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1. Introduction

Our study is about a queueing model of storage and transmission bandwidth in a

computer and communication systems. The model which we consider here is a

simplified description of a bandwidth allocation scheme, i.e., the allocation of dif-

ferent streams of messages in a communication network. The arriving messages

are of di¤erent nature, to be transmitted they require di¤erent throughput, i.e.,

variable portions of the o¤ered bandwidth C of the network. The sum of through-

put required by the messages being transmitted at a given time must be less than

C. If they are not being transmitted, the messages are stored in an infinite bu¤er

in their order of arrival. When a message has finished its transmission messages in

the queue can be transmitted if there is enough room in the network, i.e., if the

quantity C minus the sum of the throughput of the messages being transmitted is

large enough. The allocation algorithm considered here is the First Fit Algorithm:

a message in the queue is allocated if its throughput is less than the available band-

width at that time and none of the other messages arrived before it in the queue

can be transmitted.

For convenience, we shall use the bin packing terminology: the network is a

bin of size C, messages are items and the bandwidth required by a message is the



size of the item. Items have the same distribution as some random variable S1. A

stream of such items arrives at rate l at the Bin and each item requires a service of

mean 1. In this setting the First Fit algorithm can be described as follows: the sum

of the items in the Bin is less than C the size of the Bin. Following every event

(arrival or departure), the queue is scanned from the beginning in search of an

item whose size is smaller than the empty space left in the bin. This procedure is

repeated until the end of the queue is reached. An item in the bin is served at

speed 1. As we shall see, the probabilistic description of this model is not easy to

handle; it involves an infinite dimensional vector space (a space of stings). The

problems investigated in this paper concern the stability properties of this band-

width allocation problem: Under some probabilistic assumptions on the sizes of

the items, what is maximum input rate under which the size of the queue con-

verges in distribution?

A departure for the First Fit algorithm

Related models. A similar problem has been analyzed by Kipnis and Robert [16]

with the FIFO algorithm: an item enters the bin only if all the items arrived before

it have left the queue. The stability problem is simpler in this case: the vector of

the sizes of the items in the bin and the size of the first item in the queue is a Mar-

kov process. The lengths of the items in the queue, with the exception of the first,

are i.i.d. random variables with distribution m. To study the maximal throughput

of this model, it is su‰cient to calculate the output of the bin when the queue

is saturated, i.e., when it contains an infinite number of items. For the First Fit

algorithm the situation is quite di¤erent. Since the queue is scanned to accommo-

date items in the bin, the sizes of the items in the queue are unlikely to remain

independent and with the same initial distribution m. Furthermore, if we saturate

the queue, the output will not give the maximal output of the queue: if the size of

the items are uniformly distributed on ½0; 1�, an infinite number of small items will

be in the bin generating an infinite output.

Co¤man and Stolyar [5] analyzed the stability of the algorithms First Fit and

Best Fit (Best Fit algorithm: the largest message that fits is transmitted) when the
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services are constant equal to 1. In this setting the problem is related to static bin

packing problems. They prove that the natural condition lEðS1Þ < C is su‰cient

for the stability in the case of a symmetrical distribution of the sizes; in Co¤man

et al. [4] the su‰ciency for stability of the condition lEðS1Þ < C is considered in a

more complex communication network.

The First Fit algorithm with items having two possible sizes has been analyzed

in Dantzer et al. [8]. In that paper the stability condition has been established and,

more interesting, a curious transient behaviour has been analyzed. The present

paper is a generalization of this work. The case analyzed here requires a much

more detailed analysis of the evolution of the string structure than it was necessary

in [8].

An overview. In this paper we give a necessary and su‰cient condition under

which the size of the queue converges in distribution (Theorem 2 and 3). If

this condition has some interesting features, it is expressed as a quadratic func-

tional of the input parameters, this is not the main point of the paper. The

string valued Markov processes describing these models are in general di‰cult

to analyze. The paper proposes an approach to analyze such processes. To

keep the presentation simple, the simplest of these complicated models has been

chosen.

To study the ergodicity properties of a finite dimensional Markov process, a

standard approach is the following: the behavior of the process is analyzed when

the initial state is such that a subset S of the coordinates is ‘‘large’’. When all the

possible subsets S have been considered, the ergodicity condition generally follows

easily.

String valued processes can travel in infinitely many direction. To study the

stability properties of these processes, one cannot recursively exhaust all the possi-

bilities by inspection as it is the case in a finite dimensional setting. One of the

conclusions of the paper is that it is better to consider the evolution of the distri-

bution of the process at some random times rather than looking at the evolution of

the states that the process visits at some random times as it is usually the case.

This is related, in some sense, to the case of continuous state space Markov chains:

the recurrence of the chain is defined not in term of the number of visits to some

specified states, but by the fact that, at some random times, the Markov chain has

a specified distribution. Notice that despite our framework is discrete (the state is

countable), these ideas are useful.

The framework of these Markov processes complicates technically the proofs

of the results, even in some ‘‘simple’’ cases. See for example Section 4 where the

ergodicity condition is quite intuitive, but its proof requires some discussion on the

possible bifurcation of the system. This situation seems unavoidable, especially

when the ergodicity condition is not natural at all (see Section 6).
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The present paper is organized as follows. We first prove that under some

hypothesis, the Markov process describing the First Fit algorithm is ergodic if

the ‘‘natural’’ condition is satisfied, i.e., if the load of the system is less than 1

(see Dantzer et al. [8] for a discussion on this condition). In the other cases, the

analysis is more intricate. The notion of smooth distribution on the state space is

introduced. It is shown that at some random time the distribution of the process is

smooth.

Next we study the fluid limits of the distributions of the process. The fluid lim-

its can be described by piecewise linear processes in R2
þ. The associated dynamical

system turns out to be a product of random 2� 2 matrices in R2
þ; its stability

properties are analyzed. These results are then used to derive the ergodicity and

transience conditions for the Markov processes.

Our results concerning ergodicity use the formalism of fluid limits. The next

section recalls some of the results in this domain.

2. Fluid limits

In this section
�
XðtÞ

�
is an irreducible Markov process on some countable space

S embedded in a normed space. We assume that the bounded subsets of S are

finite. The rescaled process is defined by

XxðtÞ ¼
kXðtkxkÞk

kxk ;

Since Xð0Þ ¼ x, Xxð0Þ ¼ 1. The time variable are scaled by factor kxk. The

following theorem is the combination of two results, one due to Filonov [13] and

the other due to Rybko and Stolyar [24]. It provides an ergodicity criterion.

Theorem 1. If there exist an integrable stopping time U, constants K and � > 0

such that

lim sup
kxk!þl

Ex
�
kXðUÞk

�
kxk a 1� �; ð2:1Þ

lim sup
kxk!þl

ExðUÞ
kxk aK ; ð2:2Þ

the Markov process
�
XðtÞ

�
is ergodic. If the variable XðtÞ has a second moment for

all tb 0, for a fixed Kb 0 su‰ciently large, the hitting time

H ¼ infftb 0 : kXðtÞkaKg
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has a second moment of order kxk2, i.e.,

lim sup
kxk!þl

ExðH 2Þ
kxk2

< þl ð2:3Þ

The condition (2.1) requires that at some random time, U=kxk, the norm of

the rescaled process
�
XxðtÞ

�
is, in average, below its initial value. This suggests

the analysis of the sequences of processes
�
XxðtÞ

�
, when kxk tends to infinity.

The limit of one of its converging subsequences is called a fluid limit. If one can

prove that every fluid limit converges almost surely to 0 after some time T , then

up to integrability argument, Theorem 1 can be applied.

These scaling ideas are di‰cult to trace back. The origin of this criterion is the

Lyapounov stability test of ordinary di¤erential equations (see Hirsch and Smale

[15] for the classical results). Has’minskii [14] seems to have been the first to use

this test in a stochastic context, to prove the stability of stochastic di¤erential

equations.

The discovery of some unexpected phenomena for the stability of queueing

systems—Bramson [1], [2], Dumas [9], Lu and Kumar [19], Kumar and Seidman

[17] and Rybko and Stolyar [24] among others—gave an impulse to the studies in

this domain recently. Chen and Mandelbaum [3] used fluid limits to study Jack-

son networks. Dai [6] set a framework to apply these methodes to prove Harris

ergodicity for some queueing networks. Concerning transience criteria, Dai [7],

Meyn [20] and Puhalskii and Rybko [22] obtained partial counterparts to the

ergodicity results. In the context of di¤usions, related ideas are used to prove the

ergodicity of di¤usions living in a domain with a boundary (see Dupuis and

Williams [10] and the references therein).

Relations (2.1) and (2.2) imply that one ‘‘controls’’ the process in space and

time when it starts very far away from some fixed state. In a finite dimensional

context, one has considerd the process when some of the coordinates of the initial

state are large. In general, Theorem 1 can then be applied when all the possibil-

ities for the large coordinates have been considered. Applying Theorem 1 for our

process turns out to be more di‰cult since the process can go to infinity in

infinitely many ways. This is not strictly true as we shall see. We prove that the

process may diverge only along some ‘‘patterns’’. We establish that, starting from

any large arbitrary state, the process will eventally travel along some smooth

random states.

3. The string valued Markov process

The items arrive according to a Poisson process Nl with parameter l; for tb 0,

the quantity Nlð�0; t�Þ denotes the number of arrivals between 0 and t. The capac-

ity of the bin C is equal to 5.
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The size ðSiÞ of the items form an i.i.d. sequence with a common distribution

F ðdxÞ given by

FðdxÞ ¼ pd1 þ qd2 þ rd3;

where dx is the Dirac measure in x and p, q, r are non negative numbers such that

pþ qþ r ¼ 1. An item of size s will also be called an item s.

The set of the possible sizes is denoted by T ¼ f1; 2; 3g and TðNÞ is the set

of finite vectors with coordinates in T if x a TðNÞ, kxk denotes the number of

coordinates of x and j is the empty vector.

The sojourn times of the items in the bin is an i.i.d. sequence with an exponen-

tial distribution with parameter 1.

An element X of the state space S of the Markov process describing the stor-

age process can be written as X ¼ ðB;LÞ, where L and B are elements of TðNÞ, the
set of finite vectors with coordinates in T. The vector B ¼ ðbj; j ¼ 1; . . . ; kBkÞ
describes the sizes of the items in the bin, since these items fit in the bin,

XkBk
j¼1

bj aC;

and the vector L ¼ ðli; i ¼ 1; . . . ; kLkÞ represents the state of the queue. Since the

First Fit algorithm scans the queue from the beginning in search of an item that

may fit in the bin. Any item in the queue cannot fit in the bin, i.e., for any

i ¼ 1; . . . ; kLk the following inequality holds

li þ
XkBk
j¼1

bj > C:

Since C ¼ 5, the possible values of B are the following

j; ð1Þ; ð1; 1Þ; ð1; 1; 1Þ; ð1; 1; 1; 1Þ; ð1; 1; 1; 1; 1Þ; ð2Þ; ð1; 2Þ; ð1; 3Þ; ð1; 1; 2Þ;
ð1; 1; 3Þ; ð1; 1; 1; 2Þ; ð2; 2Þ; ð2; 3Þ; ð2; 2; 1Þ; ð3Þ:

Notice that the order of the components in B has no importance for the

dynamic of the system, for this reason we shall consider B as a set. The order is

important for the vector L since the First Fit discipline checks if the first coordi-

nate l1 fits in the bin, then the coordinates l2, l3, and so on. The vector L is a string

of 1, 2 and 3.

If
�
XðtÞ

�
¼
�
ðBðtÞ;LðtÞ

�
is the state of the system at time t,

�
XðtÞ

�
is a Markov

process with the following transitions:
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• Arrival. At rate l an item of size s arrives at the bin. If it does not fit in the

bin, the element s is concatenated at the end of the vector LðtÞ.

• Departure. At rate 1, each item in the bin leaves the bin. In the case of a

departure, the first element of the queue that fits, if any, is moved in the bin,

and then the second, and so on.

It is not di‰cult to show that
�
XðtÞ

�
is an irreducible Markov process on S. We

shall say that the model is stable when
�
XðtÞ

�
is an ergodic Markov process on S.

In Dantzer et al. [8] it has been proved that the condition lEðS1ÞaC is necessary

for the stability of the system, i.e., the Markov process
�
XðtÞ

�
is transient if

lEðS1Þ > C.

Definition 1. The norm kXk of the state X ¼ ðB;LÞ a S is the sum of the kBk
and kLk. The load W

�
XðtÞ

�
of
�
XðtÞ

�
¼
�
BðtÞ;LðtÞ

�
¼
��
biðtÞ

�
;
�
ljðtÞ

��
is defined

as

W
�
XðtÞ

�
¼
XkBðtÞk
i¼1

bis
0
i ðtÞ þ

XkLðtÞk
j¼1

ljsjðtÞ

where, for i a f1; . . . ; kBkg and j a f1; . . . ; kLkg, s0
i ðtÞ is the residual service time

of the item biðtÞ and
�
sjðtÞ

�
the service time of the item ljðtÞ.

Notice that the load of the system increases at rate lEðS1Þ in average and

decreases at most at rate 5.

4. The natural condition is su‰cient for ergodicity

We study a case where it is not necessary to know much about the structure of

L-component of the initial state. The following lemma gives an estimation of the

wasted space when there are only two possible sizes: 1 and 2.

Lemma 1. Under the conditions lEðS1Þ < 5, if r ¼ 0 (only items 1 and 2 arrive) and

t ¼ inffta 0 : kLðtÞk ¼ 0g and D ¼
ð t
0

1fb1ðtÞþ���þbkBðtÞkðtÞ<5g dt;

then there exist some constants K1 and K2 such that

ExðDÞaK1 logð1þ kxkÞ þ K2:

for any x ¼ ðl; bÞ a S.
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Proof. The variable D is the duration of time during which the bin is not full over

a busy period. Notice first that there is no waste of space as long as there are items

1 in the L-component of
�
XðtÞ

�
. We can therefore assume that l is a string of

items 2.

In this context the only possibility to waste space with a non empty queue is

when the state
�
BðtÞ

�
of the bin is ð2; 2Þ, ð2; 1; 1Þ or ð1; 1; 1; 1Þ (an empty space of

size 1).

We set A0 ¼ l and T0 ¼ 0 and by induction we define

Tnþ1 ¼ infft > Tn : Cðt�Þ ¼ 5;CðtÞ < 5 and all the items 2 present at time

Tn are served at time tg

with CðsÞ ¼ b1ðsÞ þ � � � þ bkBðsÞkðsÞ and An ¼ kLðTnÞk for nb 1. Notice that

LðTnÞ is necessarily a (possibly empty) string of items 2. The sequence�
BðTnÞ;An

�
is clearly a Markov chain.

If b the initial state of the bin is ð1; 1; 1; 1Þ (an empty space of size 1). As long

there is at least an item 1 in the queue, because of the First Fit discipline, the items

2 are ignored. Since lpa lEðS1Þ < 5, after an integrable amount of time not

depending on klk, at least two places will be vacant in the bin and consequently

an item 2 will enter the bin.

In this situation the number of items 1 is the number of customers of an

M=M=5 queue (5 servers)with parameter lp for the input rate and 1 for the service

rate.

If b ¼ ð2; 1; 1Þ. We have two cases to discuss.

(1) lp < 2. This condition clearly implies that, with probability 1, at some

time there will be no item 1 in the system and, consequently, the item 2

will enter the bin. The expected value of this duration of time is easily

seen to be bounded with respect to klk. Starting from that time, only items

2 are served as long as the initial items 2 are present (since these items

are located at the beginning of the queue, the First Fit algorithm selects

them): ‘‘ð2; 1; 1Þ ) ð2; 1Þ ) ð1; �Þ ) ð1; 2Þ ) ð2; 2Þ ) ð2; �Þ ) ð2; 2Þ’’.
When the initial items 2 have been served the queue is an i.i.d. strings of

items 2 and 1. At that moment an item 1 will enter the bin, then two items

1: ‘‘ð1; 2; 2Þ ) ð1; 1; 2Þ’’.
Later, when the number of items 1 in the system is 1 the system will waste

some space, this is precisely the definition of time T1, A1 is the number of

items at that time.

(2) lp > 2. This condition implies that, if the state of the bin does not change, the

arriving items 1 will saturate three places in the bin, ‘‘ð2; 1; 1Þ ) ð2; 1; 1; 1Þ’’.
In this case, the number of items 1 is the number of customers of transient
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M=M=3 queue starting with two customers (in the bin at time 0). A change in

the state of the bin may occur only if this transient queue is empty.

a) The M=M=3 queue never reaches the empty state. After some small

amount of time (i.e., its expected value is bounded with respect to klk),
the bin will be full with an item 2 and three items 1. The condition

lEðS1Þ < 5 implies that lq < 1 ðlp > 2Þ; therefore, with probability 1,

after some period of time the system will not contain any items 2. At

that moment the state of the bin will be ð1; 1; 1; 1; 1Þ. (Recall that

lpa lEðS1Þ < 5.) It is easily seen that, with probability 1, the total

number of items 1 will be less than 2. An item 2 will be in the bin at

that time ð2; 1; 1Þ, this is the starting situation.

b) The queue reaches the empty state. After an integrable amount of time

two items 2 occupy the bin: ‘‘ð2; 1; 1Þ ) ð2; 1; 1; 1Þ ) ð2; 2; 1Þ ) ð2; 2; �Þ’’.
The initial items 2 are served. In this situation, T1 is the next time there is

some wasted space.

Notice that the case a) occurs only a geometrically distributed number of

times. Hence, the duration of time between time 0 and T1 when the bin is

not full has a bounded expected value (with respect to klk).

Using Proposition 16 of the appendix of Dantzer et al. [8], it is easy to check that

there exists some constant c > 0 such that the following convergence holds in L1

and almost surely:

lim
kxk!þl

ExðT1Þ
kxk ¼ c:

(the calculation is possible but not interesting for our purpose). If I is the duration

of time between 0 and T1 when the bin is not full, the expected value of the load at

time T1 satisfies the following inequality (all the service times are i.i.d. exponen-

tially distributed random variables with parameter 1):

Ex
�
W
�
XðT1Þ

��
aEx

�
W ðxÞ

�
þ E
� XNlð½0;T1�Þ

i¼1

Si

�
� 5ExðT1 � IÞ:

Using Wald’s formula (T1 is a stopping time), we get

Ex
�
W
�
XðT1Þ

��
aEx

�
W ðxÞ

�
þ
�
lEðS1Þ � 5

�
ExðT1Þ þ 5ExðIÞ:

Since there are no items 1 in the queue at 0 and T1 (let us return to the case to a)),

we have

Ex
�
W
�
Xð0Þ

��
¼ 3kxk and Ex

�
W
�
XðT1Þ

��
¼ 4þ 3ExðA1Þ:
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The quantity ExðIÞ being bounded with respect to kxk, it follows that

3 lim sup
kxk!þl

ExðA1Þ
kxk ¼ lim sup

kxk!þl

Ex
�
W
�
XðT1Þ

��
kxk a 3þ c

�
ðlEðS1Þ � 5

�
;

where W ð�Þ is the load (see Definition 1). Consequently, there exist a0 and a < 1

such that for kxk > a0,

ExðA1Þa akxk; ð4:1Þ

where a ¼ 1þ C
3

�
lEðS1Þ � 5

�
and

g ¼ �log
1þ akxk
1þ kxk

� �
> 0: ð4:2Þ

If we set

n ¼ inffnb 1 : Ana a0g;

the sequence

ðZnÞ ¼
�
logð1þ AnbnÞ þ gðnbnÞ

�
:

is a super-martingale. Indeed, if ðFnÞ is the natural filtration associated to the

sequence ðAnÞ, on the event fn > ng the Markov property gives

EðZnþ1=FÞ � Zn ¼ EðBðTnÞ;AnÞ
�
logð1þ A1Þ

�
� logð1þ AnÞ þ g

a log
�
1þ EðA1=AnÞ

�
� logð1þ AnÞ þ ga 0

by Jensen’s inequality and the relations (4.1) and (4.2). Consequently EðZnÞaZ0,

hence gEðnbnÞaEðZnÞaZ0. By letting n go to infinity, we get

ExðnÞa
logð1þ kxkÞ

g
:

For nb 1, the bin is always full between Tn and Tnþ1, except during some integra-

ble period whose expected value is bounded with respect to size of the initial state.

By Wald’s formula, the contribution of the n cycles in the integral defining D is

bounded by KExðnÞaK logð1þ kxkÞ=g for some constant K .

Since lEðS1Þ < 1, the proposition 6 of Dantzer et al. [8] shows that the system

is ergodic. Consequently, starting from the state
�
BðTnÞ;An

�
ða a0Þ

�
, the hitting

time of the empty state j is integrable and with an expected value bounded with
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respect to kxk. Therefore, the expected value of the contribution of this period in

the integral defining D is bounded with respect to kxk.
If b ¼ ð2; 2Þ, we have two cases to discuss.

1) lp < 2. After an integrable amount of time, the item 2 will enter the bin. Then

all the other items 2 will be served consecutively. The expected value of this

duration of time is easily seen to be bounded with respect to klk. Starting

from that time, the queue will be an i.i.d. string of items 2 and 1. At that

moment an item 1 will enter the bin ‘‘b ¼ ð1; 2; 2Þ’’; then, with probability 1,

two items 1 will enter the bin ‘‘b ¼ ð2; 1; 1Þ’’, so we will come back to the

previous case ‘‘b ¼ ð2; 1; 1Þ and lp < 2’’ and will follow the same discussion.

2) lp > 2. This condition implies that the arriving items 1 will saturate three

places in the bin ‘‘ð2; 1; 1; 1Þ’’. In this case, the number of items 1 is the number

of customers of transient M=M=3 queue. After amount of time, with probabil-

ity 1 the bin will be ð2; 1; 1Þ, so here we will come back to the case where

‘‘b ¼ ð2; 1; 1Þ and lp > 2’’ and will follow the same discussion.

The lemma is proved. r

Now we are going to introduce a lemma which gives an estimation of the

wasted space when there are only two possible sizes: 1 and 3.

Lemma 2. Under the conditions lEðS1Þ < 5, if q ¼ 0 (only items 1 and 3 arrive) and

t ¼ inffta 0=kLðtÞk ¼ 0g and D ¼
ð t
0

1fb1ðtÞþ���þbkBðtÞkðtÞ<5g dt;

then there exist some constants K1 and K2 such that

ExðDÞaK1 logð1þ kxkÞ þ K2:

for any x ¼ ðl; bÞ a S.

Proof. The variable D is the duration of time during which the bin is not full

during a busy period. Notice first that there is no waste of space as long as there

are items 1 in the L-component of
�
XðtÞ

�
. We can therefore assume that l 0 is a

string of items 3. In this context the only possibility to waste space with a non

empty queue is when the state
�
BðtÞ

�
of the bin is ð1; 1; 1; 1Þ or ð3; 1Þ (an empty

space of size 1).

We set A0 ¼ l 0 and T0 ¼ 0 and by induction we define

Tnþ1 ¼ infft > Tn : Cðt�Þ ¼ 5;CðtÞ < 5 and all the items 3 present at time

Tn are served at time tg
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with CðsÞ ¼ b1ðsÞ þ � � � þ bkBðsÞkðsÞ and An ¼ kLðTnÞk for nb 1. Notice that

LðTnÞ is necessarily a (possibly empty) string of items 3. The sequence�
BðTnÞ;An

�
is clearly a Markov chain.

If b the initial state of the bin is ð1; 1; 1; 1Þ (an empty space of size 1). As long

there is at least an item 1 in the queue because of the First Fit discipline, the items

3 are ignored. Since lpa lEðS1Þ < 5, after an integrable amount of time not

depending on kl 0k, at least two places will be vacant in the bin and consequently

an item 3 will enter the bin ‘‘ð1; 1; 1; 1Þ ) ð1; 1; � ; �Þ ) ð3; 1; 1Þ’’.
In this situation the number of items 1 is the number of customers of an

M=M=5 queue (5 servers) with parameter lp for the input rate and 1 for the

service rate.

If b ¼ ð3; 1Þ. We have two cases to discuss.

(1) lp < 2. This condition clearly implies that, with probability 1, at some time

there will no item 1 in the system and, a second item 3 will enter the bin.

The expected value of this duration of time is easily seen to be bounded with

respect to kl 0k. Starting from that time, only items 3 are served as long as the

initial items 3 are present (since these items are located at the beginning of the

queue, the First Fit algorithm selects them): ‘‘ð3; 1Þ ) ð3; �Þ ) ð3; �Þ ) ð3; �Þ’’.
When the initial items 3 have been served the queue is an i.i.d. string of

items 3 and 1. At that moment an item 1 will enter the bin, then two items 1

‘‘ð1; 3; �Þ ) ð1; 1; 3Þ’’.
Later, when the number of items 1 in the system is 1 the system will waste

some space, this is precisely the definition of time T1, A1 is the number of

items at that time.

(2) lp > 2. This condition implies that if the state of the bin does not change, the

arriving items 1 will saturate two places in the bin, ‘‘ð3; 1Þ ) ð3; 1; 1Þ’’. In this

case, the number of items 1 is the number of customers of transient M=M=2

queue starting with one customer (in the bin at time 0). A change in the state

of the bin may occur only if this transient queue is empty.

a) The M=M=2 queue never reaches the empty state. After some small

amount of time (i.e., its expected value is bounded with respect to kl 0k),
the bin will be full with an item 3 and two items 1. The condition

lEðS1Þ < 5 implies that lr < 1 ðlp > 2Þ. Therefore, with probability 1

after some period of time the system will not contain any items 3. At

that moment the state of the bin will be ð1; 1; 1; 1; 1Þ. (Recall that

lpaEðS1Þ < 5.) It is easily seen that, with probability 1, the total num-

ber of items 1 will be less than 2. An item 3 will be in the bin at that time

ð3; 1Þ, this is the starting situation.

b) The queue reaches the empty state. After an integrable amount of

time item 3 and two items 1 occupy the bin. The initial items 3 and 1
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are served. In this situation, T1 is the next time there is some wasted

space.

Notice that the case a) occurs only a geometrically distributed number of

times. Hence, the duration of time between time 0 and T1 when the bin is

not full has a bounded expected value (with respect to kl 0k).

Using Proposition 16 of the appendix of Dantzer et al. [8], it is easy to check that

there exists some constant c > 0 such that the following convergence holds in L1

and almost surely:

lim
kxk!þl

ExðT1Þ
kxk ¼ c

(the calculation is possible but not interesting for our purpose). If I is the duration

of time between 0 and T1 when the bin is not full, the expected value of the load at

time T1 satisfies the following inequality (all the service times are i.i.d. exponen-

tially distributed random variables with parameter 1):

Ex
�
W
�
XðT1Þ

��
aEx

�
W ðxÞ

�
þ E
� XNlð½0;T1�Þ

i¼1

Si

�
� 5ExðT1 � IÞ:

Using Wald’s formula (T1 is a stopping time), we get

Ex
�
W
�
XðT1Þ

��
aEx

�
W ðxÞ

�
þ
�
lEðS1Þ � 5

�
ExðT1Þ þ 5ExðIÞ:

Since there are no items 1 in the queue at 0 and T1 (returned to a)), we have

Ex
�
W
�
Xð0Þ

��
¼ 2kxk and Ex

�
W
�
XðT1Þ

��
¼ 4þ 3ExðA1Þ:

The quantity ExðIÞ being bounded with respect to kxk, it follows that

2 lim sup
kxk!þl

ExðA1Þ
kxk ¼ lim sup

kxk!þl

Ex
�
W
�
XðT1Þ

��
kxk a 2þ c

�
lEðS1Þ � 5

�
;

where W ð�Þ is the load (see Definition 1). The rest of the proof is the same as the

previous lemma. r

Now we consider the general case with three sizes. The condition lEðS1Þ < 5

turns out to be su‰cient for ergodicity when lp > 2.

Proposition 1. If lEðS1Þ < 5 and lp > 2, then
�
XðtÞ

�
is an ergodic Markov process.
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Proof. Let ðxnÞ ¼ ðbn; lnÞ be a sequence of S whose norm converges to infinity.

Since the number of configurations in the bin is finite, by taking subsequences

we can suppose that the sequence of the initial states in the bin ðbnÞ is constant,
hence ðxnÞ ¼ ðb; lnÞ using Proposition 5 of Dantzer et al. [8], we can assume that

for the states ðxnÞ the bin is not full. Consequently ðlnÞ does not contain any item

1, it is a sequence of strings of items 2 and 3.

We denote by t the first time when the bin is not full after all the initial items 2

and 3 have left the system; t is clearly a (possibly infinite) stopping time. If D is

the duration of time between time 0 and t during which the bin is not full, we

claim that D is integrable and, moreover,

lim
n!þl

ExnðDÞ
kxnk

¼ 0:

If our assertion is true, between 0 and t the load of the system is decreased at rate

5, except during some periods of total duration D, i.e., for tb 0 we have

Xkbk
i¼1

bis
0
i þ

Xklnkþkbk

i¼kbkþ1

ln; is
0
i þ

XNlð�0; tbt�Þ

i¼1

Sisi � 5ðtbt�DÞb 0:

The sequences ðsiÞ and ðs0
i Þ are the respective service times of the arriving items

and of the initial items. These variables are independent and exponentially dis-

tributed with parameter 1. Taking the expectation of the two members of this

inequality, we get the relation

ExnðtbtÞ
�
5� lEðS1Þ

�
a kxnk þ 5ExnðDÞ:

By letting t go to infinity, according to our assumption on
�
ExnðDÞ

�
we obtain the

inequality

lim sup
n!þl

ExnðtÞ
kxnk

a
1

5� lEðS1Þ
: ð4:3Þ

In the same manner, we have

Exn
�
W
�
XðtbtÞ

��
aWðxnÞ þ

�
lEðS1Þ � 5

�
ExnðtbtÞ þ 5ExnðDÞ;

Fatou’s lemma and Lebesgue’s theorem give when t goes to infinity

Exn
�
W
�
XðtÞ

��
aWðxnÞ þ

�
lEðS1Þ � 5

�
ExnðtÞ þ 5ExnðDÞ:
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Since all the initial items 2 and 3 are served at time t, at most two of the initial

items can be served at the same time (see the papers by Haddani, Dantzer and

Robert), hence

ExnðtÞb
kxnk
2

b
WðXnÞ

8
:

Thus

lim sup
n!þl

Exn
�
W
�
XðtÞ

��
W ðxnÞ

a 1þ lEðS1Þ � 5

8
< 1: ð4:4Þ

By using the fact that W ð�Þ is an equivalent norm to k � k on S, the relations (4.3)

and (4.4) and Theorem 1 of Dantzer et al. [8] show that the Markov process�
XðtÞ

�
is ergodic.

All we have to prove now is that
�
ExnðDÞ

�
is negligible with respect to kxnk

when n is large. There are several possibilities for b, the common content of the

bin for the initial states ðxnÞ. We discuss the di¤erent cases, throughout this

discussion we shall say that the random variable H is a ‘‘bounded integrable

variable’’ if the sequence
�
ExnðHÞ

�
is bounded with respect to kxk.

(1) b is ð1; 1; 1; 1Þ or ð1; 1; 1; 1; 1Þ.
As long as there is at least an item 1 in the queue, all the other items are

ignored. The condition lEðS1Þ < 5 implies that lp < 5. From the point of

view of the items 1, the system is a stable M=M=5 queue. Hence the first

time there will be at least two empty places is a bounded integrable variable

(since lp > 2). At that time, an item 2 will be inserted in the bin. Notice

that for this period, the duration of time during which the bin is not full is a

bounded integrable variable.

(2) b has at least an item 2.

a) b ¼ ð2; �Þ (the bin contains only one item 2). At that time the items 3 are

selected by the First Fit algorithm. Since the condition lEðS1Þ < 5 implies

that lð2qþ 3rÞ < 5, the system with the items 2 and 3 is stable (see Dant-

zer et al. [8]). After the amount of time, lp > 2 implies that the residual

space in the bin left by the items 2 is saturated by the items 1. Conse-

quently the duration of time the bin is not full is a bounded integrable

variable.

b) b ¼ ð2; 2; �Þ (the bin contains two items 2). In this case the items 3 are

ignored. Consequently, a string of items 3 builds up at the beginning of

the queue. Since lEðS1Þ < 5 implies that lðpþ 2qÞ < 5, the system with

the items 1 and 2 is stable (see Dantzer et al. [8]), then until an item 3

enters the bin the wasted space is negligible compared to the number of

initial items 2.
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(3) b contains a 3.

a) b ¼ ð3; �Þ. All the other items 3 are ignored. At that time the items 2

are selected by the First Fit algorithm. Since lEðS1Þ < 5 implies that

lð2qþ 3rÞ < 5, the system with the items 2 and 3 is stable (see Dantzer

et al. [8]). Then the condition lp > 2 implies that the duration of time

the bin is not full is a bounded integrable variable.

b) If b ¼ ð3; 1Þ. The items of size 2 are ignored. Since lEðS1Þ < 5 implies

that lðpþ 3rÞ < 5, the system with the items 1 and 3 is stable (see Dantzer

et al. [8]). After amount of time, lp > 2 implies that the residual space in

the bin left by the items 2 and 3 is saturated by the items 1. Consequently

the duration of time the bin is not full is a bounded integrable variable.

This shows that the assertion and consequently the proposition is proved. r

The result of the above proposition is fairly easy to understand: under the con-

dition lp > 2, basically there is no waste of space so that the natural condition

lEðS1Þ < 5 is su‰cient for the ergodicity of
�
XðtÞ

�
. Notice however that the proof

of this intuitive result (Lemma 1 and Proposition 1) has required the detailed anal-

ysis of the possible evolution starting from a given initial state. As we shall see,

the situation is more delicate in the case lp < 2.

5. Smoothing the initial state

In this section we shall assume that lp < 2 and that the initial states are strings of

items 2 and 3.

Definition 2. For Xð0Þ ¼ x a S and tb 0 if XðtÞ ¼
�
BðtÞ;LðtÞ

�
and LðtÞ ¼�

liðtÞ
�
, let

nx;1ðtÞ ¼ inffkb 1 : lkðtÞ ¼ 1g;
nx;2ðtÞ ¼ inff1a k < nx;1ðtÞ : lkðtÞ ¼ 2g;
nx;3ðtÞ ¼ inff1a ka nx;2ðtÞ : lkðtÞ ¼ 3g;

with the convention inf j ¼ þl. If the initial state is without ambiguity, the

subscript x is omitted; in the same way, the notation na is used for nað0Þ.

The next definition formalizes the notion of ‘‘smooth random’’ state, in fact the

notion of a smooth distribution on S.

Definition 3. For integers l, m, n we define the distribution Rl;m;nðdxÞ on TðNÞ by

Rl;m;nðdxÞ ¼ d3ðduÞðlÞ nF2;3ðduÞðmÞ nF ðduÞðnÞ; ð5:1Þ
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where GðdxÞðnÞ is the n-th power of the distribution GðdxÞ, F2;3ðdxÞ is the condi-

tional distribution F2;3ðdxÞ ¼ ðqd2 þ rd3Þ=ðqþ rÞ.
A distribution m on S is smooth if its L-component is in the convex hull of the

Rl�m�n
l;m;n , l;m; n a N, i.e., if there exists a probability distribution ðqiÞ on N3 such

that

mðL a dxÞ ¼
X
i AN3

qiRiðdxÞ:

The distribution Rl;m;n is the distribution of the concatenation of several i.i.d.

strings. The L-component of a distribution of type R0;0;nðdxÞ is just an i.i.d. string

of length n with distribution F .

Proposition 2. If lEðS1Þ < 5, for any stopping time U greater than the first time

when all the initial items have left the queue, the distribution of XðUÞ is smooth.

Proof. We denote by MðtÞ the number of initial items in the queue at time t. A

tag is inserted after the last initial item in the queue; MðtÞ is in fact the position of

tag at time t,
�
MðtÞ

�
remains constant equal to 0 after it has reached 0. We first

give a rough picture of the evolution of the queue. After time 0, the new items

arrive behind the tag at rate l. Recall that the queue of our initial state has no

more than one item 1 ‘‘at most one item 1’’. As long as some initial items 2 are

in the queue, the First Fit algorithm picks (possibly) these items. Once all initial

items 2 are served the First Fit algorithm looks for items 1 which are just after the

tag to not lose much time in searching for items 2, so the departure of some of the

items 1 builds a string of 2, 3 after the tag. In the case where all the initial items 2

are processed and that some initial items 3 remain, the next items 3 are picked

after the tag. In this case, a string of items 3’s will build up behind the tag and

before the string of 2’s and 3’s.

The notation ~nna, a a T is analogous to the definition 2 except that it concerns

only the portion of the queue after the tag,

~nn1ðtÞ ¼ inffk > MðtÞ : lkðtÞ ¼ 1g
~nn2ðtÞ ¼ inffMðtÞ < ka~nnx;1ðtÞ : lkðtÞ ¼ 2g
~nn3ðtÞ ¼ inffMðtÞ < ka~nnx;2ðtÞ : lkðtÞ ¼ 3g

Notice that if ~nn3ðtÞ is finite, then necessarily ~nn3ðtÞ ¼ MðtÞ þ 1. The variable ~LLðtÞ is
the sub-string at the end of the queue consisting of the items located after the tag,
~LLðtÞ is the string LðtÞ shifted MðtÞ times. Consequently, if U a t then ~LLðtÞ ¼ LðtÞ
and ~nna ¼ na for a a T.
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Assertion. If t is a stopping time, then conditionally on ~nnaðtÞ, a a T, and

kLðtÞk, the distribution of ~LLðtÞ is given by (5.1) for some convenient l;m; n a N.

Since LðUÞ ¼ ~LLðUÞ (the initial items are served at time U), the proposition

will be then proved if the assertion is. To show the latter, we assume that all the

~nnaðtÞ, a ¼ 1; 2; 3, are finite. The analysis for the other cases is analogous. The

string ~LLðtÞ is thus the concatenation of three strings ~LLðtÞ ¼ ðH3;H2;H1Þ, with

H3 ¼ ð3; 3; . . . ; 3Þ; kH3k ¼ ~nn2ðtÞ � 1;

H2 ¼ ð2; l~nn2ðtÞþ1; . . . ; l~nn1ðtÞ�1Þ; kH2k ¼ ~nn1ðtÞ � ~nn2ðtÞ;
H1 ¼ ð1; l~nn1ðtÞþ1; . . . ; ljLðtÞjÞ; kH1k ¼ kLðtÞk � ~nn1ðtÞ:

For the rest of the proof, all the probabilistic statements are supposed to be con-

ditioned by the values of the ~nnaðtÞ and jLðtÞj. Between time 0 and t the First Fit

algorithm never scanned the queue after the position ~nn1ðtÞ, otherwise the items 1

located there would have been taken in the bin. The string H1 is thus independent

of H2 and H3. The first item 1 of H1 is followed by the ðjLðtÞj � ~nn1ðtÞ � 1Þþ
items which arrived after that 1, hence it is an i.i.d. sequence with distribution

F ðduÞ.
In the way for the string H2, the First Fit algorithm never scanned the queue in

search of a 2 after the position ~nn1ðtÞ. Consequently the string H2 consists of all the

items arrived between the items located at the positions ~nn2ðtÞ and ~nn1ðtÞ, with all

the items 1 removed. The first item 2 in H2 is followed by an i.i.d. string of length�
~nn1ðtÞ � ~nn2ðtÞ � 2

�þ
and distribution F ðdu=ub 2). The assertion is proved. r

Proposition 3. If lEðS1Þ < 5, lp < 2 and U0 is the first time t after all the initial

items have left the queue that BðtÞ ¼ ð3; 1Þ then

sup
x AS1

Ex
U0

kxk

� �2
 !

< þl and sup
x AS1

Ex
kXðU0Þk

kxk

� �2 !
< þl;

where ðS1Þ is the subset of the states of S for which the bin is not full,

S1 ¼ fx ¼ ðb; lÞ a S : b1 þ � � � þ bkbk < 5g:

Proof. The initial state Xð0Þ is given by x ¼ ðB;LÞ with L ¼ ðl1; . . . ; lpÞ for some

pb 1. We denote by T2 [resp. T3] is the time when all the initial items 2 (resp. 3)

have left the queue. The variable T is the first time when all the initial items have

left the queue, T is clearly stopping time bounded by T2 þ T3.

For a fixed k a f1; . . . ; p� 1g, we define �xx ¼ ðB; �LLÞ where �LL is the same string

as L except the components k and k þ 1 are permuted. For 1a i < p, the quanti-

ties ti, �tti denote respectively the waiting time necessary for the i-th item li to enter
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the bin when the initial state is respectively x, �xx. We assume that for these two

initial states, the arrival stream and the services associated with the items are the

same. There are two cases:

• If tkþ1 < tk, in both systems the item lk will enter the bin at time tk, thus

�ttk ¼ tk.

• Otherwise, when tkþ1b tk and the initial state is �xx, at time tk the First Fit

algorithm checks whether the item lkþ1 fits in the bin and after the item lk is

checked.

Hence, in any case tk a �ttk. By induction, the quantity ExðT2Þ is thus bounded
by Ex 0 ðT2Þ where x 0 ¼ ðB;L 0Þ is the initial state given by L 0 ¼ ð3; . . . ; 3; 2; . . . ; 2Þ,
L 0 is a permutation of L with all the items 3 at the beginning.

Similarly, the relation ExðT2ÞaEx 00 ðT2Þ holds if T2 is the time to get rid of the

initial 2’s and x 00 ¼ ðB;L 00Þ, where L 00 is a permutation of the L-component of x

when all the items 3 are at the head of the queue. To bound ExðT 2Þ it is su‰cient

to give an upper bound for Ex 00 ðT 2
2 Þ and Ex 0 ðT 2

3 Þ.

• The items 2 are at the beginning. We can assume that the bin does not con-

tain a 3 at time 0 (otherwise, as so on as it leaves it is replaced by an item 2).

As long as an item 2 is at the head of the queue, the system works only with

items of size 1 and 2 ‘‘the state of the bin will be ð2; 2; 1Þ (without items 3)’’.

When the system without items 3 has at most one item 1 in the bin, an

item 2 enters in the bin, then all the initial items are served consecutively.

The estimation of T3 is thus reduced to the estimation of the time to empty

the system without the items 3. Since the condition lEðS1Þ < 5 implies that

lðpþ 2qÞ=ðpþ qÞ < 5, the system without the items is ergodic. Using the

ergodicity result of Dantzer [8] and inequality (2.3) of Theorem 1, we get

that Ex 0 ðT 2
3 ÞaA1kxk2 (notice that kx 0k ¼ kxkÞ for some constant A1.

• The items 3 are at the beginning.

– If the initial state of the bin has an item 3 ‘‘b ¼ ð3; �Þ’’, all the initial 3’s are
served consecutively and then the initial 2’s and 3’s are served ‘‘First Fit

algorithm selects all the initial items 2’’. For a convenient constant A2,

one easily gets that Ex 00 ðT 2
2 ÞaA2kxk2.

– If there is a 3 in the bin and at least a 1 ‘‘b ¼ ð3; 1Þ’’, the situation is more

interesting. In contrast to the previous case, an item 3 can enter the bin

before some of the initial items of size 2. If at some moment the state of

the bin is ð3; 1Þ (there is an empty space of size 1) no new item 1 arrives

before a departure from the bin. If the item 3 leaves before the item 1,

then the item 3 at the head of the queue enters the bin, and then all the

other initial items 3; otherwise if the item 1 leaves first and an item 2

enters the bin, then all the initial items 2 are processed. Since lp < 2, if
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there are su‰ciently many 2’s in the queue, one of these two cases will

occur with probability 1 (if it is not the case, the 3’s occupy the bin and

it is finished). We thus get a constant A3 such that Ex 00 ðT2ÞaA3kxk.

At time T all the initial items have left the queue. Since

XðTÞa kxk þNlð�0;T �Þ;

Wald’s formula and the above estimation show that kXðTÞk is bounded by a

constant times kxk.
Now we have to estimate T the first time when the state of the bin is ð3; 1Þ. It

is su‰cient to prove that if the initial state is x, T has a second moment of the

order kxk2. The first step is to get rid of the items 3. If there is one in the bin

and if some of them are located at the head of the queue, one has to process these

ones until an additional item 1 or 3 enters the bin. There are two possibilities:

• The bin has at least one item 1 ‘‘b ¼ ð1; �Þ’’. Since lp < 2, after some time

the queue will not have any item 1 and the bin will have two items 1

‘‘b ¼ ð1; 1; �Þ’’.
– If, at that time, there are su‰ciently many items 3 in the queue, the state

of the bin will reach the state ð3; 1; 1Þ; then with probability 1 the state of

the bin will be ð3; 1Þ.
– If not, all the items 2 in the queue at that time are served ‘‘b ¼ ð1; 1; 2Þ’’.
When this is finished, the condition lp < 2 implies that the number

of items 1 is tight (as a family of random variables indexed by x, the

initial state). The items 2 accumulated during that time are served,

consequently, with probability 1, the state of the bin will be ð3; 1Þ.
ðð1; 1; 2Þ ) ð1; 1; 2Þ � � � ) ð1; 2Þ ) ð1; 2Þ ) ð1; 3Þ ) ð1; 3Þ . . .Þ.

• The state of the bin is ð3; 2Þ.
– If item 2 is served before item 3, at that moment the First Fit algorithm

selects all the initial items 2. When this is finished, with probability 1,

two items 1 enter in the bin, ð3; 1; 1Þ. The condition ðlp < 2Þ implies

that, with probability 1, the bin will reach the state ð3; 1Þ.
– If item 3 is served before item 2, the First Fit algorithm selects all the

initial items 3, ‘‘ð3; 2Þ’’. Then all the initial items 2 will be served consec-

utively at rate 2, ðð2; �Þ ) ð2; 2; 1Þ ) ð2; 2; 1ÞÞ. When this is finished and 2

goes out from the bin, with probability 1, an item 1 enters the bin. This is

the situation of the previous case ‘‘ð2; 1; 1Þ’’.

It is easily seen that each of the steps we have described has a duration with a

second moment of the order kxk2. The proposition is proved. The last inequality

is a consequence of Wald’s formula applied to the stopping time U0. r
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6. A random dynamical system in R2
B

In this section we assume that ðmnÞ is a sequence of smooth distributions on S (see

Definition 3) such that

mn
�
B ¼ ð3; 1Þ;L a dx

�
¼ E

�
Ran;bn;0ðdxÞ

�
; ð6:1Þ

i.e., if f is a non-negative measurable function on TðNÞ, then

Emn
�
f
�
Lð0Þ

�
1fBð0Þ¼ð3;1Þg

�
¼ E

� ð
TðNÞ

f ðxÞRan;bn;0ðdxÞ
�
;

where an, bn are random variables such that the convergence

lim
n!þl

an

n
¼ a and lim

n!þl

bn

n
¼ b

holds in L1. We assume that a and b are non-negative integrable random variables

and Pðaþ b > 0Þ ¼ 1. The B-component of mn is ð3; 1Þ and the L-component of

the distribution mn does not have an item 1 in the queue. It is the concatenation

of an items 3 followed by an i.i.d. string of length bn of 2’s and 3’s with respec-

tive probabilities q=ðqþ rÞ and r=ðqþ rÞ.

Definition 4. A sequence ðXnÞ of random variables is equivalent to ðanÞ if the

sequence ðXn=anÞ converges to 1 in L1ðPÞ.

A random transition of the fluid model. If the initial distribution is given

by mn, the initial state of the bin is ð3; 1Þ. If there is a departure before a new

arrival with

1) probability 1=2, this is the item 3, then an item 3 enters the bin, and then all the

other an � 1 items 3 (it remain an empty space of size 1);

2) probability 1=2, this is the item 1, another item 2 enters the bin, and then all the

other initial items 2 will be served consecutively.

We remark that the dynamic of the system is influenced by the fact that either

the 3 leaves first or not. This is also true at the fluid level, as we shall see. A sim-

ilar phenomenon has been already encountered in the model analyzed in Dantzer

et al. [8]. Here the randomness remains because of this 1=2-1=2 transition and not

because there are many possibilities for the contents of the bin. In Robert [23], it

is shown that this random bifurcation may depend on the current state; this is not

the case here.
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If the distribution of Xð0Þ is given by mn, then kXð0Þk is equivalent to�
ðaþ bÞn

�
. The next proposition shows that, up to a linear transformation, the

distribution of X at a stopping time has a property similar to identity (6.1).

Proposition 4. If U1 is the first time when all the initial items 3 have left the queue,

the initial items 3 in the bin have been served and the state of the bin is ð3; 1Þ. There

exist FU1
-measurable random variables An and Bn such that

Pmn

�
BðU1Þ

�
¼
�
ð3; 1Þ;LðU1Þ a dx

�
¼ Emn

�
RAn;Bn;0ðdxÞ

�
;

holds and there is a random matrix M such that the convergence

lim
n!þl

1

n
ðAn;BnÞ ¼ M � ða; bÞ ð6:2Þ

is true almost surely and in L1. The random matrix M has two possible values with

equal probability

m1 ¼
1

1�p�q

2ð1�pÞ

0 l qþ lpð1�p�qÞ
2ð5�lpÞ

� �
0
@

1
A

and

m2 ¼
l
2 ð1� p� qÞ 1�p�q

2ð1�pÞ

l2ð1� pÞ qþ lpð1�p�qÞ
2ð5�lpÞ

� �
l qþ lpð1�p�qÞ

2ð5�lpÞ

� �
0
@

1
A:

M is independent of ða; bÞ if Pða > 0; b > 0Þ ¼ 1.

Proof. Using Skorohod’s representation Theorem (See Ethier and Kurtz [11]),

with a change of the probability space we can assume that the sequences ðan=nÞ
and ðbn=nÞ converge almost surely (since they converge in L1, they converge in

distribution).

If Pða > 0; b > 0Þ ¼ 1. The state of the bin is ð3; 1Þ at time 0. If a new item

1 arrives, the bin is full, and during that time the 3 in the bin is replaced by the

initial items 3. So the state of the bin will come back to the state ð3; 1Þ. In this

manner, a finite number of initial items 3 in the queue are served in the bin before

a significant change occurs. If there is a departure when the state of the bin is

ð3; 1Þ, another item 2 may enter if the item 1 leaves. Hence, after this event the

state of the bin will be ð3; 2Þ or ð3; 1Þ with probability 1=2. Since ðbnÞ converges
almost surely to infinity, there will be an item 2 in the queue with probability 1 at

the occasion of such a departure. We conclude that the fact that an item 3 or an
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item 2 enters the bin is independent of the limit of ðan; bnÞ=n as long as a and b are

positive with probability 1.

Throughout this discussion, we shall ignore small strings in our statements, i.e.,

strings with an integrable length independent of the initial state. At the fluid level,

most of them do not play a role (but not all of them!). As we already noticed:

1) With probability 1=2 the item 3 leaves first. In this case the first item 3 enter

the bin and all the other an � 1 items 3 will follow it in the bin.

During that time, since lp < 2, the items 1 are processed by the empty

space in the bin. It is easily checked that the time t1 to get rid of the initial

items 3 is equivalent to anP an.

At time t1 the head of the queue is the original string of items 2 and 3 fol-

lowed by another strings of 2 and 3 built up during the service of the items 3.

Consequently, using again the law of large numbers, the length of the queue is

thus equivalent to
�
bþ lðqþ rÞa

�
n (Lemma 16 of the appendix of Dantzer [8]).

Very quickly an item of size 2 is in the bin, it is easy to check after an

integrable amount of time the state of the bin will be ð3; 2Þ.

“ð3; 1Þ ) ð�; 1Þ ) ð3; 1Þ ) ð�; 1Þ ) ð3; 1Þ ) ð�; 1Þ ) ð3; 1Þ
) ð3; �Þ ) ð3; 2Þ ) ð3; �Þ ) ð3; 2Þ”

Starting from that time, all the initial items 2 are served consecutively: a string

of items 3 builds up at the head of the queue followed by a shrinking strings of

2’s and 3’s. At the end of the queue the new items arriving during that time

form a string (since the bin is full the items 1 are not served during this phase).

The time t2 to serve all the items 2 arriving before the state of the bin

reaches ð3; 2Þ is equivalent to the quantity

�
bþ lðqþ rÞa

� q

ðqþ rÞ n:

At time t1 þ t2 there is a string of 3’s at the head of the queue of length

equivalent to

�
bþ lðqþ rÞa

� r

2ðqþ rÞ n; ð6:3Þ

followed by an i.i.d. string with distribution F ðduÞ whose length is equivalent to

the quantity

l
�
bþ lðqþ rÞa

� q

qþ r
n:
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If there is a departure of an item 2 it is immediately replaced by an item 2 or 2

items 1; the items 3 cannot be served at that moment. Due to the i.i.d. struc-

ture of the queue at that time, it is then easily seen that after an integrable

amount of time, the bin will be in the state ð1; 1; 1; 1; 1Þ. From that time all

the 1’s will be served at rate 5. The time t3 it takes to empty the queue of the

items 1 and to have exactly a 3 and a 1 in the bin is equivalent to

lp
�
bþ lðqþ rÞa

�
r

2ðqþ rÞð5� lpÞ n:

At time t1 þ t2 þ t3 there is a string of 3’s of length whose length is equivalent

to (6.3), followed by a string of 2’s and 3’s of length equivalent to

l
�
bþ lðqþ rÞa

� q

qþ r
nðqþ rÞ þ lðqþ rÞ

lp
�
bþ lðqþ rÞa

�
r

2ðqþ rÞð5� lpÞ n

¼ l
�
bþ lðqþ rÞa

�
qþ lrp

2ð5� lpÞ

� �

For this case the distribution of LðUÞ is given by Emn
�
RAn;Bn;0ðdxÞ

�
and ðAn;BnÞ

satisfies the relation (6.2) with the matrix M ¼ m2.

The uniform integrability of the sequences ðZnÞ and ðn=ZnÞ can be proved

following the same discussion.

2) With probability 1=2 this is the item 1, an item 2 is in the bin, then all the other

bn � 1 items 2 will be served. The method is the same as in the previous case.

It is slightly simpler since the initial items 3 are not served at time U1.

Finally, the discussion is similar on the set fa ¼ 0; bA 0gA faA 0; b ¼ 0g. The

di¤erence is that the duration of some transitions described above are negligible

in this case. r

The next proposition gathers some facts and estimations which will be used in

the sequel. Its proof, which is not di‰cult, follows the discussion of the above

proof. It is skipped.

Proposition 5. With the same notations as in Proposition 4, there exists a constant

K0 such that

lim sup
n!þl

E
U1

n

� �
< K0Eðaþ bÞ: ð6:4Þ

If a and b are deterministic, positive and Zn ¼ ðAn þ BnÞ=ðan þ bnÞ, the sequences

ðZnÞ and ð1=ZnÞ are uniformly integrable.
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The main result on the ultimate behavior of the fluid limits is contained in the

following proposition.

Proposition 6. If ðMnÞ is an i.i.d. sequence of random matrices with the same

distribution as M in Proposition 4 and Pn ¼ Mn �Mn�1 . . .M1, there exist a; b > 0

and a function h on Rþ such that for any n a N and x a R2
þ,

Eð3ða; bÞ;Pn � x4Þ ¼ hðlÞn3ða; bÞ; x4Þ ð6:5Þ

where 3� ; �4 is the usual scalar product in R2. If

l� ¼ 1

4pq
ð5� 3pþ 5q�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð25� 30pþ 50qþ 9p2 � 110pqþ 25q2Þ

q
ð6:6Þ

then hðlÞ < 1 if l < l� and hðlÞ > 1 if l� < l < 5=p.

Proof. We denote by EðPnÞ the expected value of the matrix Pn, i.e., the matrix

of the expected values of the coe‰cients of P. The i.i.d. property of the Mn’s

gives the relation EðPnÞ ¼ EðM1Þn. The positive matrix EðM1Þ has two positive

eigenvalues, hðlÞ denotes the largest of them and ða; bÞ is the corresponding right

eigenvector; a and b can be chosen strictly positive.

Consequently, we get

Eð3ða; bÞ;Pn � x4Þ ¼ 3ða; bÞ; EðPnÞ � x4 ¼ 3ða; bÞ; EðM1Þn � x4 ¼ hðlÞn3ða; bÞ; x4Þ:

It is easily seen that hðlÞ can be expressed as

hðlÞ ¼ max
3EðM1Þ; x4

3x; 14
: x a R2

þ

� 	
:

Since the components of EðM1Þ are increasing with respect to l if lp < 5, the same

property is true for the largest eigenvalue hðlÞ. The smallest root of the equation

hðlÞ ¼ 1 is given by l ¼ l�. (Routine calculations show that the term under the

square root in (6.6) is non-negative if pþ qa 1 and that l�p < 5.) The proposi-

tion is proved. r

Corollary 1. With the notations of Proposition 6, if l < l� for any g > hðlÞ and

x a R2
þ the sequence ðg�nPn:xÞ converges almost surely and in L1ðPÞ to ð0; 0Þ.

Proof. Using identity (6.5) for n ¼ 1, it is easily seen that

ðZnÞ ¼ ð3ða; bÞ; hðlÞ�n
Pn:x4Þ
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is a martingale. The sequence ðZnÞ being non-negative converges almost surely

to some finite limit Zl. Since a and b are positive and all the coe‰cients of

Pn are non-negative, we deduce that the sequence ðg�nPn:xÞ converges almost

surely to 0 for any g > hðlÞ. The L1-convergence follows from the fact that

EðPn � xÞ ¼ EðM1Þn � x and the fact that the eigenvalues of EðM1Þ belong to the

interval ½0; 1½. r

7. Ergodicity

Theorem 2. When the arrival rate of the items is l, the distribution of their sizes is

given by

FðdxÞ ¼ pd1 þ qd2 þ ð1� p� qÞd3

and the size of the bin is 5. If

lFF :¼ min
1

4pq

�
5� 3pþ 5q�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð25� 30pþ 50qþ 9p2 � 110pqþ 25q2Þ

q �� 	
ð7:1Þ

then the Markov process
�
XðtÞ

�
describing the First Fit algorithm is ergodic when

l < lFF.

Proof. If lp > 2, Proposition 1 shows that the condition lEðS1Þ < 5, i.e.,

lð3� 2p� qÞ < 5 is su‰cient for the ergodicity of
�
XðtÞ

�
. One can check that in

that case

5

3� 2p� q
<

1

4pq

�
5� 3pþ 5q�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð25� 30pþ 50qþ 9p2 � 110pqþ 25q2Þ

q �
:

We assume that condition (7.1) and lp < 2 are satisfied. According to Theorem 1,

to prove the ergodicity it is su‰cient to show that there exists a stopping time V

such that for any sequence ðxnÞ ¼ ðbn; lnÞ of Sl with kxnk ¼ n the following

inequalities hold

lim sup
n!þl

Exn
�
kXðVÞk

�
n

a 1� e; lim sup
n!þl

ExnðVÞ
n

aK :

Here K > 1 and e > 0 are constants independent of the sequence ðxnÞ. The

symbol K for the constant is used throughout this proof to avoid subscripts we

keep the same letter.
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According to Propositions 2 and 3, if Xð0Þ ¼ xn there exists a stopping time U0

such that

• the distribution of LðU0Þ is given by E
�
Ran;bn;0ðdxÞ

�
, where an and bn are some

random variables and BðU0Þ ¼ ð3; 1Þ;

• the following relations hold

lim sup
n!þl

ExnðU0Þ
n

aK ; ð7:2Þ

lim sup
n!þl

Exn
an þ bn

n

� �2

aExn
kXðU0Þk

n

� �2

aK : ð7:3Þ

According to inequality (7.3), the sequence of random variables ðan=n; bn=nÞ
is tight for the convergence in distribution. By taking a subsequence, we can

suppose that they jointly converge in distribution to some random variable ða; bÞ.
The relation (7.3) shows that the sequence ðan=n; bn=nÞ is uniformly integrable;

consequently, it converges in L1. In particular we have

lim sup
n!þl

Exn
an þ bn

n

� �
¼ Eðaþ bÞaK ; ð7:4Þ

which is a consequence of the relation (7.3). Using again the Skhorohod represen-

tation theorem (see Ethier and Kurtz [11]), with a change of the probability space

we can assume that the sequences ðan=nÞ and ðbn=nÞ converge almost surely to a

and b respectively.

On the event fkXðU0Þka kXð0Þk=5g one sets V ¼ U0, so that

EXð0Þ
kXðVÞk
kXð0Þk 1fkXðU0ÞkakXð0Þk=5g

� �
a

1

5
: ð7:5Þ

We have to determine V on the event fkXðU0Þk > kXð0Þk=5g. Proposition 4

shows that on the event faþ b > 0g there exist a stopping time U1, random

variables ðAn;1Þ, ðBn;1Þ and a matrix M1 independent of ða; bÞ such that

Pmn

�
BðU1Þ

�
¼ ð3; 1Þ;LðU1Þ a dxÞ ¼ Emn

�
RAn; 1;Bn; 1;0ðdxÞ

�
;

where mn is the distribution of XðU0Þ when Xð0Þ ¼ xn, and the relation

lim
n!þl

1

n
ðAn;1;Bn;1Þ ¼ M1 � ða; bÞ

holds almost surely and in L1.
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From now on, until further notice, we work on the set faþ b > 0g. We denote

by ðyt; tb 0Þ the time-shift for the Markov process. If we iterate, we get the

existence of a random variables ðAn;2Þ, ðBn;2Þ and a matrix M2 such that

PXðU1Þ
�
BðU1 � yU1

Þ ¼ ð3; 1Þ;LðU1 � yU1
Þ a dx

�
¼ EXðU1Þ

�
RAn; 2;Bn; 2;0ðdxÞ

�
ð7:6Þ

and

lim
n!þl

1

n
ðAn;2Bn;2Þ ¼ M2:M1ða; bÞ

almost surely and in L1.

For p a N, we define the variable Upþ1 ¼ Up þU1 � yUp
. Up is clearly a stop-

ping time. The relation (7.6) gives

Pmn

�
BðU2Þ ¼ ð3; 1Þ;LðU2Þ a dx

�
¼ Emn

�
RAn; 2;Bn; 2;0ðdxÞ

�
:

By induction, it is easily seen that there exist random variables An;p, Bn;p and

independent matrices Mp, pb 2, such that

Pmn

�
BðUpÞ ¼ ð3; 1Þ;LðUpÞ a dx

�
¼ Emn

�
RAn; p;Bn; p;0ðdxÞ

�
and

lim
n!þl

1

n
ðAn;p;Bn;pÞ ¼ MpMp�1 . . .M2M1ða; bÞ

holds almost surely and in L1. According to Proposition 6, we have

lim
n!þl

1

n



ða; bÞ;

�
EmnðAn;pÞ; EmnðBn;pÞ

��
¼ gpðaaþ bbÞ:

Since kXðUpÞk ¼ 2þ An;p þ Bn;p it follows from (7.4) that

lim sup
n!þl

1

n
Emn
�
kXðUpÞk

�
a

1

abb
lim

n!þl

1

n



ða; bÞ;

�
EmnðAn;pÞ; EmnðBn;pÞ

��

¼ gp
aEðaÞ þ bEðbÞ

abb

a gp
a4b

abb
Eðaþ bÞa gp

a4b

abb
K : ð7:7Þ

Since the condition l < lFF implies that g < 1, we choose p a N such that

gp < 1
5

abb
ða4bÞK . On the event fkXðU0Þk > kXð0Þk=5g, the variable V is defined as

U0 þUp � yU0
.
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For n a N, by the strong Markov property, we have

ExnðkXðVÞk1fkXðU0Þk>kxnk=5gÞ ¼ Exn
�
EmnðkXðUpÞkÞ1fkXðU0Þk>kxnk=5g

�
¼ Exn

�
EmnðAn;p þ Bn;p þ 2Þ1fkXðU0Þk>kxnk=5g

�
:

We can assume that Pðaþ b ¼ 1=5Þ ¼ 0. Otherwise we replace the constant 1=5

by some real r less than 1=5 such that Pðaþ b ¼ rÞ ¼ 0. We have

Exn Emn
kXðUpÞk

n

� �
ð1fkXðU0Þk>kxnk=5g � 1faþb>1=5gÞ

� �����
����

aC0Exn j1fkXðU0Þk>kxnk=5g � 1faþb>1=5gj þ 2Exn
kXðUpÞk

n
1fkXðUpÞ=nbC0g

� �
:

Due to the L1-convergence of kXðUpÞk=n ¼ ðAn;p þ Bn;pÞ=n, the second term

of the right-hand side is arbitrarily small uniformly on n for some C0 > 0.

The first term converges to 0 since kXðUpÞk=n converges almost surely to

aþ b and Pðaþ b ¼ 1=5Þ ¼ 0. Hence it is enough to consider the quantity

Exn Emn
kXðUpÞk

n

� �
ð1faþb>1=5gÞ

� �
. Relation (7.7) implies that

lim sup
n!þl

Exn
kXðVÞk

n
1fkXðU0Þk>kxnk=5g

� �
a gp

a4b

abb
Ka

1

5
: ð7:8Þ

Inequalities (7.2) and (6.4) show that there exists some constant K such that

lim sup
n!þl

ExnðVÞ
kXð0Þk aK ;

and relations (7.5) and (7.8) give

lim sup
n!þl

Exn
kXðVÞk
kXð0Þk

� �
a

2

5
:

The proof is completed. r

8. Transience

Theorem 3. When the arrival rate of the items is l, the distribution of their sizes is

given by

F ðdxÞ ¼ pd1 þ qd2 þ ð1� p� qÞd3;
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and the size of the bin is 5, the Markov process
�
XðtÞ

�
describing the First Fit

algorithm is transient when l > lFF , where lFF is defined by equation (7.1).

Proof. We assume that the initial distribution of
�
LðtÞ

�
is given by Ra;b;0 and the

initial state of the bin is ð3; 1Þ. With the notation of Proposition 4, U1 is the first

time when all the initial items 3 have left the queue, the items 3 in the bin have

been served and the state of the bin is ð3; 1Þ. As in the proof of Proposition 2,

we define the sequence of stopping times ðUpÞ by

Upþ1 ¼ Up þU1 � yUp
:

The variable Upþ1 is the first moment when all the items 3 present at time Up have

left the queue and the state of the bin is ð3; 1Þ. Clearly the sequence
�
LðUpÞ

�
is an

homogeneous irreducible Markov chain on TðNÞ.
The distribution of XðU1Þ is represented by

PRa; b; 0

�
XðU1Þ a dx

�
¼ E

�
RAa; b;Ba; b;0ðdxÞ

�
:

Almost surely U1 is a finite stopping time. Proposition 4 and 6 show that there

exist constants a, b such that

lim
ðaþbÞ!þl

aA1 þ bB1

aaþ bb
¼ g > 1 ð8:1Þ

almost surely.

We assume that the Markov process
�
XðtÞ

�
is recurrent. In particular it visits

the state y0 ¼
�
j; ð3; 1Þ

�
infinitely often, i.e., with probability 1 the queue will be

empty and the state of the bin will be ð3; 1Þ. The first time the process
�
XðtÞ

�
visits

the state y0 is necessarily at one of the moments Up, pb 1. Consequently, the

Markov chain
�
LðUpÞ

�
visits the state y0 with probability 1. We now define a

Lyapounov function on the state space of
�
LðUpÞ

�
by

f ðlÞ ¼ log
�
1þ apþ bðklk � pÞ

�
if l ¼ ðliÞ, p1 ¼ inffk � 1=lk A 3g. With the notations defined above, we have

f
�
LðU1Þ

�
¼ logð1þ aAa;b þ bBa;bÞ. Thus

ERa; b; 0

�
f
�
LðU1Þ

�
� f

�
LðU0Þ

��
¼ ERa; b; 0

 
log

1þ aAa;b þ bBa;b

1þ aaþ bb

� �!
:

According to Proposition 4, the random variables

ð1þ aAa;b þ bBa;bÞ ð1þ aaþ bbÞ=
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and their inverse are uniformly integrable. Consequently, the elementary in-

equality

jlog xjaxþ 1

x
;

for x > 0, convergence (8.1) and Lebesgue’s theorem show that

lim
ðaþbÞ!þl

ERa; b; 0

�
f
�
LðU1Þ

�
� f

�
LðU0Þ

��
¼ log g > 0:

Hence there exists some constant K0 such that if ðaþ bÞbK0, then

ERa; b

�
f
�
LðU1Þ

�
� f

�
LðU0Þ

��
b ðlog gÞ=2: ð8:2Þ

In the same way, we have

ERa; b; 0

��� f �LðU1Þ
�
� f

�
LðU0Þ

���2�
a 11 logða4bÞ2 þ 5ERa; b; 0

 
log2

1þ Aa;b þ Ba;b

1þ aaþ bb

� �!
:

The elementary inequality

log2 xa
4

e2
xþ 1

x

� �

for x > 0 and the uniform integrability argument give

sup
a;b;aþb>k

ERa; b; 0

��� f �LðU1Þ
�
� f

�
LðU0Þ

���2� < þl: ð8:3Þ

A theorem by Lamperti [18] (see Fayolle et al. [12] or Meyn and Tweedie [21])

states that if the relations (8.3) and (8.2) are satisfied, then the Markov chain�
LðUpÞ

�
is transient. In particular this implies that there exists an initial state

such that the chain will never visit the state y0 with positive probability. This con-

tradicts our assumption on the recurrence of
�
XðtÞ

�
. The theorem is proved. r

The case of symmetrical distributions. The distribution F is symmetrical if

F ðdxÞ ¼ pd1 þ ð1� 2pÞd2 þ pd3

for p a ½0; 1=2½. Since the expected value of size of the items is 1=2 for all these

distributions, the value lFF of the corresponding critical l cannot exceed 5=2.
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According to Theorem 2 the critical value of l for the First Fit algorithm is

given by

lFF ¼ 1

4

�10þ 13pþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
100� 340pþ 329p2

p
pð�1þ 2pÞ :

The e¤ective bandwidth of First Fit policie for symmetrical distribution on f1; 2; 3g

9. Conclusion

We have shown in this paper that in the situation lp > 2 and lEðS1Þ < 5 our

system is stable. After that several conditions were established in the case lp < 2

and in connection with the concept of ‘‘smooth random state’’. Then all these

results were used to derive the ergodicity and transience conditions for the Markov

process.

Finally, we have presented an example of symmetrical distributions.
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