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Abstract. We describe a general method, based on a Lyapunov–Schmidt reduction and
perturbative techniques, recently used by the authors to find periodic and quasi-periodic
solutions both in finite and in infinite dimensional Hamiltonian systems. We also illustrate
some concrete applications to celestial mechanics and nonlinear wave equation.
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Introduction

In this note we deal with four topics:

Spatial planetary three-body problem. We consider one ‘‘star’’ and two ‘‘plan-

ets’’, modeled by three massive points, interacting through gravity in a three-

dimensional space. Near the limiting solutions given by the two planets revolving

around the star on Keplerian ellipses with small eccentricity and small non-zero

mutual inclination, the system is proved to have two-dimensional, elliptic, quasi-

periodic solutions, provided that the masses of the planets are small enough com-

pared to the mass of the star and the osculating Keplerian major semiaxes belong

to a two-dimensional set of density close to one.

Planar planetary many-body problem. As above, but one ‘‘star’’ and N ‘‘plan-

ets’’, the interior two ones bigger than the others (as in the exterior solar system).

Near the limiting solutions given by the N planets revolving around the star on
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Keplerian ellipses with small eccentricity and zero mutual inclination, the system is

proved to have N-dimensional, elliptic, quasi-periodic solutions.

Periodic orbits approaching lower dimensional elliptic KAM tori. By a general

Birkho¤–Lewis–Conley–Zehnder-type result, we prove the existence of infinitely

many periodic solutions with larger and larger minimal period, accumulating onto

elliptic invariant tori of Hamiltonian systems.

As an application, periodic orbits close to the quasi-periodic ones of the above

planetary problems are constructed.

Long time periodic orbits for the nonlinear wave equation. A Birkho¤–Lewis

result for the nonlinear wave equation is given, which yields the existence of

solutions of longer and longer period accumulating to zero, which is an elliptic

equilibrium of the associated infinite dimensional Hamiltonian system.

The above results are discussed in full detail in [9], [10], [6], [16], [11], [12] and

[13].

1. Quasi-periodic solutions

1.1. Maximal dimensional KAM tori. The main object of KAM Theory is the

persistence of maximal invariant tori, i.e., tori of dimension n in nearly integrable

Hamiltonian systems with n degrees of freedom of the type

HðI ; jÞ ¼ hðIÞ þ ef ðI ; jÞ

with I a Rn, j a Tn.

When e ¼ 0, the system is completely integrable and the motion lies on the in-

variant tori fI0g � Tn, traveled with (quasi)periodic motion

jðtÞ ¼ jð0Þ þ o0t;

where o0 ¼ ‘hðI0Þ.
When eA 0, most of these tori survive, according to the arithmetic properties

of the frequency, and their motions are conjugated to linear quasi-periodic ones.

KAM theory then found rich applications in planetary celestial mechanics,

where e represents the order of the ratio between the mass of the planets and the

mass of the star. Namely, maximal KAM tori have been constructed in [1] for the

planar three-body problem, in [27] and [32] for the spatial three-body problem and

in [22] for the spatial many-body problem.

1.2. Lower dimensional KAM tori. KAM theory is also capable to detect the

conservation of lower dimensional tori. In our case we deal with linearly stable
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(i.e., elliptic) tori, the conservation of which, under suitable non-degeneracy as-

sumptions, was stated in [28], [21], [25], [29] and [20].

These lower dimensional elliptic tori may be visualized by looking at the

Hamiltonian

HðI ; f; p; qÞ ¼ o � I þW � J

with ðI ; fÞ a Rn � Tn and ðp; qÞ a Rm � Rm conjugated variables and

Ji ¼
p2i þ q2i

2
:

The corresponding motions are

IðtÞ ¼ I0;

fðtÞ ¼ f0 þ ot;�
pðtÞ; qðtÞ

�
¼ ðp0; q0Þ cosWt:

8><
>:

and so the n-dimensional tori

TðI0Þ ¼ fI ¼ I0; f a Tn; p ¼ q ¼ 0g

are invariant and traveled by the linear frequency o, while the motions around

TðI0Þ revolve with the elliptic frequency W.

The KAM theory then is concerned with the preservation of such tori when the

Hamiltonian presents higher order terms: for this some rational independence be-

tween o and W is needed to avoid resonances.

In celestial mechanics, this independence becomes a touchy business, since the

system is often degenerate and the frequencies are related among each other.

1.3. Elliptic two-dimensional invariant tori for the planetary three-body
problem. Delaunay and Poincaré described the spatial three-body problem as a

four-dimensional Hamiltonian system. The integrable limit obtained by neglect-

ing the interaction between the small planets gives rise to decoupled Keplerian

ellipses—in particular we look at the limiting cases of planets revolving on

circles. This integrable limit possess motions lying on T2 (namely, the topological

product of the two Keplerian orbits) and so the number of linear frequencies is less

than the number of degrees of freedom.

In [24], the question on whether these tori survive is settled. As a matter of

fact, the persistence of two-dimensional invariant tori for the planetary three-

body problem for large mutual inclinations is proved in [24]. These orbits are

unstable (i.e., partially hyperbolic) and they do not have any physical planetary

analogue: as stated in [24], ‘‘the solutions found are of the elliptic-hyperbolic type

and hence are unstable. It would be desirable to establish similarly the existence
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of such solutions in the stable case. In this case, however, there is an essential dif-

ficulty . . . however, there are good reasons to conjecture that in general the stable

solutions need not persist . . .’’.

The di‰culty Je¤erys and Moser refer to is likely to be connected with, at

least, the fact that the system is properly degenerate since on one hand it has four

degrees of freedom and on the other hand the integrable limit depends only on two

action variables. Also, the limiting solutions lie on two-dimensional tori, traveled

with quasi-periodic frequencies which depend (due to Kepler’s law) on the major

semiaxes of the osculating ellipses, so such dependence may produce resonances.

These problems may be overcome since the major semiaxis are related to the

two non-degenerate actions, so it is possible to keep track of their influence on

the system. Then the question raised in [24] may be answered as follows:

Theorem 1.1 ([9]). The spatial three-body problem possesses orbits lying on two-

dimensional elliptic invariant tori traveled with irrational frequencies corresponding

to a small eccentricity-inclination regime, provided that the two Keplerian major

semiaxes belong to a two-dimensional set of nearly-full measure.

The eccentricities are of order ec.

The inclinations may be chosen in a range from ec up to order one in e, and dur-

ing the motions they oscillate of order ec.

The semiaxes may be chosen as a set whose complement has measure of order ec

and during the motions they oscillate of order ec.

The constants c above may be explicitly determined. The proof of Theorem

1.1 consists in three steps:

• The system is written in Delaunay-Poincaré variables as

H ¼ � 1

2

X
j

kj

L2
j

þ ef ðL; l; h; xÞ

with j ¼ 1; 2.

From the celestial mechanics viewpoint, kj is constant, L
2
j has size of the

order of the major semiaxis of the j-th planet, ðhj; xjÞ has size of order Lje
2
j ,

where ej is the eccentricity, and is oriented along the argument of the perihe-

lion of the j-th planet.

• An averaging procedure over the fast angles (conjugated to the two non-

degenerate actions) removes the degeneracy up to a high enough order, yield-

ing a Hamiltonian of the form

H ¼ hðIÞ þ egðI ; p; qÞ þ oð�3Þ:

The linear part can be diagonalized and the eigenvalues can be estimated.
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• The quantitative version of the nondegeneracy conditions, required for the

persistence of elliptic tori, is checked perturbatively.

1.4. N-dimensional elliptic invariant tori for the planar (N B 1)-body
problem. A result analogous to Theorem 1.1 holds for N planets in the planar

case. The assumption that the system is planar is needed here to remove the de-

generacies caused by further symmetries, since in contrast to the case N ¼ 2 there

is no reduction of the nodes available.

For concreteness, we focus on the case when the exterior planets are order of

d, smaller than the two interior ones, for a small d a ð0; 1Þ. In this case, which

mimics the exterior solar system, the eigenvalues of the secular dynamics may be

computed asymptotically in � and d and so a quantitative non-degeneracy condi-

tion may be checked due to the di¤erent scales involved.

We refer to [10] for further details.

2. Periodic solutions

2.1. Periodic orbits close to elliptic tori and applications to the three-body
problem. The importance of periodic solutions in Hamiltonian systems was

remarked by Poincaré: ‘‘D’ailleurs, ce qui nous rend ces solutions périodiques si

précieuses, c’est qu’elles sont, pour ainsi dire, la seule brèche par où nous puissons

essayer de pénétrer dans une place jusqu’ici réputée inabordable . . .’’.

Poincaré also conjectured that periodic orbits approximate any trajectory: ‘‘. . .

voici un fait que je n’ai pu démontrer rigoureusement, mais qui me parait pourtant

très vraisemblable. Étant données des équations de la forme définie dans le n. 131

et une solution particulière quelconque de ces équations, on peut toujours trouver

une solution périodique (dont la période peut, il est vrai, être très longue), telle que

la di¤érence entre les deux solutions soit aussi petite qu’on le veut, pendant un

temps aussi long qu’on le veut.’’

A partial answer for such a conjecture was given in [31], by proving periodic

orbits to be dense in any regular and compact energy surface, generically in the

C2 category.

The conjecture is open for given systems, and, in particular, for the three-body

problem.

As an intermediate step towards this conjecture, one may try to find periodic

orbits approaching invariant manifolds. Periodic orbits accumulating on elliptic

periodic points and on elliptic periodic orbits are constructed in [14], while [17]

provided periodic orbits accumulating on maximal KAM tori. These results may

be rephrased by saying that in a system with n degrees of freedom, under suitable

1Formula n. 13 mentioned by Poincaré is the Hamilton equation.
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assumptions, there is a plethora of periodic orbits accumulating on elliptic tori of

dimension 0, 1 and n.

A natural question is whether it is possible to obtain analogous results for

elliptic tori of intermediate dimension k, with 2a ka n� 1. Such question is

addressed by the following

Theorem 2.1 ([6]). Under suitable non-degeneracy and non-resonance assumptions

between linear and elliptic frequencies, there are infinitely many periodic orbits,

whose minimal period goes to infinity, accumulating on elliptic invariant tori of any

dimension.

Theorem 2.1 finds a natural application to the three-body problem via the el-

liptic tori constructed in Theorem 1.1:

Theorem 2.2 ([6]). The spatial planetary three-body problem a¤ords, for e small

enough, infinitely many periodic solutions, with larger and larger minimal period, ac-

cumulating onto the elliptic invariant tori of Theorem 1.1.

Also, near the unperturbed circular periodic motions with minimal period T,

there correspond at least two geometrically distinct T-periodic trajectories (provided

that e and T are subject to some inequalities).

Similar applications to the planar N-body case are given in [16].

The proof of Theorem 2.1 is based on the following technique. By an averag-

ing procedure, close to the torus we want to approach, the system is a small pertur-

bation of the integrable Hamiltonian

Hint ¼ o � I þ n

2
RI � I þ 1

2

X
i

Wiðp2i þ q2i Þ þ
n

2

X
i

ðQIÞiðp2i þ q2i Þ; ð1Þ

where R and Q are suitable matrices and n > 0 is a small parameter measuring the

distance from the torus. The solutions of Hint are

IðtÞ ¼ I0;

fðtÞ ¼ f0 þ ~ootþ h2Qtðp20 þ q20Þt=2;�
piðtÞ; qiðtÞ

�
¼ ðpi0; qi0Þ cos ~WWit;

9>=
>; ð2Þ

where

~oo :¼ oþ nRI0

is the vector of the shifted linear frequencies and

~WW :¼ Wþ nQI0;

is the vector of the shifted elliptic frequencies.
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The manifold fp ¼ q ¼ 0g is invariant for the Hint-flow and is filled up by the

N-dimensional tori

fI ¼ I0; f a TN ; p ¼ q ¼ 0g;

on which the flow t 7! ðI0; f0 þ ~oot; 0; 0Þ is T-periodic, T > 0, if and only if

~oo a
2p

T
ZN : ð3Þ

To satisfy (3), we choose

I0 ¼ I0ðTÞ :¼ �R�1foT=2pg; n ¼ nðTÞ :¼ 2p=T ;

where f�g denotes the fractional part. The infinite T-periodic orbits of the

family

F :¼ fIðtÞ ¼ I0; fðtÞ ¼ f0 þ ~oot; pðtÞ ¼ qðtÞ ¼ 0g

will not all persist for the flow of the complete Hamiltonian H. But if F is iso-

lated (namely there are no other T-periodic solutions close to it), i.e.,

2pl� ~WWiðTÞT ¼ 2pl�WiT þ 2pðQR�1ÞifoT=2pgA 0 for all l; i ð4Þ

(recall (2)), we can prove existence of solutions of H bifurcating from F. The

‘‘geometric’’ condition (4) clearly appears as a non-resonance condition between

the linear frequencies o and the elliptic ones W.

We will search T-periodic solutions of H of the form

�
IðtÞ; fðtÞ; pðtÞ; qðtÞ

�
¼

�
I0ðTÞ; f0 þ ~ooðTÞt; 0

�
þ zðtÞ;

where f0 a TN is a parameter to determinate, and

zðtÞ ¼
�
JðtÞ;cðtÞ; pðtÞ; qðtÞ

�

is a small analytic and T-periodic curve with c having zero average. The Hamil-

ton equations then reduce to the following functional equation for z and f0:

Lz ¼ Nðz; f0Þ ð5Þ

where L is the linear operator

Lz :¼
�
_JJ; _cc� h2RJ; _qq� ~WWðTÞp; _ppþ ~WWðTÞq

�
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and N is a suitable nonlinearity. The kernel K and the range R of L are, respec-

tively,

K ¼ fcC constg

and

R ¼
nðT

0

~cc ¼ 0
o
:

Then we use a Lyapunov–Schmidt reduction: equation Lz ¼ Nðz; f0Þ splits into

the kernel equation

0 ¼ PKNðz; f0Þ ð6Þ

and the range equation

Lz ¼ PRNðz; f0Þ: ð7Þ

The ‘‘geometric’’ condition (4) is equivalent to the ‘‘analytic’’ fact that L is inver-

tible on R. If we choose the one-dimensional parameter T (the period) such that

(4) holds, the range equation becomes z ¼ L�1PRNðz; f0Þ; for any fixed f0 in the

kernel KPTN , we solve the range equation by contractions.

Then we insert the solutions of the range equation into the kernel equation. It

turns out that the resulting equation for f0 is the Euler–Lagrange equation of the

reduced action functional (namely the action functional evaluated on the solutions

of the range equation). Since f0 runs on a torus, elementary finite-dimensional

analysis produces critical points of the reduced action functional and so the de-

sired periodic orbits.

2.2. The wave equation. The first real breakthrough in the study of periodic

solutions of the (one-dimensional) wave equation, the ‘‘vibrating string’’, was due

to Rabinowitz at the end of the 1960s. He rephrased the problem as a variational

one and proved existence under suitable assumption on the nonlinearity (e.g. mo-

notonicity).

Many authors—Brezis, Nirenberg, Coron, Hofer, etc.—have used and devel-

oped variational methods to study the problem.

The variational approach has the advantage of being global and of imposing

only few restrictions on the strength of the nonlinearity. On the other hand it

does impose a very strong restriction on the allowed periods: they must be rational

multiples of the string length.

This fact is due to the appearance of a small divisors problem. It should be

remarked that in finite dimension small divisors appear only in searching quasi-

periodic solutions. To understand why they come out in looking for periodic
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solutions in infinite dimension, let us consider the eigenvalues of the homogenous

problem with Dirichlet boundary condition

ju ¼ utt � uxx ¼ 0;

uðt; 0Þ ¼ uðt; pÞ ¼ 0;

uðtþ T ; xÞ ¼ uðt; xÞ

8<
:

(string length ¼ p). The eigenvalues are

lil ¼ o2l2 � i2; ib 1; l a Z:

where o ¼ 2p=T . There are two cases:

(1) o a Q: 0 is an eigenvalue of infinite multiplicity, namely j has an infinite

dimensional kernel, but on the cokernel j�1 exists bounded (and compact);

(2) o a RnQ: 0 is not an eigenvalue, namely j has no kernel, but lil accumulate

to 0, namely j�1 is unbounded (small divisors problem).

To deal with small divisors, a di¤erent approach was developed by Kuksin,

Wayne, Craig, Bourgain, Pöschel, and others at the end of the 1980s. They used

the fact that the wave equation is an infinite dimensional Hamiltonian system and

modified the classical KAM ideas to work in this infinite dimensional context.

This perturbative approach has the advantage of allowing irrational periods, but

it is local in nature, namely it requires weak nonlinearity (equivalently small am-

plitude solutions).

The Hamiltonian structure. We look for periodic in time solutions of the one-

dimensional nonlinear wave equation with Dirichlet boundary conditions (vibrat-

ing string):

utt � uxx þ muþ f ðuÞ ¼ 0;

uðt; 0Þ ¼ uðt; pÞ ¼ 0;

�
ð8Þ

where m > 0 is the ‘‘mass’’ and f , with f ð0Þ ¼ f 0ð0Þ ¼ 0, is the nonlinearity.

Introducing v ¼ ut, the Hamiltonian is

Hðv; uÞ ¼
ð p

0

v2

2
þ u2x

2
þ m

u2

2
þ gðuÞ

� �
dx;

where g ¼
Ð u

0 f ðsÞ ds. The Hamilton equations are

ut ¼
qH

qv
¼ v; vt ¼ � qH

qu
¼ uxx � mu� f ðuÞ:
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Introducing coordinates

q ¼ ðq1; q2; . . .Þ a la; s; p ¼ ðp1; p2; . . .Þ a la; s

with

la; s :¼
n
q j kqk2a; s :¼

X
i

jqij2i2se2ai < l
o

by means of the relations

vðxÞ ¼
X
i

ffiffiffiffiffi
oi

p
piwiðxÞ; uðxÞ ¼

X
i

qiffiffiffiffiffi
oi

p wiðxÞ;

where wiðxÞ :¼
ffiffiffiffiffiffiffiffi
2=p

p
sin ix and

oi :¼
ffiffiffiffiffiffiffiffiffiffiffiffi
i2 þ m

p
;

the Hamiltonian takes the form

H ¼ 1

2

X
i

oiðq2i þ p2
i Þ þ PðqÞ:

The origin is an elliptic equilibrium. Note the term P ¼ Oðq4Þ is regularizing,

namely it gains a derivative

‘P : la; s ! la; sþ1:

The orbits of the quadratic Hamiltonian
P

ib1oiðq2i þ p2
i Þ=2 are superposi-

tions of the harmonic oscillations qiðtÞ ¼ Ai cosðoitþ jiÞ, where Ai b 0, ji a R

and oi are the amplitude, the phase and the frequency of the i-th harmonic oscil-

lator, respectively.

Analogously, the solutions of the linear equations utt � uxx þ mu ¼ 0 are

uðt; xÞ ¼
X
ib1

ai cosðoitþ jiÞ sin ix;

with ai ¼ Ai

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2=poi

p
b 0. These solutions are

(1) periodic if one mode is excited,

(2) quasi-periodic if Nb 2 modes are excited,

(3) almost-periodic if infinitely many modes are excited.

Only the orbit in (1) is periodic, since for all I :¼ fi1; . . . ; iNgHNþ, Nb 2, the

frequency vector o :¼ ðoi1 ; . . . ;oiN Þ is rationally independent.
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To prove nonlinear continuations of the periodic orbits (1) above means to

extend the Lyapunov Center Theorem for finite dimensional systems to this infi-

nite dimensional situation. Such results can be found in [33], [26], [19], [15], [2]

and [18]. The case completely resonant case m ¼ 0 (namely the extensions of the

Weinstein and Moser theorems) can be found in [4], [7], [23], [8], [5].

The Birkho¤–Lewis periodic orbits discussed above for finite dimensional

systems are completely di¤erent; in particular they have no analogs in the linear

case.

In extending the results of [6] to the infinite dimensional case, one faces prob-

lems: the extension of the Birkho¤ Normal Form and the small divisors.

A first result was obtained in [3] for the beam equation and the NLS equation.

We remark that in this case the small divisors are not really small and no KAM

analysis is necessary.

Let us consider the nonlinear wave equation in (8). Let us suppose that f is

real analytic and odd, namely f ¼
P

mb3 fmu
m with f3A 0, and let us fix a finite

subset I ¼ fi1; . . . ; iNgHN, i.e., I ¼ f1; . . . ;Ng (low modes).

Following [30], we perform a canonical transformation that puts H in partial

Birkho¤ Normal Form:

H ¼ Lþ G þ ĜG þ K

where

• L ¼
P

ib1 oiðp2
i þ q2i Þ=2 is the quadratic part,

• G þ ĜG is of order 4 in p, q,

• K is of order 6 in p, q,

• G depends only on the ‘‘actions’’ ðp2
i þ q2i Þ=2,

• ĜG depends only on pi, qi, i > N (high modes).

Since we look for small amplitude solutions, we introduce the perturbative pa-

rameter n (measuring the distance from the origin). We put action-angle variables

ðI ; fÞ on the low modes:

ðpi; qiÞ ¼
ffiffiffi
n

p
ð

ffiffiffiffi
Ii

p
sin fi;

ffiffiffiffi
Ii

p
cos fiÞ; iaN;

ðpi; qiÞ ¼
ffiffiffi
n

p
ðpi; qiÞ; i > N:

In the new variables ðI ; f; p; qÞ the Hamiltonian is a small perturbation of

the integrable Hamiltonian Hint defined in (1), where the index i runs over all

the integer greater than N, o ¼ ðoiÞiaN , W ¼ ðoiÞi>N , A a MatðN �NÞ and

B a Matðl�NÞ. Notice that the ‘‘twist’’ condition detAA 0 holds (since

f3A 0).
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The crucial fact here is that, since now i > N, the quantities in the ‘‘geometric’’

condition (4) accumulate to zero; these are exactly the small divisors we have to

deal with.

We will quantitatively impose that the admissible periods T satisfy

j2pl�WiT þ ðR�1QÞifoTgjb const

jijt ð9Þ

for all l a Z, i > N, and for a suitable tb 1 (‘‘Melnikov condition’’).

We have two cases: t ¼ 1 or t > 1.

In [11], [12] the strong non-resonance condition t ¼ 1 was imposed. In this

case only a zero measure set of periods T satisfies (9). The great advantage is

that, since t ¼ 1, the small divisors cause the loss of only one ‘‘derivative’’, which

is compensated by the fact that N ‘‘gains one derivative’’. Therefore the range

equation can be solved by the standard Implicit Function Theorem (or Fixed

Point Theorem), as in the finite dimensional situation.

The weaker condition t > 1 imposed in [13] allows a large set of admissible

periods T satisfying (9). However the loss of t > 1 derivatives is no more compen-

sated by the nonlinearity that gains only one derivative, and a Nash–Moser super-

convergent procedure is necessary.

As it is well known, the crucial point in the Nash–Moser procedure is the in-

version of the linearized operator in a neighborhood of the origin. Then one pro-

ceeds by the usual Newton superconvergent iterative scheme. However, due to

that excision procedure used to control the small divisors at any steps, here one

has also to solve the bifurcation equation on a Cantor set. This last problem is dif-

ficult (see [8] and [5]). To overcome it, invert the above procedure [13]:

(i) first we solve the bifurcation equation by suitable symmetries of the Hamilto-

nian (recall that f is odd),

(ii) then we solve the resulting range equation by a Nash–Moser scheme.

It remains to solve the inversion of the linearized operator. The present case

presents two further technical di‰culties:

• the linearized operator is a first order non self-adjoint operator requiring non

standard spectral analysis,

• the linearized operator is not a Toeplitz operator (namely it does not simply

act as a convolution operator).

We conclude recalling the main result of [13]:

Theorem 2.3 ([13]). Fix m > 0 and let f be a real analytic, odd function of the form

f ðuÞ ¼
P

mb3 fmu
m, f3A 0. Let Nb 2.
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Then there exists a Cantor set C of asymptotically full measure

lim
n0!0þ

measðCB ð0; n0�Þ
n0

¼ 1

such that for all n ¼ 2p=T a C there exists a T-periodic analytic solution uðt; xÞ of
(8) satisfying

uðt; xÞ ¼
ffiffiffi
n

p X
iaN

ai cosð ~ooitÞ sin ixþOðnÞ; ~ooi � oi ¼ OðnÞ;

for suitable ai > 0, ~ooi a R.

Moreover, fix 0 < r < 1=2. Then, except a zero measure set of m 0s, the minimal

period Tmin of the T-periodic orbit satisfies

Tmin
b const � T r:
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[30] J. Pöschel, Quasi-periodic solutions for a nonlinear wave equation. Comment. Math.

Helv. 71 (1996), 269–296. Zbl 0866.35013 MR 1396676

[31] C. C. Pugh and C. Robinson, The C 1 closing lemma, including Hamiltonians. Ergodic
Theory Dynam. Systems 3 (1983), 261–313. Zbl 0548.58012 MR 742228

[32] P. Robutel, Stability of the planetary three-body problem. II: KAM theory and
existence of quasiperiodic motions. Celestial Mech. Dynam. Astronom. 62 (1995),
219–261. Zbl 0837.70009 MR 1364478

[33] C. E. Wayne, Periodic and quasi-periodic solutions of nonlinear wave equations via
KAM theory. Comm. Math. Phys. 127 (1990), 479–528. Zbl 0708.35087 MR 1040892

Received July 2, 2007; revised July 25, 2007

L. Biasco, Dipartimento di Matematica, Università Roma Tre, Largo S. L. Murialdo 1,
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