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Abstract. We consider a nonconvex and nonclosed semilinear differential inclusion and
prove the arcwise connectedness of the set of its mild solutions. A similar result is provided
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1. Introduction

This paper is concerned with the following semilinear differential inclusion
x' € Ax+ F(t,x,H(t,x)), x(0) = xo, (1.1)

where X is a real separable Banach space, Z(X) is the family of all subsets of X,
I=100,T),F(,-,): I xX*>—=2(X), H(-,-) : I x X — 2(X) and 4 is the infin-
itesimal generator of a strongly continuous semigroup {G(¢);7 > 0} on X.

When F does not depend on the last variable, (1.1) reduces to

x' e Ax+ F(t,x), x(0) = xo. (1.2)

Existence results and qualitative properties of the mild solutions of problem
(1.2) may be found in [3], [6], [7], [9], [13] etc. In all these papers the set-valued
map F is assumed to be at least closed-valued. Such an assumption is quite natu-
ral in order to obtain good properties of the solution set, but it is interesting to
investigate the problem when the right-hand side of the multivalued equation
may have nonclosed values.

Following the approach in [12] we consider problem (1.1), where F and H are
closed-valued multifunctions Lipschitzian with respect to the second variable
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and F is contractive in the third variable. Obviously, the right-hand side of the
differential inclusion in (1.1) is in general neither convex nor closed. We prove
the arcwise connectedness of the solution set of (1.1). The main tool is a result
([11], [12]) concerning the arcwise connectedness of the fixed point set of a class
of nonconvex nonclosed set-valued contractions.

Afterwards this result is extended to second-order differential inclusions of the
form

x" e Ax+ F(t,x,H(1,x)), x(0)=x0, x'(0) = yo,

where F and H are as above and A is the infinitesimal generator of a strongly
continuous cosine family of operators {C(¢);7 >0} on X. We note that several
existence results concerning mild solutions for the Cauchy problem

x" e Ax+ F(t,x), x(0)=xp, x'(0)= yo,

can be found in [1], [2], [4], 5], etc.
The paper is organized as follows: in Section 2 we recall some preliminary re-
sults that we use in the sequel and in Section 3 we prove our main result.

2. Preliminaries

Let Z be a metric space with the distance d and let 24 be the family of all
nonempty closed subsets of Z. For ae Z and 4,B e 2? we set dz(a, B) =
infyepdz(a,b) and d;(A,B) =sup,.,dz(a,B). Denote by D, the Pompeiu—
Hausdorff generalized metric on 24 defined by

Dy(A,B) = max{d;(A4,B),d;(B,A)}, A,Be2”

In what follows, when the product Z = Z; x Z, of metric spaces Z;,
i=1,2, is considered, it is assumed that Z is equipped with the distance
dz((21,22), (21,23)) = S0 dz (20, 2)).

Let X be a nonempty set and let F : X — 24 be a set-valued map from X to Z.
The range of F is the set F(X) = ) _, F(x). Let (X,7) be a measurable space.
The multifunction F : X — 27 is called measurable if F~!(Q) € # for any open
set Q = Z, where F71(Q)={xe X;F(x)nQ #0}. Let (X,dy) be a metric
space. The multifunction F is called Hausdorff continuous if for any xp € X
and every € > 0 there exists d > 0 such that x € X, dx(x,x9) <J implies that
Dz (F(x),F(x)) <e.

Let (7,7 ,u) be a finite, positive, nonatomic measure space and let
(X,|-|y) be a Banach space. We denote by L!'(T,X) the Banach space of all



Some classes of differential inclusions 487

(equivalence classes of ) Bochner integrable functions # : T — X endowed with the
norm

s = | )y

A nonempty set K = L'(T, X) is called decomposable if, for every u,v € K
and every A € &, one has

Ia-U+xpa-veEK,

where yp, B €  indicates the characteristic function of B.

A metric space Z is called an absolute retract if, for any metric space X and any
nonempty closed set Xy, = X, every continuous function g : Xy — Z has a contin-
uous extension g : X — Z over X. It is obvious that every continuous image of an
absolute retract is an arcwise connected space.

In what follows we recall some preliminary results that are the main tools in
the proof of our result.

Let (T, % ,u1) be a finite, positive, nonatomic measure space, S a separable
Banach space and let (X, |- |;) be a real Banach space. To simplify the notation
we write E in place of L'(T, X).

Lemma 2.1 ([12]). Assume that ¢ :S x E —2F and : S x Ex E —2E are
Hausdorff continuous multifunctions with nonempty, closed, decomposable values
satisfying the following conditions:

a) There exists L € [0, 1) such that, for every s € S and every u,u’ € E,

DE(¢(Sa u)a ¢(S7 ul)) < L|I/l - MI‘E'
b) There exists M € (0,1) such that L+ M <1 and for every s € S and every
(u,v), (w',v') e EXE,
DE(w(Sv u, D)7 lﬁ(S, u/a U/)) < M(‘M - u/|E + ‘U - U/|E)'
Set Fix(l"(s, )) ={ue E;uel(s,u)}, where T'(s,u) = l,b(s u, g(s, )) (s,u) €
S x E. Then the following holds:
1) For every s € S the set Fix(T(s, )) is nonempty and arcwise connected.

2) For any s; € S and any u; € Fix(I'(s, - ), i=1,...,p there exists a continuous
function y: S — E such that y(s) € le( (s,)) for all seS and y(s;) = u;,
i=1,....p

Lemma 2.2 ((12)). Let U : T — 2% and V : T x X — 2% be two nonempty closed-

valued multifunctions satisfying the following conditions:

a) U is measurable and there exists r € L' (T) such that Dx (U(t),{0}) < r(1) for
almost all t € T.
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b) The multifunction t — V (t,x) is measurable for every x € X.

¢) The multifunction x — V (t,x) is Hausdorff continuous for all t € T.

Then for any v: T — X, a measurable selection from t — V(z, U(t)), there
exists a selection u € L' (T, X) such that v(t) € V(t,u()), te T.

In what follows I = [0, 7], X is a real separable Banach space with norm | - |
and with the corresponding metric d(-,-). We consider {G(#)},., = L(X,X) a
strongly continuous semigroup of bounded linear operators from X to X having
the infinitesimal generator 4 and a set valued map F(-,-) defined on 7 x X with
nonempty closed subsets of X, which define the following differential inclusion

x'e Ax+ F(t,x), x(0) = xo. (2.1)
It is well known that, in general, the Cauchy problem
x':Ax+f(t,x), X(O) = X0

may not have a classical solution and that a way to overcome this difficulty is to
look for continuous solutions of the integral equation

t

x(t) = G(t)xy + J G(t — u)f (u,x(u)) du.

0

This is why the concept of mild solution is convenient for solving (2.1).
A continuous mapping x(-) € C(I, X) is called a mild trajectory of (2.1) if there
exists a (Bochner) integrable function f(-) € L' (1, X) such that

f(t) € F(t,x(t)) a.e. (I,
x(t) = G(t)xo + Jl G(t—u)f(u)du forallrel,
0

ie., f(-) is a (Bochner) integrable selection of the set-valued map F(-,x(-)) and
x(+) is the mild solution of the initial value problem

x'=Ax+ f(r), x(0)= xo.
We shall use the following notation for the solution set of (2.1):
S (x0) = {x(-); x(-) is a mild solution of (2.1)}. (2.2)

Denote by B(X) the Banach space of bounded linear operators from X into X.
We recall that a family {C(¢);z € R} of operators in B(X) is a strongly continuous
cosine family if the following conditions are satisfied:



Some classes of differential inclusions 489

(1) C(0) =1, where I is the identity operator in X,
(ii) C(t+s)+ C(t—s) =2C(¢)C(s) for all t,s € R,

(iii) the map ¢ — C(¢)x is strongly continuous for all x € X.

The strongly continuous sine family {S(¢); ¢ € R} associated to a strongly contin-
uous cosine family {C(¢); ¢ € R} is defined by

t
S(t)x = J C(s)xds, xeX,teR.
0

The infinitesimal generator 4 : X — X of a cosine family {C(z);¢ € R} is de-
fined by

d2
Ax = <ﬁ) C()x],_-

Fore more details on strongly continuous cosine and sine family of operators
we refer to [8], [10], [14].

In what follows, A4 is infinitesimal generator of a cosine family {C(¢);7 € R}
and F(-,): I x X — 2(X) is a set-valued map with nonempty closed values,
which define the following Cauchy problem associated to a second-order differen-
tial inclusion:

x" e Ax+ F(t,x), x(0)=x, x'(0)= yo. (2.3)

A continuous mapping x(-) € C(I, X) is called a mild solution of problem (2.3)
i there exists a (Bochner) integrable function f(-) € L'(I, X) such that

f(t) € F(t,x(1)) ae. (I),

x(1) = C(t)xo + S(1) yo + L: S(t—u)f(u)du foralltel,

ie., f() is a (Bochner) integrable selection of the set-valued map F(-,x(-)) and
x(+) is the mild solution of the Cauchy problem

x"=Ax+ f(t), x(0)=x, x'(0)= yo.
We make the following notation:
S (x0, yo) = {x(+); x(-) is a mild solution of (2.3)}. (2.4)

In order to study problems (2.1) and (2.3) we introduce the following hypoth-
esis.
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Hypothesis 2.3. F: Ix X x X - 2(X) and H: I x X — 2(X) are two set-
valued maps with nonempty closed values, satisfying

1) The set-valued maps t — F(t,u,v) and t — H(t,u) are measurable for all
u,ve X.

ii) There exist I(-) € L'(I, R) such that, for every u,u’ € X,
D(H(t,u), H(t,u")) < I(t)|u —u'| a.e. (I).
iii) There exist m(-) € L'(I, R) and 0 € [0, 1) such that, for every u,v,u’,v' € X,
D(F(t,u,v),F(t,u’,v")) <m(0)|u—u'| + 0lv—v'| a.e. (I).
iv) There exist f,g € L' (I, R) such that
d(0,F(1,0,0)) < f(¢), d(0,H(1,0)) <g(1) ae. (I).

In what follows, N(z) = max{/(¢),m(t)}, t € I and N*(¢) = [, N(s) ds.
Given o € R, we denote by L' the Banach space of all (equivalence classes of)
Lebesgue measurable functions ¢ : I — X endowed with the norm

T
lol, :J e N D (1) dr.
0

3. Main results

Even if the multifunction from the right-hand side of (1.1) has, in general, non-
closed, nonconvex values, the solution sets % (xp), Y2(xo, yo) defined in (2.2)
and in (2.4), respectively, have some meaningful properties stated in the theorems
below.

We consider first the semilinear differential inclusion

x' € Ax+ F(t,x,H(t,x)), x(0) = xo, (3.1)

where A is the infinitesimal generator of a strongly continuous semigroup
{G(t);t eI} on X. Let M| > 1 be such that |G(¢)| < M, forall 1 € I.

Theorem 3.1. Consider A the infinitesimal generator of a strongly continuous semi-
group of bounded linear operators {G(t)},, on the real separable Banach space X,
assume that F and H satisfy Hypothesis 2.3 and let o > %. Then

1) For every xo € X, the solution set 91 (xo) of (3.1) is nonempty and arcwise

connected in the space C(I,X).
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2) For any & € X and any x; € 5(&;), i =1,..., p, there exists a continuous
Sunction s: X — C(I,X) such that s(&) € #(&) for any e X and 5(&;) = x;,
i=1,...,p.

3) The set 1 = UéeX A (&) is arcwise connected in C(I, X).

Proof. 1) For ¢ e X andu e L', set

t

xe(t) = G(1) ¢+ L G(t—s)u(s)ds, tel,

and consider P : X — C(I,X) defined by P(¢)(1) = G(1)¢&.
We prove that the multifunctions ¢ : X x L' — 25" and ¢ : X x L' x L' — 2%
given by

¢(&u)={ve L' v(t) e H(t,x:(1)) a.e. (I},
W& u,v)={we L' w(t) e F(t,x:(1),0(t)) ae. (I)},

with & € X, u,v € L' satisfy the hypotheses of Lemma 2.1.

Since x¢(-) is measurable and H satisfies Hypotheses 2.3 1) and ii), the multi-
function t — H (t, xg(t)) is measurable and nonempty closed-valued, it has a mea-
surable selection. Therefore due to Hypothesis 2.3 iv), the set ¢(&, u) is nonempty.
The fact that the set ¢(&, u) is closed and decomposable follows by a simple
computation. In the same way we obtain that (&, u,v) is a nonempty closed
decomposable set.

Pick (&,u), (¢1,u1) € X x L' and choose v € ¢(&,u). For each & > 0 there ex-
ists v; € ¢(&;,uy) such that, for every ¢ € I, one has

[o(2) = o1 ()] < D(H (1, x¢(1)), H (1, x5, (1)) + &

<10 [Mile - &)+ o |

lu(s) — w1 ()| ds} te
0

Hence

T
lo—oi]; < M1|f—fl|J e N (1) dt
0

T t
+ MIJ e—“N*<f>1(z)(J u(s) — w (5)| ds) i + T
0 0
M M
< 71|é—61|—0—71|u—u1|1+6T

for any ¢ > 0.
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This implies that
M M
dpi (v, (&, ur)) < 71|f — & +71|u —uyly

for all v € ¢(&,u). Therefore,

M M
[ (P, ¢(Erm)) < ZHIE =G|+ ==l
Consequently,
M M
Dy ($(&u), ¢(ér,m)) < = HE= &+ ==y,

which shows that ¢ is Hausdorff continuous and satisfies the assumptions of
Lemma 2.1.

Pick (&,u,v), (&, up,v1) € X x L' x L' and choose w € (&, u,v). Then, as
before, for each ¢ > 0 there exists w; € ¥(&;,u;,v1) such that for every r € 1

w(t) = wi(0)] < D(F(t,x:(1), v(1)), F (1, xe, (1), 01(1))) + &

t
< m(t)[Mi[¢ = &1l + My [ [u9) = (9] +010) = (0] + 5
0
Hence
M M
w—wi|, < 71|f—51| +71|u—u1|1 4 0o —vi|, +eT

M M
< 7‘|¢—él|+(71+0)<u—u11+|v—v1\1>+eT

IA

M=l (H240) s (00) i, 00) + 7.

As above, we deduce that
M M
DLl (w(éﬂ'{a U)7 w(flaulaul)) < 71 ‘f - fl' + (71 + 0>dL1><Ll ((“a U)a (“]7 Ul));

for the multifunction ¢ is Hausdorff continuous and satisfies the hypothesis of
Lemma 2.1.

Define I'(&,u) = y(&,u, §(&,u)), (&,u) € X x L'. According to Lemma 2.1,
the set Fix(I'(&,+)) = {u e L';u e T'(&,u)} is nonempty and arcwise connected in
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L'(I1,X). Moreover, for fixed & € X and u; € Fix(I'(&;,-)), i=1,..., p, there
exists a continuous function y : X — L' such that

y(¢) € Fix(l"(é, )) forall ¢ e X, (3.2)
W) =u, i=1,...,p

We shall prove that
Fix(T'(&,) = {ue L' u(t) € F(t,x:(t), H(t,x:(1))) a.e. (I)}. (3.4)

)
Denote by A(¢) the right-hand side of (3.4). If u € Fix(I'(&,-)) then there is
v e ¢(&,v) such that u € (&, u,v). Therefore, v(t) € H(t,xe(t)) and

u(t) € F(t,x¢(1),0(1)) « F(t,x:(1), H(t,xe(t))) ae. (I,

so that Fix(['(&,-)) < 4(¢).
Let now u € A(¢). By Lemma 2.2, there exists a selection v € L' of the multi-
function ¢ — H (¢, x¢(t)) satisfying

u(t) € F(t,x¢(1),0(1)) a.e. (I).

Hence, v € ¢(&,v), u € Yy(& u,v) and thus u € T'(&, u), which completes the proof
of (3.4).
We next note that the function 7 : L' — C(I, X),

is continuous and one has
S1(&) = P(O) + T(Fix(['(&,))), <eX. (3.5)

Since Fix(I'(¢,-)) is nonempty and arcwise connected in L'(Z,X), the set
F1(&) has the same properties in C(I, X).

2) Let & € X and let x; € #(&;), i=1,...,p, be fixed. By (3.5) there exists
v € Fix(T'(&;,-)) such that

x[:P(éi)—i_T(vi)v l:177p

If y: X — L' is a continuous function satisfying (3.2) and (3.3), we define, for
every ¢ € X,

s(&) = P(&) + T (»(¢)).
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Obviously, the function s : X — C(I, X) is continuous, s(&) € S (&) forall ¢ € X
and

(&) =P(&) +T((&) =PE)+T(w)=x;, i=1,...,p.

3) Let xj,x €9 = Ufexﬁ(é) and choose & € X, i=1,2, such that
x; € S(&), i=1,2. From the conclusion of 2) we deduce the existence of a con-
tinuous function s: X — C(I, X) satisfying s(&;) = x;, i = 1,2, and 5(&) € A (&),
eX. Let h:[0,1] = X be a continuous mapping such that #(0) =&, and
h(1) = &,. Then the function so /4 : [0,1] — C(I, X) is continuous and satisfies

soh(0)=xi, soh(l)=xy, soh(r)e S (h(x))c%, tel0,1. O

Remark 3.2. Theorem 3.1 may be considered an extension to the more general
problem (3.1) of the result in [12], namely Theorem 3.1. More exactly, in the
particular case when 4 =0, i.e., when (3.1) reduces to the classical differential
inclusions of the form

x" e F(t,x), x(0)= xy,
Theorem 3.1 yields the statement of Theorem 3.1 in [12].
Next we consider the following second-order differential inclusion
x" e Ax+ F(t,x,H(1,x)), x(0)=x0, x'(0)= yo, (3.6)

where A is the infinitesimal generator of a strongly continuous cosine family of
operators {C(¢);t € R} on X.

Let M, > 0 be such that |C(¢)| < M, for all t € I. Note that |S(z)| < M>t for
allt e 1.

Theorem 3.3. Consider A the infinitesimal generator of a strongly continuous
cosine family {C(t)},. g on the real separable Banach space X, assume that F and
H satisfy Hypothesis 2.3, and let o > 2{\{29@ Then the following holds:

1) For every (xo, yo) € X x X, the solution set 55(xo, yo) of (3.6) is nonempty
and arcwise connected in the space C(I1,X).

2) For any (&, ;) € X x X and any x; € S5 (&), i=1,..., p, there exists
a continuous function s: X x X — C(I,X) such that s(& n) € 5 (&, 1) for any
(Cu)eX x Xands(C ) =x,i=1,...,p.

3) The set %> = | ) S (&, 1) is arcwise connected in C(I1,X).

(& peXxXx

Proof. The proof is similar to the one of Theorem 3.1. We point out only the
differences.



Some classes of differential inclusions 495

For (é,u) e X x X and u e L', set
t

xeul) = COE+ S+ | St—ou(s)ds, rel,

0

and consider P: X x X — C(I, X) defined by P(&, u)(t) = C(¢)¢+ S(1)u.
Consider also ¢ : X2 x L' — 2L and ¢ : X2 x L! x L' — 2L' given by

¢((& ) u) ={ve L v(t) e H(t,xe (1)) ace. (1)},
Y (& ) u,0) = {we Lw(t) e F(t,xe (1), v(0)) ace. (I)}.

Similar to the proof of Theorem 3.1, we have that ¢ and s satisfy the hypotheses
of Lemma 2.1 with

DLI(¢((éwu)7u)7¢((£17:u1)7u1)) |é £1|+M—|lu :u1|+MT

|M—M1|17

l)L1 (l//((ému)a”v U), lp((élaﬂl)aulavl)) < _2|é - él' +MTZ‘IH _iu1|

. <M2T+0)dmy((u, ), (w1, 01).

Define I'((&,u),u) =y ((& w),u, ¢((&, 1), u)), ((& p1),u) € X* x L', and one
has

Fix(T((&,1),-)) = {ue LY u(t) € F(t,xz (1), H(t,x:,(1))) a.e. (I)}.
We introduce the continuous mapping 7 : L' — C(I, X),
T(u)(t) == Jl S(t— s)u(s) ds,
0
and one has

F2(x0, yo) = P(x0, yo) + T (Fix(T ((xo0, 0),-)))-

The proof of statements 1), 2) and 3) follows now as in the proof of Theorem
3.1. 0
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