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1. Introduction

This paper is concerned with the following semilinear di¤erential inclusion

x 0 a Axþ F
�
t; x;Hðt; xÞ

�
; xð0Þ ¼ x0; ð1:1Þ

where X is a real separable Banach space, PðXÞ is the family of all subsets of X ,

I ¼ ½0;T �, F ð� ; � ; �Þ : I � X 2 ! PðXÞ, Hð� ; �Þ : I � X ! PðXÞ and A is the infin-

itesimal generator of a strongly continuous semigroup fGðtÞ; tb 0g on X .

When F does not depend on the last variable, (1.1) reduces to

x 0 a Axþ F ðt; xÞ; xð0Þ ¼ x0: ð1:2Þ

Existence results and qualitative properties of the mild solutions of problem

(1.2) may be found in [3], [6], [7], [9], [13] etc. In all these papers the set-valued

map F is assumed to be at least closed-valued. Such an assumption is quite natu-

ral in order to obtain good properties of the solution set, but it is interesting to

investigate the problem when the right-hand side of the multivalued equation

may have nonclosed values.

Following the approach in [12] we consider problem (1.1), where F and H are

closed-valued multifunctions Lipschitzian with respect to the second variable



and F is contractive in the third variable. Obviously, the right-hand side of the

di¤erential inclusion in (1.1) is in general neither convex nor closed. We prove

the arcwise connectedness of the solution set of (1.1). The main tool is a result

([11], [12]) concerning the arcwise connectedness of the fixed point set of a class

of nonconvex nonclosed set-valued contractions.

Afterwards this result is extended to second-order di¤erential inclusions of the

form

x 00 a Axþ F
�
t; x;Hðt; xÞ

�
; xð0Þ ¼ x0; x 0ð0Þ ¼ y0;

where F and H are as above and A is the infinitesimal generator of a strongly

continuous cosine family of operators fCðtÞ; tb 0g on X . We note that several

existence results concerning mild solutions for the Cauchy problem

x 00 a Axþ Fðt; xÞ; xð0Þ ¼ x0; x 0ð0Þ ¼ y0;

can be found in [1], [2], [4], [5], etc.

The paper is organized as follows: in Section 2 we recall some preliminary re-

sults that we use in the sequel and in Section 3 we prove our main result.

2. Preliminaries

Let Z be a metric space with the distance dZ and let 2Z be the family of all

nonempty closed subsets of Z. For a a Z and A;B a 2Z we set dZða;BÞ ¼
infb AB dZða; bÞ and d �

ZðA;BÞ ¼ supa AA dZða;BÞ. Denote by DZ the Pompeiu–

Hausdor¤ generalized metric on 2Z defined by

DZðA;BÞ ¼ maxfd �
ZðA;BÞ; d �

ZðB;AÞg; A;B a 2Z:

In what follows, when the product Z ¼ Z1 � Z2 of metric spaces Zi,

i ¼ 1; 2, is considered, it is assumed that Z is equipped with the distance

dZ
�
ðz1; z2Þ; ðz 01; z 02Þ

�
¼

P2
i¼1 dZi

ðzi; z 0i Þ.
Let X be a nonempty set and let F : X ! 2Z be a set-valued map from X to Z.

The range of F is the set F ðXÞ ¼ 6
x AX FðxÞ. Let ðX ;FÞ be a measurable space.

The multifunction F : X ! 2Z is called measurable if F�1ðWÞ a F for any open

set WHZ, where F�1ðWÞ ¼ fx a X ;FðxÞBWA jg. Let ðX ; dX Þ be a metric

space. The multifunction F is called Hausdor¤ continuous if for any x0 a X

and every � > 0 there exists d > 0 such that x a X , dX ðx; x0Þ < d implies that

DZ

�
F ðxÞ;Fðx0Þ

�
< �.

Let ðT ;F; mÞ be a finite, positive, nonatomic measure space and let

ðX ; j � jX Þ be a Banach space. We denote by L1ðT ;XÞ the Banach space of all
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(equivalence classes of ) Bochner integrable functions u : T ! X endowed with the

norm

jujL1ðT ;XÞ ¼
ð
T

juðtÞjX dm

A nonempty set KHL1ðT ;XÞ is called decomposable if, for every u; v a K

and every A a F, one has

wA � uþ wTnA � v a K ;

where wB, B a F indicates the characteristic function of B.

A metric space Z is called an absolute retract if, for any metric space X and any

nonempty closed set X0 HX , every continuous function g : X0 ! Z has a contin-

uous extension g : X ! Z over X . It is obvious that every continuous image of an

absolute retract is an arcwise connected space.

In what follows we recall some preliminary results that are the main tools in

the proof of our result.

Let ðT ;F; mÞ be a finite, positive, nonatomic measure space, S a separable

Banach space and let ðX ; j � jX Þ be a real Banach space. To simplify the notation

we write E in place of L1ðT ;XÞ.

Lemma 2.1 ([12]). Assume that f : S � E ! 2E and c : S � E � E ! 2E are

Hausdor¤ continuous multifunctions with nonempty, closed, decomposable values

satisfying the following conditions:

a) There exists L a ½0; 1Þ such that, for every s a S and every u; u 0 a E,

DE

�
fðs; uÞ; fðs; u 0Þ

�
aLju� u 0jE :

b) There exists M a ½0; 1Þ such that LþM < 1 and for every s a S and every

ðu; vÞ; ðu 0; v 0Þ a E � E,

DE

�
cðs; u; vÞ;cðs; u 0; v 0Þ

�
aMðju� u 0jE þ jv� v 0jEÞ:

Set Fix
�
Gðs; �Þ

�
¼ fu a E; u a Gðs; uÞg, where Gðs; uÞ ¼ c

�
s; u; fðs; uÞ

�
, ðs; uÞ a

S � E. Then the following holds:

1) For every s a S the set Fix
�
Gðs; �Þ

�
is nonempty and arcwise connected.

2) For any si a S and any ui a Fix
�
Gðs; �Þ

�
, i ¼ 1; . . . ; p there exists a continuous

function g : S ! E such that gðsÞ a Fix
�
Gðs; �Þ

�
for all s a S and gðsiÞ ¼ ui,

i ¼ 1; . . . ; p.

Lemma 2.2 ([12]). Let U : T ! 2X and V : T � X ! 2X be two nonempty closed-

valued multifunctions satisfying the following conditions:

a) U is measurable and there exists r a L1ðTÞ such that DX

�
UðtÞ; f0g

�
a rðtÞ for

almost all t a T .
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b) The multifunction t ! Vðt; xÞ is measurable for every x a X .

c) The multifunction x ! Vðt; xÞ is Hausdor¤ continuous for all t a T .

Then for any v : T ! X, a measurable selection from t ! V
�
t;UðtÞ

�
, there

exists a selection u a L1ðT ;XÞ such that vðtÞ a V
�
t; uðtÞ

�
, t a T .

In what follows I ¼ ½0;T �, X is a real separable Banach space with norm j � j
and with the corresponding metric dð� ; �Þ. We consider fGðtÞgtb0 HLðX ;XÞ a

strongly continuous semigroup of bounded linear operators from X to X having

the infinitesimal generator A and a set valued map F ð� ; �Þ defined on I � X with

nonempty closed subsets of X , which define the following di¤erential inclusion

x 0 a Axþ F ðt; xÞ; xð0Þ ¼ x0: ð2:1Þ

It is well known that, in general, the Cauchy problem

x 0 ¼ Axþ f ðt; xÞ; xð0Þ ¼ x0

may not have a classical solution and that a way to overcome this di‰culty is to

look for continuous solutions of the integral equation

xðtÞ ¼ GðtÞx0 þ
ð t

0

Gðt� uÞ f
�
u; xðuÞ

�
du:

This is why the concept of mild solution is convenient for solving (2.1).

A continuous mapping xð�Þ a CðI ;XÞ is called a mild trajectory of (2.1) if there

exists a (Bochner) integrable function f ð�Þ a L1ðI ;XÞ such that

f ðtÞ a F
�
t; xðtÞ

�
a:e: ðIÞ;

xðtÞ ¼ GðtÞx0 þ
ð t

0

Gðt� uÞf ðuÞ du for all t a I ;

i.e., f ð�Þ is a (Bochner) integrable selection of the set-valued map F
�
�; xð�Þ

�
and

xð�Þ is the mild solution of the initial value problem

x 0 ¼ Axþ f ðtÞ; xð0Þ ¼ x0:

We shall use the following notation for the solution set of (2.1):

S1ðx0Þ ¼ fxð�Þ; xð�Þ is a mild solution of ð2:1Þg: ð2:2Þ

Denote by BðXÞ the Banach space of bounded linear operators from X into X .

We recall that a family fCðtÞ; t a Rg of operators in BðXÞ is a strongly continuous

cosine family if the following conditions are satisfied:
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(i) Cð0Þ ¼ I , where I is the identity operator in X ,

(ii) Cðtþ sÞ þ Cðt� sÞ ¼ 2CðtÞCðsÞ for all t; s a R,

(iii) the map t ! CðtÞx is strongly continuous for all x a X .

The strongly continuous sine family fSðtÞ; t a Rg associated to a strongly contin-

uous cosine family fCðtÞ; t a Rg is defined by

SðtÞx :¼
ð t

0

CðsÞx ds; x a X ; t a R:

The infinitesimal generator A : X ! X of a cosine family fCðtÞ; t a Rg is de-

fined by

Ax ¼ d 2

dt2

� �
CðtÞxjt¼0:

Fore more details on strongly continuous cosine and sine family of operators

we refer to [8], [10], [14].

In what follows, A is infinitesimal generator of a cosine family fCðtÞ; t a Rg
and F ð� ; �Þ : I � X ! PðXÞ is a set-valued map with nonempty closed values,

which define the following Cauchy problem associated to a second-order di¤eren-

tial inclusion:

x 00 a Axþ Fðt; xÞ; xð0Þ ¼ x0; x 0ð0Þ ¼ y0: ð2:3Þ

A continuous mapping xð�Þ a CðI ;XÞ is called a mild solution of problem (2.3)

if there exists a (Bochner) integrable function f ð�Þ a L1ðI ;XÞ such that

f ðtÞ a F
�
t; xðtÞ

�
a:e: ðIÞ;

xðtÞ ¼ CðtÞx0 þ SðtÞy0 þ
ð t

0

Sðt� uÞ f ðuÞ du for all t a I ;

i.e., f ð�Þ is a (Bochner) integrable selection of the set-valued map F
�
�; xð�Þ

�
and

xð�Þ is the mild solution of the Cauchy problem

x 00 ¼ Axþ f ðtÞ; xð0Þ ¼ x0; x 0ð0Þ ¼ y0:

We make the following notation:

S2ðx0; y0Þ ¼ fxð�Þ; xð�Þ is a mild solution of ð2:3Þg: ð2:4Þ

In order to study problems (2.1) and (2.3) we introduce the following hypoth-

esis.
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Hypothesis 2.3. F : I � X � X ! PðXÞ and H : I � X ! PðXÞ are two set-

valued maps with nonempty closed values, satisfying

i) The set-valued maps t ! F ðt; u; vÞ and t ! Hðt; uÞ are measurable for all

u; v a X .

ii) There exist lð�Þ a L1ðI ;RÞ such that, for every u; u 0 a X,

D
�
Hðt; uÞ;Hðt; u 0Þ

�
a lðtÞju� u 0j a:e: ðIÞ:

iii) There exist mð�Þ a L1ðI ;RÞ and y a ½0; 1Þ such that, for every u; v; u 0; v 0 a X,

D
�
Fðt; u; vÞ;Fðt; u 0; v 0Þ

�
amðtÞju� u 0j þ yjv� v 0j a:e: ðIÞ:

iv) There exist f ; g a L1ðI ;RÞ such that

d
�
0;Fðt; 0; 0Þ

�
a f ðtÞ; d

�
0;Hðt; 0Þ

�
a gðtÞ a:e: ðIÞ:

In what follows, NðtÞ ¼ maxflðtÞ;mðtÞg, t a I and N �ðtÞ ¼
Ð t

0 NðsÞ ds.
Given a a R, we denote by L1 the Banach space of all (equivalence classes of )

Lebesgue measurable functions s : I ! X endowed with the norm

jsj1 ¼
ðT

0

e�aN �ðtÞjsðtÞj dt:

3. Main results

Even if the multifunction from the right-hand side of (1.1) has, in general, non-

closed, nonconvex values, the solution sets S1ðx0Þ, S2ðx0; y0Þ defined in (2.2)

and in (2.4), respectively, have some meaningful properties stated in the theorems

below.

We consider first the semilinear di¤erential inclusion

x 0 a Axþ F
�
t; x;Hðt; xÞ

�
; xð0Þ ¼ x0; ð3:1Þ

where A is the infinitesimal generator of a strongly continuous semigroup

fGðtÞ; t a Ig on X . Let M1b 1 be such that jGðtÞjaM1 for all t a I .

Theorem 3.1. Consider A the infinitesimal generator of a strongly continuous semi-

group of bounded linear operators fGðtÞgtb0 on the real separable Banach space X,

assume that F and H satisfy Hypothesis 2.3 and let a > 2M1

1�y
. Then

1) For every x0 a X, the solution set S1ðx0Þ of (3.1) is nonempty and arcwise

connected in the space CðI ;XÞ.
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2) For any xi a X and any xi a S1ðxiÞ, i ¼ 1; . . . ; p, there exists a continuous

function s : X ! CðI ;XÞ such that sðxÞ a S1ðxÞ for any x a X and sðxiÞ ¼ xi,

i ¼ 1; . . . ; p.

3) The set S1 ¼ 6
x AX S1ðxÞ is arcwise connected in CðI ;XÞ.

Proof. 1) For x a X and u a L1, set

xxðtÞ ¼ GðtÞxþ
ð t

0

Gðt� sÞuðsÞ ds; t a I ;

and consider P : X ! CðI ;XÞ defined by PðxÞðtÞ ¼ GðtÞx.
We prove that the multifunctions f : X �L1 ! 2L1

and c : X �L1�L1 ! 2L1

given by

fðx; uÞ ¼
�
v a L1; vðtÞ a H

�
t; xxðtÞ

�
a:e: ðIÞ

�
;

cðx; u; vÞ ¼
�
w a L1; wðtÞ a F

�
t; xxðtÞ; vðtÞ

�
a:e: ðIÞ

�
;

with x a X , u; v a L1 satisfy the hypotheses of Lemma 2.1.

Since xxð�Þ is measurable and H satisfies Hypotheses 2.3 i) and ii), the multi-

function t ! H
�
t; xxðtÞ

�
is measurable and nonempty closed-valued, it has a mea-

surable selection. Therefore due to Hypothesis 2.3 iv), the set fðx; uÞ is nonempty.

The fact that the set fðx; uÞ is closed and decomposable follows by a simple

computation. In the same way we obtain that cðx; u; vÞ is a nonempty closed

decomposable set.

Pick ðx; uÞ; ðx1; u1Þ a X � L1 and choose v a fðx; uÞ. For each e > 0 there ex-

ists v1 a fðx1; u1Þ such that, for every t a I , one has

jvðtÞ � v1ðtÞjaD
�
H
�
t; xxðtÞ

�
;H

�
t; xx1ðtÞ

��
þ e

a lðtÞ
h
M1jx� x1j þM1

ð t

0

juðsÞ � u1ðsÞj ds
i
þ e:

Hence

jv� v1j1aM1jx� x1j
ðT

0

e�aN �ðtÞlðtÞ dt

þM1

ðT

0

e�aN �ðtÞlðtÞ
� ð t

0

juðsÞ � u1ðsÞj ds
�
dtþ eT

a
M1

a
jx� x1j þ

M1

a
ju� u1j1 þ eT

for any e > 0.

491Some classes of di¤erential inclusions



This implies that

dL1

�
v; fðx1; u1Þ

�
a

M1

a
jx� x1j þ

M1

a
ju� u1j1

for all v a fðx; uÞ. Therefore,

d �
L1

�
fðx; uÞ; fðx1; u1Þ

�
a

M1

a
jx� x1j þ

M1

a
ju� u1j1:

Consequently,

DL1

�
fðx; uÞ; fðx1; u1Þ

�
a

M1

a
jx� x1j þ

M1

a
ju� u1j1;

which shows that f is Hausdor¤ continuous and satisfies the assumptions of

Lemma 2.1.

Pick ðx; u; vÞ; ðx1; u1; v1Þ a X � L1 � L1 and choose w a cðx; u; vÞ. Then, as

before, for each e > 0 there exists w1 a cðx1; u1; v1Þ such that for every t a I

jwðtÞ � w1ðtÞjaD
�
F ðt; xxðtÞ; vðtÞ

�
;F

�
t; xx1ðtÞ; v1ðtÞ

��
þ e

amðtÞ
h
M1jx� x1j þM1

ð t

0

juðsÞ � u1ðsÞj ds
i
þ yjvðtÞ � v1ðtÞj þ e:

Hence

jw� w1j1a
M1

a
jx� x1j þ

M1

a
ju� u1j1 þ yjv� v1j1 þ eT

a
M1

a
jx� x1j þ

M1

a
þ y

� �
ðju� u1j1 þ jv� v1j1Þ þ eT

a
M1

a
jx� x1j þ

M1

a
þ y

� �
dL1�L1

�
ðu; vÞ; ðu1; v1Þ

�
þ eT :

As above, we deduce that

DL1

�
cðx; u; vÞ;cðx1; u1; v1Þ

�
a

M1

a
jx� x1j þ

M1

a
þ y

� �
dL1�L1

�
ðu; vÞ; ðu1; v1Þ

�
;

for the multifunction c is Hausdor¤ continuous and satisfies the hypothesis of

Lemma 2.1.

Define Gðx; uÞ ¼ c
�
x; u; fðx; uÞ

�
, ðx; uÞ a X � L1. According to Lemma 2.1,

the set Fix
�
Gðx; �Þ

�
¼ fu a L1; u a Gðx; uÞg is nonempty and arcwise connected in
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L1ðI ;XÞ. Moreover, for fixed xi a X and ui a Fix
�
Gðxi; �Þ

�
, i ¼ 1; . . . ; p, there

exists a continuous function g : X ! L1 such that

gðxÞ a Fix
�
Gðx; �Þ

�
for all x a X ; ð3:2Þ

gðxiÞ ¼ ui; i ¼ 1; . . . ; p: ð3:3Þ

We shall prove that

Fix
�
Gðx; �Þ

�
¼

�
u a L1; uðtÞ a F

�
t; xxðtÞ;H

�
t; xxðtÞ

��
a:e: ðIÞ

�
: ð3:4Þ

Denote by AðxÞ the right-hand side of (3.4). If u a Fix
�
Gðx; �Þ

�
then there is

v a fðx; vÞ such that u a cðx; u; vÞ. Therefore, vðtÞ a H
�
t; xxðtÞ

�
and

uðtÞ a F
�
t; xxðtÞ; vðtÞ

�
HF

�
t; xxðtÞ;H

�
t; xxðtÞ

��
a:e: ðIÞ;

so that Fix
�
Gðx; �Þ

�
HAðxÞ.

Let now u a AðxÞ. By Lemma 2.2, there exists a selection v a L1 of the multi-

function t ! H
�
t; xxðtÞ

�
satisfying

uðtÞ a F
�
t; xxðtÞ; vðtÞ

�
a:e: ðIÞ:

Hence, v a fðx; vÞ, u a cðx; u; vÞ and thus u a Gðx; uÞ, which completes the proof

of (3.4).

We next note that the function T : L1 ! CðI ;XÞ,

TðuÞðtÞ :¼
ð t

0

Gðt� sÞuðsÞ ds;

is continuous and one has

S1ðxÞ ¼ PðxÞ þ T
�
Fix

�
Gðx; �Þ

��
; x a X : ð3:5Þ

Since Fix
�
Gðx; �Þ

�
is nonempty and arcwise connected in L1ðI ;XÞ, the set

S1ðxÞ has the same properties in CðI ;XÞ.
2) Let xi a X and let xi a S1ðxiÞ, i ¼ 1; . . . ; p, be fixed. By (3.5) there exists

vi a Fix
�
Gðxi; �Þ

�
such that

xi ¼ PðxiÞ þ TðviÞ; i ¼ 1; . . . ; p:

If g : X ! L1 is a continuous function satisfying (3.2) and (3.3), we define, for

every x a X ,

sðxÞ ¼ PðxÞ þ T
�
gðxÞ

�
:
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Obviously, the function s : X ! CðI ;XÞ is continuous, sðxÞ a S1ðxÞ for all x a X

and

sðxiÞ ¼ PðxiÞ þ T
�
gðxiÞ

�
¼ PðxiÞ þ TðviÞ ¼ xi; i ¼ 1; . . . ; p:

3) Let x1; x2 a S1 ¼ 6
x AX S1ðxÞ and choose xi a X , i ¼ 1; 2, such that

xi a SðxiÞ, i ¼ 1; 2. From the conclusion of 2) we deduce the existence of a con-

tinuous function s : X ! CðI ;XÞ satisfying sðxiÞ ¼ xi, i ¼ 1; 2, and sðxÞ a S1ðxÞ,
x a X . Let h : ½0; 1� ! X be a continuous mapping such that hð0Þ ¼ x1 and

hð1Þ ¼ x2. Then the function s � h : ½0; 1� ! CðI ;XÞ is continuous and satisfies

s � hð0Þ ¼ x1; s � hð1Þ ¼ x2; s � hðtÞ a S1

�
hðtÞ

�
HS1; t a ½0; 1�: r

Remark 3.2. Theorem 3.1 may be considered an extension to the more general

problem (3.1) of the result in [12], namely Theorem 3.1. More exactly, in the

particular case when AC 0, i.e., when (3.1) reduces to the classical di¤erential

inclusions of the form

x 0 a Fðt; xÞ; xð0Þ ¼ x0;

Theorem 3.1 yields the statement of Theorem 3.1 in [12].

Next we consider the following second-order di¤erential inclusion

x 00 a Axþ F
�
t; x;Hðt; xÞ

�
; xð0Þ ¼ x0; x 0ð0Þ ¼ y0; ð3:6Þ

where A is the infinitesimal generator of a strongly continuous cosine family of

operators fCðtÞ; t a Rg on X .

Let M2b 0 be such that jCðtÞjaM2 for all t a I . Note that jSðtÞjaM2t for

all t a I .

Theorem 3.3. Consider A the infinitesimal generator of a strongly continuous

cosine family fCðtÞgt AR on the real separable Banach space X, assume that F and

H satisfy Hypothesis 2.3, and let a > 2M2T

1�y
. Then the following holds:

1) For every ðx0; y0Þ a X � X, the solution set S2ðx0; y0Þ of (3.6) is nonempty

and arcwise connected in the space CðI ;XÞ.
2) For any ðxi; miÞ a X � X and any xi a S2ðxi; miÞ, i ¼ 1; . . . ; p, there exists

a continuous function s : X � X ! CðI ;XÞ such that sðx; mÞ a S2ðx; mÞ for any

ðx; mÞ a X � X and sðxi; miÞ ¼ xi, i ¼ 1; . . . ; p.
3) The set S2 ¼ 6ðx;mÞaX�X

S2ðx; mÞ is arcwise connected in CðI ;XÞ.

Proof. The proof is similar to the one of Theorem 3.1. We point out only the

di¤erences.
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For ðx; mÞ a X � X and u a L1, set

xx;mðtÞ ¼ CðtÞxþ SðtÞmþ
ð t

0

Sðt� sÞuðsÞ ds; t a I ;

and consider P : X � X ! CðI ;XÞ defined by Pðx; mÞðtÞ ¼ CðtÞxþ SðtÞm.
Consider also f : X 2 � L1 ! 2L1

and c : X 2 � L1 � L1 ! 2L1
given by

f
�
ðx; mÞ; u

�
¼

�
v a L1; vðtÞ a H

�
t; xx;mðtÞ

�
a:e: ðIÞ

�
;

c
�
ðx; mÞ; u; v

�
¼

�
w a L1;wðtÞ a F

�
t; xx;mðtÞ; vðtÞ

�
a:e: ðIÞ

�
:

Similar to the proof of Theorem 3.1, we have that f and c satisfy the hypotheses

of Lemma 2.1 with

DL1

�
f
�
ðx; mÞ; u

�
; f
�
ðx1; m1Þ; u1

��
a

M2

a
jx� x1j þ

M2T

a
jm� m1j þ

M2T

a
ju� u1j1;

DL1

�
c
�
ðx; mÞ; u; v

�
;c

�
ðx1; m1Þ; u1; v1

��
a

M2

a
jx� x1j þ

M2T

a
jm� m1j

þ M2T

a
þ y

� �
dL1�L1

�
ðu; vÞ; ðu1; v1Þ

�
:

Define G
�
ðx; mÞ; u

�
¼ c

�
ðx; mÞ; u; f

�
ðx; mÞ; u

��
,
�
ðx; mÞ; u

�
a X 2 � L1, and one

has

Fix
�
G
�
ðx; mÞ; �

��
¼

�
u a L1; uðtÞ a F

�
t; xx;mðtÞ;H

�
t; xx;mðtÞ

��
a:e: ðIÞ

�
:

We introduce the continuous mapping T : L1 ! CðI ;XÞ,

TðuÞðtÞ :¼
ð t

0

Sðt� sÞuðsÞ ds;

and one has

S2ðx0; y0Þ ¼ Pðx0; y0Þ þ T
�
Fix

�
G
�
ðx0; y0Þ; �

���
:

The proof of statements 1), 2) and 3) follows now as in the proof of Theorem

3.1. r
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