equation

1

We begin the discussion by constructing solutions with bounded variation when
the data have bounded variation (Theorem 6.1), and next we determine the
optimal regularity assumption on the data ensuring that solutions have bounded
variation.
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It is straightforward to check that, given arbitrary smooth and periodic func-
tions v, ¢ : [0,27] — R representing the singular behavior of the solution on the
line # = 0, the explicit formula

P([7 0) — 1J0+IU(0’) ]n(Ki‘/2 (12 _ (0 _ 01)2)) (t2 _ (0 o 9/)2)—1/2 a0’

T Jo—¢

41 JW p(0') (1> — (0—0)%) a0’ (55)
T Jo—t

makes sense and yields a 2z-periodic solution of the equation (54). Here,

InK;) = —(1/n) Jgﬂln(l _(‘9;72‘9/)2> (tz (- 9')2)71/2d0’

0—t
1
=—(1/n) Jl(l — X)) In(1 = x?) dx

is a normalization constant. By formally expanding P(z,60) when ¢ — 0 and as-
suming that the data v and ¢ are smooth, we can check that the following expan-
sion holds in the pointwise sense,
1{%(P(t, 0) —v(0)Int—(0)) =0, 0€0,2n].

We are interested in extending this result to data and solutions with weaker regu-
larity, especially solutions that are solely in the space BV (0,27) of 2z-periodic
functions with bounded total variation. We will see that the condition at 1t =0
must be relaxed and holds only in the L' sense.

To recast (55) in the distributional framework developed in Section 2, we per-
form the change of variable x = (6 — ¢')/t and rewrite the formula (55) in the
form

1 1
P(1,0) _IJ_lli(/‘?J:—zcz)ln(lKl/z(l —x?)) dx+71[J_1(p\(/?—J:t;2)dx. (56)

s
Recalling the definition of the distributions ¥,,, (22), we note that the distribution
W12 is a regular function and we may write

P(1,0) = (Y12 In (1K (1 — x7)), (z1,0)v) + V12, (T1,0)9), (57)
InK ) == =¥ pIn(l = x%), 1),

where we recall that

(tr,0)v(x) =v(0+ tx), x€0,27].
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We investigate the regularity of P in terms of the regularity of the data v, ¢ and
validate the above expansion of P near the line £ = 0. In turn, this result may be
used to find regularity estimates for the exceptional solutions of (36) constructed in
Proposition 5.1.

Theorem 6.1. Given any data v, p € BV (0,2n), the explicit formula (55) defines
a solution P e L* (&, 00, BVper(0,27)) (for every ¢>0) of the Euler-Poisson-
Darboux equation (55) which satisfies the given data at t = 0 in the L' sense, as fol-
lows: define P by

P(1,0) := P(1,0) — v(0) Int — p(0).
Then, P satisfies the time and space estimates (0 < t < t')

TV(P(1)) <2(|lnt| + In Ko) TV(v) + 2TV (p) (58)

HP(I) - P()
t—t

2 t 2
< - <|lnt| +—+InKj+ 2) TV(v) +=TV(p). (59)
L2 T t T

Moreover, P, exists in a classical sense for almost all (t,0), and

[£P:(2) = vl £1(0,20) S UlInZ[ TV(v) + £ TV(9). (60)
Also, one has
~ 2¢ 2t
1Pl 0.2m) < — (It +In Ko +2) TV(v) +— TV(p) (61)
and
Py
g — 0 in the weak-star sense of measures as t — 0. (62)

Since (54) is a linear equation we immediately deduce from (61) the following
continuous dependence property

| P(7) — P/(f)HLl(o,zn) < (In7)ljo - U/HL'(O,Zn) + o — w/HL'(O,Zn)

2t
+?(|lnt\ + |InKo| +2) TV(v —v')

21
+— TV(p —¢'), (63)

valid for any two solutions P, P’ associated with data v, ¢ and v’, ¢’

tively.

, respec-
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Proof. The identities

1(! 2

2] a2,

T)_1 T
1 1 4 1
fJ IxIn(1 = x2)|(1 —x?) 2 dx ==, J (1-x)""dx=n
TJ) n -1

will be used throughout this proof. Consider a continuous test function i on

S'. Let 7,f denote the function 0 +— f(0 4 a). Then, it is easy to see that if
f e BV(S"), we have

C0o(taf ), < fo, T-ath)-

Therefore, we find

<1~’H;W> = <P@—Uglnt_¢0’lp>
1 1
— EJl {tye(vg) — vo, > Int(1 — x2>—1/2 dx

1
+%Jl <sz(v()),lp>ln([(0(l _ xz))(l . x2)71/2 dx

1! _
+_J—1 Tl pg) — 9o (1 — Xz) 2 dx

T

thus

<P6’7¢>: <P9_U91nt_¢6’7¢>

1
= lJ gy Tl — > In (1 — x2) " dx
T
1
—i—lj Cvg, Ty In((1 — x*)Ko) (1 — X272 gy
TJ-1
L 1/2
+ EJ <(p()affxt¢ - ¢>(1 — x2)7 / dx.
-1
To derive the estimate (58) we observe that

TV(P(1)) = ) su(p )\(139(1)7lﬁ>|
eC(S!
vl =1

1 1
< sup [ (Gt - (1 - )R
), =1J-1



426 P. Amorim and P. G. LeFloch

1
"‘l sup J | Cvg, T-exth> In(Ko(1 — x2))|(1 — x3) " ax
I

Tyl,=1J-

1 ! _
+ = sup J <@g Tt — YO|(1 — x2) " dx
||, =1 J -1

thus
TV(P(1)) <2TV(v) +2TV(v) In Ko + 2 TV(9).
Consider now the estimate (62). Since

1 V(1 2y -12 g
J_lln(Ko(l x))(1 = x*) "/ dx =0, (64)

T

we may write
_ 1! 1/2
[<Pg, )| < ;J o0, 7o = > In(iKo (1 =) |(1 = %) P dx

1! -
x| Ko = )1 = )

thus

1

[Popd] STV L] sup (0 =x0) = (0)] Iin(s1 = 5*)Ko)| (1 = %)

1

+ TV(«))H1 sup W (60 — xt) — y(0)](1 — x2) " dx.

Now, given any ¢ > 0, we may find 6 small enough so that |In t\fl <1lifr<d,and
(since ¥ is uniformly continuous), sup,.si|¢(0 — 0') —y(0)| < ¢ for all |0'| < 6.
Take ¢ < 9, so that |zx] <t <. We obtain

[<Pg,>|/|Int| <eTV(p) +eTV(v)(1 +2[InKo|) < e,

which gives (62).
To derive (59), we observe that

(1-— x2)71/2 dx

P(1,0) - P(1',0) ljl 9(0 + 1x) — (0 + 1'x)
—1

t—t T t—t

(1—x2)"ax

t—t

+1J1 v(@+tx)Int —v(@+ t'x)Int’
TJ-1
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1 1 _ /
_J w0+ ) Z o0+ 1) 1 g1 — x2)) (1 x2) P dx
T)_q t—t

=A+B+C.

For the first term on the right-hand side above we can write

lJI JZH
A < -
loom= 5| |

1
<TV(p) 1J IX|(1 = x%) "2 dx = % TV(p).
—1

_ /
(0 + tx) — p(0+ t'x) (1 —xz)_l/zdx
xt — xt’

T

On the other hand, a straightforward computation yields

_ / 1 _ /
B_lnt lntv(@)lj v(0 + tx) v(t‘)—l—tx)lnt(l_xz)_]/zdx
=t ) t—t
1" Int—In?’
+—J DI 40+ 1'x) — v(0)) (1 — x2) " dx
TJ)_q r—t
and thus

1
< |In¢| TV(u)lj Ix|(1 = x2)" dx
)1

1 1 1 2n
o
T _ll‘ 0

/

_ % <|1n | + [7) TV(0).

Int—1In¢’
HB BT

L1(0,27)
! [—
U(0+ t;‘z 0(0) x (1 _ X2)71/2 dx

Finally, for third term we have

4 2
€l L1(0,20) < - TV(v) + - |In Ko| TV(v).

Combining the above estimates gives (59).
To show (61), we note that

1
P([, 0) = ljl (¢(0+ IX) _ (0(0))(1 _ x2)—l/2 dx

I

+%J1 (0(0+ 1x) — 0(0)) In1(1 — x?)" 2 dx

+1J1 (v(0+ tx) — v(0)) In(Ko(1 — x%)) (1 — )12y,
TJ)-1
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where we have used (64). Integrating over the interval [0, 27] we obtain

J2n
0

¢(0+ ZX) B (”(0) Z|X|(1 _ x2)71/2 40 dx

- 1!
1POl0m 5|

T Ix
1 1 2n o
+;J J W’ﬂxlnﬂ(lxz)_l/zdﬁdx
~1Jo
1 2r _
+1J J w txIn((1 — x*)Ko)|(1 — x2) "2 a0 dx.
TJ_1Jo X

Hence

- 2t 2t 4¢ 2t
1P| 21 (0,20) < P TV(p) + P IInz[ TV(v) + P TV(v) t In Ko| TV (v),

which is (61). This completes the proof of Theorem 6.1. O

Acknowledgements. The authors were partially supported by the A.N.R.
(Agence Nationale de la Recherche) through the grant 06-2-134423 entitled
“Mathematical Methods in General Relativity” (MATH-GR), and by the Centre
National de la Recherche Scientifique (CNRS). P.A. was also supported by the
Portuguese Foundation for Science and Technology (FCT) through grant
SFRH/BD/17271/2004.

References

[1] M. L. Bernardi, Second order abstract differential equations with singular coefficients.
Ann. Mat. Pura Appl. (4) 130 (1982), 257-286. Zbl 0486.35066 MR 663974

[2] E. K. Blum, The solutions of the Euler-Poisson-Darboux equation for negative values
of the parameter. Duke Math. J. 21 (1954), 257-269. Zbl 0057.08001 MR 0063542

[3] F.J. Bureau, Divergent integrals and partial differential equations. Comm. Pure Appl.
Math. 8 (1955), 143-202. Zbl 0064.09204 MR 0068085

[4] R. W. Carroll and R. E. Showalter, Singular and degenerate Cauchy problems. Math.
Sc. Eng. 127, Academic Press, New York 1976. MR 0460842

[5] J.-P. Dias and M. Povoas, A variant of the Euler-Poisson-Darboux equation arising in
quantum gravity. C. R. Acad. Sci. Paris Sér. I Math. 315 (1992), 169—173.
Zbl 0769.35047 MR 1197231

[6] I. M. Gelfand and G. E. Shilov, Generalized functions. Vol. 1, Academic Press, New
York 1964. Zbl 0115.33101 MR 0435831

[7] L. Hormander, The analysis of linear partial differential operators I. Grundlehren Math.
Wiss. 256, Springer-Verlag, Berlin 1983. Zbl 0521.35001 MR 0717035


http://www.emis.de/MATH-item?0486.35066
http://www.ams.org/mathscinet-getitem?mr=663974
http://www.emis.de/MATH-item?0057.08001
http://www.ams.org/mathscinet-getitem?mr=0063542
http://www.emis.de/MATH-item?0064.09204
http://www.ams.org/mathscinet-getitem?mr=0068085
http://www.ams.org/mathscinet-getitem?mr=0460842
http://www.emis.de/MATH-item?0769.35047
http://www.ams.org/mathscinet-getitem?mr=1197231
http://www.emis.de/MATH-item?0115.33101
http://www.ams.org/mathscinet-getitem?mr=0435831
http://www.emis.de/MATH-item?0521.35001
http://www.ams.org/mathscinet-getitem?mr=0717035

Sharp estimates for Euler—Poisson—Darboux equations 429

Received February 29, 2008; revised June 3, 2008

P. Amorim, Laboratoire Jacques-Louis Lions, Université de Paris 6, 4 Place Jussieu, 75252
Paris, France

E-mail: amorim@ann.jussieu.fr

P. G. LeFloch, Laboratoire Jacques-Louis Lions & Centre National de la Recherche Scien-
tifique, Université de Paris 6, 4 Place Jussieu, 75252 Paris, France

E-mail: lefloch@ann.jussieu.fr



