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Abstract. We prove the uniqueness of solutions of the Maxwell-Schrodinger system with
given asymptotic behaviour at infinity in time. The assumptions include suitable restric-
tions on the growth of solutions for large time and on the accuracy of their asymptotics,
but no restriction on their size. The result applies to the solutions with prescribed asymp-
totics constructed in a previous paper.
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1. Introduction

This paper is a sequel to a previous paper [6], hereafter referred to as II, where we
studied the theory of scattering for the Maxwell-Schrédinger system (MS) in 3 + 1
dimensional space time. That system describes the evolution of a charged non-
relativistic quantum mechanical particle interacting with the (classical) electro-
magnetic field it generates. It can be written as follows:

idu=—(1/2)Aqu+ Au
04, — 3:(0,Ae +V - A) = |u)? (1.1)
04 + V(3,4 +V - A) = ImaV qu

where u and (4, A4,) are respectively a complex valued function and an R**!
valued function defined in space time R3*!, V,=V—id and A, = Vfl are the
covariant gradient and covariant Laplacian respectively, and 0 = 6? — A is the
d’Alembertian. An important property of that system is its gauge invariance,

namely the invariance under the transformation

(u,4,4,) — (uexp(—i@),A - V0,4, + 6;0),
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where 0 is an arbitrary real function defined in R**!. As a consequence of that
invariance, the system (1.1) is underdetermined as an evolution system and has
to be supplemented by an additional equation, called a gauge condition. In this
paper, we shall use exclusively the Coulomb gauge condition, namely V-4 = 0.
Under that condition, the equation for A4, can be solved by

Ao = A uf> = (dnlx]) "« uf? = g(u) (1.2)

where « denotes the convolution in R®. Substituting (1.2) and the gauge condition
into (1.1) yields the formally equivalent system

idu=—(1/2)Aqu+ g(u)u (1.3)
04 = PImaV,u (1.4)

where P = 1 — VA™'V is the projector on divergence free vector fields.

The MS system is known to be locally well posed both in the Coulomb gauge
and in the Lorentz gauge 0,4, + V - 4 = 0 in sufficiently regular spaces [8] [9], to
have weak global solutions in the energy space [7] and to be globally well posed in
a space smaller than the energy space [10].

A large amount of work has been devoted to the theory of scattering and
more precisely to the existence of wave operators for nonlinear equations and sys-
tems centering on the Schrédinger equation and in particular for the Maxwell-
Schrodinger system [2] [4] [6] [12] [14]. As in the case of the linear Schrodinger
equation, one must distinguish the short range case from the long range case. In
the former case, ordinary wave operators are expected and in a number of cases
proved to exist, describing solutions where the Schrédinger function behaves
asymptotically like a solution of the free Schrodinger equation. In the latter case,
ordinary wave operators do not exist and have to be replaced by modified wave
operators including an additional phase in the asymptotic behaviour of the
Schrédinger function. In that respect, the MS system in R**! belongs to the border-
line (Coulomb) long range case. We refer to II and [5] for general background and
additional references on that matter.

The main step in the construction of the (modified) wave operators consists in
solving the local Cauchy problem with infinite initial time. In the long range case
where that problem is singular, that step amounts to construct solutions with
prescribed (singular) asymptotic behaviour in time. For the MS system in the
Coulomb gauge (1.3) (1.4), that step was performed in II by replacing the original
system by an auxiliary system, solving the corresponding problem for that system
and then returning to the original one. In particular we derived an existence
and uniqueness result for solutions of the auxiliary system with prescribed time
asymptotics, from which an existence result for solutions of the original system



Uniqueness at infinity for Maxwell-Schrédinger 511

with prescribed time asymptotics follows. However uniqueness was proved only
for the auxiliary system, thereby leaving uniqueness for the original one open.
The purpose of the present paper is to supplement the previous results with a
direct uniqueness result for the original system, expressed in terms of the original
functions (u, 4).

In order to state that result we first replace the equation (1.4) for 4 by the

associated integral equation with prescribed asymptotic data (4., 4, ), namely

A=Ay — JOC di'o~"sin(w(t — ') PIm(aV 4u) (1) (1.5)

t

1/2

where w = (—A) /~ and A, is the solution of the free wave equation 04y = 0 given

by
Ay = (coswt)A, + o (sinwt)4,. (1.6)

In order to ensure the gauge condition V-4 =0, we assume that V-4, =
V-A, =0. Asa consequence x - Ay is also a solution of the free wave equation.
The uniqueness result will be stated for the MS system in the form (1.3) (1.5).
Since the Cauchy problem for that system is singular at 1 = oo, especially as re-
gards the function u, the uniqueness result for that system takes a slightly unusual
form. Roughly speaking it states that two solutions (u;, A;), i = 1,2, coincide pro-
vided u; and 4; — Ay do not blow up too fast and provided u; — u; tends to zero in
a suitable sense as t — oo. In particular that result does not make any reference to
the asymptotic data for u, which should characterize its behaviour at infinity.

In order to state the result we need some notation. We denote by || - ||,
the norm in L" = L"(R?), 1 <r <o and by H' = H'(R?) the homogeneous
Sobolev space

H'={v:VveL?andve L°}.
We shall need the space
V. ={v:<{x>% e L? (x)*Vv e L?}, (1.7)
where (- > = (141 \2)1/2, and the dilation operator
S=10,+x-V+1. (1.8)

It follows from the commutation relation OS = (S + 2)O that SA4, satisfies the
free wave equation if 4y does. We shall use the notation

() = U(—t)u(r) (1.9)
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where U(7) = exp(i(7/2)A) is the unitary group which solves the free Schrodinger
equation. We denote non-negative integers by J, k, /.
The main result can be stated as follows.

Proposition 1.1. Let 1 < T < o0, I =[T,0) and 0. > 0. Let Ay be a divergence
free solution of the free wave equation satisfying

IVEST Ao (D), + [VEx - Ao(D)]|,, < Ct™' forO<j+k<1  (1.10)

oo

forallt e I. Let (u;, A;), i = 1,2, be two solutions of the system (1.3) (1.5) such that
i€ LE (I, V), Ai — Ao € LE (I, H") and such that

loc
XV (1), < C(1+/nt)*  for0</<1,0<k+/<3, (111)
IV(4; — o) (D), < Cr V2 (1 + £ne)™, (1.12)
[<x/ (w1 —uz) (1) ||, < Chu(r) (1.13)
for all t € I, where h, € €(I,R") is such that the function

ho(t) = t(1 + £nt)* ™R (1) (1.14)

be non increasing for t sufficiently large and satisfy

Jw dr't'h (1) < chy (1) (1.15)

t

forallt el
Then (ul,Al) = (uz,Az).

Remark 1.1. As mentioned previously, S4y and x - 4y are solutions of the free
wave equation. The time decay in (1.10) is the optimal decay that can be obtained
for solutions of that equation. Sufficient conditions on 4., A ensuring that decay
are well known (see for instance [13]).

Remark 1.2. Typical functions 4, satisfying the assumptions of Proposition 1.1 are
h(t) = t (1 4 /nt)",
with 4 > 1 and p real.

Remark 1.3. It will be shown below that the solutions of the system (1.3) (1.5)
obtained in II (see especially Proposition 7.2 in II) satisfy the assumptions of
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Proposition 1.1 with « =3 and A, (¢) = r2(1 + /nt)* so that Proposition 1.1
applies to those solutions.

Proposition 1.1 will be proved by going to the above mentioned auxiliary
system and generalizing the uniqueness proof for that system obtained in II (see
Proposition 4.2 of 11).

This paper is organized as follows. In Section 2, we derive the auxiliary system
which will replace the original system (1.3) (1.5). In Section 3, we collect some
notation and preliminary estimates. In Section 4, we derive the uniqueness result,
first for the auxiliary system and then for the original one.

2. The auxiliary system

In this section we perform a change of unknown functions which is well adapted
to the study of the system (1.3) (1.5) for large time and we derive the auxiliary
system satisfied by the new functions. The unitary group U(¢) which solves the
free Schrodinger equation can be written as

U(1) = exp(i(t/2)A) = M (1)D(1)FM (1) (2.1)
where M (¢) is the operator of multiplication by the function
M(t) = exp(ix?/21), (2.2)
F is the Fourier transform and D(z) is the dilation operator defined by
D(t) = (i) Do(1), (Do) f)(x) = f(x/1). (2.3)

We first change u to its pseudo-conformal inverse u. defined by

or equivalently,

u(t) = Fu.(1/1), (2.5)
where for any function f of space time
[ty =U=0f(t).
Correspondingly we change 4 to B defined by

A(t) = ' Do (1) B(1/1). (2.6)
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The transformation (u, 4) — (u., B) is involutive. Furthermore it replaces the
study of (u, A) in a neighborhood of infinity in time by the study of (u., B) in a
neighborhood of 1 = 0.

Substituting (2.4), (2.6) into (1.3) and commuting the Schrédinger operator
with M D, we obtain that

{(io, + (1/2)A4 — g(u))u} (1)
— 2 M(0)D(0) (10, + (1/2)As — B — - Tg(u))uc }(1/1)

where for any R® vector valued function f of space time

f(t,x)=1"x- f(1,x). (2.7)
Furthermore
m(aV ) (1) = 1> Do(0){x|uc|* — tTm .V pu}(1/1)
by a direct computation, so that the system (1.3) (1.5) becomes

i, = —(1/2)Agu, + Bu, + t'g(uc)u, (2.8)
Bz = e%)z(uc, B) (29)

where By is defined by (2.6)y and

B>=B— By — B, (2.10)

By = By(u) = —F (Px|u|), (2.11)

B> (ue, B) = tF>(PImii.Vpu,), (2.12)
F(M) = J:O dw ! sin(w(v — 1)) Do(v) M (1/v). (2.13)

Here we take the point of view that Bj is an explicit function of u, defined by
(2.11) and that (2.10) is a change of dynamical variable from B to B,. The equa-
tion (2.9) then replaces (1.5).

In order to take into account the long range character of the MS system, we
parametrize u, in terms of a complex amplitude v and a real phase ¢ by

u. = vexp(—ip). (2.14)

The role of the phase is to cancel the long range terms in (2.8), namely the
contribution of B; to B and the term #'g(u.). Because of the limited regularity
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of Bj, it is convenient to split B; and B into a short range and a long range
part. Let y e 4°(R*R), 0 <y <1, x(&) =1 for |¢| <1, x(&) =0 for |&] > 2.
We define

By = By = F*y(-1'*)FB
{VL VlL ) Z(V ) V1 ) ) (2.15)
Bs =By + Bis+ By, Bis=B;—BiL
We then obtain the following system for (v, ¢, By)
i0v = Hv (2.16)
00 =t 'g(v) + By (v) (2.17)
Bz = e%’2(1],1(7) (218)
where
H = —(1/2)Ag + Bs, (2.19)
K=B+Vp=B+s, (2.20)

by imposing (2.17) as the equation for ¢. Under (2.17), the equation (2.8) becomes
(2.16). The system (2.16)—(2.18) is the auxiliary system which replaces the original
system (1.3) (1.5).

3. Notation and preliminary estimates

In this section we introduce some notation and collect a number of estimates
which will be used throughout this paper. We denote by || - ||, the norm in
L" = L'(R*). For any non negative k we denote by H* = H*(R?) the standard
Sobolev spaces

H" = {ue 7' (R) : |lu; HY|| = |[<w)*ull, < o0},
where (- > = (1+-1)"? and = (—~A)"?. In addition we will use the associ-

ated homogeneous spaces H* with norm ||u; H*|| = ||@*u||,. Tt will be understood
that H' < L°. For any k > 2 we shall use the notation

H'=H'~H*

For any Banach space X = %'(R?) we use the notation

FX ={ue ' (RY: Flue Xx}.
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For any interval I and any Banach space X we denote by (I, X) the space
of strongly continuous functions from / to X and by L* (1, X) (resp. L{S.(I, X))
the space of measurable essentially bounded (resp. locally essentially bounded)
functions from 7/ to X. For any real numbers ¢ and » we use the notation
av b= Max(a,b) and a Ab = Min(a, b).

We next give estimates of the short and long range parts of B; defined by
(2.15), namely

lo” Bus|ly < 477" Bys|ly < (72 0" By (3.1)
for m < p and similarly
" Birll, < 2P| Birll, < (2672w Byl (3.2)
for m = p.

We now estimate F;(M) defined by (2.13), (2.3) and G;(M) defined similarly
by:

Gi(M) = rc dvw™ cos(w(v — 1)) Do(v) M (t/v). (3.3)

From (2.13) it follows that

OF (M) = Fyi(oM), (3.4)
0 (M) = Fyy1(8,M), (3.5)
x-Fj(PM) =F,_i(x- PM). (3.6)

The first two identities are obvious, while in (3.6) we have used the identity
x. f(@)]- P =0
which holds for any regular function f. In addition a direct computation yields
x-PM=P(x®M)—-207°V-M
from which (3.5) can be continued to
x-Fj(PM) = F_{(P(x® M) — 20V - M). (3.7)
Clearly the identities (3.4) (3.5) (3.6) (3.7) hold with F; replaced by G;. The

following lemma provides an expression for the time derivative of Fj(M) which
does not contain the time derivative of M.
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Lemma 3.1. Let Fi(M) and G;(M) be defined by (2.13) and (3.3) respectively.
Then

10,F;(M) = —Fi((x-V+ j+1)M) + G;(M). (3.8)
Proof. From (3.5) we can write

[e¢]
10,F,(M) = _J dw o sin(o(v — 1)) Do o, M(t/y).  (3.9)
1
Using the commutator identity
(vdy + x - V)Dy(v) = Dy(v)vo,
we obtain

10,F;(M) = — Jlm dw ! sin(w(v —1))8,(Do(v)M(1/v)) — F(x - VM)

from which (3.8) follows by integration by parts over the v variable. O

In order to estimate F; and G; we define

L) = jf dw T f (1)) (3.10)

for any j € R and for any non negative function f defined in R™. The estimates
on Fj and G; are summarized in the following lemma.

Lemma 3.2. For any m, j € R the following estimates hold:

1)
lo™ E;(M)ll, < cljym-2(|0" ™ Mlly Allo™ M), (3.11)
0™ G (M)l < elprm—a([|™ M]|,). (3.12)

)
lo™x - F(PM)||y < eljm-3([[<xda™ ™ ML), (3.13)
lo™x - Gi(PM)|ly < clm-3([lx" M|, + "' M]),). (3.14)

(3) Forany r,2 <r <4,

IF(M)]], < ch dvy™ TN M (1), (3.15)
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and

»
1G;(M)]], < CL dw 2T oM (1)), (3.16)

with 3/ry =2+ 1/r.

Proof. Part (1). From the definition of F; and G, from (3.4) and the analogue for
Gj, from the identity

lo” Do(v)oll, = v+ ™o,
and from the estimates
lsin(w(v—1))| < Trwv, |cos(w(v—1))| <1
we obtain easily (3.11) and (3.12).
Part (2) is an immediate consequence of (3.7), of the analogue for Gj;, and of

Part (1).
Part (3). From the pointwise estimate [1] [11]

[|sin(w(v —1))v||, v||cos(w(v — 1))v||, < e(v— 1) 2w )

with 2 <r < oo and 1/r + 1/7 = 1, it follows that

o0

IF(M)]|, < J dv(v — 1)y o M (1))

and
1G;(M)]], < CJ dv(v = 1) I M (1)
1
which imply (3.15) and (3.16) by Sobolev inequalities. O

In order to take into account the time decay of norms of some variables as
¢ tends to zero, we shall introduce a function 4 € (I, R"), where I = (0, 7] for
0 < 7 < 1, such that the function A(¢) = t~(1 — /nt)”h(t) with y > 0 be non de-
creasing in / and satisfy

t
J dr't' " h(t') < ch(r)
0
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for some ¢ > 0 and for all # € I. By an elementary computation we then obtain

13
L(eH(1 = /nt)"'h) (1) = t“/z‘fj dr't"1 241 — ) (1)
0

< ct™(1 — (nt)"h(1) (3.17)

for any real g, provided that j +3/2 > /.

In all the estimates in this paper we denote by C a constant depending on the
unknown functions through the available norms. Absolute constants, denoted by
¢ in this section, will in general henceforth be omitted. The letters j, k, / will
always denote non negative integers.

4. Uniqueness

In this section we prove Proposition 1.1. This will be done by replacing the orig-
inal system (1.3) (1.5) by the auxiliary system (2.16)—(2.18) and deriving first a
uniqueness result for the latter. We recall that the functions B} and %, are defined
(cf. (2.11) (2.12)) by

By (v) = —F (Px|v]?), (4.1)
%Q(U, K) = [FQ(PIIIITJVKU).

The latter will be used in general with
K=B+s=By+ Bi(v)+ B>+ V. (4.3)
We shall need the space
V={v:ve H®and xv € H?} (4.4)

with the natural norm, and for 0 < 7 < 1, I = (0, 7] and o > 0, we shall make use
of the assumption

(Ayo) ve Ly (I,V)and
lo(2); V|| < CL* (4.5)

forall t € I, where L = 1 — /nt.
We first prepare the uniqueness result for the system (2.16)—(2.18) with two
lemmas.
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Lemma 4.1. Let 0 <t <1,1=(0,7], 2« > 0 and let v satisfy (A+o). Then
(1) Bi(v) € LE(I,HY), VBi(v) € LE(I,H?), g € LE(I,H®), 0,B1(v) €

loc loc loc

Ly (1, H?) and the following estimates hold for all t € I:

V5B (v)], < CL* forl <k <4, (4.6)
IVEB ()|, < Cr'L**  for2 <k <3, (4.7)
|V5g(0)|, < CL* Jor1 <k <5, (4.8)
IV50,Bi(v)]l, < Cr 'L for 1 <k <2. (4.9)
Let in addition ¢ satisfy (2.17). Then Vo,p € LE, (I, H?) and
IVE o0, = V50|, < CrL*  for 1 <k <2. (4.10)
Let in addition Vo(ty) € H? for some ty € I. Then Vo € €(I, H*) and
[VFHg|l, = VS|, < CLY™ for 1 <k <2. (4.11)
(2) Let in addition u = vexp(—ip). Then u satisfies (A o) with oy =3 + To.
(3) Let in addition By satisfy
IVEBy(1)]|,, < Ct ™% for0<k<1 (4.12)
and let By € L (I, H") satisfy
VB, (1)|, < CL* (4.13)

for all te I Then %,(v,K) e Ly

loc

(Ia HZ): 9?2(03 K) € Ly,

loc

(I, H?), 0,%,(v,K) €

L (I, H") and the following estimates hold for all t € I:
|V*%,(v, K)|, < CL** for0 <k <2, (4.14)
V5B (v, K)||, < Ct 'L for 1 <k <2, (4.15)
V50,2, (v,K)|, < Cr''L*  for0 <k <1 (4.16)

where K is given by (4.3).

Remark 4.1. The condition V/ € H? seems to leave some ambiguity on the na-
ture of /. However it implies that V/ € L™ by Sobolev inequalities and therefore
that (x)~'f e L*. This occurs in particular in Part (1) for B|(v), ;¢ and ¢ for
fixed time.
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Proof. Part (1). We first derive the estimates (4.6)—(4.11).
It follows from (4.1) and (3.11) that

IVEB (0)l, < L (|IVF ' xo) ) < CL*  forl <k <4

by (A4 o) and Holder and Sobolev inequalities. Similarly from (3.13)

IVEB (0)]l, < Lo (|| x>V x|o]?||,) < CL*  for2 <k < 3.
(4.8) is obvious. It follows from (3.8) (3.11) (3.12) that

IV520:B1 (0) 1, < B (V7 (- V + 200, + [V x]0,)
< CL*™ forl<k<2.
(4.10) follows from (2.17) (4.7) (4.8) while (4.11) follows from (4.10) by integration
over time.
In order to complete the proof, we need to estimate a lower norm of B, VB,

g, 0;B; and Vd,p in order to show that those quantities belong to H'. We estimate
them in L* norm by using the special case r = 4 of (3.15), (3.16), namely

o]

£ (M)]ly < Jl dv(v = 1) 2T M (tfv)]l 5 (4.17)

and similarly for (3.16), and by using the Hardy-Littlewood-Sobolev (HLS) in-
equality for g. The right hand side of (4.17) and of the other estimates with the
appropriate M is then estimated by the use of (A4, «).

Part (2) follows from (A, a) and (4.11). The required estimates use only the
norm of Vg in H? and the worst contribution comes from

6]Vl 15 < [0l [ Ve|l} < CL*+30+20

in the estimate of ||V3u,.
Part (3). We first derive the estimates (4.14)—(4.16). We rewrite (4.2) as

%B>(v,K) = tF>(P(Im Vv — (By + Bi(v) + By + 5)|0]%)). (4.18)
From (3.11), we estimate

IV*%a (v, K)l5 < th([[0Voll, + [|Bo + Bi(v) + sl . [lollz + [ B2 ls[o[1E)
< CtL'"™  for0<k<l, (4.19)
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IV>%(v, K) |l
< th(|[V(EVo)|, +2|Bo + Bi(v) + 5|, |0Vl

+[IV(Bo + Bi@))]], 103

+ V(B2 + 9)[l,(IIv]|, + 21[8Vo]l5)) < CL* (4.20)
by (4.a) (4.6) (4.11) (4.12) (4.13). This proves (4.14). Note that in (4.20) the
dominant contribution comes from the term with VBjy. All the other terms con-
tribute at most CtL'*** as in (4.19). The proof of (4.15) is similar, with the factor

t omitted, with [; replaced by [;_; and the factor x absorbed by v.
(4.16) follows from (4.2) (3.8) (3.11) (3.12). We obtain

V50,5 (v, K) |5 < tIe(||(x - V + 2) Im 5V ko], + ||V Im 5V o|,) o
< CL* for0<k<I, '

by (4,a) (4.6) (4.11) (4.12) (4.13). The dominant contribution comes from
Il - (VBo)|o* [l < IVBoll.o lx|of[l, < Cr 'L,

In order to complete the proof, in the same way as in Part (1), we estimate the L*
norm of B,(v, K) by using (4.17) with the appropriate M and estimating the right
hand side thereof through (A, «) (4.6) (4.11) (4.12) (4.13). I
Remark 4.2. For k = 1, we have in fact obtained the better estimate

VB2 (v, K) ||, v t|| VB2 (v, K)||, < CtL'™ (4.22)

in (4.14), (4.15). For k=2, we could also have obtained better estimates by
replacing the assumption (4.12) with

IVBol, < Ci7”

which is also satisfied if A is a sufficiently regular solution of the free wave
equation. However the estimates (4.14) (4.15) are sufficient for later purposes.

We next estimate the difference of two solutions of the auxiliary system (2.16)—
(2.18). For two functions or operators of the same nature f;, i = 1,2, we shall

use the notation fy = (1/2)(fi + f2), so that fi=/f, + /., o=/ —f and
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(f9)s = frg+ + f-g5. If (vi,9;, Ba), i = 1,2, are two solutions of the auxiliary
system (2.16)—(2.18), then (v_,p_, B, ) satisfies the system

l’an7 == H+07 + H71.7+ (423)
dp_=t'g + B (4.24)
By = tF(P2Imo, Vg, o — K_(jvi|* + [v_])) (4.25)

where
H, = —(1/2)Ak. + (1/2)K? + Bsy, (4.26)
H_=iK_-Vg + (i/2)(V-s_) + Bs_, (4.27)
Bi_ = (1/2)(Bi(v1) — Bi(12)) = —F1(2PRex7,v-), (4.28)

Bs, and By, are defined by similar formulas, and ¢g_ and K, are obtained from
gi = ¢(v;) and

K; = By + B1(v;) + Bai + Vo, (4.29)
For0<t<1,I=(0,7] and 1 € ¥(I,R"), we introduce the assumption
(A_h) <{x)v_e L*(I,L?) and
v (D)l < Ch(r) (4.30)
forallt e I.

Lemma 4.2. Let0<7t<1,1=(0,7], x>0, and let h € €(I,R") satisfy

J dit3PLh(1) < . (4.31)
0

(1) Let vi, i=1,2 satisfy (Aya) with v_ satisfying (A-h). Then B\_ €
L*(I,H"), Bi_ e LY (I,HY), g- € L (I, H?), and the following estimates hold
foralltel:

IVB1-[l; < Chy([[v-[[,L7), (4.32)
IVB1- ||, < Cr ' L (| <o ||,.L%), (4.33)
IV g Il < Clo-ll, + 0 llVo_[)L*  for0<k <2 (434)
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Let in addition ¢, i = 1,2, satisfy (2.17) with v = v Then d,p_ € L (I, H*) and
the following estimates hold for all t € 1
IVl = V5005l < e+ 2l1V0- )" L
+ L ([Koe [LL)} for0<k <2 (439)

(2) Let By satisfy
|V5(10,) Bol| . v |[V¥Bo||,, < Cr*  for0<j+k<1 (4.36)

Sforall t e I. Let (vi,9;, Ba), i = 1,2, be two solutions of the system (2.16)—(2.18)
such that v; satisfy (A,«), such that By; € LY (I, H") with

loc

|VByi()||, < CL* (4.37)

Sor all t € I, and such that Vo,(ty) € H? with Vo_(t0) € L* for some ty € I, so that
s.=Vo_ eI, H?) by (4.35). Then the following estimates hold:
[0ullo- 2] < C{IVB-|, L 4 || Vs ||, L% + [|s- ||, L1
+ [IVBi_||,t"*L* + |VB>_|,L*} = E(1), (4.38)
Bl o] < V.ol + E(0), (4.39)
0l o=l < C{lo-ll + o 1) L3 + sl L%
VB L7 4 Vs [,L % + [VV -5 L

+ IVBI-[L7 + [[VBy- ||, L7, (4.40)
IVBa-|ly < ey ([Jo-[,L"% + (sl + [IVB-[l) L), (4.41)
IVB2-lly < To([o-[lLL" + (lls= [l + IVB-II,) L*). (4.42)

Remark 4.3. The assumption that v_ satisfies (4_/) with & satisfying (4.31)
serves to ensure the finiteness of the RHS of (4.33) and is never used otherwise.
Similarly the assumption that V_(¢y) € L? serves only to ensure tha s_ € (I, L?).

Proof. Part (1). We first derive the estimates (4.32)—(4.35). It follows from (4.28)
(3.11) (3.13) and (A4, o) that

IVBi-, < 2h([[xo1v-[l;) < Clo([lo-[,L7),
IVBi-ll; < 20 Ly ([0 0- ) < Cr L ([[<apo- [, L),
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while
IV gl = 2IV* o0 |

from which (4.34) follows by the use of (A4, x). (4.35) follows from (2.17) (3.2)
(4.33) (4.34).

In order to complete the proof, we need to estimate a lower norm of B;_, Bj_
and g. As in the proof of Lemma 4.1, Part (1), we estimate the L* norm of those
quantities by using (4.17), the HLS inequality and (A4,«).

Part (2). We first note that from (2.18) and Lemma 4.1, Part (3), especially
(4.14)—(4.16), it follows that B, € L.(I,H?), By, € LX.(I,H?*), 0,By, €

loc loc
L

(I, H") and that the following estimate holds for all 7 € /
|By; H?|| v t||Bay; H?|| v ||t0,Bas s H'|| < CL*. (4.43)

Together with (4.36) and with Lemma 4.1, Part (1), especially (4.6) (4.11), this
implies that K, e LS (I, H 2) and that K, satisfies the estimate

K- < C||Ky; H?|| < CL (4.44)
We next estimate ||v_||,. From (4.23) (4.27) (3.1) we obtain

|Ollo-lo| < [[H-v4]],
< C{IVB_ |5 ([[Voslls + 1Kl [ 13)
F Vs [ (IVolls + lloell)
+ (sl K lloe + 22 IVBI- )0l
+ VB |5 llo4 115}, (4.45)

from which (4.38) follows by the use of (4. a) and (4.44).
We next estimate ||xv_||,. From (4.23) and the commutation relation

[x7 H+] = VK+
we obtain that
0l xo- |l < [[Vk,o- I, + [IxH-v ],

from which (4.39) follows by estimating the last norm in the same way as in
(4.45), with the additional factor x everywhere absorbed by v,. We next estimate
|Vk, v_||,. Taking the covariant gradient of (4.23) yields
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i0,Vk,v- = —(1/2)Vg, Ak, v_ + ((1/2)K? + Bsy ) Vg, v_
+ (0K, + K_VK_+VBg )v_
+iK_ Vg vi +i(VK) - Vi v
+ (i/2)(V -5 )Vg, vy + (i/2)(VV - 5_ vy
+ Bs_ Vi, vy + (VBs_)vs (4.46)

from which we estimate

|0:IVi, v-|5] < 1(0:Ky 4 VBsi)v_ |, + I|K_ - V%<+U+||2
+ IV (1, oL, + IK-0-1].,)
+IVV s lylloll,
+ VB (P Vk il + o+ ]].)
VB (1Y 245 + o l..)- (4.47)
We next estimate the first two terms in the right hand side of (4.47). We
estimate
10K+ + VBsy )|l < [[0,(s+ + Bo + Biy.)
+V(Bo + Biy)ll c [lo- 1l
+ 110:Bay + VBt [lgllv-|I5
< C(llo-lly + [lo-[l5)e~'L* (4.48)

where we have used (4.7) (4.9) (4.10) (4.36) (4.43), and

IK-V&_ vl
< lls- 51Vl + V(55 + Bay)llgllo+11.,)
+ sl Ko Vol + (IV(Bo + Bio)ll, + 1K) o4 ]0)
+ 1Bl (V201 ll3 + 1Ko [V lls + IV(Bo + Bis )| [0+ 5
V(s + Ba)lglloslls + 1K N2 1o ]15)
< Cllls [ 4 (lls-[l, + [IVB-[l,)r~'L*} (4.49)
where we have used (4.a) (4.6) (4.11) (4.36) (4.43) (4.44).

Substituting (4.48) (4.49) into (4.47) and estimating the remaining terms of
(4.47) by the use of (4,x) and (4.44) yields (4.40).
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We finally estimate B, . From (4.25) and (3.11) (3.13) we obtain

IVBy_ |l < th(JJo-|,[IV&. o4 ]l + Is-[lallos 1% + 1B-[lgllv<1le)
IVB,_l5 < Io(|[<x>o— 5[V, v ||y =+ s llog [l o [ <xDv |l
+1B-gllvs ll6ll<xdvll6)

from which (4.41) (4.42) follow by the use of (4.«) and (4.44). O
We now state the uniqueness result for the system (2.16)—(2.18).

Proposition 4.1. Let 0 <t <1, let I = (0,7], « > 0 and let h € €(I,R") be such
that h(t) = t~'(1 — /nt)*h(t) be non decreasing and satisfy

Jldt/t/lh(t') < ch(t) (4.50)

for some ¢ > 0 and for all t € I. Let By satisfy (4.36) for all t € I. Let (v;, ¢;, Bai),

i=1,2, be two solutions of the system (2.16)—(2.18) such that v; satisfies (A, a),

such that By € LY (I, H") satisfy (4.37) for all t € I, and such that Vo;(ty) € H>

for some ty € I. Assume in addition that ¢_(0) = 0 and that v_ satisfy (A_h).
Then (01 y Pty Bz]) = (Uz, (%) Bzz).

Proof. Note first that (4.50) implies (4.31) so that Lemma 4.2 can be applied.
From (4.35) with &£ = 0 and mild assumptions on v_, it follows that ¢_(z) has a
limit in H' as ¢t — 0, thereby giving a meaning to the assumption ¢_(0) = 0.
Actually it follows from (4.35) (4.50) and (A_#) that the limit exists in H°.

We first prove the proposition for 7 sufficiently small by using Lemma 4.2. We
define

yo =<0 |l,  yi=IVko_|ly, Yo =sup h(t) yo(2).

tel

From Lemma 4.2, especially (4.32) (4.33) (4.35) (4.50) and from (3.17), we
obtain

|VB;_||, < CYoL*h, (4.51)
|VBi_||, < CYot 'L, (4.52)

t
IVl = [IV5s- |, < C{Yot_k/zm +5k7zj dz’z’—lL’“yl(r’>} (4.53)
0
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for 0 <k <2 and for all r € I, with L’ =1 — /nt’. The time integral of the last
term in (4.53) converges because of the estimate

IV 3 < [lo-|l,l|Av-l, < CYoL*h

and we have replaced the ordinary derivative by the covariant one in that integral,
thereby producing an innocuous term with Y,L!'*3*h. On the other hand from
(4.41) (4.51) (4.53) (3.17) we obtain

IVBy_||, < C{YotL"**h + tI(|IVBy_|,L*)}. (4.54)
From the assumptions on By;, it follows that B, € L5 (1, H 1) with
IVB>- ()]l < CL*.
Using that fact, one obtains easily from (4.54) that
VB, ||, < CYotL'"™h (4.55)
for all ¢ € I and for 7 sufficiently small. Substituting that result into (4.42) gives

|IVBy_||, < CYoL'"*h. (4.56)

Substituting (4.51) (4.52) (4.53) (4.55) (4.56) into (4.40) yields

t
01| < c{ Yot 'L¥h + (Yohyl)l/zt’le“—l—L“J dt’z’*lL’“yl(t')} (4.57)
0

which takes the form
t
ul < £+ oy + | dr L) (4.58)

with
yi =Yy, [f=Cr'L¥h, g=Cr'L>h'2

We define

t
2(f) = JO dt't 'L y(t)
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so that 10,z = L**y and

F(t) = J; dr'f(t).

Integrating (4.58) over time with y(0) = 0 yields

y(1) < F(1) + J; di'g()y(t)"> + CJ(: dr'z(1')

< F(t) + Ctz(1) + z(t)l/z{Jtdt/z/L’z“gz(t/)}
0

The last integral is estimated by

t
J dr't'L'=>g*(t') < CL*h
0

by (4.50), so that (4.59) yields

y(t) < F(t) + C(tz(2) + (z(2)h(1)) 1/2L°‘)
and therefore

0,z < 1 'LPF(1) + CL*z 4 C(zh)"*r ' L.

12
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(4.59)

(4.60)

(4.61)

Integrating (4.61) over time (see for instance Lemma 2.3 in [3]) we obtain

(1) < eXp(Cszx){Jtdzfz’IL/NF(Z,) + (J
0 0

We next estimate

t
J dr't"'L**F(¢') < CL*h,
0

0 0 0

(Jldz’t"%’“‘h(t’)‘”)2 < (Jldz’t"zL’“h(t’)) (J’dt'L/S“) < CL%h

t 2
dz/t’*lL““h(t/)l/z) } (4.62)

by (4.50) and an elementary computation. Substituting those estimates into (4.62)

yields

z(t) < CL™h
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and therefore by (4.60)

y1(1) < CYoL*h. (4.63)
Substituting (4.51) (4.52) (4.53) (4.55) (4.56) (4.63) into (4.38) (4.39) yields
|6.v0] < CYor V21
and therefore by integration over time with y¢(0) = 0
yo(1) < CYot'?h
so that
Yo < CYyr'/?

which implies that Yy =0 and therefore v_ = 0 for 7 sufficiently small. Sub-
stituting that result into (4.35) (4.55) shows that ¢_ =0, B, =0 and hence
(v1, 91, Ba1) = (02,92, Bn).

The extension of the proof to the case of general 7 proceeds by similar but
more standard arguments. ]

We now turn to the proof of Proposition 1.1.

Proof of Proposition 1.1. The first step consists in rewriting that proposition in an
equivalent form in terms of the variables (u., B,) where u, is defined by (2.4) or
(2.5).

Proposition 4.2. Let 0 <t <1, I =(0,7], «>0. Let Ay be a divergence free
solution of the free wave equation such that By defined by (2.6) satisfy (4.36) for
all t € I. Let (ug, Ba), i = 1,2, be two solutions of the system (2.8) (2.9) such that
U satisfy (A,o) and that (B — By); = Bi(ue) + By € LY, (I, H') with

19(8 — Bo),(0)l, < C(1 — £n)* (4.64)

Sfor all tel  Assume in addition that u._ satisfy (A_h) for some function
he €(I,R") such that the function

h(t) = (1 = ¢nt) *h(1) (4.65)
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be non decreasing for t sufficiently small and satisfy

rdt’z"‘/?(t’) < ch(t) (4.66)
0

foralltel.
Then (uc1, Ba1) = (ue2, Bn).

We first show the equivalence of Proposition 1.1 and Proposition 4.2, with
= T"" and h(t) = h,(1/t). The equivalence of (1.10) for 4y and (4.36) for By
follows from (2.6)y and from the relations

SAo(t) =t Do(1)(t0,Bo)(1/1)
(x - A0)(1) = —'Do(1)Bo(1/1).

The equivalence of the assumption on u; in Proposition 1.1 with (A4,«) for u,
follows from (2.5), from the fact that V' = FV, and from the commutation relation

xU(—t) = U(=1)(x + itV)
which implies that
U VI llos VI < el [Jo; H)|

so that (A, a) for u.; is equivalent to (4,«) for ;. The equivalence of (1.12) for
A — Ay with (4.64) for (B — By) follows from (2.6). Finally the equivalence of the
assumption (1.13) for u_ with (A_h) for u,._ follows from (2.4). O

We are now left with the task of deriving Proposition 4.2 from Proposition 4.1.

Proof of Proposition 4.2. Let (u.;, By;) satisfy the assumptions of Proposition 4.2.
We need to construct (v;, ¢;, By;) satisfying the assumptions of Proposition 4.1.
The main step is to construct ¢; from u,;. Now it follows from (2.14) that (2.17)
is equivalent to

dp = 1""g(uc) + Bir (ue) (4.67)

and we define the phases ¢; by integrating that equation over time with some ini-
tial condition Vg,(t) € H?. It follows from Lemma 4.1, Part (1), with v replaced
by u, that ¢, satisty (4.11) and from Part (2) with (v, u, ¢) replaced by (u., v, —¢)
that v; defined by (2.14) satisfy (4,0;) with oy = 3 + 70. Furthermore, again by
Lemma 4.1, Part (1), B (u.;) = Bi(v;) satisfy the assumptions made on B — B in
Proposition 4.2, so that the latter are equivalent to the assumptions made on B, in
Proposition 4.1.

It remains to ensure the assumption (A4_/;) on v_ for a suitable /;. This will
be done by suitably adjusting the initial conditions for the phases ¢;. If ¢;, i = 1,2,
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satisfy (4.67), then ¢_ is estimated in the same way as in Lemma 4.2 with v re-
placed by u., namely,

IV 01y < C{(llute- [l + Sk, 2| Vate-[[) e L+ 2L ([ |[,L7)}
< C{t7 'L (h + 81 2h*PLY3) + K2 L n} (4.68)

by using (4_o) for u, and estimating
IVate— |y < [lete— |5 IV3ue— || < CHPL3,

We now adjust the phases as follows. We choose arbitrarily ¢, with
Vo,(t) € H?, we define ¢_ by integrating (4.68) over time with initial condition
¢_(0) =0, and we define ¢, = ¢, —2p_. The integral of (4.68) converges for
0 < k <2 by (4.66) and yields

IV o ||, < C{(1 + %YL + 6, ,L*Ph*3Y. (4.69)
In particular Vo, (1y) € H? and
|Vo_|l, < CL*h. (4.70)

We can now estimate v_.

v = (1/2)(uer expligy) — uea exp(ip,))
= (1/2) exp(ip, ) (ue1 — ue + ue (1 — exp(—2ip_))
so that
[<epv_ |y < <Dl + cllucall3 Vo _|l, < Ch(1+ L*) (4.71)

by (A, a), (A_h) and (4.70). Therefore v_ satisfies (4_h;) with &y = hL**. Finally
the assumption (4.50) for

() =11 = tno) ™ hy (1) = (1 = ¢nt) > h(r)

is equivalent to (4.66).
Proposition 4.2 then follows from Proposition 4.1. O

We conclude this section by showing that Proposition 1.1 applies to the solu-
tions of the system (1.3) (1.5) constructed in II. Because of the equivalence
of Proposition 1.1 and Proposition 4.2, it is sufficient to consider the solutions
(uc, By) of the system (2.8) (2.9). In II we proved the existence of solutions of
that system with prescribed asymptotic behaviour (u.,, By,) as ¢ tends to zero,
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with u, = vexp(—ip) and u., = v,exp(—igp,). It follows from Lemma 6.1 in II
(note that v, v, of this paper are w, w, of II) that v, e L*(I,V), Vo, €
L (I,H*) and By, € L*(I,H") and from Proposition 7.1 in II that the same
properties hold for v, Vg and B,. In particular v satisfies (4, 0) so that by Lemma
4.1, Part (2), u, satisfies (4,3). Furthermore v — v, satisfies (4_h) with

h=11— /)t (4.72)

and (p — ¢,)(0) = 0. In particular if (v;, ¢;, B2;), i = 1,2, are two solutions of the
system (2.16)—(2.18) associated with the same v,, then v_ satisfies (4_h) with &
given by (4.72), so that by the same argument as in the proof of Proposition 4.2,
but now with #, and v interchanged, u,_ also satisfies (4_/). Therefore the solu-
tions constructed in II for fixed (u.,, By,) satisfy the assumptions of Proposition
4.2 with o = 3 and / given by (4.72), which proves uniqueness for fixed (uc4, Ba,)
as chosen in II. Note that the proof uses Proposition 4.1 with ¢; = 24 and

hy = >(1 — ¢nt)°.

Remark 4.4. The construction of v from u, or of u, from v through (2.14), (2.17)
or (4.67) and Lemma 4.1, Part (2) entails some loss in the estimates, typically
from (A;o) to (Aroy) with oy = 3 + 7o In the existence proof given in II, starting
from v satisfying (4.0), we obtained u, satisfying only (4, 3), and a direct unique-
ness proof for u, can start only from that weaker assumption. The reconstruction
of v with only u, available to start with then produces another loss and yields only
(A4.24) for v. Only that weaker assumption can then be used in the auxiliary
uniqueness result of Proposition 4.1, even though v was known to satisfy the better
estimate (4.0) to start with.

Remark 4.5. The loss on o in Lemma 4.1, part (2), can be reduced by using a
more accurate estimate than (4.5) in (4, «). If one assumes instead

VA v|l, < CLF* for0</<1,0<k+/<3,

then Lemma 4.1, Part (2), still holds with o; = 1 + 3a.
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