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Existence of solutions for a third-order boundary value
problem with p-Laplacian operator and nonlinear

boundary conditions
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Abstract. In this paper we study the third-order nonlinear boundary value problem�
fðu 00Þ

� 0ðtÞ þ f
�
t; uðtÞ; u 0ðtÞ; u 00ðtÞ

�
¼ 0 a:e: t a ½0; 1�;

uð0Þ ¼ 0; g
�
u 0ð0Þ; u 00ð0Þ

�
¼ A; h

�
u 0ð1Þ; u 00ð1Þ

�
¼ B;

(

where A;B a R, f : ½0; 1� � R3 ! R is a Carathéodory function, g; h a C 0ðR2;RÞ and f a
C 0ðR;RÞ. Using apriori estimates, the Nagumo condition, upper and lower solutions
and the Schauder fixed point theorem, we are able to prove existence of solutions of this
problem.
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1. Introduction

Third-order boundary value problems (BVPs) have been studied by many authors;

see, e.g., the references listed below. However, the boundary conditions are usu-

ally assumed to be linear and only a few authors have studied the case of nonlinear

boundary conditions.

In this article we will study the existence of solution for the following nonlinear

boundary value problem:�
fðu 00Þ

� 0ðtÞ þ f
�
t; uðtÞ; u 0ðtÞ; u 00ðtÞ

�
¼ 0 for a:e: t a I ¼ ½0; 1�;

uð0Þ ¼ 0; g
�
u 0ð0Þ; u 00ð0Þ

�
¼ A; h

�
u 0ð1Þ; u 00ð1Þ

�
¼ B;

(
ðPÞ

where A;B a R, and the three following conditions are assume to hold:
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(H1) f : R ! R is a continuous, strictly increasing function, with fð0Þ ¼ 0 and

fðRÞ ¼ R.

(H2) f : I � R3 ! R is a Carathéodory function, i.e.,

(i) for all ðx; y; zÞ a R3, the function t ! f ðt; x; y; zÞ is measurable on I ,

(ii) for almost all t a I , the function ðx; y; zÞ ! f ðt; x; y; zÞ is continuous
on R3, and

(iii) for every M > 0 there exists a real-valued function cM a L1ðIÞ such

that

j f ðt; x; y; zÞjacMðtÞ

holds for almost all t a I and for every ðx; y; zÞ a R3 with jxjaM,

jyjaM and jzjaM.

(H3) g : R2 ! R is a continuous function which is non-increasing on the second

variable; h : R2 ! R is a continuous function which is non-decreasing on

the second variable.

Remark 1.1. An important special case occurs when the function f is the p-

Laplacian operator, i.e., fðuÞ ¼ jujp�2
u, with p > 1.

We emphasize that the term
�
fðu 00Þ

� 0
in (P) is not assumed to be linear in u, so

many of the results that hold in the linear case, in general, will fail for problem (P).

In fact, these kind of non-linear BVPs require quite di¤erent techniques from the

linear case, and we propose here a new method. This method di¤ers from the ones

already available in the literature, so let us mentioned some of these works and

how their results compare to ours.

Rovderová, in [11], has established existence results for the BVP

u 000ðtÞ þ f
�
t; uðtÞ; u 0ðtÞ; u 00ðtÞ

�
¼ 0; 0 < t < 1;

uð0Þ ¼ A; u 00ð0Þ ¼ s
�
u 0ð0Þ

�
; u 0ð1Þ ¼ t

�
uð1Þ

�
;

�
ð1Þ

where f , qf =qu, qf =qu 0, qf =qu 00 are all assumed to be continuous functions on

½0; 1� � R3, and sðvÞ a C1ðR;RÞ, tðvÞ a C0ðR;RÞ.
In [8], the authors study the existence of solutions for the same problem under

the following very special boundary conditions:

uð0Þ ¼ 0; au 0ð0Þ � bu 00ð0Þ ¼ A; cu 0ð1Þ þ du 00ð1Þ ¼ B; ð2Þ

but where f is only assumed to be continuous. Later, Du et al. in [6], following

the some set of ideas developed in [8], extended these existence results to the fol-

lowing more general type of boundary conditions:

uð0Þ ¼ 0; g
�
u 0ð0Þ; u 00ð0Þ

�
¼ A; h

�
u 0ð1Þ; u 00ð1Þ

�
¼ B: ð3Þ
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In [4], the authors study a more general BVP analogou to our problem (P):

�
fðu 00Þ

� 0ðtÞ þ f
�
t; uðtÞ; u 0ðtÞ; u 00ðtÞ

�
¼ 0 for a:e: t a I ¼ ½0; 1�;

uð0Þ ¼ A;

L1

�
u; u 0; u 0ð0Þ; u 0ð1Þ; u 00ð0Þ

�
¼ A;

L2

�
u; u 0ð0Þ; u 0ð1Þ; u 00ð1Þ

�
¼ 0;

8>>><
>>>:

ð4Þ

Our method is also quite di¤erent from the one used in [4]. For example, we do

not require that f ðt; u; v;wÞ should be non-decreasing in the second variable, an

assumptiom which is critical for the method in [4] to work. In fact, our approach,

combines the method of lower and upper solutions, the Nagumo condition (to ob-

tain a priori bounds for the second derivative of the solution), and the Schauder

fixed point theorem. For this to work we will need to consider a modified form

of (P), which makes it possible to use the Schauder fixed point theorem.

2. The main existence result

We will be using some standard notations: C0ðIÞ, CkðIÞ, LkðIÞ, LlðIÞ and ACðIÞ
will denote the classical functions spaces on the interval I ¼ ½0; 1� of continuous
functions, k-times continuously di¤erentiable functions, measurable real-valued

functions whose kth power is Lebesgue integrable, measurable functions that are

essentially bounded, and absolutely continuous functions, respectively.

We start by introducing two basic definitions:

Definition 2.1. We say that y a C2ðIÞ is a lower solution for problem (P) if

fðy 00Þ a ACðIÞ and
�
fðy 00Þ

� 0ðtÞ þ f
�
t; yðtÞ; y 0ðtÞ; y 00ðtÞ

�
b 0 for a:e: t a I ;

yð0Þa 0; g
�
y 0ð0Þ; y 00ð0Þ

�
aA; h

�
y 0ð1Þ; y 00ð1Þ

�
aB:

(

Moreover, y is called an upper solution of (P) if the reversed inequalities hold; if

equalities hold, we say that y is a solution of (P).

Definition 2.2. We say that a Carathéodory function f : I � R3 ! R satisfies the

Nagumo condition relative to the pair a and b, where a; b a C2ðIÞ, if aðtÞa bðtÞ
and a 0ðtÞa b 0ðtÞ for t a I , and there exist continuous functions k a LpðIÞ
ð1a palÞ and y : ½0;lÞ ! ð0;lÞ such that

j f ðt; u; v;wÞja kðtÞyðjwjÞ for a:e: ðt; u; v;wÞ a W;

where W ¼ fðt; u; v;wÞ a I � R3 j aðtÞa ua bðtÞ; a 0ðtÞa va b 0ðtÞg, and
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ðþl

fðhÞ

jf�1ðuÞjðp�1Þ=p

yðjf�1ðuÞjÞ
du;

ð fð�hÞ

�l

jf�1ðuÞjðp�1Þ=p

yðjf�1ðuÞjÞ
du > mðp�1Þ=pkkkp;

where

m ¼ max
t A I

b 0ðtÞ �min
t A I

a 0ðtÞ and h ¼ maxfja 0ð0Þ � b 0ð1Þj; ja 0ð1Þ � b 0ð0Þjg:

Note that in the previous definition we have used the standard convention

kkkp ¼
supt A I jkðtÞj if p ¼ l;

ð
Ð 1
0 jkðtÞj

p
dtÞ1=p if 1a p < l;

(

where ðp� 1Þ=pC 1 for p ¼ l:

The following classical result is critical to our method (see, e.g., [1]).

Lemma 2.1 (Schauder Fixed Point Theorem). Let K be a closed convex subset of

a normed linear space E. Then every compact, continuous map T : K ! K has at

least one fixed point.

Let us assume that hypotheses (H1)–(H3) and the Nagumo condition relative

to a lower solution a and an upper solution b are satisfied. We start by construct-

ing a modified BVP equivalent to our problem (P).

First, by Definition 2.2, we can find two real numbers M� < 0 < Mþ such that

M� < �ha h < Mþ; M� < a 00ðtÞ; b 00ðtÞ < Mþ for all t a I ð5Þ

and

ð fðMþÞ

fðhÞ

jf�1ðsÞjðp�1Þ=p

yðjf�1ðsÞjÞ
ds > mðp�1Þ=pkkkp;

ð fð�hÞ

fðM�Þ

jf�1ðsÞjðp�1Þ=p

yðjf�1ðsÞjÞ
ds > mðp�1Þ=pkkkp:

ð6Þ

Second, we define

d1ðt; xÞ ¼ maxfaðtÞ;minfx; bðtÞgg;
d2ðt; xÞ ¼ maxfa 0ðtÞ;minfx; b 0ðtÞgg;
d3ðxÞ ¼ maxfM�;minfx;Mþgg:

Then diðt; xÞ ði ¼ 1; 2Þ is continuous on I � R and d3ðxÞ is continuous on R.
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Lemma 2.2. For any u a C2ðIÞ, the following two properties hold:

(i) d
dt
d2
�
t; u 0ðtÞ

�
exists for a.e. t a I;

(ii) if u0; uj a C2ðIÞ and uj ! u0 in C2ðIÞ, then

d

dt
d2
�
t; u 0

j ðtÞ
�
! d

dt
d2
�
t; u 0

0ðtÞ
�

for a:e: t a I :

Proof. The proof can be found in [7]. r

Now we consider the following modified version of problem (P)

�
fðu 00Þ

� 0 þ Fðt; uÞ ¼ 0 for a:e: t a I ;

uð0Þ ¼ 0;

u 0ð0Þ ¼ GðuÞ;
u 0ð1Þ ¼ HðuÞ;

8>>><
>>>:

ðP*Þ

where Fðt; uÞ : I � C2ðIÞ ! R, GðuÞ : C2ðIÞ ! R and HðuÞ : C2ðIÞ ! R are

given by

Fðt; uÞ ¼ f t; d1ðt; uÞ; d2ðt; u 0Þ; d3
d

dt
d2ðt; u 0Þ

� �� �
� tanh

�
u 0 � d2ðt; u 0Þ

�
; ð7Þ

GðuÞ ¼ A� g
�
d2
�
0; u 0ð0Þ

�
; d3

�
u 00ð0Þ

��
þ d2

�
0; u 0ð0Þ

�
; ð8Þ

HðuÞ ¼ B� h
�
d2
�
1; u 0ð1Þ

�
; d3

�
u 00ð1Þ

��
þ d2

�
0; u 0ð1Þ

�
: ð9Þ

For problem (P*), the following two lemmas hold, from which we can con-

clude that every solution of (P*) in the sector

½a; b� :¼ fu a C2ðIÞ j aðtÞa uðtÞa bðtÞ; a 0ðtÞa u 0ðtÞa b 0ðtÞ; t a Ig

is also a solution of (P).

Lemma 2.3. Assume that f : I � R3 ! R satisfies

f
�
t; aðtÞ; x1; x2

�
a f ðt; x0; x1; x2Þa f

�
t; bðtÞ; x1; x2

�
ðH4Þ

for all ðt; x1; x2Þ a I � R2 and aðtÞa x0a bðtÞ. Then, for every solution u of (P*)

one has uðtÞ a ½a; b�, for all t a I .

Proof. We shall only prove that u 0ðtÞa b 0ðtÞ, for all t a I . A similar reasoning

shows that a 0ðtÞa u 0ðtÞ, for all t a I . Since að0Þa 0, uð0Þ ¼ 0 and bð0Þb 0, it

follows that aðtÞa uðtÞa bðtÞ, for all t a I .
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Suppose that our assertion was not true. Then there exists t1 a I such that

u 0ðt1Þ � b 0ðt1Þ ¼ max
t A I

½u 0ðtÞ � b 0ðtÞ� > 0; u 0ðtÞ � b 0ðtÞ < u 0ðt1Þ � b 0ðt1Þ ð10Þ

for all t a ½0; t1Þ.
If t1 a ð0; 1Þ, then u 00ðt1Þ � b 00ðt1Þ ¼ 0, so by the continuity of u 0ðtÞ � b 0ðtÞ at

t ¼ t1 there exists t2 a ð0; t1Þ such that ðu� bÞ0ðtÞ > 0, for all t a ½t2; t1�. We note

that there must exist some t0 a ðt2; t1Þ for which ðu� bÞ00ðt0Þ > 0 (if not, i.e.,

ðu� bÞ00ðtÞa 0 for all t a ðt2; t1Þ, then ðu� bÞ0ðtÞ is decreasing on ðt2; t1Þ, which
contradicts (10)). Let us set t ¼ supft a ½t0; t1Þ; ðu� bÞ00ðsÞ > 0; s a ðt0; tÞg. Then

we have

ðu� bÞ00ðtÞ ¼ 0; ðu� bÞ00ðtÞ > 0; ðu� bÞ0ðtÞ > 0; t a ðt0; tÞ:

We conclude that:

f
�
u 00ðtÞ

�
bf

�
b 00ðtÞ

�
; t a ðt0; tÞ; and d2

�
t; u 0ðtÞ

�
¼ b 0ðtÞ; t a ðt0; tÞ:

Therefore, by (H4), we find that

0b
�
f
�
u 00ðtÞ

�
� f

�
b 00ðtÞ

��
�
�
f
�
u 00ðt0Þ

�
� f

�
b 00ðt0Þ

��
¼

ð t
t0

�
fðu 00Þ � fðb 00Þ

� 0ðtÞ dt
¼

ð t
t0

��
fðu 00Þ

� 0ðtÞ � �
fðb 00Þ

� 0ðtÞ� dt
b

ð t
t0

"
� f t; d1

�
t; uðtÞ

�
; d2

�
t; u 0ðtÞ

�
; d3

d

dt
d2
�
t; u 0ðtÞ

�� �� �

þ tanh
�
u 0ðtÞ � d2

�
t; u 0ðtÞ

��
þ f

�
t; bðtÞ; b 0ðtÞ; b 00ðtÞ

�#
dt

¼
ð t
t0

�
�f

�
t; d1

�
t; uðtÞ

�
; b 0ðtÞ; b 00ðtÞ

�
þ tanh

�
u 0ðtÞ � d2

�
t; u 0ðtÞ

��
þ f

�
t; bðtÞ; b 0ðtÞ; b 00ðtÞ

��
dt

>

ð t
t0

�
�f

�
t; d1

�
t; uðtÞ

�
; b 0ðtÞ; b 00ðtÞ

�
þ f

�
t; bðtÞ; b 0ðtÞ; b 00ðtÞ

��
dtb 0;

which is a contradiction. Hence, t1 B ð0; 1Þ.

18 D.-X. Ma and S.-Z. Sun



Now, if t1 ¼ 0 we have:

max
t A I

½u 0ðtÞ � b 0ðtÞ� ¼ u 0ð0Þ � b 0ð0Þ > 0:

Then u 00ð0Þ � b 00ð0Þa 0, and it follows that:

d3
�
u 00ð0Þ

�
a b 00ð0Þ:

Therefore, by (H3):

b 0ð0Þ < u 0ð0Þ ¼ A� g
�
d2
�
0; u 0ð0Þ

�
; d3

�
u 00ð0Þ

��
þ d2

�
0; u 0ð0Þ

�
aA� g

�
b 0ð0Þ; b 00ð0Þ

�
þ b 0ð0Þ

a b 0ð0Þ;

which is a contradiction. Thus, we must have t1A 0. The case t1 ¼ 1 is discard in

a similar fashion.

Altogether, we have shown that u 0ðtÞa b 0ðtÞ, for all t a I , so Lemma 2.3

holds. r

Lemma 2.4. If u is a solution of (P*), then M�a u 00ðtÞaMþ for all t a I . Here

M� and Mþ denote the Nagumo constants given by (5) and (6), and they only de-

pend on a, b, f, y and k.

Proof. Let u a C2ðIÞ be a solution of (P*). By Lemma 2.3, we have u a ½a; b�, so
that

�
�
fðu 00Þ

� 0 ¼ Fðt; uÞ ¼ f
�
t; u; u 0; d3ðu 00Þ

�
for a:e: t a I :

Also, by the mean-value theorem, there exists t0 a ð0; 1Þ such that

u 00ðt0Þ ¼ u 0ð1Þ � u 0ð0Þ:

Then

M� < �ha a 0ð1Þ � b 0ð0Þa u 00ðt0Þa b 0ð1Þ � a 0ð0Þa h < Mþ:

Let us set h0 ¼ ju 00ðt0Þj and suppose that the conclusion of Lemma 2.4 is not true.

Then, there must exist t a I such that u 00ðtÞ > Mþ or u 00ðtÞ < M�. By the conti-

nuity of u 00 we can choose t1; t2 a I satisfying one of the following situations:

(i) u 00ðt2Þ ¼ h0, u
00ðt1Þ ¼ Mþ and h0a u 00ðtÞaMþ for all t a ðt2; t1Þ;

(ii) u 00ðt1Þ ¼ Mþ, u
00ðt2Þ ¼ h0 and h0a u 00ðtÞaMþ for all t a ðt1; t2Þ;

19Existence of solutions for a third-order boundary value problem



(iii) u 00ðt2Þ ¼ �h0, u
00ðt1Þ ¼ M� and M�a u 00ðtÞa�h0 for all t a ðt2; t1Þ;

(iv) u 00ðt1Þ ¼ M�, u
00ðt2Þ ¼ �h0 and M�a u 00ðtÞa�h0 for all t a ðt1; t2Þ.

Assume that (i) holds (the other cases can be excluded by similar arguments).

Since M�a h0a u 00ðtÞaMþ for all t a ðt2; t1Þ, we have

�
�
fðu 00Þ

� 0 ¼ f ðt; u; u 0; u 00Þ for a:e: t a ðt2; t1Þ;

so, by the Nagumo condition,���fðu 00Þ
� 0ðtÞ�� ¼ j f ðt; u; u 0; u 00Þja kðtÞyðju 00jÞ for a:e: t a ðt2; t1Þ:

Note that f�1ðsÞb 0 for s a ½fðh0Þ; fðMþÞ�. On the other hand, we have

h0a h and thus fðh0ÞafðhÞ, which leads us to

ð fðMþÞ

fðh0Þ

�
f�1ðsÞ

�ðp�1Þ=p

y
�
f�1ðsÞ

� dub

ð fðMþÞ

fðhÞ

�
f�1ðsÞ

�ðp�1Þ=p

y
�
f�1ðsÞ

� du > mðp�1Þ=pkkkp: ð11Þ

Consider now the function j : ½t2; t1� ! ½fðh0Þ; fðMþÞ� defined by

jðrÞ ¼ f
�
u 00ðrÞ

�
for r a ½t2; t1�:

By the very definition of a solution, j is an absolutely continuous function. After

a convenient change of variable, and applying assumption (H2), we find

ð fðMþÞ

fðh0Þ

�
f�1ðsÞ

�ðp�1Þ=p

y
�
f�1ðsÞ

� du ¼
ð t1

t2

�
u 00ðsÞ

�ðp�1Þ=p�
fðu 00Þ

� 0ðsÞ
yðu 00ÞðsÞ ds

¼
ð t1

t2

�
u 00ðsÞ

�ðp�1Þ=p

yðu 00ÞðsÞ
�
�f

�
s; uðsÞ; u 0ðsÞ; u 00ðsÞ

��
ds

a

ð t1

t2

kðsÞ
�
u 00ðsÞ

�ðp�1Þ=p
ds:

By Hölder’s inequality,

ð fðMþÞ

fðh0Þ

�
f�1ðsÞ

�ðp�1Þ=p

y
�
f�1ðsÞ

� dua kkkpmðp�1Þ=p;

which contradicts (11). Thus Lemma 2.4 holds. r

Now we can prove our main result.
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Theorem 2.1. Let a be a lower solution and b be an upper solution for problem

(P) with aðtÞa bðtÞ and a 0ðtÞa b 0ðtÞ for all t a I . Assume further that hypotheses

(H1)–(H4) are satisfied and that the Nagumo condition relative to a and b holds.

Then (P) has at least one solution

u a fu a C2ðIÞ j aðtÞa uðtÞa bðtÞ; a 0ðtÞa u 0ðtÞa b 0ðtÞ; t a Ig

that satisfies M� < u 00 < Mþ for all t a I , where M� and Mþ are two constants

depending only on a, b, f, y and k.

Proof. By Lemma 2.3 and Lemma 2.4, the proof will be completed once we have

shown that (P*) admits a solution. In what follows, we will show that (P*) has a

solution.

Step 1. For any fixed u a C2ðIÞ, define xuðxÞ : R ! R as

xuðxÞ ¼
ð1

0

f�1
	
x�

ð s

0

F
�
r; uðrÞ

�
dr


ds�

�
HðuÞ � GðuÞ

�
; x a R; ð12Þ

where F ðt; uÞ, HðuÞ, GðuÞ are defined as in (7), (8) and (9), respectively. We claim

that there exists a unique tu such that xuðtuÞ ¼ 0.

Clearly, xu is continuous and strictly increasing on R. By (H2), there exists

c a L1ðIÞ such that��F�s; uðsÞ���acðsÞ for a:e: s a I and for all u a C2ðIÞ: ð13Þ

It follows that

��� ð t

0

F
�
s; uðsÞ

�
ds
���a kck1 for all t a I and for all u a C2ðIÞ;

and this implies that

xu
�
kck1 þ f

�
HðuÞ � GðuÞ

��
b 0; xu

�
�kck1 þ f

�
HðuÞ � GðuÞ

��
a 0:

Thus, there exists a unique

tu a
�
�kck1 þ f

�
HðuÞ � GðuÞ

�
; kck1 þ f

�
HðuÞ � GðuÞ

��
satisfying xuðtuÞ ¼ 0, i.e.,

ð1

0

f�1
	
tu �

ð s

0

F
�
r; uðrÞ

�
dr


ds ¼ HðuÞ � GðuÞ: ð14Þ

21Existence of solutions for a third-order boundary value problem



Define the function t : C2ðIÞ ! R by tðuÞ ¼ tu, where tu is the unique solution

of (14) corresponding to u a C2ðIÞ. We claim that t : C2ðIÞ ! R is uniformly

bounded and continuous.

In fact, by the very definition of HðuÞ and GðuÞ, we obtain that
�
HðuÞ � GðuÞ

�
is uniformly bounded in C2ðIÞ. Since tu a

�
�kck1 þ f

�
HðuÞ � GðuÞ

�
; kck1 þ

f
�
HðuÞ � GðuÞ

��
, this implies that tðuÞ is uniformly bounded. Therefore, there

exists L > 0 such that

jtujaL for all u a C2ðIÞ: ð15Þ

As for the continuity of tðuÞ, suppose that un ! u0 is a convergente sequence

in C2ðIÞ. Denote tn ðn ¼ 0; 1; 2; . . .Þ, the unique solution of (14) corresponding to

un ðn ¼ 0; 1; 2; . . .Þ. We claim that

lim
n!l

tn ¼ t0:

If this is not the case, and since ftng is uniformly bounded, there exist two subse-

quences ftnk1g and ftnk2g with tnk1 ! c1 and tnk2 ! c2, but c1A c2. By the defini-

tion of tn, we have

ð1

0

f�1
	
tnk1 �

ð s

0

F
�
r; unk1 ðrÞ

�
dr


ds ¼ Hðunk1 Þ � Gðunk1 Þ: ð16Þ

Now, using Lemma 2.2, we have that

F
�
t; unðtÞ

�
! F

�
t; u0ðtÞ

�
for a:e: t a I : ð17Þ

Combining (13), (17), (H1), and applying the Lebesgue’s dominated convergence

theorem to (16), we conclude that:

Hðu0Þ � Gðu0Þ ¼ lim
nk1!l

½Hðunk1 Þ � Gðunk1 Þ�

¼ lim
nk1!l

ð1

0

f�1
	
tnk1 �

ð s

0

F
�
t; unk1 ðrÞ

�
dr


ds

¼
ð1

0

f�1
	
c1 � lim

nk1!l

ð s

0

F
�
r; unk1 ðrÞ

�
dr


ds

¼
ð1

0

f�1
	
c1 �

ð s

0

lim
nk1!l

F
�
r; unk1 ðrÞ

�
dr


ds

¼
ð1

0

f�1
	
c1 �

ð s

0

F
�
r; u0ðrÞ

�
dr


ds:

22 D.-X. Ma and S.-Z. Sun



Since t0 was the unique solution of (14), we conlcude that c1 ¼ t0. Similarly,

c2 ¼ t0, so that c1 ¼ c2 which is a contradiction. Therefore, tn ! t0 for any se-

quence un ! u0 in C2ðIÞ, which means that t : C2ðIÞ ! R is continuous.

Step 2. Let us define T : C2ðIÞ ! C2ðIÞ by

ðTuÞðtÞ ¼ tGðuÞ þ
ð t

0

h ð s

0

f�1
	
tu �

ð r

0

F
�
z; uðzÞ

�
dz



dr
i
ds; ð18Þ

where tu is the unique solution of (14) corresponding to u a C2ðIÞ.
If u a C2ðIÞ is a fixed point of T , then di¤erentiating (18) we obtain

u 0ðtÞ ¼ GðuÞ þ
ð t

0

f�1
	
tu �

ð r

0

F
�
z; uðzÞ

�
dz



dr: ð19Þ

Di¤erentiating (19) and using the regularity of F ðt; uÞ, shows that that u a C2ðIÞ,�
fðu 00Þ

�
a ACðIÞ and u satisfies the di¤erential equation of (P*). The fact that u

satisfies the boundary conditions of (P*) follows from (14), (18) and (19) easily.

Thus, if u is a fixed point of T , then u is a solution of (P*).

We will now prove that T has a fixed point u a C2ðIÞ using the Schauder fixed

point theorem.

First, we show that the operator T is continuous in C2ðIÞ. Suppose that

un ! u0 in C2ðIÞ. Since F is a Carathéodory function, by Lemma 2.2, it follows

that

F
�
t; unðtÞ

�
! F

�
t; u0ðtÞ

�
in a:e: t a I :

Hence, by (13), we see that:

lim
n!l

ð1

0

��F�t; unðtÞ�� F
�
t; u0ðtÞ

��� dt ¼ 0: ð20Þ

On the other hand, we have already proved in Step 1 that:

lim
n!l

tn ¼ t0: ð21Þ

Equations (20) and (21) together, tell us that

tn �
ð t

0

F
�
s; unðsÞ

�
ds ! t0 �

ð t

0

F
�
s; u0ðsÞ

�
ds

uniformly on I . Thus, by the uniform continuity of f�1, we conclude that:
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Tun ! Tu uniformly on I ;

ðTunÞ0 ! ðTuÞ0 uniformly on I ;

ðTunÞ00 ! ðTuÞ00 uniformly on I ;

and hence T : C2ðIÞ ! C2ðIÞ is continuous.
Second, we show that T

�
C2ðIÞ

�
is a relatively compact set in C2ðIÞ. Using

(13), (15) and (H1), together with the expression of Tu, we have that

jðTuÞðtÞjaQ for all t a I and all u a C2ðIÞ;

jðTuÞ0ðtÞjaQ for all t a I and all u a C2ðIÞ;

jðTuÞ00ðtÞjaf�1ðLþ kck1Þ for all t a I and all u a C2ðIÞ;

ð22Þ

where

Q ¼ jAj þ max
jxjamaxfja 0ð0Þj; jb 0ð0Þjg

jyjafjM�j; jMþjg

jgðx; yÞj þmaxfja 0ð0Þj; jb 0ð0Þjg þ f�1ðLþ kck1Þ:

Inequalities (22) show that T
�
C2ðIÞ

�
;
�
T
�
C2ðIÞ

�� 0 ¼ �
y 0 j y a T

�
C2ðIÞ

��
and�

T
�
C2ðIÞ

�� 00 ¼ �
y 00 j y a T

�
C2ðIÞ

��
are uniformly bounded on I . It follows

from (22) that T
�
C2ðIÞ

�
and

�
T
�
C2ðIÞ

�� 0
are two equicontinuous subsets of

C0ðIÞ. To see that
�
T
�
C2ðIÞ

�� 00
is an equicontinuous subset of C0ðIÞ, we use

(13): for any u a C2ðIÞ, we find���f�ðTuÞ00�� 0ðtÞ�� ¼ ���F
�
t; uðtÞ

���acðtÞ a L1ðIÞ:

This readily implies that that f
��
T
�
C2ðIÞ

�� 00�
is an equicontinuous subset of

C0ðIÞ. Thus,
�
T
�
C2ðIÞ

�� 00
is an equicontinuous subset of C0ðIÞ. We can now

invoke the Ascoli–Arzela Theorem to deduce that T
�
C2ðIÞ

�
is a relatively com-

pact set in C2ðIÞ, as claimed.

We have verify the conditions of the Schauder Fixed Point Theorem, so we can

conclude that the operator T has at least a fixed point u a C2ðIÞ. This means that

(P*) has at least one solution u a C2ðIÞ.
Step 3. Let u a C2ðIÞ be a solution of (P*). We claim that u is also a solution

of (P).

By Lemma 2.3,

aðtÞa uðtÞa bðtÞ and a 0ðtÞa u 0ðtÞa b 0ðtÞ for any t a I ; ð23Þ

and, by Lemma 2.4,

M�a u 00ðtÞaMþ for any t a I : ð24Þ
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Thus, we see that

F ðt; uÞ ¼ f
�
t; d1ðt; uÞ; d2ðt; u 0Þ

�
; d3

d

dt
d2ðt; u 0Þ

� �
þ tanh

�
u 0 � d2ðt; u 0Þ

�
¼ f

�
t; uðtÞ; u 0ðtÞ; u 00ðtÞ

�
and

u 0ð0Þ ¼ A� g
�
d2
�
0; u 0ð0Þ

�
; d3

�
u 00ð0Þ

��
þ d2

�
0; u 0ð0Þ

�
¼ A� g

�
u 0ð0Þ; u 00ð0Þ

�
þ u 0ð0Þ:

This shows that g
�
u 0ð0Þ; u 00ð0Þ

�
¼ A. Also,

u 0ð1Þ ¼ B� h
�
d2
�
1; u 0ð1Þ

�
; d3

�
u 00ð1Þ

��
þ d2

�
0; u 0ð1Þ

�
¼ B� h

�
u 0ð1Þ; u 00ð1Þ

�
þ u 0ð1Þ;

so we also have that h
�
u 0ð1Þ; u 00ð1Þ

�
¼ B. Therefore, we have

�
fpðu 00Þ

� 0ðtÞ þ f
�
t; uðtÞ; u 0ðtÞ; u 00ðtÞ

�
¼ 0; 0 < t < 1;

uð0Þ ¼ 0; g
�
u 0ð0Þ; u 00ð0Þ

�
¼ A; h

�
u 0ð1Þ; u 00ð1Þ

�
¼ B;

(

which means that u a C2ðIÞ is a solution of (P). Moreover, u is in C2ðIÞ and sat-

isfies (23) and (24). r

Remark 2.1. Comparing our Theorem 2.1 with the results in [6], we note that our

result is more general since:

(i) we allow f to be Carathéodory function, rather than just a continuous

function,

(ii) we consider nonlinear di¤erential equation, instead of a linear di¤erential

equation, and

(iii) we obtain that the second derivative of the solution for (P) is bounded.

3. An example

Consider the following third-order boundary value problem:

ðju 00j�1=2
u 00Þ0 � 1

t1=4
½ðt� uÞ2 þ tð4þ t2Þu 0 þ ðu 0Þ2 sinðu 00Þ� ¼ 0;

xð0Þ ¼ 0; 5
�
x 0ð0Þ

�2 � 1
2 x

00ð0Þ ¼ 5;
�
x 0ð1Þ

�2 þ �
x 00ð1Þ

�3 ¼ 1:

(
ð25Þ

In order to apply our Theorem 2.1, let us set
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fðsÞ ¼
0; s ¼ 0;

jsj�1=2
s; sA 0;

(

f ðt; x; y; zÞ ¼ � 1

t1=4
½ðt� xÞ2 þ tð4þ t2Þyþ y2 sinðzÞ�;

gðy; zÞ ¼ 5y2 � 1

2
z;

hðy; zÞ ¼ y2 þ z3:

One cheack easily that aðtÞ ¼ �t and bðtÞ ¼ t are, respectively, lower and upper

solutions of (25). The function f : R ! R is continuous, strictly increasing and

satisfies: fðRÞ ¼ R and fð0Þ ¼ 0. The function f ðt; x; y; zÞ : I � R3 ! R is a Car-

athéodory function and increasing in x, for �ta xa t. The functions gðy; zÞ,
hðy; zÞ are continuous on R2, gðy; zÞ is non-increasing in z and hðy; zÞ is non-

decreasing in z.

Finally, we show that f satisfies Nagumo condition relative to the pair �t and

t in W, where

W ¼ fðt; x; y; zÞ a I � R3 j �taxa t;�1a ya 1; z a Rg:

In fact, for ðt; x; y; zÞ a W, we have

k f ðt; x; y; zÞka 10

t1=4
¼ kðtÞ a L2ðIÞ;

We also find

ðl
fðhÞ

jf�1ðuÞjðp�1Þ=p

yðjf�1ðuÞjÞ
du ¼

ð fð�hÞ

�l

jf�1ðuÞjðp�1Þ=p

yðjf�1ðuÞjÞ
du

¼
ðlffiffi

2
p u du ¼ þl > mðp�1Þ=pkkkp ¼ 20:

If we choose M� and Mþ as any constants such that M� < �42 and Mþ > 42,

then all conditions in Definition 2.2 are satisfied.

Therefore, by Theorem 2.1, the BVP (25) has at least one solution uðtÞ a
C2½0; 1� with

�ta uðtÞa t; �1a u 0ðtÞa 1; M�a u 00ðtÞaMþ; t a I :

Remark 3.1. In this example, the assumptions in [6] or [8] are not satisfied, so the

existence results in those works cannot be applied to this BVP.
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[5] A. Cabada and S. Heikkilä, Extremality and comparison results for discontinuous
implicit third order functional initial-boundary value problems. Appl. Math. Comput.

140 (2003), 391–407. Zbl 1034.34081 MR 1953911

[6] Z. Du, W. Ge, and X. Lin, Existence of solutions for a class of third-order nonlinear
boundary value problems. J. Math. Anal. Appl. 294 (2004), 104–112. Zbl 1053.34017
MR 2059792

[7] W. J. Gao and J. Y. Wang, On a nonlinear second order periodic boundary value
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