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A remark on multiple solutions
for a nonlinear eigenvalue problem

Gen-Qiang Wang and Sui Sun Cheng

(Communicated by Luı́s Sanchez)

Abstract. Multiple solutions are shown to exist for the system Bu ¼ lFðuÞ, where l > 0, B
is a positive definite matrix and F is ‘superquadratic’ or ‘subquadratic’. We make use of
Clark’s theorem in critical point theory to obtain our results and provide examples to
show that the results are sharp.
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1. Introduction

To motivate what follows, consider nþ 2 artificial neuron units U0;U1; . . . ;Unþ1

placed evenly in a linear fashion. Let u
ðtÞ
i denote the state value (or electron

content) of the i-th neuron unit during the time period t a N ¼ f0; 1; 2; . . .g. We

assume that the neuron units U0 and Unþ1 are ‘grounded’ so that their state values

are maintained at the zero level, while the other neuron units is activated by its

two neighbors so that the change of state values between two consecutive time

periods of the i-th unit is given by

u
ðtþ1Þ
i � u

ðtÞ
i ¼ aðuðtÞi�1 � u

ðtÞ
i Þ þ aðuðtÞiþ1 � u

ðtÞ
i Þ þ bfiðuðtÞi Þ; i ¼ 1; 2; . . . ; n;

where a; bb 0, and each fi is a real valued function defined on R and stands for

the bias mechanism inherent in the i-th neuron unit. The parameter a stands

for the ‘di¤usion’ constant, while b measures the strength of bias mechanism. By

letting A be the ðn� nÞ-matrix

A ¼

2 �1 0 � � � 0

�1 2 �1 � � � 0

� � � � � � � � �
0 � � � �1 2 �1

0 � � � 0 �1 2

0
BBBBB@

1
CCCCCA ð1Þ



and uðtÞ ¼ ðuðtÞ1 ; u
ðtÞ
2 ; . . . ; u

ðtÞ
n Þy, we may then write

uðtþ1Þ � uðtÞ ¼ �aAuðtÞ þ bF ðuðtÞÞ; t a N; ð2Þ

where F
�
ðx1; x2; . . . ; xnÞy

�
¼
�
f1ðx1Þ; f2ðx2Þ; . . . ; fnðxnÞ

�y
. By imposing the initial

distribution vector uð0Þ, we may calculate uð1Þ; uð2Þ; . . . in a unique manner. The

corresponding sequence fuðtÞgt AN is called a solution of (2). In order to under-

stand the dynamics of the neural network (2), we need only to find all solutions

or special solutions that may reveal its important characteristics. One particular

class of solutions consist of those that are ‘time independent’, that is, uðtþ1Þ ¼
uðtÞ ¼ u for t a N. They are called the steady state solutions and are useful since

they are candidates for storing useful informations in the corresponding digital

devices.

Clearly, if a ¼ 0, then the steady state solutions fugt AN are solutions of

bFðuÞ ¼ 0: ð3Þ

If b ¼ 0, then they are solutions of

aAu ¼ 0: ð4Þ

If aA 0 and bA 0, then they are solutions of

Au ¼ lFðuÞ ð5Þ

where l ¼ b=a > 0.

There are now numerous studies related to nonlinear systems or linear systems

of the form (3) or (4) and hence we will not add any discussions here. There are

also studies related to the nonlinear system (5) (see for example [1], [6]–[8]). Our

interest here, however, is the existence of multiple nontrivial real solutions when

the a priori parameter l falls within some appropriate range. Such an interest is

meaningful since the parameter l acts as an analog control.

In this paper, we will employ Clark’s theorem in the critical point theory to

show the existence of 2n nontrivial real solutions of

Bu ¼ lF ðuÞ; l > 0; ð6Þ

where B is a general symmetric positive definite matrix which is not necessary of

the form (1). The definiteness assumption on B is not vacuous since (1) is such a

matrix.

Let us state Clark’s theorem [3], [1] as follows.

Lemma 1.1 ([3], Clark’s Theorem 9.1). Let E be a real Banach space and I a

functional in C1ðE;RÞ which is even, bounded from below, and satisfies the Palais–
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Smale condition. Suppose further that Ið0Þ ¼ 0, there is a set KHE such that K is

homeomorphic to S j�1 by an odd map, and supk I < 0. Then I possesses at least j

distinct pairs of nontrivial critical points.

We remark that a continuously di¤erentiable functional J a C1ðE;RÞ is said

to satisfy the Palais–Smale condition (P–S condition) if any sequence fungHE

for which fJðunÞg is bounded and J 0ðunÞ ! 0 as n ! l possesses a convergent

subsequence in E.

2. Main results

Let the eigenvalues of B be l1; . . . ; ln ordered by 0 < l1a l2a � � �a ln. The

main results are the following theorems.

Theorem 2.1. Assume that fk a CðR;RÞ for k a f1; . . . ; ng and satisfies the

conditions:

(H1) For any zA 0 and k a f1; . . . ; ng, fkð�zÞ ¼ �fkðzÞA 0 and fkðzÞ ¼ oðzÞ
as z ! 0.

(H2) There exist positive constants a1, a2 and M such that

ð z
0

fkðsÞ dsb a1jzj2 � a2 for jzjbM and k a f1; . . . ; ng:

Then for each l > ln
2a1

, (6) possesses at least 2n nontrivial real solutions.

Theorem 2.2. Assume that fk a CðR;RÞ for k a f1; . . . ; ng and satisfies the

conditions:

(H3) For any zA 0 and k a f1; . . . ; ng, fkð�zÞ ¼ �fkðzÞA 0 and

lim
z!0

Ð z
0 fkðsÞ ds

z2
¼ l:

(H4) There exist positive constants a1, a2 and M > 0 such that

ð z
0

fkðsÞ dsa a1jzj2 þ a2 for jzjbM and k a f1; . . . ; ng:

Then for each l < 1
2a1

l1, (6) possesses at least 2n nontrivial real solutions.

Before proving the above results, let us first consider several simple examples.
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Example 2.3. The equation

cx ¼ lf ðxÞ; c > 0; l > 0; ð7Þ

is of the form (6). The function f defined by f ðxÞ ¼ x3 satisfies f ð�xÞ ¼ �x3 ¼
�f ðxÞ for xA 0, f ðxÞ=x ¼ x2 ! 0 as x ! 0, and

ð t
0

f ðxÞ dx ¼ t4

4
b at2 � b; jtjb 2

ffiffiffi
a

p
;

for any a; b > 0. By Theorem 2.1, we see that (7) has two nontrivial real solutions

for any l with l > c=2a. Since a can be taken in an arbitrary manner, we see that

(7) has two nontrivial solutions for any l > 0. Indeed, the solutions are given

precisely by x ¼ 0,e
ffiffiffiffiffiffiffi
c=l

p
. Thus Theorem 2.1 is sharp when n ¼ 1.

Example 2.4. The system

1 0

0 2

� �
x

y

� �
¼ l

x3

y3

� �
; l > 0; ð8Þ

is of the form (6). Furthermore, it is equivalent to a system of two equations of

the form (7). By Example 2.3, each equation has two nontrivial solutions. Since 0

is also a solution, we see that (8) has at least 8 nontrivial solutions. Indeed, the

solutions of (8) are given by

ð0; 0Þ; ð0;e
ffiffiffiffiffiffiffiffi
2=l

p
Þ; ðe

ffiffiffiffiffiffiffiffi
1=l

p
; 0Þ; ðe

ffiffiffiffiffiffiffiffi
1=l

p
;e

ffiffiffiffiffiffiffiffi
2=l

p
Þ; ðe

ffiffiffiffiffiffiffiffi
1=l

p
;H

ffiffiffiffiffiffiffiffi
2=l

p
Þ:

Example 2.5. The equation

cx ¼ lx1=3; c > 0; l > 0; ð9Þ

is of the form (6). The function defined by f ðxÞ ¼ x1=3 satisfies f ð�xÞ ¼
ð�xÞ1=3 ¼ �x1=3 for xA 0,

ð t
0

f ðxÞ dx ¼ 3

4
t4=3a at2 þ b; jtjb 3

4a

� �3=2

for any a; b > 0, and

lim
t!0

1

t2

ð t
0

f ðxÞ dx ¼ þl:

By Theorem 2.2, equation (9) has at least two nontrivial real solutions for any

l a ð0; c=2aÞ and hence any l > 0. On the other hand, the solutions of (9)

500 G.-Q. Wang and S. S. Cheng



are given precisely by x ¼ 0, eðl=cÞ3=2. Thus Theorem 2.2 is also sharp (when

n ¼ 1).

In order to prove both Theorems, we first reformulate our problem as a critical

point problem. Consider the functional I : Rn ! R defined by

IðuÞ ¼ � 1

2
uyBuþ l

Xn
k¼1

ð uk
0

fkðsÞ ds; u ¼ ðu1; . . . ; unÞy a Rn: ð10Þ

Since

qIðuÞ
quk

¼ �ðBuÞk þ lfkðukÞ; k a f1; . . . ; ng; ð11Þ

we see that a column vector w ¼ ðw1;w2; . . . ;wnÞy is a critical point of the func-

tional I corresponding to l if and only if w is a solution of (6) corresponding to l.

Lemma 2.6. If ðH2Þ holds, then for each l > ln
2a1

the functional I defined by (10) is

bounded from below in Rn.

Proof. According to (H2), if we let

a 0
2 ¼ max

1akan

n��� ð z
0

fkðsÞ ds� a1jzj2 þ a2

��� : jzjaM
o

and a ¼ a2 þ a 0
2, then for any z a R and k a f1; . . . ; ng we have

ð z
0

fkðsÞ dsb a1jzj2 � a: ð12Þ

Thus, for any u ¼ ðu1; . . . ; unÞy a Rn, we have

IðuÞ ¼ � 1

2
uTBuþ l

Xn
k¼1

ð uk
0

fkðsÞ ds

b� 1

2
lnkuk22 þ a1l

Xn
k¼1

jukj2 þ nla

b� 1

2
lnkuk22 þ a1lkuk22 þ nal

¼ a1l�
1

2
ln

� �
kuk22 þ nla: ð13Þ
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Since l > ln
2a1

, we see that

IðuÞb nla ð14Þ

for any u ¼ ðu1; . . . ; unÞy a Rn. The proof is complete. r

Lemma 2.7. If ðH2Þ holds, then for l > ln
2a1

the functional I defined by (10) satisfies

the P–S condition.

Indeed, this follows from the fact that the functional I is in fact coercive, since

we are dealing with a finite dimensional space.

We now turn to the proof Theorem 2.1. It su‰ces to find 2n nontrivial critical

points of the functional I defined by (10). First of all, by (H1), we see that

Ið0Þ ¼ 0. Moreover, I a C1ðRn;RÞ and Ið�uÞ ¼ IðuÞ for any u a Rn, that is, I is

even. Furthermore, by Lemma 2.6 and Lemma 2.7, I is bounded from below in

Rn and satisfies the P–S condition. It is easy to see from (H1) that

lim
z!0

Ð z
0 fkðsÞ ds

z2
¼ 0; k a f1; . . . ; ng: ð15Þ

Thus there exist positive constants d and a < l1
2l

such that for any z a R with

jzja d,

ð z
0

fkðsÞ dsa ajzj2: ð16Þ

Let K ¼ fu a Rn : kuk2 ¼ dgHRn. It is easy to see that K is homeomorphic to

Sn�1 by an odd map, and that for any u a K satisfying kuk2 ¼ d,

IðuÞ ¼ � 1

2
uyBuþ l

Xn
k¼1

ð uk
0

fkðsÞ dsa� 1

2
l1 � la

� �
kuk22 ¼ �s < 0;

where s ¼
�
1
2 l1 � la

�
d2 > 0. Thus by Lemma 1.1, we know that I possesses at

least two nontrivial critical points. The proof is complete.

Next we turn to the proof of Theorem 2.2. Consider

JðuÞ ¼ �IðuÞ ¼ 1

2
uyBu� l

Xn
k¼1

ð uk
0

fkðsÞ ds; u a Rn: ð17Þ

Clearly, a column vector w ¼ ðw1;w2; . . . ;wnÞy is a critical point of the functional

J corresponding to l if and only if w is a solution of (6) corresponding to l.
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Lemma 2.8. If ðH4Þ holds, then for l < 1
2a1

l1 the functional J defined by (17) is

bounded from bounded in Rn.

The proof is similar to the proof of Lemma 2.6 and hence is skipped.

Lemma 2.9. If ðH4Þ holds, then for l < 1
2a1

l1 the functional J defined by (17) sat-

isfies the P–S condition.

Indeed, this follows from the fact that the functional I is coercive, since we are

dealing with finite dimensional space.

To prove Theorem 2.2, it su‰ces to find 2n nontrivial critical points of

the functional J defined by (17). First of all, by (H3), we see that Jð0Þ ¼ 0,

J a C1ðRn;RÞ and Ið�uÞ ¼ IðuÞ for any u a Rn, that is, J is even. Furthermore,

by Lemmas 2.8 and 2.9, J is bounded from below in Rn and satisfies the P–S

condition. It is easy to see from (H3) that

lim
z!0

Ð z
0 fkðsÞ ds

z2
¼ l; k a f1; . . . ; ng: ð18Þ

Therefore there exist positive constants d and a > ln
2l

such that for any z a R and

jzja d,

ð z
0

fkðsÞ dsb ajzj2; k a f1; . . . ; ng: ð19Þ

Let K ¼ fu a Rn j kuk2 ¼ dgHRn. It is easy to see that K is homeomorphic to

Sn�1 by an odd map, and that for any u a K satisfying kuk2 ¼ d,

JðuÞ ¼ 1

2
uyBu� l

Xn
k¼1

ð uk
0

fkðsÞ dsa
1

2
ln � la

� �
kuk22 ¼ �s < 0;

where s ¼
�
la� 1

2 ln
�
d2 > 0. Thus by Lemma 1.1, we know that J possesses at

least 2n nontrivial critical points. The proof is complete.

3. Remarks and further examples

The assumptions (H1) and (H2) are basically the same as those in [7]. However, in

[7], the authors assert that there are 2n solutions with all components in Rnf0g.
Unfortunately, there is an error in the proof as explained by Ackermann in his

review; see MR2183553. The same error appears also in [8] and [6]. Therefore

the validity of the results in [2]–[4] remains unknown.
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Now we give a counterexample which shows that the conclusions of ‘Theo-

rems’ 2 and 3 in [7] are not true (see also ‘Theorem’ 4 in [6]).

Example 3.1. Consider the system

2x1 � x2 ¼ 2x3
1 ;

�x1 þ 2x2 � x3 ¼
1

2
x3
2 ;

�x2 þ 2x3 ¼
2

81
x3
3 ;

9>>>>>=
>>>>>;

ð20Þ

which is of the form (6), where

B ¼
2 �1 0

�1 2 �1

0 �1 2

0
B@

1
CA

and l ¼ 1, f1ðzÞ ¼ 2z3, f2ðzÞ ¼ 1
2 z

3, f3ðzÞ ¼ 2
81 z

3. It is easy to see that the condi-

tions of ‘Theorem’ 2 of [7] are satisfied. If ‘Theorem’ 2 of [7] holds, then (20) has a

solution ðx1; x2; x3Þy that satisfies x1 < 0, x2 < 0 and x3 > 0. However, we see

from the third equation of (20) that

2

81
x3
3 � 2x3 ¼ �x2 > 0;

which implies that x3 > 9. From the first equation of (20), we have

2x3
1 � 2x1 ¼ �x2 > 0;

which leads to �1 < x1 < 0. Thus, x1 þ x3 > 8. By the second equality of (20),

we see that

� 1

2
x3
2 ¼ x1 � 2x2 þ x3 > x1 þ x3 > 8:

Therefore x2 < �ð16Þ1=3. On the other hand, from the first equality of (20), we

get

x2 ¼ 2x1 � 2x3
1 > 2x1 > �2 > �ð16Þ1=3:

This is a contradiction. Thus, the conclusion of ‘Theorem’ 2 of [7] fails.
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Note that (20) can be written as

2 �1 0

�1 2 �1

0 �1 2

0
B@

1
CA
�1

2x3
1

1
2 x

3
2

2
81 x

3
3

0
B@

1
CA ¼

x1

x2

x3

0
B@

1
CA: ð21Þ

Now if we let x ¼ 2x3
1 , y ¼ 1

2 x
3
2 , z ¼ 2

81 x
3
3 , then (21) can be written as

2 �1 0

�1 2 �1

0 �1 2

0
B@

1
CA
�1

x

y

z

0
B@

1
CA ¼

1ffiffi
23

p
ffiffiffi
x3

p
ffiffiffi
23

p ffiffiffi
y3

pffiffiffiffi
81
2

3

q ffiffiffi
z3

p

0
BBB@

1
CCCA: ð22Þ

It is easy to see that the system (22) satisfying all conditions of ‘Theorem’ 3 of [7].

But it cannot have a solution ðx; y; zÞy satisfying x < 0, y < 0 and z > 0. This

leads to a counterexample for Theorem 3 in [7] and shows that the existence of

one ‘positive’, one ‘negative’ and 2n � 2 ‘sign changing’ solutions is not true in

general.

In the review by Ackermann, all the solutions of the system

2 �1

�1 2

� �
x

y

� �
¼ 2

cx3

y3

� �
ð23Þ

are stated (and can be checked easily):

0

0

� �
;

1
2

ffiffiffi
2

p

1
2

ffiffiffi
2

p
 !

;
� 1

2

ffiffiffi
2

p

� 1
2

ffiffiffi
2

p
 !

;
þ 1

2

ffiffiffi
6

p

� 1
2

ffiffiffi
6

p
 !

;
� 1

2

ffiffiffi
6

p

þ 1
2

ffiffiffi
6

p
 !

:

Since the eigenvalues of the coe‰cient matrix are 1 and 3, and the functions f1ðxÞ
and f2ðxÞ given by f1ðxÞ ¼ f2ðxÞ ¼ 2x3 satisfy the assumptions of Theorem 2.1,

the conclusion of Theorem 2.1 is also sharp when n ¼ 2.

There are other aspects of our theorems as far as sharpness is concerned. Let

us consider two more nontrivial examples.

Example 3.2. In (7), let c ¼ 1 and let f be defined by

f ðxÞ ¼ x3 if jxj < 1
2 ;

1
4 x if jxjb 1

2 :

�
ð24Þ

Then f ð�xÞ ¼ �f ðxÞ for xA0. Furthermore, when 0 < jxj < 1
2 , f ðxÞ=x ¼ x2 ! 0

as x ! 0, and ð t
0

f ðxÞ dxb 1

8
t2 � 1

64
; jtjb 1

2
;
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by Theorem 2.1, we see that (7) has 2 nontrivial real solutions for any l that sat-

isfies l > 4. Indeed, the solutions are given precisely by x ¼ 0,e
ffiffiffiffiffiffiffiffi
1=l

p
. Further-

more in case la 4, the conditions of Theorem 2.1 cannot be satisfied. But we can

easily see that (7) has only the trivial solution. Therefore the condition l > ln=2a1
is sharp when n ¼ 1.

Example 3.3. Consider

2 �1

�1 2

� �
x

y

� �
¼ l

f ðxÞ
f ðyÞ

� �
; ð25Þ

where

f ðxÞ ¼ x3 if jxj < 1
2 ;

1
4 x if jxjb 1

2 :

(
ð26Þ

The conditions of Theorem 2.1 are satisfied (with ln ¼ 3). Thus (25) has four non-

trivial real solutions for any l that satisfies l > 12. Indeed, the solutions are given

precisely by

0

0

� �
;

1
l

ffiffiffi
l

p

1
l

ffiffiffi
l

p
 !

;
� 1

l

ffiffiffi
l

p

� 1
l

ffiffiffi
l

p
 !

;
þ 1

l

ffiffiffiffiffi
3l

p

� 1
l

ffiffiffiffiffi
3l

p
 !

;
� 1

l

ffiffiffiffiffi
3l

p

þ 1
l

ffiffiffiffiffi
3l

p
 !

:

There are reasons to assume a more general positive definite matrix B in (6).

Indeed, if we assume that the neuron units U0 and Unþ1 are not ‘grounded’, but

U0 is kept at the level U1=2 and Unþ1 at Unþ1=2, then the corresponding matrix

changes from A to the ðn� nÞ-matrix

3
2 �1 0 � � � 0

�1 2 �1 � � � 0

� � � � � � � � �
0 � � � �1 2 �1

0 � � � 0 �1 3
2

0
BBBBBB@

1
CCCCCCA:

More generally, we may require that U0 ¼ aU1 and Unþ1 ¼ bUn. Then the corre-

sponding ðn� nÞ-matrix is

2� a �1 0 � � � 0

�1 2 �1 � � � 0

� � � � � � � � �
0 � � � �1 2 �1

0 � � � 0 �1 2� b

0
BBBBBB@

1
CCCCCCA:
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Such a matrix can be regarded as a tridiagonal matrix with perturbations, and

their spectral properties can be found in various studies (see e.g. [4], [5]). There

are also problems related to the vibration of particles attached to strings and nets

which also lead us to positive definite matrices (see [1] for general discussions).
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