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Abstract. We prove the uniqueness of solutions of the Maxwell-Schrödinger system with
given asymptotic behaviour at infinity in time. The assumptions include suitable restric-
tions on the growth of solutions for large time and on the accuracy of their asymptotics,
but no restriction on their size. The result applies to the solutions with prescribed asymp-
totics constructed in a previous paper.
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1. Introduction

This paper is a sequel to a previous paper [6], hereafter referred to as II, where we

studied the theory of scattering for the Maxwell-Schrödinger system (MS) in 3þ 1

dimensional space time. That system describes the evolution of a charged non-

relativistic quantum mechanical particle interacting with the (classical) electro-

magnetic field it generates. It can be written as follows:

iqtu ¼ �ð1=2ÞDAuþ Aeu

jAe � qtðqtAe þ ‘ � AÞ ¼ juj2

jAþ ‘ðqtAe þ ‘ � AÞ ¼ Im u‘Au

8>><
>>: ð1:1Þ

where u and ðA;AeÞ are respectively a complex valued function and an R3þ1

valued function defined in space time R3þ1, ‘A ¼ ‘� iA and DA ¼ ‘2
A are the

covariant gradient and covariant Laplacian respectively, and j ¼ q2t � D is the

d’Alembertian. An important property of that system is its gauge invariance,

namely the invariance under the transformation

ðu;A;AeÞ !
�
u expð�iyÞ;A� ‘y;Ae þ qty

�
;



where y is an arbitrary real function defined in R3þ1. As a consequence of that

invariance, the system (1.1) is underdetermined as an evolution system and has

to be supplemented by an additional equation, called a gauge condition. In this

paper, we shall use exclusively the Coulomb gauge condition, namely ‘ � A ¼ 0.

Under that condition, the equation for Ae can be solved by

Ae ¼ �D�1juj2 ¼ ð4pjxjÞ�1 ? juj2C gðuÞ ð1:2Þ

where ? denotes the convolution in R3. Substituting (1.2) and the gauge condition

into (1.1) yields the formally equivalent system

iqtu ¼ �ð1=2ÞDAuþ gðuÞu ð1:3Þ
jA ¼ P Im u‘Au ð1:4Þ

where P ¼ 1� ‘D�1‘ is the projector on divergence free vector fields.

The MS system is known to be locally well posed both in the Coulomb gauge

and in the Lorentz gauge qtAe þ ‘ � A ¼ 0 in su‰ciently regular spaces [8] [9], to

have weak global solutions in the energy space [7] and to be globally well posed in

a space smaller than the energy space [10].

A large amount of work has been devoted to the theory of scattering and

more precisely to the existence of wave operators for nonlinear equations and sys-

tems centering on the Schrödinger equation and in particular for the Maxwell-

Schrödinger system [2] [4] [6] [12] [14]. As in the case of the linear Schrödinger

equation, one must distinguish the short range case from the long range case. In

the former case, ordinary wave operators are expected and in a number of cases

proved to exist, describing solutions where the Schrödinger function behaves

asymptotically like a solution of the free Schrödinger equation. In the latter case,

ordinary wave operators do not exist and have to be replaced by modified wave

operators including an additional phase in the asymptotic behaviour of the

Schrödinger function. In that respect, the MS system in R3þ1 belongs to the border-

line (Coulomb) long range case. We refer to II and [5] for general background and

additional references on that matter.

The main step in the construction of the (modified) wave operators consists in

solving the local Cauchy problem with infinite initial time. In the long range case

where that problem is singular, that step amounts to construct solutions with

prescribed (singular) asymptotic behaviour in time. For the MS system in the

Coulomb gauge (1.3) (1.4), that step was performed in II by replacing the original

system by an auxiliary system, solving the corresponding problem for that system

and then returning to the original one. In particular we derived an existence

and uniqueness result for solutions of the auxiliary system with prescribed time

asymptotics, from which an existence result for solutions of the original system
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with prescribed time asymptotics follows. However uniqueness was proved only

for the auxiliary system, thereby leaving uniqueness for the original one open.

The purpose of the present paper is to supplement the previous results with a

direct uniqueness result for the original system, expressed in terms of the original

functions ðu;AÞ.
In order to state that result we first replace the equation (1.4) for A by the

associated integral equation with prescribed asymptotic data ðAþ; _AAþÞ, namely

A ¼ A0 �
ðl
t

dt 0o�1 sin
�
oðt� t 0Þ

�
P Imðu‘AuÞðt 0Þ ð1:5Þ

where o ¼ ð�DÞ1=2 and A0 is the solution of the free wave equation jA0 ¼ 0 given

by

A0 ¼ ðcosotÞAþ þ o�1ðsinotÞ _AAþ: ð1:6Þ

In order to ensure the gauge condition ‘ � A ¼ 0, we assume that ‘ � Aþ ¼
‘ � _AAþ ¼ 0. As a consequence x � A0 is also a solution of the free wave equation.

The uniqueness result will be stated for the MS system in the form (1.3) (1.5).

Since the Cauchy problem for that system is singular at t ¼ l, especially as re-

gards the function u, the uniqueness result for that system takes a slightly unusual

form. Roughly speaking it states that two solutions ðui;AiÞ, i ¼ 1; 2, coincide pro-

vided ui and Ai � A0 do not blow up too fast and provided u1 � u2 tends to zero in

a suitable sense as t ! l. In particular that result does not make any reference to

the asymptotic data for u, which should characterize its behaviour at infinity.

In order to state the result we need some notation. We denote by k � kr
the norm in LrCLrðR3Þ, 1a ral and by _HH 1 ¼ _HH 1ðR3Þ the homogeneous

Sobolev space

_HH 1 ¼ fv : ‘v a L2 and v a L6g:

We shall need the space

V? ¼ fv : 3x43v a L2; 3x42‘v a L2g; ð1:7Þ

where 3 � 4 ¼ ð1þ j � j2Þ1=2, and the dilation operator

S ¼ tqt þ x � ‘þ 1: ð1:8Þ

It follows from the commutation relation jS ¼ ðS þ 2Þj that SA0 satisfies the

free wave equation if A0 does. We shall use the notation

~uuðtÞ ¼ Uð�tÞuðtÞ ð1:9Þ
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where UðtÞ ¼ exp
�
iðt=2ÞD

�
is the unitary group which solves the free Schrödinger

equation. We denote non-negative integers by j, k, l.

The main result can be stated as follows.

Proposition 1.1. Let 1aT < l, I ¼ ½T ;lÞ and ab 0. Let A0 be a divergence

free solution of the free wave equation satisfying

k‘kS jA0ðtÞkl þ k‘kx � A0ðtÞklaCt�1 for 0a j þ ka 1 ð1:10Þ

for all t a I . Let ðui;AiÞ, i ¼ 1; 2, be two solutions of the system (1.3) (1.5) such that

~uui a Ll
locðI ;V?Þ, Ai � A0 a Ll

locðI ; _HH 1Þ and such that

kxk‘l~uuiðtÞk2aCð1þ lntÞa for 0a la 1; 0a k þ la 3; ð1:11Þ

k‘ðAi � A0ÞðtÞk2aCt�1=2ð1þ lntÞ2a; ð1:12Þ

k3x=t4ðu1 � u2ÞðtÞk2aCh?ðtÞ ð1:13Þ

for all t a I , where h? a CðI ;RþÞ is such that the function

h?ðtÞ ¼ tð1þ lntÞ3þ9a
h?ðtÞ ð1:14Þ

be non increasing for t su‰ciently large and satisfy

ðl
t

dt 0t 0�1h?ðt 0Þa ch?ðtÞ ð1:15Þ

for all t a I .

Then ðu1;A1Þ ¼ ðu2;A2Þ.

Remark 1.1. As mentioned previously, SA0 and x � A0 are solutions of the free

wave equation. The time decay in (1.10) is the optimal decay that can be obtained

for solutions of that equation. Su‰cient conditions on Aþ, _AAþ ensuring that decay

are well known (see for instance [13]).

Remark 1.2. Typical functions h? satisfying the assumptions of Proposition 1.1 are

h?ðtÞ ¼ t�lð1þ lntÞm;

with l > 1 and m real.

Remark 1.3. It will be shown below that the solutions of the system (1.3) (1.5)

obtained in II (see especially Proposition 7.2 in II) satisfy the assumptions of
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Proposition 1.1 with a ¼ 3 and h?ðtÞ ¼ t�2ð1þ lntÞ4 so that Proposition 1.1

applies to those solutions.

Proposition 1.1 will be proved by going to the above mentioned auxiliary

system and generalizing the uniqueness proof for that system obtained in II (see

Proposition 4.2 of II).

This paper is organized as follows. In Section 2, we derive the auxiliary system

which will replace the original system (1.3) (1.5). In Section 3, we collect some

notation and preliminary estimates. In Section 4, we derive the uniqueness result,

first for the auxiliary system and then for the original one.

2. The auxiliary system

In this section we perform a change of unknown functions which is well adapted

to the study of the system (1.3) (1.5) for large time and we derive the auxiliary

system satisfied by the new functions. The unitary group UðtÞ which solves the

free Schrödinger equation can be written as

UðtÞ ¼ exp
�
iðt=2ÞD

�
¼ MðtÞDðtÞFMðtÞ ð2:1Þ

where MðtÞ is the operator of multiplication by the function

MðtÞ ¼ expðix2=2tÞ; ð2:2Þ

F is the Fourier transform and DðtÞ is the dilation operator defined by

DðtÞ ¼ ðitÞ�3=2
D0ðtÞ;

�
D0ðtÞ f

�
ðxÞ ¼ f ðx=tÞ: ð2:3Þ

We first change u to its pseudo-conformal inverse uc defined by

uðtÞ ¼ MðtÞDðtÞucð1=tÞ; ð2:4Þ

or equivalently,

~uuðtÞ ¼ F ~uucð1=tÞ; ð2:5Þ

where for any function f of space time

~ff ðt; �Þ ¼ Uð�tÞ f ðt; �Þ:

Correspondingly we change A to B defined by

AðtÞ ¼ �t�1D0ðtÞBð1=tÞ: ð2:6Þ
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The transformation ðu;AÞ ! ðuc;BÞ is involutive. Furthermore it replaces the

study of ðu;AÞ in a neighborhood of infinity in time by the study of ðuc;BÞ in a

neighborhood of t ¼ 0.

Substituting (2.4), (2.6) into (1.3) and commuting the Schrödinger operator

with MD, we obtain that

��
iqt þ ð1=2ÞDA � gðuÞ

�
u
�
ðtÞ

¼ t�2MðtÞDðtÞ
��

iqt þ ð1=2ÞDB � �BB� t�1gðucÞ
�
uc
�
ð1=tÞ

where for any R3 vector valued function f of space time

�ff ðt; xÞ ¼ t�1x � f ðt; xÞ: ð2:7Þ

Furthermore

Imðu‘AuÞðtÞ ¼ t�3D0ðtÞfxjucj2 � t Im uc‘Bucgð1=tÞ

by a direct computation, so that the system (1.3) (1.5) becomes

iqtuc ¼ �ð1=2ÞDBuc þ �BBuc þ t�1gðucÞuc (2.8)

B2 ¼ B2ðuc;BÞ (2.9)

(

where B0 is defined by (2.6)0 and

B2 ¼ B� B0 � B1; ð2:10Þ

B1 ¼ B1ðucÞC�F1ðPxjucj2Þ; ð2:11Þ
B2ðuc;BÞC tF2ðP Im uc‘BucÞ; ð2:12Þ

FjðMÞC
ðl
1

dnn�2�jo�1 sin
�
oðn� 1Þ

�
D0ðnÞMðt=nÞ: ð2:13Þ

Here we take the point of view that B1 is an explicit function of uc defined by

(2.11) and that (2.10) is a change of dynamical variable from B to B2. The equa-

tion (2.9) then replaces (1.5).

In order to take into account the long range character of the MS system, we

parametrize uc in terms of a complex amplitude v and a real phase j by

uc ¼ v expð�ijÞ: ð2:14Þ

The role of the phase is to cancel the long range terms in (2.8), namely the

contribution of B1 to �BB and the term t�1gðucÞ. Because of the limited regularity

514 J. Ginibre and G. Velo



of B1, it is convenient to split B1 and B into a short range and a long range

part. Let w a ClðR3;RÞ, 0a wa 1, wðxÞ ¼ 1 for jxja 1, wðxÞ ¼ 0 for jxjb 2.

We define

�BBL ¼ �BB1L ¼ F ?wð�t1=2ÞF �BB1

�BBS ¼ �BB0 þ �BB1S þ �BB2; �BB1S ¼ �BB1 � �BB1L

(
ð2:15Þ

We then obtain the following system for ðv; j;B2Þ

iqtv ¼ Hv (2.16)

qtj ¼ t�1gðvÞ þ �BB1LðvÞ (2.17)

B2 ¼ B2ðv;KÞ (2.18)

8><
>:

where

HC�ð1=2ÞDK þ �BBS; ð2:19Þ
KCBþ ‘jCBþ s; ð2:20Þ

by imposing (2.17) as the equation for j. Under (2.17), the equation (2.8) becomes

(2.16). The system (2.16)–(2.18) is the auxiliary system which replaces the original

system (1.3) (1.5).

3. Notation and preliminary estimates

In this section we introduce some notation and collect a number of estimates

which will be used throughout this paper. We denote by k � kr the norm in

Lr ¼ LrðR3Þ. For any non negative k we denote by Hk ¼ HkðR3Þ the standard

Sobolev spaces

Hk ¼ fu a S 0ðR3Þ : ku;Hkk ¼ k3o4kuk2 < lg;

where 3 � 4 ¼ ð1þ j � j2Þ1=2 and o ¼ ð�DÞ1=2. In addition we will use the associ-

ated homogeneous spaces _HHk with norm ku; _HHkk ¼ kokuk2. It will be understood

that _HH 1 HL6. For any kb 2 we shall use the notation

€HHk ¼ _HH 1B _HHk:

For any Banach space X HS 0ðR3Þ we use the notation

FX ¼ fu a S 0ðR3Þ : F�1u a Xg:
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For any interval I and any Banach space X we denote by CðI ;XÞ the space

of strongly continuous functions from I to X and by LlðI ;XÞ (resp. Ll
locðI ;XÞ)

the space of measurable essentially bounded (resp. locally essentially bounded)

functions from I to X . For any real numbers a and b we use the notation

a4b ¼ Maxða; bÞ and abb ¼ Minða; bÞ.
We next give estimates of the short and long range parts of B1 defined by

(2.15), namely

kom �BB1Sk2a tðp�mÞ=2ko p �BB1Sk2a tðp�mÞ=2ko p �BB1k2 ð3:1Þ

for ma p and similarly

kom �BB1Lk2a ð2t�1=2Þp�mko p �BB1Lk2a ð2t�1=2Þp�mko p �BB1k2 ð3:2Þ

for mb p.

We now estimate FjðMÞ defined by (2.13), (2.3) and GjðMÞ defined similarly

by:

GjðMÞ ¼
ðl
1

dnn�1�j cos
�
oðn� 1Þ

�
D0ðnÞMðt=nÞ: ð3:3Þ

From (2.13) it follows that

oFjðMÞ ¼ Fjþ1ðoMÞ; ð3:4Þ
qtFjðMÞ ¼ Fjþ1ðqtMÞ; ð3:5Þ

x � FjðPMÞ ¼ Fj�1ðx � PMÞ: ð3:6Þ

The first two identities are obvious, while in (3.6) we have used the identity

½x; f ðoÞ� � P ¼ 0

which holds for any regular function f . In addition a direct computation yields

x � PM ¼ PðxnMÞ � 2o�2‘ �M

from which (3.5) can be continued to

x � FjðPMÞ ¼ Fj�1

�
PðxnMÞ � 2o�2‘ �M

�
: ð3:7Þ

Clearly the identities (3.4) (3.5) (3.6) (3.7) hold with Fj replaced by Gj . The

following lemma provides an expression for the time derivative of FjðMÞ which

does not contain the time derivative of M.
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Lemma 3.1. Let FjðMÞ and GjðMÞ be defined by (2.13) and (3.3) respectively.

Then

tqtFjðMÞ ¼ �Fj

�
ðx � ‘þ j þ 1ÞM

�
þ GjðMÞ: ð3:8Þ

Proof. From (3.5) we can write

tqtFjðMÞ ¼ �
ðl
1

dnn�2�jo�1 sin
�
oðn� 1Þ

�
D0ðnÞnqnMðt=nÞ: ð3:9Þ

Using the commutator identity

ðnqn þ x � ‘ÞD0ðnÞ ¼ D0ðnÞnqn
we obtain

tqtFjðMÞ ¼ �
ðl
1

dnn�1�jo�1 sin
�
oðn� 1Þ

�
qn
�
D0ðnÞMðt=nÞ

�
� Fjðx � ‘MÞ

from which (3.8) follows by integration by parts over the n variable. r

In order to estimate Fj and Gj we define

Ijð f ÞðtÞ ¼
ðl
1

dnn�j�3=2f ðt=nÞ ð3:10Þ

for any j a R and for any non negative function f defined in Rþ. The estimates

on Fj and Gj are summarized in the following lemma.

Lemma 3.2. For any m; j a R the following estimates hold:

(1)

komFjðMÞk2a cIjþm�2ðkom�1Mk2bkomMk2Þ; ð3:11Þ
komGjðMÞk2a cIjþm�2ðkomMk2Þ: ð3:12Þ

(2)

komx � FjðPMÞk2a cIjþm�3ðk3x4om�1Mk2Þ; ð3:13Þ

komx � GjðPMÞk2a cIjþm�3ðkxomMk2 þ kom�1Mk2Þ: ð3:14Þ

(3) For any r, 2a ra 4,

kFjðMÞkra c

ðl
1

dnn�1þ2=rn�jþ1=rkMðt=nÞkr1 ð3:15Þ
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and

kGjðMÞkra c

ðl
1

dnn�1þ2=rn�jþ1=rkoMðt=nÞkr1 ð3:16Þ

with 3=r1 ¼ 2þ 1=r.

Proof. Part (1). From the definition of Fj and Gj , from (3.4) and the analogue for

Gj, from the identity

komD0ðnÞvk2 ¼ n�mþ3=2komvk2;

and from the estimates

��sin�oðn� 1Þ
���a 1bon;

��cos�oðn� 1Þ
���a 1

we obtain easily (3.11) and (3.12).

Part (2) is an immediate consequence of (3.7), of the analogue for Gj, and of

Part (1).

Part (3). From the pointwise estimate [1] [11]

��sin�oðn� 1Þ
�
v
��
r
4
��cos�oðn� 1Þ

�
v
��
r
a cðn� 1Þ�1þ2=rko2�4=rvkr

with 2a r < l and 1=rþ 1=r ¼ 1, it follows that

kFjðMÞkra c

ðl
1

dnðn� 1Þ�1þ2=rn�jþ1=rko1�4=rMðt=nÞkr

and

kGjðMÞkra c

ðl
1

dnðn� 1Þ�1þ2=rn�jþ1=rko2�4=rMðt=nÞkr

which imply (3.15) and (3.16) by Sobolev inequalities. r

In order to take into account the time decay of norms of some variables as

t tends to zero, we shall introduce a function h a CðI ;RþÞ, where I ¼ ð0; t� for
0 < ta 1, such that the function hðtÞC t�1ð1� lntÞghðtÞ with gb 0 be non de-

creasing in I and satisfy

ð t

0

dt 0t 0�1hðt 0Þa chðtÞ
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for some c > 0 and for all t a I . By an elementary computation we then obtain

Ij
�
t�lð1� lntÞmh

�
ðtÞ ¼ t�1=2�j

ð t

0

dt 0t 0j�1=2�lð1� lnt 0Þmhðt 0Þ

a ct�lð1� lntÞmhðtÞ ð3:17Þ

for any real m, provided that j þ 3=2 > l.

In all the estimates in this paper we denote by C a constant depending on the

unknown functions through the available norms. Absolute constants, denoted by

c in this section, will in general henceforth be omitted. The letters j, k, l will

always denote non negative integers.

4. Uniqueness

In this section we prove Proposition 1.1. This will be done by replacing the orig-

inal system (1.3) (1.5) by the auxiliary system (2.16)–(2.18) and deriving first a

uniqueness result for the latter. We recall that the functions B1 and B2 are defined

(cf. (2.11) (2.12)) by

B1ðvÞC�F1ðPxjvj2Þ; ð4:1Þ
B2ðv;KÞ ¼ tF2ðP Im v‘KvÞ: ð4:2Þ

The latter will be used in general with

K ¼ Bþ s ¼ B0 þ B1ðvÞ þ B2 þ ‘j: ð4:3Þ

We shall need the space

V ¼ fv : v a H 3 and xv a H 2g ð4:4Þ

with the natural norm, and for 0 < ta 1, I ¼ ð0; t� and ab 0, we shall make use

of the assumption

(AþaÞ v a Ll
locðI ;VÞ and

kvðtÞ;VkaCLa ð4:5Þ

for all t a I , where L ¼ 1� lnt.

We first prepare the uniqueness result for the system (2.16)–(2.18) with two

lemmas.
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Lemma 4.1. Let 0 < ta 1, I ¼ ð0; t�, ab 0 and let v satisfy ðAþaÞ. Then
(1) B1ðvÞ a Ll

locðI ; €HH 4Þ, ‘ �BB1ðvÞ a Ll
locðI ; €HH 2Þ, g a Ll

locðI ; €HH 5Þ, qtB1ðvÞ a
Ll

locðI ; €HH 2Þ and the following estimates hold for all t a I:

k‘kB1ðvÞk2aCL2a for 1a ka 4; ð4:6Þ

k‘k �BB1ðvÞk2aCt�1L2a for 2a ka 3; ð4:7Þ

k‘kgðvÞk2aCL2a for 1a ka 5; ð4:8Þ

k‘kqtB1ðvÞk2aCt�1L2a for 1a ka 2: ð4:9Þ

Let in addition j satisfy (2.17). Then ‘qtj a Ll
locðI ; €HH 2Þ and

k‘kþ1qtjk2C k‘kqtsk2aCt�1L2a for 1a ka 2: ð4:10Þ

Let in addition ‘jðt0Þ a €HH 2 for some t0 a I . Then ‘j a CðI ; €HH 2Þ and

k‘kþ1jk2C k‘ksk2aCL1þ2a for 1a ka 2: ð4:11Þ

(2) Let in addition u ¼ v expð�ijÞ. Then u satisfies ðAþa1Þ with a1 ¼ 3þ 7a.

(3) Let in addition B0 satisfy

k‘kB0ðtÞklaCt�k for 0a ka 1 ð4:12Þ

and let B2 a LlðI ; _HH 1Þ satisfy

k‘B2ðtÞk2aCL2a ð4:13Þ

for all t a I . Then B2ðv;KÞ a Ll
locðI ;H 2Þ, �BB2ðv;KÞ a Ll

locðI ; €HH 2Þ, qtB2ðv;KÞ a
Ll

locðI ;H 1Þ and the following estimates hold for all t a I:

k‘kB2ðv;KÞk2aCL2a for 0a ka 2; ð4:14Þ

k‘k �BB2ðv;KÞk2aCt�1L2a for 1a ka 2; ð4:15Þ

k‘kqtB2ðv;KÞk2aCt�1L2a for 0a ka 1 ð4:16Þ

where K is given by (4.3).

Remark 4.1. The condition ‘f a €HH 2 seems to leave some ambiguity on the na-

ture of f . However it implies that ‘f a Ll by Sobolev inequalities and therefore

that 3x4�1f a Ll. This occurs in particular in Part (1) for �BB1ðvÞ, qtj and j for

fixed time.
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Proof. Part (1). We first derive the estimates (4.6)–(4.11).

It follows from (4.1) and (3.11) that

k‘kB1ðvÞk2a Ik�1ðk‘k�1xjvj2k2ÞaCL2a for 1a ka 4

by ðAþaÞ and Hölder and Sobolev inequalities. Similarly from (3.13)

k‘k �BB1ðvÞk2a Ik�2ðk3x4‘k�1xjvj2k2ÞaCL2a for 2a ka 3:

(4.8) is obvious. It follows from (3.8) (3.11) (3.12) that

k‘ktqtB1ðvÞk2a Ik�1ðk‘k�1ðx � ‘þ 2Þxjvj2k2 þ k‘kxjvj2k2Þ

aCL2a for 1a ka 2:

(4.10) follows from (2.17) (4.7) (4.8) while (4.11) follows from (4.10) by integration

over time.

In order to complete the proof, we need to estimate a lower norm of B1, ‘ �BB1,

g, qtB1 and ‘qtj in order to show that those quantities belong to _HH 1. We estimate

them in L4 norm by using the special case r ¼ 4 of (3.15), (3.16), namely

kFjðMÞk4a
ðl
1

dnðn� 1Þ�1=2n�jþ1=4kMðt=nÞk4=3 ð4:17Þ

and similarly for (3.16), and by using the Hardy-Littlewood-Sobolev (HLS) in-

equality for g. The right hand side of (4.17) and of the other estimates with the

appropriate M is then estimated by the use of ðAþaÞ.
Part (2) follows from ðAþaÞ and (4.11). The required estimates use only the

norm of ‘j in €HH 2 and the worst contribution comes from

kvj‘jj3k2a kvklk‘jk36aCLaþ3ð1þ2aÞ

in the estimate of k‘3uk2.
Part (3). We first derive the estimates (4.14)–(4.16). We rewrite (4.2) as

B2ðv;KÞ ¼ tF2

�
P
�
Im v‘v�

�
B0 þ B1ðvÞ þ B2 þ s

�
jvj2

��
: ð4:18Þ

From (3.11), we estimate

k‘kB2ðv;KÞk2a tIkðkv‘vk2 þ kB0 þ B1ðvÞ þ sklkvk24 þ kB2k6kvk
2
6Þ

aCtL1þ4a for 0a ka 1; ð4:19Þ
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k‘2B2ðv;KÞk2
a tI2

�
k‘ðv‘vÞk2 þ 2kB0 þ B1ðvÞ þ sklkv‘vk2

þ
��‘�B0 þ B1ðvÞ

���
l
kvk24

þ k‘ðB2 þ sÞk2ðkvk
2
l þ 2kv‘vk3Þ

�
aCL2a ð4:20Þ

by ðAþaÞ (4.6) (4.11) (4.12) (4.13). This proves (4.14). Note that in (4.20) the

dominant contribution comes from the term with ‘B0. All the other terms con-

tribute at most CtL1þ4a as in (4.19). The proof of (4.15) is similar, with the factor

t omitted, with Ik replaced by Ik�1 and the factor x absorbed by v.

(4.16) follows from (4.2) (3.8) (3.11) (3.12). We obtain

k‘kqtB2ðv;KÞk2a tIkðkðx � ‘þ 2Þ Im v‘Kvk2 þ k‘ Im v‘Kvk2Þ

aCL2a for 0a ka 1;
ð4:21Þ

by ðAþaÞ (4.6) (4.11) (4.12) (4.13). The dominant contribution comes from

kx � ð‘B0Þjvj2k2a k‘B0klkxjvj2k2aCt�1L2a:

In order to complete the proof, in the same way as in Part (1), we estimate the L4

norm of �BB2ðv;KÞ by using (4.17) with the appropriate M and estimating the right

hand side thereof through ðAþaÞ (4.6) (4.11) (4.12) (4.13). r

Remark 4.2. For k ¼ 1, we have in fact obtained the better estimate

k‘B2ðv;KÞk24tk‘ �BB2ðv;KÞk2aCtL1þ4a ð4:22Þ

in (4.14), (4.15). For k ¼ 2, we could also have obtained better estimates by

replacing the assumption (4.12) with

k‘B0k2aCt�1=2

which is also satisfied if A0 is a su‰ciently regular solution of the free wave

equation. However the estimates (4.14) (4.15) are su‰cient for later purposes.

We next estimate the di¤erence of two solutions of the auxiliary system (2.16)–

(2.18). For two functions or operators of the same nature fi, i ¼ 1; 2, we shall

use the notation fe ¼ ð1=2Þð f1e f2Þ, so that f1 ¼ fþ þ f�, f2 ¼ fþ � f� and
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ð fgÞe ¼ fþgeþ f�gH. If ðvi; ji;B2iÞ, i ¼ 1; 2, are two solutions of the auxiliary

system (2.16)–(2.18), then ðv�; j�;B2�Þ satisfies the system

iqtv� ¼ Hþv� þH�vþ ð4:23Þ

qtj� ¼ t�1g� þ �BB1L� ð4:24Þ

B2� ¼ tF2

�
Pð2 Im vþ‘Kþv� � K�ðjvþj2 þ jv�j2Þ

�
ð4:25Þ

where

Hþ ¼ �ð1=2ÞDKþ þ ð1=2ÞK 2
� þ �BBSþ; ð4:26Þ

H� ¼ iK� � ‘Kþ þ ði=2Þð‘ � s�Þ þ �BBS�; ð4:27Þ
B1� ¼ ð1=2Þ

�
B1ðv1Þ � B1ðv2Þ

�
¼ �F1ð2PRe xvþv�Þ; ð4:28Þ

�BBSe and �BBLe are defined by similar formulas, and g� and Ke are obtained from

gi ¼ gðviÞ and

Ki ¼ B0 þ B1ðviÞ þ B2i þ ‘ji: ð4:29Þ

For 0 < ta 1, I ¼ ð0; t� and h a CðI ;RþÞ, we introduce the assumption

(A�hÞ 3x4v� a LlðI ;L2Þ and

k3x4v�ðtÞk2aChðtÞ ð4:30Þ

for all t a I .

Lemma 4.2. Let 0 < ta 1, I ¼ ð0; t�, ab 0, and let h a CðI ;RþÞ satisfy

ð t

0

dtt�3=2LahðtÞ < l: ð4:31Þ

(1) Let vi, i ¼ 1; 2 satisfy ðAþaÞ with v� satisfying ðA�hÞ. Then B1� a
LlðI ; _HH 1Þ, �BB1� a Ll

locðI ; _HH 1Þ, g� a Ll
locðI ; €HH 3Þ, and the following estimates hold

for all t a I:

k‘B1�k2aCI0ðkv�k2LaÞ; ð4:32Þ

k‘ �BB1�k2aCt�1I�1ðk3x4v�k2LaÞ; ð4:33Þ

k‘kþ1g�k2aCðkv�k2 þ dk;2k‘v�k2ÞLa for 0a ka 2: ð4:34Þ

523Uniqueness at infinity for Maxwell-Schrödinger



Let in addition ji , i ¼ 1; 2, satisfy (2.17) with v ¼ vi. Then qtj� a Ll
locðI ; €HH 3Þ and

the following estimates hold for all t a I

k‘kþ1qtj�k2 ¼ k‘kqts�k2aCfðkv�k2 þ dk;2k‘v�k2Þt�1La

þ t�1�k=2I�1ðk3x4v�k2LaÞg for 0a ka 2: ð4:35Þ

(2) Let B0 satisfy

k‘kðtqtÞ jB0kl4k‘k �BB0klaCt�k for 0a j þ ka 1 ð4:36Þ

for all t a I . Let ðvi; ji;B2iÞ, i ¼ 1; 2, be two solutions of the system (2.16)–(2.18)

such that vi satisfy ðAþaÞ, such that B2i a Ll
locðI ; _HH 1Þ with

k‘B2iðtÞk2aCL2a ð4:37Þ

for all t a I , and such that ‘jiðt0Þ a €HH 2 with ‘j�ðt0Þ a L2 for some t0 a I , so that

s� ¼ ‘j� a CðI ;H 2Þ by (4.35). Then the following estimates hold:

jqtkv�k2jaCfk‘B�k2L1þ3a þ k‘s�k2La þ ks�k2L1þ3a

þ k‘ �BB1�k2t1=2La þ k‘ �BB2�k2LagCEðtÞ; ð4:38Þ

jqtkxv�k2ja k‘Kþv�k2 þ EðtÞ; ð4:39Þ

jqtk‘Kþv�k2jaCfðkv�k2 þ kv�k3Þt�1L2a þ ks�k2t�1La

þ k‘B�k2t�1La þ k‘s�k2L1þ3a þ k‘‘ � s�k2La

þ k‘ �BB1�k2La þ k‘ �BB2�k2L1þ3ag; ð4:40Þ

k‘B2�k2a tI1
�
kv�k2L1þ3a þ ðks�k2 þ k‘B�k2ÞL2a

�
; ð4:41Þ

k‘ �BB2�k2a I0
�
kv�k2L1þ3a þ ðks�k2 þ k‘B�k2ÞL2a

�
: ð4:42Þ

Remark 4.3. The assumption that v� satisfies ðA�hÞ with h satisfying (4.31)

serves to ensure the finiteness of the RHS of (4.33) and is never used otherwise.

Similarly the assumption that ‘j�ðt0Þ a L2 serves only to ensure tha s� a CðI ;L2Þ.

Proof. Part (1). We first derive the estimates (4.32)–(4.35). It follows from (4.28)

(3.11) (3.13) and ðAþaÞ that

k‘B1�k2a 2I0ðkxvþv�k2ÞaCI0ðkv�k2LaÞ;

k‘ �BB1�k2a 2t�1I�1ðk3x42vþv�k2ÞaCt�1I�1ðk3x4v�k2LaÞ;

524 J. Ginibre and G. Velo



while

k‘kþ1g�k2 ¼ 2k‘k�1vþv�k2

from which (4.34) follows by the use of ðAþaÞ. (4.35) follows from (2.17) (3.2)

(4.33) (4.34).

In order to complete the proof, we need to estimate a lower norm of B1�, �BB1�
and g. As in the proof of Lemma 4.1, Part (1), we estimate the L4 norm of those

quantities by using (4.17), the HLS inequality and ðAþaÞ.
Part (2). We first note that from (2.18) and Lemma 4.1, Part (3), especially

(4.14)–(4.16), it follows that B2þ a Ll
locðI ;H 2Þ, �BB2þ a Ll

locðI ; €HH 2Þ, qtB2þ a
Ll

locðI ;H 1Þ and that the following estimate holds for all t a I

kB2þ;H
2k4tk �BB2þ; €HH

2k4ktqtB2þ;H
1kaCL2a: ð4:43Þ

Together with (4.36) and with Lemma 4.1, Part (1), especially (4.6) (4.11), this

implies that Kþ a Ll
locðI ; €HH 2Þ and that Kþ satisfies the estimate

kKþklaCkKþ; €HH
2kaCL1þ2a: ð4:44Þ

We next estimate kv�k2. From (4.23) (4.27) (3.1) we obtain

jqtkv�k2ja kH�vþk2
aCfk‘B�k2ðk‘vþk3 þ kKþklkvþk3Þ

þ k‘s�k2ðk‘vþk3 þ kvþklÞ

þ ðks�k2kKþkl þ t1=2k‘ �BB1�k2Þkvþkl
þ k‘ �BB2�k2kvþk3g; ð4:45Þ

from which (4.38) follows by the use of ðAþaÞ and (4.44).

We next estimate kxv�k2. From (4.23) and the commutation relation

½x;Hþ� ¼ ‘Kþ

we obtain that

jqtkxv�k2ja k‘Kþv�k2 þ kxH�vþk2

from which (4.39) follows by estimating the last norm in the same way as in

(4.45), with the additional factor x everywhere absorbed by vþ. We next estimate

k‘Kþv�k2. Taking the covariant gradient of (4.23) yields
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iqt‘Kþv� ¼ �ð1=2Þ‘KþDKþv� þ
�
ð1=2ÞK 2

� þ �BBSþ
�
‘Kþv�

þ ðqtKþ þ K�‘K� þ ‘ �BBSþÞv�
þ iK� � ‘2

Kþ
vþ þ ið‘K�Þ � ‘Kþvþ

þ ði=2Þð‘ � s�Þ‘Kþvþ þ ði=2Þð‘‘ � s�Þvþ
þ �BBS�‘Kþvþ þ ð‘ �BBS�Þvþ ð4:46Þ

from which we estimate

jqtk‘Kþv�k2ja kðqtKþ þ ‘ �BBSþÞv�k2 þ kK� � ‘2
Kþ
vþk2

þ k‘K�k2ðk‘Kþvþkl þ kK�v�klÞ
þ k‘‘ � s�k2kvþkl
þ k‘ �BB1�k2ðt1=2k‘Kþvþkl þ kvþklÞ

þ k‘ �BB2�k2ðk‘Kþvþk3 þ kvþklÞ: ð4:47Þ

We next estimate the first two terms in the right hand side of (4.47). We

estimate

kðqtKþ þ ‘ �BBSþÞv�k2a kqtðsþ þ B0 þ B1þÞ
þ ‘ð �BB0 þ �BB1þÞklkv�k2
þ kqtB2þ þ ‘ �BB2þk6kv�k3

aCðkv�k2 þ kv�k3Þt�1L2a ð4:48Þ

where we have used (4.7) (4.9) (4.10) (4.36) (4.43), and

kK�‘
2
Kþ
vþk2

a ks�k3ðk‘2vþk6 þ k‘ðsþ þ B2þÞk6kvþklÞ

þ ks�k2ðkKþklk‘vþkl þ ðk‘ðB0 þ B1þÞkl þ kKþk2lÞkvþklÞ

þ kB�k6ðk‘2vþk3 þ kKþklk‘vþk3 þ k‘ðB0 þ B1þÞklkvþk3
þ k‘ðsþ þ B2þÞk6kvþk6 þ kKþk2lkvþk3Þ

aCfks�k3L1þ3a þ ðks�k2 þ k‘B�k2Þt�1Lag ð4:49Þ

where we have used ðAþaÞ (4.6) (4.11) (4.36) (4.43) (4.44).
Substituting (4.48) (4.49) into (4.47) and estimating the remaining terms of

(4.47) by the use of ðAþaÞ and (4.44) yields (4.40).
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We finally estimate B2�. From (4.25) and (3.11) (3.13) we obtain

k‘B2�k2a tI1ðkv�k2k‘Kþvþkl þ ks�k2kvþk
2
l þ kB�k6kvþk

2
6Þ

k‘ �BB2�k2a I0ðk3x4v�k2k‘Kþvþkl þ ks�k2kvþklk3x4vþkl
þ kB�k6kvþk6k3x4vþk6Þ

from which (4.41) (4.42) follow by the use of ðAþaÞ and (4.44). r

We now state the uniqueness result for the system (2.16)–(2.18).

Proposition 4.1. Let 0 < ta 1, let I ¼ ð0; t�, ab 0 and let h a CðI ;RþÞ be such

that hðtÞ ¼ t�1ð1� lntÞahðtÞ be non decreasing and satisfy

ð t

0

dt 0t 0�1hðt 0Þa chðtÞ ð4:50Þ

for some c > 0 and for all t a I . Let B0 satisfy (4.36) for all t a I . Let ðvi; ji;B2iÞ,
i ¼ 1; 2, be two solutions of the system (2.16)–(2.18) such that vi satisfies ðAþaÞ,
such that B2i a Ll

locðI ; _HH 1Þ satisfy (4.37) for all t a I , and such that ‘jiðt0Þ a €HH 2

for some t0 a I . Assume in addition that j�ð0Þ ¼ 0 and that v� satisfy ðA�hÞ.
Then ðv1; j1;B21Þ ¼ ðv2; j2;B22Þ.

Proof. Note first that (4.50) implies (4.31) so that Lemma 4.2 can be applied.

From (4.35) with k ¼ 0 and mild assumptions on v�, it follows that j�ðtÞ has a
limit in _HH 1 as t ! 0, thereby giving a meaning to the assumption j�ð0Þ ¼ 0.

Actually it follows from (4.35) (4.50) and ðA�hÞ that the limit exists in €HH 3.

We first prove the proposition for t su‰ciently small by using Lemma 4.2. We

define

y0 ¼ k3x4v�k2; y1 ¼ k‘Kþv�k2; Y0 ¼ sup
t A I

hðtÞ�1
y0ðtÞ:

From Lemma 4.2, especially (4.32) (4.33) (4.35) (4.50) and from (3.17), we

obtain

k‘B1�k2aCY0L
ah; ð4:51Þ

k‘ �BB1�k2aCY0t
�1Lah; ð4:52Þ

k‘kþ1j�k2 ¼ k‘ks�k2aC
n
Y0t

�k=2Lahþ dk;2

ð t

0

dt 0t 0�1L 0ay1ðt 0Þ
o

ð4:53Þ
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for 0a ka 2 and for all t a I , with L 0 ¼ 1� lnt 0. The time integral of the last

term in (4.53) converges because of the estimate

k‘v�k22a kv�k2kDv�k2aCY0L
ah

and we have replaced the ordinary derivative by the covariant one in that integral,

thereby producing an innocuous term with Y0L
1þ3ah. On the other hand from

(4.41) (4.51) (4.53) (3.17) we obtain

k‘B2�k2aCfY0tL
1þ3ahþ tI1ðk‘B2�k2L2aÞg: ð4:54Þ

From the assumptions on B2i, it follows that B2� a Ll
locðI ; _HH 1Þ with

k‘B2�ðtÞk2aCL2a:

Using that fact, one obtains easily from (4.54) that

k‘B2�k2aCY0tL
1þ3ah ð4:55Þ

for all t a I and for t su‰ciently small. Substituting that result into (4.42) gives

k‘ �BB2�k2aCY0L
1þ3ah: ð4:56Þ

Substituting (4.51) (4.52) (4.53) (4.55) (4.56) into (4.40) yields

jqty1jaC
n
Y0t

�1L2ahþ ðY0hy1Þ1=2t�1L2a þ La

ð t

0

dt 0t 0�1L 0ay1ðt 0Þ
o

ð4:57Þ

which takes the form

jqtyja f þ gy1=2 þ C

ð t

0

dt 0t 0�1L 02ayðt 0Þ ð4:58Þ

with

y1 ¼ Y0y; f ¼ Ct�1L2ah; g ¼ Ct�1L2ah1=2:

We define

zðtÞ ¼
ð t

0

dt 0t 0�1L 02ayðt 0Þ
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so that tqtz ¼ L2ay and

FðtÞ ¼
ð t

0

dt 0 f ðt 0Þ:

Integrating (4.58) over time with yð0Þ ¼ 0 yields

yðtÞaFðtÞ þ
ð t

0

dt 0gðt 0Þyðt 0Þ1=2 þ C

ð t

0

dt 0zðt 0Þ

aFðtÞ þ CtzðtÞ þ zðtÞ1=2
nð t

0

dt 0t 0L 0�2ag2ðt 0Þ
o1=2

: ð4:59Þ

The last integral is estimated by

ð t

0

dt 0t 0L 0�2ag2ðt 0ÞaCL2ah

by (4.50), so that (4.59) yields

yðtÞaFðtÞ þ C
�
tzðtÞ þ

�
zðtÞhðtÞ

�1=2
La

�
ð4:60Þ

and therefore

qtza t�1L2aF ðtÞ þ CL2azþ CðzhÞ1=2t�1L3a: ð4:61Þ

Integrating (4.61) over time (see for instance Lemma 2.3 in [3]) we obtain

zðtÞa expðCtL2aÞ
nð t

0

dt 0t 0�1L 02aFðt 0Þ þ
�ð t

0

dt 0t 0�1L 03ahðt 0Þ1=2
�2o

: ð4:62Þ

We next estimate

ð t

0

dt 0t 0�1L 02aFðt 0ÞaCL4ah;

�ð t

0

dt 0t 0�1L 03ahðt 0Þ1=2
�2

a

�ð t

0

dt 0t 0�2L 0ahðt 0Þ
��ð t

0

dt 0L 05a
�
aCL6ah

by (4.50) and an elementary computation. Substituting those estimates into (4.62)

yields

zðtÞaCL6ah
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and therefore by (4.60)

y1ðtÞaCY0L
4ah: ð4:63Þ

Substituting (4.51) (4.52) (4.53) (4.55) (4.56) (4.63) into (4.38) (4.39) yields

jqty0jaCY0t
�1=2h

and therefore by integration over time with y0ð0Þ ¼ 0

y0ðtÞaCY0t
1=2h

so that

Y0aCY0t
1=2

which implies that Y0 ¼ 0 and therefore v� ¼ 0 for t su‰ciently small. Sub-

stituting that result into (4.35) (4.55) shows that j� ¼ 0, B2� ¼ 0 and hence

ðv1; j1;B21Þ ¼ ðv2; j2;B22Þ.
The extension of the proof to the case of general t proceeds by similar but

more standard arguments. r

We now turn to the proof of Proposition 1.1.

Proof of Proposition 1.1. The first step consists in rewriting that proposition in an

equivalent form in terms of the variables ðuc;B2Þ where uc is defined by (2.4) or

(2.5).

Proposition 4.2. Let 0 < ta 1, I ¼ ð0; t�, ab 0. Let A0 be a divergence free

solution of the free wave equation such that B0 defined by (2.6)0 satisfy (4.36) for

all t a I . Let ðuci;B2iÞ, i ¼ 1; 2, be two solutions of the system (2.8) (2.9) such that

uci satisfy ðAþaÞ and that ðB� B0Þi CB1ðuciÞ þ B2i a Ll
locðI ; _HH 1Þ with

k‘ðB� B0ÞiðtÞk2aCð1� lntÞ2a ð4:64Þ

for all t a I . Assume in addition that uc� satisfy ðA�hÞ for some function

h a CðI ;RþÞ such that the function

hðtÞ ¼ t�1ð1� lntÞ3þ9a
hðtÞ ð4:65Þ
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be non decreasing for t su‰ciently small and satisfyð t

0

dt 0t 0�1hðt 0Þa chðtÞ ð4:66Þ

for all t a I .

Then ðuc1;B21Þ ¼ ðuc2;B22Þ.

We first show the equivalence of Proposition 1.1 and Proposition 4.2, with

t ¼ T�1 and hðtÞ ¼ h?ð1=tÞ. The equivalence of (1.10) for A0 and (4.36) for B0

follows from (2.6)0 and from the relations

SA0ðtÞ ¼ t�1D0ðtÞðtqtB0Þð1=tÞ

ðx � A0ÞðtÞ ¼ �t�1D0ðtÞ �BB0ð1=tÞ:

The equivalence of the assumption on ui in Proposition 1.1 with ðAþaÞ for uci
follows from (2.5), from the fact that V ¼ FV? and from the commutation relation

xUð�tÞ ¼ Uð�tÞðxþ it‘Þ

which implies that

j kUð�tÞv;Vk � kv;Vk ja jtj kv;H 3k

so that ðAþaÞ for uci is equivalent to ðAþaÞ for ~uuci. The equivalence of (1.12) for

A� A0 with (4.64) for ðB� B0Þ follows from (2.6). Finally the equivalence of the

assumption (1.13) for u� with ðA�hÞ for uc� follows from (2.4). r

We are now left with the task of deriving Proposition 4.2 from Proposition 4.1.

Proof of Proposition 4.2. Let ðuci;B2iÞ satisfy the assumptions of Proposition 4.2.

We need to construct ðvi; ji;B2iÞ satisfying the assumptions of Proposition 4.1.

The main step is to construct ji from uci. Now it follows from (2.14) that (2.17)

is equivalent to

qtj ¼ t�1gðucÞ þ �BB1LðucÞ ð4:67Þ

and we define the phases ji by integrating that equation over time with some ini-

tial condition ‘jiðt0Þ a €HH 2. It follows from Lemma 4.1, Part (1), with v replaced

by uc that ji satisfy (4.11) and from Part (2) with ðv; u; jÞ replaced by ðuc; v;�jÞ
that vi defined by (2.14) satisfy ðAþa1Þ with a1 ¼ 3þ 7a. Furthermore, again by

Lemma 4.1, Part (1), B1ðuciÞ ¼ B1ðviÞ satisfy the assumptions made on B� B0 in

Proposition 4.2, so that the latter are equivalent to the assumptions made on B2 in

Proposition 4.1.

It remains to ensure the assumption ðA�h1Þ on v� for a suitable h1. This will

be done by suitably adjusting the initial conditions for the phases ji. If ji, i ¼ 1; 2,
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satisfy (4.67), then j� is estimated in the same way as in Lemma 4.2 with v re-

placed by uc, namely,

k‘kþ1qtj�k2aCfðkuc�k2 þ dk;2k‘uc�k2Þt�1La þ t�1�k=2I�1ðk3x4uc�k2LaÞg

aCft�1Laðhþ dk;2h
2=3La=3Þ þ t�1�k=2Lahg ð4:68Þ

by using ðA�aÞ for uc� and estimating

k‘uc�k2a kuc�k2=32 k‘3uc�k1=3aCh2=3La=3:

We now adjust the phases as follows. We choose arbitrarily j1 with

‘j1ðt0Þ a €HH 2, we define j� by integrating (4.68) over time with initial condition

j�ð0Þ ¼ 0, and we define j2 ¼ j1 � 2j�. The integral of (4.68) converges for

0a ka 2 by (4.66) and yields

k‘kþ1j�k2aCfð1þ t�k=2ÞLahþ dk;2L
a=3h2=3g: ð4:69Þ

In particular ‘j2ðt0Þ a €HH 2 and

k‘j�k2aCLah: ð4:70Þ

We can now estimate v�.

v� ¼ ð1=2Þ
�
uc1 expðij1Þ � uc2 expðij2Þ

�
¼ ð1=2Þ expðij1Þ

�
uc1 � uc2 þ uc2

�
1� expð�2ij�Þ

�
so that

k3x4v�k2a k3x4uc�k2 þ ckuc2k3k‘j�k2aChð1þ L2aÞ ð4:71Þ

by ðAþaÞ, ðA�hÞ and (4.70). Therefore v� satisfies ðA�h1Þ with h1 ¼ hL2a. Finally

the assumption (4.50) for

h1ðtÞ ¼ t�1ð1� lntÞa1h1ðtÞ ¼ t�1ð1� lntÞ3þ9a
hðtÞ

is equivalent to (4.66).

Proposition 4.2 then follows from Proposition 4.1. r

We conclude this section by showing that Proposition 1.1 applies to the solu-

tions of the system (1.3) (1.5) constructed in II. Because of the equivalence

of Proposition 1.1 and Proposition 4.2, it is su‰cient to consider the solutions

ðuc;B2Þ of the system (2.8) (2.9). In II we proved the existence of solutions of

that system with prescribed asymptotic behaviour ðuca;B2aÞ as t tends to zero,
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with uc ¼ v expð�ijÞ and uca ¼ va expð�ijaÞ. It follows from Lemma 6.1 in II

(note that v, va of this paper are w, wa of II) that va a LlðI ;VÞ, ‘ja a
Ll

locðI ; €HH 2Þ and B2a a LlðI ; _HH 1Þ and from Proposition 7.1 in II that the same

properties hold for v, ‘j and B2. In particular v satisfies ðAþ0Þ so that by Lemma

4.1, Part (2), uc satisfies ðAþ3Þ. Furthermore v� va satisfies ðA�hÞ with

h ¼ t2ð1� lntÞ4 ð4:72Þ

and ðj� jaÞð0Þ ¼ 0. In particular if ðvi; ji;B2iÞ, i ¼ 1; 2, are two solutions of the

system (2.16)–(2.18) associated with the same va, then v� satisfies ðA�hÞ with h

given by (4.72), so that by the same argument as in the proof of Proposition 4.2,

but now with uc and v interchanged, uc� also satisfies ðA�hÞ. Therefore the solu-

tions constructed in II for fixed ðuca;B2aÞ satisfy the assumptions of Proposition

4.2 with a ¼ 3 and h given by (4.72), which proves uniqueness for fixed ðuca;B2aÞ
as chosen in II. Note that the proof uses Proposition 4.1 with a1 ¼ 24 and

h1 ¼ t2ð1� lntÞ6:

Remark 4.4. The construction of v from uc or of uc from v through (2.14), (2.17)

or (4.67) and Lemma 4.1, Part (2) entails some loss in the estimates, typically

from ðAþaÞ to ðAþa1Þ with a1 ¼ 3þ 7a. In the existence proof given in II, starting

from v satisfying ðAþ0Þ, we obtained uc satisfying only ðAþ3Þ, and a direct unique-

ness proof for uc can start only from that weaker assumption. The reconstruction

of v with only uc available to start with then produces another loss and yields only

ðAþ24Þ for v. Only that weaker assumption can then be used in the auxiliary

uniqueness result of Proposition 4.1, even though v was known to satisfy the better

estimate ðAþ0Þ to start with.

Remark 4.5. The loss on a in Lemma 4.1, part (2), can be reduced by using a

more accurate estimate than (4.5) in ðAþaÞ. If one assumes instead

k‘k3x4lvk2aCLka for 0a la 1; 0a k þ la 3;

then Lemma 4.1, Part (2), still holds with a1 ¼ 1þ 3a.
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