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Quadratic forms for the Liouville equation
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Abstract. We introduce a set of quadratic forms for the solutions of the Liouville
equation wy, + A%a()w = 0. From these forms we derive estimates for the wave equation
uy — a(t)Au = 0 and then prove the global solvability for the Kirchhoff equation in suitable
classes of not necessarily smooth or small initial data.
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1. Introduction

An essential step in the proof of the global solvability of the Cauchy problem for
Kirchhoff equation is the study of the behaviour of solutions of the linear wave
equation with time depending coefficient,

uy —a()Au=0, (x,7) e R" x[0,T), (1.1)

where 0 < T < 40, a(t) is strictly positive and sufficiently regular. Transforming
(1.1) into an ODE for the partial Fourier transform of u with respect to the vari-
able x € R", we are led to consider the Liouville equation

wy 4+ Aa(t)w=0 in[0,7T), (1.2)

with a parameter 4 > 0. Here, introducing a suitable set of quadratic forms, we
estimate the solutions of (1.2). Then we derive estimates for (1.1) and, finally,
prove the global solvability of the Kirchhoff equation in suitable classes of non-
smooth initial data. We assume that in [0, T")

a(t) >0, a(t)e C* with2<keZ. (1.3)
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Then, for 2 > 0 and w(/,7) a complex-valued solution of (1.2), we consider the
quadratic forms with time dependent coefficients

ity = > ()i alt) 2wl + wi]?)
0<i<[k/2]-1
+ > BT Re(Ww) + > (047wl (14)
0<i<l[k/2]-1 0<i<k/2-1

where o;(¢), f(t), y;(t) are real-valued functions on [0, 7") satisfying the set of
linear conditions

(ao;)' —ap; =0
71 =0, OC,( + B = _V,Lp (1.5)
ﬂll - 261]/[ = 07

0 <i<[k/2] — 1. Denoting with {a,f;,7;}o<i<x/2-1 @ generic solution

%0, Bos Y05+ 5 fx[k/Z]flvﬁ[k/Z]fl?y[k/z]—l (1.6)
of system (1.5), we have:

Theorem 1.1. Assume that a(t) satisfies (1.3). Then the following holds:

(1) System (1.5) is solvable in [0,T). If {o, 17V1}0<,<[k/2] is a solution, then
w;(t) € CF2, (1) € CF21 (1) e CF 22 for 0 <i < [k] -1

(2) Let {0, B, vito<i<ik/a—1 be any solution of (1.5). Then, for 4 > 0, we have

d Bl 1A 2 Re(ww,)  if k even,
dt Vi /214 [w,] if k odd,
for every complex-valued solution w(2,t) of (1.2).
To describe the structure of these coefficients, we introduce the function
of) = — (1.8)
C2/a(t)’ .

Definition 1.1. Given j,/ > 0 integers, we denote by ,%j the set of the polyno-
mials P in the variables yy, ..., y; of the form

P(yo,.--, ) Zc’?o ~~~~~ n,ygo )", (1.9)
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with ¢, ., € R and #,...,n7; >0 integers such that > ,_,_;7, </ and
> 0<h<;lmy < j. Besides, we say that P e %”/ if each monomial of P satisfies
d0<n<;n =1and 35, _;hm, = j. Given P e P/ (or #/), defined as in (1.9),
and ¢(t) € C* in [0, T) with k > j, let Pp = Zc% ”j(p%(go( NN (U, Fi-

nally, given an integer m >1, we denote by P the unique polynomial
e #/*" (or #/™") such that

m

P = dm

P (Pp) forallpe C/M.

Then, assuming (1.3), we prove that:

Theorem 1.2. There exist polynomials P; € Jfff, O e in’jll for0<i< [%] -1,

with Py = 1, such that {o:, B;,7;}o< i<k /2—1 satisfies (1.5) if and only if

i i i
o = a)Z cinProw,  pi= Z inOnw, ;= 20? Z c,-,hQ,gl)a) (1.10)
h=0 h=0 h=0
for 0 <i<[%] =1 with co,...,cyp-1 € R By direct inspection of the proof; it
follows that the polynomials P;, Q; are independent of k and w.

From (1.10) we get a(f) = cow(t) where ¢y € R is an arbitrary constant. Thus,
taking ¢y = 2, the first term of 24 (4, #) is the energy-function

2
&0, 1) = 2/ a()|w]? + |Wa’|(t). (1.11)

Using Theorems 1.1 and 1.2, we can estimate & (4, 7).

Definition 1.2. For 1 < j<kand0< T’ < T put

®;(T") := max max_o(r)""o® (1) (1.12)

1<h<jOo<t<T’

Theorem 1.3. Assume that a(t) satisfies (1.3). Then forall C > 1and0<T' < T
there exists A = A(k, C) = 1 such that for A > A®y_(T") we have

g(x,z)gcgu,mexp{zk“Jt\Pk(r)dr} forallte[0,T'), (1.13)
0

where ‘Pk:2|QE,22]_lw\ for k even; ‘Pk:4w’1|(w2QE,22]_lw)/| Sfor k odd
By inspection of the proof, it follows that ‘Pk(t)ngw(l)*lx//(t)k where
V(1) :max1ghgkw(t)l_l/h|w(h>(t)|l/h and Ci >0 is a constant independent of
(1)
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Remark 1.1. Estimate (1.13) improves a similar result obtained by Hirosawa in
Corollary 1.1 of [7], using a different method. Namely, assuming that a(t) € C*,
ap < a(t) < a; for some ap,a; > 0, in [7] the energy &(4,¢) was estimated by
reducing the Liouville equation (1.2) to a first order system and then applying a
refined diagonalization procedure to this system.

Considering the partial Fourier transform i, 4 |&]*a(¢)ii = 0 of the wave equa-
tion (1.1) and setting E,(1) := [, (a(0)' P [al* + a(t) "2 [i|*) d& for p = 0, we
can readily derive the following from Theorem 1.3:

Corollary 1.1. Assume that (1.3) holds. Let ue C"([0,T); H'""(R")) (h=0,1)
be a solution of (1.1). Then for all C>1 and 0 <T' < T there exists A =
Ak, C) = 1 such that for p > A®;_1(T"), we have

E,,(z)gCE,,(O)eXp{p—k“Jttpk(f)dr} forall te[0,T].  (1.14)
0

Finally, we apply the quadratic forms (1.4) to the Kirchhoff equation proving
the global solvability of the Cauchy problem:

Uy — m(J|qu|2dx)Au —0, (v.1)eR"x[0,) (1.15)
u(0,x) = up(x),  w,(0,x) =u(x). (1.16)

Here m(s) is a strictly positive, sufficiently regular function in [0, o0) and the initial
data u, u; are taken in suitable classes of non-analytic functions. In this way, we
extend the class of initial data for the global solvability of (1.15), (1.16) from the
analytic classes (see [3], [4], [5], [16]) to suitable star-shaped subsets of H* x H*~!
for s > 3. More precisely, taking account of [8], [9], we consider here the follow-
ing classes of initial data.

Definition 1.3. Given k > 1 and up, u; € L*(R"), we say that (ug,u;) € B if there
exist 7 > 0 and a sequence {p;}, such that p; > 0, lim;_., p; = +o0 and

k42 A 2 ki~ 2 e"/)’k/‘é‘kil
supj 120 (&))? + 1€ i ()] dE < o0 (117)
i gy, Pj

Besides, we say that (u,u;) € B} if for all N > 0 there exists a sequence of posi-
tive numbers {p;(N)};., p;(N) — oo, such that

Supé’N”’(N)J (1€ 420(&)|* + 1€] 11 (£)|*] dE < 0. (1.18)
J [&[>p;(N)
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Theorem 1.4. Let m(s) be of class C* in [0,+c0), with k > 1 integer. Besides, as-
sume that

either  m(s)=v>0 or m(s)>0, J m(s)ds =+o0. (1.19)
0

Then the following holds:
(1) If k = 1, then the Cauchy problem (1.15), (1.16) has a unique global solution

u(x,t) € Ct([0,+00); H32MR")) (h = 0,1) for all (uy,ur) € B.
(2) If k = 2, then the Cauchy problem (1.15), (1.16) has a unique global solution
u(x, 1) € C"([0,+00); HTF2M(R™)) (h = 0,1) for all (ug,u;) € BX.

Remark 1.2. Theorem 1.4 was already proved in [9] for k£ = 2,3. Afterwards, the
global solvability was proved in [7] for k > 2, m(s) = 1 + s and (ug,u;) € BX, by
applying the already mentioned diagonalization procedure to the first order sys-
tem derived from the linearized equation u,, — a(t)Au = 0.

Remark 1.3. When m(s) = (a + bs) > with a,b > 0, Pohozaev [17] proved the
global solvability of (1.15), (1.16) for all (ug,u;) € H> x H'. In this case he
succeeded to find a second order conservation law. See also [15]. For general
m(s) € C', m(s) =6 > 0, the first result of global solvability was established in
one space dimension by Bernstein [4] for real analytic initial data. This result
was extended in [16] to the case n > 1; in [3], [5], for real analytic data, the global
solvability was proved even in the weakly hyperbolic case, i.e., when m(s) € C°,
m(s) > 0. For small and sufficiently regular (C*) data the global solvability was
proved by Greenberg and Hu [6]. Finally, let us recall that the global solvability
for quasi-analytic data was proved by Nishihara in [11], [12]. |

Remark 1.4. Bi, Bﬁ (k = 1) do not contain compactly supported functions. It is
possible to see this by applying a theorem of Paley and Wiener [13]. In the case
n =1, this fact is proved in [8]. Moreover, it is easy to show that for k > 1 the
spaces BX satisfy the following properties:

o BX 4 BE = H'WK2 5 gK2,
° BlAc A (H1+(k+1)/2 > H(k+1)/2) < B’g“,
o o/ x o2 & BX;
see [8], [9]. For B} and B} we have:
e Blg B\, B\ +B\=HxH,
o o/;> x /> & B) and o/;» x /> & B).
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Let us show that B) + B\ = H>? x H'?. Given an element (ug,u;) €
H?3? x H'?, we take the following sequence: fix p; = 1, for j > 1 we inductively
select p;,| > p; + 1 such that

Jm 1Pl @1 + 1l (@) dé < 1. (1.20)
CI>Pin1

Then, considering the characteristic function

1 if py; < |¢| < P,y for some j > 1,
x(€) :—{ Py = |el < Pajia / (1.21)
0 otherwise,

we define v;(x), w;(x) by setting
0i(&) = 2w (&), wi(&) = (1 —x(&)) () (1.22)

for i =0,1. Clearly, we have (vg,v1) + (wo,w1) = (uo,u1). Now using (1.20)—
(1.22), it is easy to see that (vo,v;) satisfies condition (1.18) of Definition 1.3 for
all N >0 if we define p;(N) := py;,y for j = 1; (wo,w;) satisfies condition (1.18)
for all N > 0 if we take the sequence p;(N) := p,; for j > 1.

2. Quadratic forms for Liouville equation

Assume that (1.3) holds with k& > 2 integer. Let w(4,¢) be a solution in [0, T") of
equation (1.2). Denoting by [’5‘] the greatest integer < ’5‘, we define:

Definition 2.1. For 4> 0and 0 <i<[£] — 1 put

ei(2,1) := 0y (0) 27 (a(0) 22 w]* + |wi]?),
fi(2,1) = ()47 Re(ww,), (2.1)
L 1) = (AT,

gi(}’
where «;(), (1), 7;(¢) are suitable real-valued functions on [0, 7).
To choose o;, f;, 7;,, we observe that if w(4,1) is a complex-valued solution of
(1.2) and oy, f5;, y; are differentiable, we easily find that

t
t

et fit g)t) = [(a(t)as(r))" = a(O)B,(6)] 472 |w?

dt
+ [0 () + Bi(0)) 2w
(
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Then, considering the derivative

[k/2]-1

IS~ et fit a0, 23)

dt i=0

we determine o;, f5;, ; by equating successively powers of 4 to zero. In detail, we
start by requiring that o, 5, ¥, satisfy the linear system

(aao)l - aﬂO = 0)
o)+ o =0, (2.4)
By — 2ay, = 0.

Solving (2.4), we obtain that oy = oy(z,¢o), fo = Po(t,¢0), Vo = 7o(t, co) linearly
dependent upon an arbitrary constant ¢y € R. Besides, oy € C*, B, e CK71,
70 € C*2. When a(f) € C¥ with k > 4 we continue this process: having deter-
mined, for some 1 <i<[%]—1, the functions ay(z,co),By(t, o), yo(t,c0),- -,

o1 (2, oy ooy Cim1), By (Coy oy Ciz1), Yig (2, Co, - ., ¢io1) linearly dependent upon i

arbitrary constants of integration ¢y, ...,¢;_; € R, we determine the functions «;,
B, v; by requiring that they satisfy the relations
(CIOC,')/ - aﬂi = Oa
o+ i = =i (2.5)
ﬁll - Zay[ = 07

1 <i<k/2] — 1. Introducing y;_; = y;_,(¢, co, ..., ci—1) and solving (2.5), we find
the functions o; = o;(¢,co, ..., ¢i), f; = Pi(t,co,- -, ¢i), v = 7i(t, co, - .., ¢;) linearly
dependent upon the i + 1 arbitrary constants ¢y, ..., c;—; and ¢; € R. In this way,
we recursively obtain the functions o;, f3;, y; for 0 <i < [’ﬂ — 1. Indeed, it is im-
mediate to observe that if y,_; € C" for some integer r, 2 <r < k, then o; € C’,
B e C'and y; € C"2. Thus, starting from y, € C¥~2, we can recursively define
the functions o;, B, y; as long as i <[4] —1. It turns out that o; € C¥°%,
Bie CK271 y e CF272 for 0 <i<[5] —1. In particular, if k > 2 is even,
Vik/2)—1 18 merely continuous; when k& > 2 is odd, yy - is continuously differ-
entiable and formula (2.2) holds for 0 <i <[4] — 1. This shows that (1) of
Theorem 1.1 holds.

Now we can introduce the quadratic forms for the solutions of (1.2). Follow-
ing the recursive procedure described above, we solve the linear systems (2.4), (2.5)
(i.e., system (1.5)) determining the general solution

(O‘i»ﬂhyi) = (aivﬁivyi)(t’ €0, - - .,C,') (0 <i< [k/z] - 1) (26)

linearly dependent upon [%] arbitrary constants co, ..., cj/a-1 € R.
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Definition 2.2. Given a solution {o;, ;,7;}o<;< /21 Of (1.5), for 2> 0 we define
the quadratic form 2, = 2,(4,t, 0, f;,7;) by setting

L= Y e+ )+ D g (2.7)

0<i<[k/2]-1 i<k/2—1

Remark 2.1. This means that 2, = ey + fo, 21 = Z[k/z (e;+ fi+g;) fork >3
odd, and 2, = ZV;/Z] (ei + fi + gi) + epjo-1 + fixo—1 for k > 4 even.

Using Definition 2.2 and the relations of systems (2.4)—(2.5), we may conclude
the proof of Theorem 1.1, i.e., we can show that (2) holds.

Proof of (1.7). Let us prove formula (1.7) for £ > 2 odd. In this case

k/2]-1

9y = Z (ei + fi +9i) (2.8)

i=0

and o;, B;, 7, for 0 <i <[4] — 1, are C' functions satisfying (2.4)-(2.5). Thus,
given w(4,t) a solution of (1.2), we can differentiate 2;(4,¢) with respect to .
For k =3 we have 23 = ¢y + fo + go and the statement follows from (2.2) since
oo, Po, Vo satisfy (2.4). Now let us suppose k > 3 odd. Since o, f5;, y; satisfy the
systems (2.4) and (2.5), it follows that

d _
E(EO + fo+ go) = voi 2wl

(2.9)
d —2i —2i- :
et fitg) = =y 27wl 27wl (i< [k/2) - 1),
Thus, if we sum all the terms in (2.9), we obtain that
g kAt . li
a Z (€[+fi +g1) = y[lk/z]flii + ’W}[| (210)

because 2[4] = k — 1 for k odd. The proof of (1.7) for k > 2 even is similar. [J

3. Computation of a;, f;, y;

Before proving Theorem 1.2 in this section we show that it holds for kK < 7 by
computing explicitly «;, f;, 7, for 0 <i <2. In formulae (3.2), (3.6), (3.10) below
we also define, implicitly, the polynomials P; € y/zz[" and Q; € %j’jll for0 <i<2.
Finally, we give the general recursive relations for o;, f3;, ¥;.
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As we shall see in the sequel, it is convenient to rewrite the systems (2.4), (2.5)
using the function w(¢) defined in (1.8). Then system (2.4) becomes

ﬁO - _OC(I)v
Yo = 2w2ﬁ6.

Since w € C*, with k > 2, we can immediately write the general solution:

oy = cow = wcoPyw,

By = —coo’ := coQo0, (3.2)
Yo = —2cw’0” = 2wzcoQ(<)1)a),
where ¢y € R is an arbitrary constant. Hence Py = 1, Qow = —w’. Nextif k > 4,
we compute o, £, ;- By (2.5) o1, B, y; must satisfy the system
(061)/ _ %0
©) (3.3)
1= Vo — %
1= 2w2ﬁ{.

From the first row of system (3.3) we find that

) y(’)d
=—— |24 3.4
0 =5 (34)
Then, introducing the expression y, = —2cow’w” into (3.4), we have
60/2
o = cho 2w'ew" + wo™) dt = cyo + cw (2 + ww"), (3.5)

where ¢; € R is arbitrary. Thus, from (3.2)-(3.5) we obtain the general solu-
tion

60/2

o] = c1w + cow <7 + cow") = w(c; Pyw + coP1o)

60/2

pr=- [clw + cow (7 - ww")} = 100w + ¢ Q1w (3:6)

n =20 (10w + ¢ 0\ w)
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Finally, if k¥ > 6, we can also compute oy, f3,, . They must satisfy the system

<@> _
) 2w (3.7)

ﬁ2 - _yi - o‘éa
72 =207,
Hence
!/
oy = —gjﬁdt = chl(Zw/w” + o) dt
2w
+%J% 0 (0w — 20%0")"] dt. (3.8)

Now the computation of the second indefinite integral gives
Jwil [0 (w0 = 2ww")"] dt
= o(wn? = 20%0")" + o' (0e? - 20*w") - J(ww'2 —20%0") " dt
14

= [0(wo” — 202w")] — wT +wlw™ + C. (3.9)

Whence, recalling (3.6) we deduce the general solution

n” ' 14 2.
oy = w(caPow + ¢ Piow) + cow{ lw (a)czo — wzw//> ] _w + w o }

= w(CzP()CO +c1Pio + ConCO),

2

By = 2000 + c1 Q10 + ¢ % (w0 = 20°w")"
(3.10)

= 00w + 1010 + ¢ Qrw,
7 = 2042000 + a1 0o + o) w),
where ¢; € R is an arbitrary constant.

To conclude, let us come to the general case. We rewrite systems (2.4) and
(2.5) in the equivalent form
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. / /
(&) — _Tiz1
w 20’
y_, =0, b=y —a (3.11)
yizza)zﬂz{

for 0 <i < [k/2] — 1. Assuming that, for some 1 <i < [4] — 1, the general solu-
tions

(a07ﬁ07 yO)a sy (ai—lﬁﬁi—lﬁyi—l)’

with o;, B, y; linearly dependent upon j + 1 arbitrary constants co,...,¢; € R for
0 < j<i—1, are determined, we can write (with a slight abuse of notation) the
general solution of («;, f5;,7;) in the form

W V{—l
i = T 5 . d[a
x 2J 10)
/ !
b= (-] ). (3.12)
) 2< _QJ.yl{—ld)”
yi - CO yi*l 2 w t].

Namely, given y,_,, a particular solution (&;, f;,7;) can be obtained by selecting a
primitive, say p;, from the indefinite integral f%ldt and then setting o; = —$p;,
Py ~\! ~ ~

b=~ —%p:) i = =20 (s — 95"

4. Polynomial structure of a;, f;, 7;

To simplify the recursive formula for the coefficients o;, f3;, 7;, we set

— i .
r=0 TI;:= S 0<i<I[k/2] -1 (4.1)

Integrating by parts, we find the identity between indefinite integrals

. 1 y{
! Yi—1 _J i 4.2
Ja)l,fldt— ) wdt (4.2)

Then, substituting (4.1), (4.2) in the last equation of (3.12), we find that the func-
tions I'; must satisfy the recursive relations

r,=o r,-e—(ijr;_ldz)” for0<i<[k/2—1.  (43)
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This means that, starting with I'_| = 0, every particular sequence of coefficients
{20, BisVito<i</o—1 satisfying (3.11) can be obtained from the recursive relation
(4.3) by selecting, at each step, a particular primitive

pi € JCUFILI dt (44)

and then setting

o = wp; — 20°T;,

L= —(op)”, pi = —(wp:)’ (4.5)
7; = 20°T;

for 0<i< [%] — 1. We claim that the primitives p; are always polynomials
in @ and its derivatives @™ are of order 1 < i < 2i. Before proving this, recalling
Definition 1.1, we note the following simple facts about the polynomials of 2.

Remark 4.1. Given j,, 1, j,,1, > 0 and m > 1 integers, it follows that
Pe%j“,P¢:Oforallgoe C/ = P=0,
Pe ’%j“ = P(m) c %jﬂ»m_

Besides, given P, € ?yj“, Py € %{h let P, Py be their product as polynomials in the
variables yo, ..., yj,vj,- Then we can easily see that

Jatjb
PPy < 7

(P.9)(Ppp) = (PuPp)p forall p € ClaVi, (4.6)

ja jb ju+jh
P, e %”1 , Py € J/jb = P,P), € %bJrlb .

P, e 9,‘-"”, Py e ?/'lh”’ = {

We are now in position to prove:

Lemma 4.1. There exists a unique sequence of polynomials P_y, Py, ..., Py y_
such that Py =0, Py = 1, P € A3 for i >0, and

Pipe— J(p((pl_’;_l(p) " dt (4.7)

forallpe C*and 0 <i<[%] —1.
2

Proof. Since P_1p =0, Pyp = 1 for all ¢, it is clear that relation (4.7) holds for
i = 0. Besides, for ¢ € C? we have

- J¢(¢P0¢) "dt = — JW’” dt = —pp" + % (¢)’ +C, (4.8)
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where C € R is an arbitrary constant. Thus, when k > 4, we must define P; as the
unique polynomial of 5’ such that

_ 1
Pip = —pp" + 3 (¢ (4.9)

for all ¢ € C*. Clearly, this means that Py(yo, y1, y2) := —yoy2 + 317
Having determined P; € J@z, we now proceed by induction. Fixed an integer
i, 1 <i<[4] =2, let us suppose that the polynomials

P-1=0, Py=le#), PeA . . PeH (4.10)

satisfy condition (4.7), i.e., (Pyp)’ = —p(pP,_19)" for 0 < h <i. Then we want

show that there exists a unique P; | € #5;5 such that

Prrpe ~ | oloPi)" dt (4.11)
for all p € CX. Integrating by parts, we obtain that

- Jw((/)l_’fw)’” dt = —p(pPip)" + ¢'(9Pip)' — 9" (pPigp)
+ J(/)”’((/)Piw) dt. (4.12)

By induction, it is easy to see that

—p(pPip)" + ¢'(0Pip)" — 0" (0 Pipp)

— — — 2 — — 1 —
— —p(¢"Bip+ 29’ BV + 9P ) + ¢/ (¢9' Pip + 9P ) — 0" (pPip)

= Uit19 (4.13)

for all p € C* and for a unique U1 € #5775, Thus we find
- J(P(W_’i(ﬂ) "dt = Upip + J(W”’)I_’ﬂp dt
= U190 — J(I_’lgo)/l_’,-go dt. (4.14)
Now if i = 1, then we conclude that, for all ¢ € C¥,

_ 1 _
—Jco(cﬂle)”’dt: Uzcﬂ—z(Pw)erC, (4.15)
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with C € R an arbitrary constant. Since P} € #,', it is clear that we must take
3 1 5 4
P2 = U2—§P1 E%. (416)

If i > 2, we continue integrating by parts. From (4.14) we have

- J¢(¢Pi¢) "dt = Us1p — PioPip + JI_’W(P[(P)/ dt
= U9 — (P1Pi)p — Jcof’wo(ﬁi_lso)'" dt. (4.17)
Thus, if i = 2, we find that

— Jw(col_’zw)"’ dt = Usp — (P Py)p — Jcoplw(col_’w)) " dt (4.18)

and

- Jsﬂ(cﬂf’zw)"’ dt = Usp — (P P2)p — [col_’lw(wl_’mo)” - % (cﬂl_’lso)’z] +C, (419)

where C € R is an arbitrary constant. By induction again, it follows that
~(P1P2)p — ¢P1p(pP19)" + % (pP19)” = V30 (4.20)

for all p € C¥ and for a unique V3 € 3%66. Hence, we are led to set
f_)g = Us + Vi. (421)

Otherwise, if i > 3, we continue integrating by parts the last integral of (4.17). We
obtain that

- J(”((”Pi(”) "dt = Ui1p — (P1P)p — pPip(pPi_19)"
+ (9P19) (9Pi19p) — (9P19)" (pPi-19)
+ J((ﬂpl(ﬂ) "(pP; 1p) dt. (4.22)
As above, we find that

Uis19 — (P1P)g — oP1p(pPi_19)" + (¢P19) (9Pi_19)’
— (¢pP19)" (pPi_19) = Ups1 (4.23)
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for all ¢ € C¥ and for a unique polynomial U € J/ﬁfﬁ Whence, we deduce
that

- J(%’(Wpifﬂ)m dt = Ui + Jsﬂ((ﬂl_’l 0)"Pi_1pdt
= Ui+1(0 — J.(Pzgﬂ)/f_)l;lgﬂdt. (424)

Thus, if i = 3, we can easily obtain Pj.

Remark 4.2. Now in view of (4.14) and (4.24) it is natural to expect that

- jq)(wﬁiw)”’ di = Upryp— J(ﬁhq))'ﬁ,%codz (4.25)

for 1 <h<i, with U1y € 9‘/2%:52 a suitable polynomial. To prove this, let us
suppose that (4.25) holds for some 4 with 1 </ < i— 1. Then, using (4.7), (4.10)
and integrating by parts, we easily find the equalities

- J¢(¢Pi¢) "dt = U1 4o — ProPipi19 + Jplz¢(pi—h+l¢)/ dt
= U149 — (PhPiopin)g — J(Pl_)h(ﬂ((ﬂpi—h(ﬂ) " dt
= U110 + J(cof’hso)"'w?ifhco dt
= Usetrp = |(Prap) Prp (4.26)
for a suitable polynomial U, j+; € %’2%’:22 Hence, (4.25) holds for /2 + 1.

Taking into account Remark 4.2, by repeated integration by parts, it is clear
that we finally obtain:

(1) if i = 2h — 1 for some integer /1 > 1, then
- J(”((ﬂ]_’ifﬂ) "dt = Uper,np — J(th/))’l_’w dt; (4.27a)

(2) if i = 2h for some integer /1 > 1, then

- j¢<¢m> "t = Uy pp — j(Phqa)'Pwdr, (4.27b)
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with Uiy € szffzz In the first case we immediately deduce that

_ 1 _
- J¢<¢Pi(ﬂ>”/ dt = U109 — 5 (Pho)* + C, (4.28)

with C € R an arbitrary constant. Since 13,% € %ﬁfﬁ, by the inductive hypothesis,
we are forced to define the polynomial P;,; as

1 _
Pipi = Ui n— = Py

5P (4.29)

In the second case, integrating by parts once again, from (4.27b) we have
- J(ﬂ((ﬂpi(ﬂ) "dt = Uiy np — (PhPyi)o + JI_’W(I_’hHw)' dt
= Uir1,09 — (PiPhi1)p — J(ﬂph(ﬂ((ﬂph(”)m di. — (4.30)
Hence, we finally obtain
- J¢(¢Pi(ﬂ) "dt = U109 — (PrPrer)p
— |oPip(pPio)” —;((PPMP)/Z] +C, (4.31)

with C € R an arbitrary constant. Since 24+ 1 =i+ 1, by the inductive
hypothesis

_ _ _ 1 _
—(PyPpi1)p — 0Prp(pPhp)” + 3 (pPyp)” = Vieip (4.32)

for a unique Vi € %szzz Hence we set

Py :=Ui .+ Vigr. (4.33)

This completes the proof. O

Lemma 4.2. Given ¢ € C* with k > 2, let Wy, Wy,..., Wikj2-1 be a sequence of
real-valued functions such that

Wy =const., W;e— Jgo(goW,-,l)'" dt (4.34)
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Jor 1<i< [%] — 1. Then there exists a unique sequence of real constants
Co,. ., C[k/Z]fl such that

Wi=> CiwPrp for0<i<l[k/2]—1. (4.35)
h=0

Proof. First of all since W, = const. and Py = 1, we have
Wo = Co = Copogﬂ, (436)
for a suitable Cy € R. Moreover, assuming k > 4, we find that

1

- J(p(gyWO)"' dt = —COJgogo”/ dt = —C, [qoqo” -5 (go/)z] +C, (4.37)

where C € R is an arbitrary constant. Hence, by (4.9) and (4.34), we find
1 _ _
W, = —-C ((ﬂ(ﬂ” — §¢/2> + C) = C0P1(ﬂ + C1P0(0 (4.38)

for a suitable C; € R. This means that formula (4.35) holds for i =0,1. Now
we proceed by induction assuming that (4.35) holds for some integer i with
1 <i<[%] —2. Then, recalling (4.7), we have

_ J(p(go w)" dt = — Jgo((p Zt C,-,hl_’hqo) " dt
h=0

==Y Gy J(ﬂ((ﬂphcﬂ) "di =" CiyPrap+C  (439)
h=0 h=0

with C € R an arbitrary constant. Thus, from the recursive relation (4.34), we ob-
tain that

Wi =Y CiwPrp+ Ciy (4.40)
=0

with C;;| € R a suitable constant. Now since Py = 1, we may write
i ~ ~ it1 -
Wi =Y CiwPriip+ CiiPop =Y Cii1 nPio. (4.41)

h=0 h=0

This proves (4.35) for i + 1. By direct inspection of the proof, we can see that the
constants Cp, ..., Cg/z-1 are uniquely determined. O
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Conclusion of the proof of Theorem 1.2

By (4.4)-(4.5) every particular sequence {o;, B;,7;}o<;< /21 satisfying (3.11) has
the form

O = wp; — 2w2ri—17 ﬁi = _(wpi)l7 Vi = 2w2ria (442>

where Iy, ..., ['jx /21 is a finite sequence obtained from the recursive relation (4.3)
by selecting, at each step, a suitable primitive

pi € JwFILI dr, 0<i<l[k/2]-1, (4.43)

and then setting I'; = —(wp;)”. Having I'_; = 0, the primitives p; satisfy the re-
cursive relation

po =const., p; € — Jgo(gop,»_l)'" dt (4.44)
for 1 <i<[4] —1. Hence, by Lemma 4.2, there exist constants c, ..., Cj/-1 €
R such that

pi=Y cinPyo  for0<i<[k/2]-1. (4.45)
h=0

Then, by the first equation of (4.42), we easily have oy = wcyPy and, for i > 1,
i - i1 -
% =w Z CiopnProo + 200° Z cio1-n(@Pyw)”
h=0 h=0

=w ]Z; ¢inPho + o ; cin2o(@Py_jw)"]. (4.46)

Thus, % = wz,izo cipPro for 0 <i < [%] —1 if we define Py:= Py =1 and
P; € A7} such that

Pip := Pip +20(pP;_19) " (4.47)

forall p e C*, when 1 <i <[%] — 1. For the coeflicients f8; from (4.45) we have

Bi=—(wp)' ==Y i n(@Pro) =Y i 1O, (4.48)
h=0 h=0
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where, for 0 <i < [%] — 1, the polynomials Q; are defined by

Oip := —(pPip)’ (4.49)

for all p € C*. Since P; € szzf, we clearly have P; € szzf, Qe gffifll, This

proves that every solution {o;, 8;,7;}o<;< /21 Of (1.5) satisfies (1.10). Conversely,
using the definitions (4.47), (4.49) and Lemma 4.1 it is easy to see that (1.10) gives

a solution of (1.5) for every finite sequence co, ..., Cjx/2-1 € R.

5. Proof of Theorem 1.3

We give here the proof of Theorem 1.3 for k > 2 even. For k > 2 odd, the proofis
similar. To show that (1.13) holds, first of all we choose a particular sequence of
coefficients {a;, f;, 7;}o<;< /21 using formulae (1.10) with constants

=2, ¢=0 fori>]l. (5.1)
It follows that, for 0 < i < [%] -1,
o; =20Piw, f; =20, y,= 4602Ql(-1>60 (5.2)

where P; € ;/”fzzi’ and Q; € cﬁzzi’jll. Since Py = 1, we have oy = 2w. Hence, as re-

marked before the Definition (1.11),

2
eo(4, 1) = A2\/a(d)|w]* + "%) = &0, 1). (5.3)

Then we apply the identity (1.7) with £ > 2 even. For 4 > 0 we find that

t
E0,1) = £0,0) — (Al + L R Re(w) d (5.4)
for all t € [0, T), where
P = D — e, (5.5)

To continue, we now estimate the terms e;, f;, g; of Z;. For this purpose, by (5.2),
it suffices to estimate the norms of P, Q,m, Ql(»l)w.

i) Estimates of Piw for 1 <i < [k/2] —1.
Since P; € szzii, we have

P = Z c")’ @ (W) ()" (5.6)
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with C,7 , ER and 7y, ..., >0 12ntegers such that  ,_,_»;#, =2i and
> 0<h<oihmy, = 2i. Noting that 7y = >_;", (h — 1)n;,, we can write

Pio=> ¢ J[(@" o) (5.7)

Besides, given 0 < 7’ < T and | </ < 2i, from Definition 1.2 we deduce that
()™ (1) < @y(TY™ for t e [0, T7). (5.8)

Hence, for 1 <i < [k/2] — 1 and k even, we easily obtain that
|Pioo| < Dy (TN el | < EDp (T for1e (0,7 (5.9)

with £ > 0 a suitable constant independent of w.
il) Estimates of Qiw for 0 <i < [k/2] — 1.

In this case we have Q; € #5'1!, with 1 <2i+1 <k — 1. By continuing the

reasoning used above, for 0 < i < [k/2] — 1 and k even, we obtain that
|0iw| < FO,_(T)**" in [0, 7], (5.10)

with F > 0 a suitable constant independent of w.
iii) Estimates of Ql(l)wfor 0<i< % —
We note that QE e A5 with 2 < 2i+2 < k — 2 because k is even. Thus,
we obtain that
10V | < 0 G, (T)*? in[0,T7), (5.11)
with G > 0 a suitable constant independent of .

Summarizing the estimates (5.9)—(5.11), the terms ¢;, f;, g; of % satisfy the in-
equalities

lei(2, )] = 27 ¥ Pioleg(4, 1) < E(A Oy o(T")) 62, 1),
fi( 1) =22 2"|in| Re(iw,)| < F(A 11 (T") " 6 (2, 0), (5.12)
19:(4, 0)] = 4277202 | Qo] w2 < 2G (27 0o (T1) 26 (4, 1)

for A>0and ¢ € [0, 7']. Therefore, assuming

A > L (T') (5.13)
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for some L > 1 and setting R = 2max{E, F, G}, we have
i 3 (A7 (T7)) 6 kR o0 5.14
|k (4 Z: k—1( (MZ)ST (4,1). (5.14)

Introducing this estimate into formula (5.4), for # € [0, T'] we have

L+kR L i
RO TR

£ < jwk/z |6 ryde,  (5.15)

provided that L > max{kR,1} and A > L®;_(T'). Now it is easy to obtain the
estimate (1.11). Given C > 1 we can find A(k, C) > max{kR, 1} such that

L+ kR

m Smm{Z, C}, (516)

provided that L > A(k, C). Hence, for A > A(k, C)®y_(T’) and ¢ € [0, T'], we
find that

t
&, 1) < CE(X,0) 4+ 47k JO Bix 21 (D)6 (4, 7) d. (5.17)

Finally, by (5.2), Biijz-1 = 2Qik/2-1. Thus, applying Gronwall’s lemma, we ob-
tain the estimate (1.13), which proves Theorem 1.3.
We conclude this section with a simple application of Theorem 1.3.

Corollary 5.1. Assume that (1.3) holds withk =2 and 0 < T < +o0. Then, for all
¢ € (0,T] and for all C > 1, there exists p = p(e, C) > 0 such that for A > p(g, C)

£(2,0)
C

< &A1) < CEAO0)  foralltel0,T —e. (5.18)
Proof. To prove the second inequality of (5.18), i.e., &(4,¢) < C&(4,0) in the in-
terval [0, T — ¢], we apply (1.13) with k£ = 2. More precisely, we set

op = 20Pyw, Py =200w. (5.19)
Then, for every C > 1, taking

> A2, VOO, (T — &), (5.20)

we have

A te|T—¢

&0, 1) < VCE(L,0) exp{2@ max |Qg‘>w|} (5.21)
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for all 7 € [0, T — ¢]. Then, to obtain the second inequality of (5.18), it is enough
to take / sufficiently large, i.e., such that 1 > A(2,+/C)®(T — ¢) and

(T-2) Inc

Dl < 5.22
tg[l;lfg]lQo o] < —=. (522)

Finally, for fixed ¢ € (0, T — ¢], to prove the first inequality of (5.18) it suffices to
apply the second one to the function w(4,1) = w(4,7 — 1) for 7 € [0, 1]. 0
6. Preliminary estimates for Kirchhoff equation

Let us consider the Kirchhoff equation (1.15). By partial Fourier transform, we
are led to the ordinary problem:

i+ m(s(0)|% =0 with s(0)i= [ |l de. (6.1)
4(0,8) = (&),  w(0,¢) =m(&) (6.2)

for & e R”, t € [0,4+0c0). In this section, we suppose that
u(x,t) € ([0, T); H"F>(R"))  (h=0,1) (6.3)

is a given solution of (1.15) with k > 0 and 0 < T' < +o0. Then, defining a suit-
able micro-energy, we prove some a priori estimates. To begin with, we state:

Lemma 6.1. Assume that (6.3) holds with k > 1 integer, m(s) € C*=2([0,+0))

if k >2. Given ge C/([0,+00)) with 1 <¢ <k integer, then g(s(1)) € C*([0,T))
and its /-th order derivative is a finite sum of products of the form

)£ TL(Jle* wetaa )"
TL(J e ara)” TO([imara)”. o4

where 1 < h < ¢, P is a polynomial in m =m\ ... . m\"=2 for £/ > 2, while P = 1
for £ =1, finally, ki, l; > 1, m; > 2 and p;, q;,1; = 0 are integers such that

Z(Zk,- —pi + Z 21iq; + ZZ(m,— —Dr=. (6.5)

Proof. First of all observe that

(&, 1) e C"([0,T); L*(RZ,d&,))  for h=0,1, (6.6)
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where d&, is the measure defined by d&, = (1 + |£[*)"™*/*"d&. From this it im-
mediately follows that s(¢) € C!, because k > 1, and

G9(6(0) = 20 (5(0) [ 6P Re(di) (67)

if g e C1([0,+0)). Hence, for / = k = 1 the statement is true. Then we proceed
by induction. Assuming k > 2, let us suppose that Lemma 6.1 holds for some in-
teger / with 1 </ <k —1. Given g € C’*!([0,4+0)), we must show that each
factor in (6.4) is at least of class C' and that deriving with respect to ¢ the product
(6.4) we obtain is a finite sum of products of the same form. Namely we get

P H(j|¢|2’< Re(d )dé)
TL([reara)” T1([lerarae)’s o9)

where 1 </’ </ + 1, P is suitable a polynomial in m = m® ..., m~Y; the inte-
gers kI, Il > 1, m/ > 2 and p/, q;,r] > 0 satisfy the relation

[

> @kl = Dpi+ > 21lqi+ 2(m] = rf =/ +1. (6.9)

i

We start by noting that condition (6.5) with / <k — 1 implies that 2k; < k,
2l; <k — 1, and 2m; < k + 1. Besides, since we assume m(s) € C*=2 for k > 2, it
follows that (6.6) holds also for 7 =2. Then, provided that (6.5) holds with
/ <k —1, it is easy to deduce that

(J\ﬂ”‘ Re (i dé Jlélzk"\a,|2d£+J|é|2k" Re(dii,) dé,  (6.10a)

(Jlély | dé) Jlé\z"‘ Re(iiy), (6.10b)

(| 1emar ac) =2 [1erm Retaa) ac (6.100)

where the right-hand sides of (6.10a)—(6.10c) are continuous functions on [0, T').

Hence, (6.4) represents a C! function. Moreover, differentiating (6.4) and replac-
ing i, by

—m(s(1))|¢] %4, (6.11)

we find a finite sum of the following products:
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(1) products containing the element 2g”+! f|é|2 Re(iii;) d¢ instead of g, with
1 < h </ a suitable integer;

(2) products with 2~ oF cm (h+1) [ ]? Re(di,) d& instead of P, with 0 <h </ —2a
suitable 1nteger

(3) products with a factor of type f|é|2k (|a|* = m|&)*|a?) d¢ instead of a factor
of the form | 1% Re(ad,) dé;

(4) products Wlth a factor of type —2m | %72 Re(aii,) d¢ instead of a term
INRETRUS

(5) products with a factor 2 [ [¢|*" Re(ui,) d¢ instead of [ |&]*™[a]* dé.
In either case, after performing these substitutions, we obtain products of the

form (6.8). Besides, it can be easily verified that the corresponding exponents &/,
!, m{ and p!, ¢/, r! satisfy (6.9). This completes the proof. O

To continue, let us recall that the Kirchhoff equation (1.15) is of variational
type. Assuming that (6.3) holds with & > 1, we have the equality

]| 7> + M| EN@ll72) = N7 + M| [Elaoll72) = K (6.12)

for all 7 € [0, T), where M(s) := [y m(y)dy. From (6.12), in both cases of (1.19)
we derive that

s<m(s)<u, sel0,M(K), (6.13)

for suitable d, 4 > 0. Thus, assuming from now on that (1.19) holds, we have the
following a-priori estimates:
[ ac 5 [ 1ea ae < k. o1
0<d6<m(s(t) <u

for ¢ € [0, T). To obtain more refined estimates, we introduce the following micro-
energies:

Definition 6.1. For k > 0, p > 0, we define

1) == \/m(s(0))]]* i) +M, (6.15)

m(s(t))
EX(1) ::P%Jéw Ex(&,0)déE. (6.16)

From (6.14) and the definition above, we have:
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Lemma 6.2. Assume that (6.3) holds with k > 1. Then for all t € [0, T)) and for all
p = 0 the Fourier transform u(&, t) satisfies the a priori estimates

-1
Nal la,| dé < © K+1J il,D) [>1, 6.17
Jlfl i ] dé < 2V6 2] e @ - (©17
J\él’lﬁzlzdégp’K+\/ﬁJ @T’gf’f)dé 1>0, (6.18)
[E]>p

Py G Er(€, 0,
¢ dé< +—J dé,  1>2. 6.19
[ e ) (6.19)

Proof. Let us prove (6.17). To begin with, for 0 <7 < T the following inequal-
ities hold:

a) forall/ > 1 and p > 0 we have

&V @l i) < Z—= (1 +ol¢al®)  for [¢] < p; (6.20)

P!
\/—
b) from the definition of &% (&, ) we have

) ) 1 & (E,
|é|l|u(é,t)||u,(é,z)|_2|’|‘£%)l for |¢] > 0. (621)

Then, applying a) and (6.14) for || < p, and b) for |£] > p, we can estimate the
left-hand side of (6.17). For all p > 0 and ¢ € [0, T) we easily have

[ etz = | \é|l|a||at|dé+jv &V |
l€l<p

&]>p

2\/— IE>p |é|k+1 !
provided that / > 1. By similar arguments we deduce (6.18) and (6.19). O

Having proved Lemmas 6.1 and 6.2, assuming (6.14) we are in a position to
estimate the sup-norm of the /-th order derivatives of g(s(¢)) in [0, 7).

Lemma 6.3. Assume (6.3) with k > 1 integer, m(s) € C*2 if k > 2. Then, given
g e C/([0,+0)) with 1 </ <k, for every p > 0 we have

%g(s(t))‘ < Cop' [(K +6200) + (K + 62(0) ], (6.23)

where C; = C(K,/,0, u,m, g) is a suitable positive constant.
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Proof- By Lemma 6.2, for every p > 0 we have

J|§|’|a| i | dé < Cp"" N (K+60(1), 1<I<k+]1, (6.24)
J|£|’|a,|2df <CY K+ &), 0<i<Kk, (6.25)
J|§|’|ﬁ|2df < Cp 2K+ 60(n), 2<I<k+2, (6.26)

where C = C(0,u) > 0 is a suitable constant. Using these a priori bounds, we
can now estimate the general term (6.4) of the /-th derivative of g(s(s)) when
1 </ < k. In fact, from (6.24) we easily see that

11 (J|§|2"f Re(ai) d¢)"'| < CLrpERh-tn(K + 60(0)>", (6.27)

because we know that k; > 1 and 2k; — 1 </, hence 2 <2k; <k+ 1. Using
(6.25), (6.26) we find similar estimates for the other types of products in (6.4).
From this, recalling (6.14), we deduce that a generic term of the form (6.4) can
be estimated by

Cp’ [C(K + &7 (1)) 2L (6.28)
where
5 ) (¢-2)
C oggﬁ/(s}g ()P (m(s),...,m" 2 (s))]. (6.29)

Finally, noting that 1 < >~ pi + > ¢i + >_ri </, we readily deduce (6.23). O

7. Micro-quadratic forms for Kirchhoff equation

Setting 4 = |&|, w = & and a(t) = m(s(r)), we are now in a position to apply The-
orems 1.1 and 1.2 to the Kirchhoff equation, namely to the ODE with parameter

iy +m(s(t)) €] = 0. (7.1)

To this end, in the following we assume (6.3) and m(s) € C* with k > 2 an integer.
Besides, we suppose that (6.14) holds. Then, for |£] > 0 we consider the micro-
quadratic forms

Bt = Y (at+f+ D> g (7.2)

0<i<[k/2)-1 i<k/2-1



Quadratic forms for Liouville and Kirchhoff equations 473
where
ei(&,1) = o ()& [m(s(0)) |7l + |l ],
&, 1) = Bi(0)[e ™ Re(ai), (7.3)
gi(&, 1) = p(0)]E] > i),

According to Theorem 1.2, setting ¢ =2 and ¢; =0 for 1 <i< [%] -1, we
find

o =2wPw, f; =200, ;= 4w2Q§1)w, (7.4)
where P; € #5, Qi e A3 for 0 <i < [%] —1and
1
of) = —— (7.5)
24/m(s(1))

From now on we assume that (7.4) and (7.5) hold. In order to use the forms (7.2)
in the proof of the global solvability of Kirchhoff equation, we need to estimate
the coefficients o;, f5;, y;. To simplify the following statements, we introduce the
functions

¢;(r) ==r+ . (7.6)

Lemma 7.1. Assume (6.3) and m(s) € C* for some integer k > 2. Then, for any
p > 0, we have the following estimates:

(1) Jou| < Cp¥eyi(K + 64(1)), 1 <i < [5] -
2) B < Cp* gy (K+67(1), 0<i<[&
(3) Il < CPZHZ¢21‘+2(K+ @@/g([))} 0<i< [%

where C = C(K, k,d, u,m) is a suitable positive constant.

Proof. Let us prove the estimate (1). By Theorem 1.2 and (7.4), for 1 <i <
[£] — 1 the functions «; are polynomials of the form

o= wz aio @ (M) (@) (7.7)

where “7;07~»»ﬂ72f eR, 1y, ;=0 are integers suph that > n, = 2i, > hyy, = 2i.
By Lemma 6.3, we know that w”) satisfies the estimate

OO < Cop'do(K+80), 1<t <k, 7.8)
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where C, = C(K,/,d, u,m) is a suitable positive constant. Then,
2i
il < 2 g LT (Con" (K + 87 0))™ (79)
Hence, noting that
¢;(r)g,(r) < C(j,1)¢;,,(r)  forall j,/>1andall r >0, (7.10)

from (6.14), (7.5), (7.9) we immediately see that (1) holds. The proof of the esti-
mates (2), (3) for f; and y, is similar. ]

Finally, the terms 8/ and 7/ satisfy the following:

Lemma 7.2. Assume (6.3) and m(s) € C* for some integer k > 2. Then, for any
p > 0, the following estimates hold:

i) 1B/l < Cp*yin (K + 67(1). 0 <i<[5] - 1,
i) [p)] < CpP 3¢y 5 (K+60(1), 0<i<b—1,

where C = C(K, k,0, u,m) is a suitable positive constant.

Proof. Let us prove the estimate i) for f. By Theorem 1.2 and (7.4), we have

Bi=> Brorn @™ (@)1 (o2 i (7.11)

where ﬁ';07~~-7”7i+1 €R, #g,...,M =0 are integers such that Y #, =2i+1,
S~ hn, =2i+ 1. Since 2i + 2 < k, we see that each term in (7.11) is continuously
differentiable. This means that f; has the form

Bi=Y B @@ (@), (7.12)

where /?,’70 i, € R are suitable constants, 7, . .., 7y, > 0 are integers such that

>on,=2i+1and > hy, =2i+2. Now, applying (7.8) and (7.10) as above, we
can easily verify that i) holds. Finally, to prove ii), it suffices to observe that

Vi = wz Z y’;owv’?zerzw”O (w(l))m T (w(2i+2>)”2i+27 (713)
n

where yéoy____’mm eR, ny,....M4, =0 are integers such that Y n, =2i+1,
> hn, =2i+2. Having 2i < k — 3, it follows that each term in the expression
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(7.13) of y, is continuously differentiable. Then, differentiating (7.13) and applying
the estimate (7.8) as above, we obtain ii). O

Remark 7.1. Note that [4] = %! for k odd. Hence, in this case, we can estimate
the quantity ka -1

We now come to the estimates of the micro-energy &% (¢, f), with k > 2. By the
choice made in (7.4) we have

Eilé 1) = 1El"en(&,1). (7.14)
Then, setting
R (&,1) = 2 (&, 1) — eo(&, 1) (7.15)

and applying Theorem 1.1, for |¢| > 0 and 0 < 7y < t < T we obtain the identities:

(1) for k > 2 even,
Sx(E1) = Ex(&,t0) — 1M ()., + j (&Pl Reli) e (7.16)

(2) for k > 2 odd,
860 = 6u(e.) — T + [ Kl laPde (207

Now we estimate the right-hand side of (7.16), (7.17). Considering the terms in
|E|* % (£, 1), and applying (6.14) and Lemma 7.1 we have

¥l = & 2’|al|f<f|¢|k+2| 2 +'é'ﬁ'>
= &7 |ou |V mér (&, 1)

2i
< C#M%AKM";‘Z(I))&(@ ) (7.18)

for |&],p>0and 1 <i <[£] —1; besides
¥4 = \f|“"|ﬂ,-| Re(d,)|

2|é|2,+1 ‘:B |(Ck(67 )
L

2Iél

2i+1

~ ot Paiet (K + 67(1) 6x(E, 1), (7.19)
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k k—2i-2 ~ 12
€[ Ngal = 1E17 7l faad]

s%%W&@o
p2t+2
< C|f|21+2 ¢21+2(K+5 ( ))@@k(év t) (7'2())

for [£],p>0and 0 <i <[4 } — 1. Finally we have to consider |¢|? Biy 21 Re(t;)
for k even, and |é|y[k/2]71 |i|* for k odd. From Lemma 7.2 we obtain

|§|2‘:B[/k/2]71| |Re(uit,)| < . 1|ﬁk/2 11€k(E, 1)

2|5|
k

< cgﬁqﬁk(wa,f(z))gk(g f) (7.21)

for |£],p > 0 and k even, and

|5\|/k_1 |V[k/z 16k(&; 1)
k

SCémmw+ﬂW&@w (7.22)

for |£],p > 0 and k odd. Now noting that for 1 <i < j,

S <
<] |V[lk/2]71\ | |” <

¢:(r) <24,(r) forallr >0, (7.23)

and taking into account Definition (7.15) of % (&, t), we can summarize the esti-
mates above as follows. For a suitable constant

Cr = (gk(K, k,é, M, m) >0 (724)

we have:
i) for |¢| > p > 0 and for all k > 2 the quantity |¢|* 2, (¢, 1) satisfies

¥R (E,0)] < i m V(K + 87(0) 6k (&, 0); (7.25)

ii) for [¢],p > 0 the quantities [¢|*|8), 5, Re(ad,)| and [¢] [pf 54| ||, for
k > 2 even and for k > 2 odd respectively, are bounded by

k

%éﬁmm+ﬁm&@a (7.26)
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Assuming (6.14) and introducing the estimates (7.25), (7.26) in (7.16) and (7.17),
we have proved the following result.

Proposition 7.1. Assume (6.3) and m(s) € C* for some integer k > 2. Then, for
any p >0, |&]| = Ap with A > 1,0 <ty <t < T, the following estimate holds:

E(E, 0D (1) < Ex(&,10)(2 — DL (1))

¢ k rt
n %L i (K + 60(2)) Ex(E,7) dr, (7.27)

where D} (1) :== 1 — % ¢ (K + &0(1)).

8. Proof of Theorem 1.4

As is known, assuming (1.19) and m(s) € C', problem (1.15), (1.16) is locally well
posed in H* x H*! for s >3. See [1], [2], [10], [18], [19], [20]. More precisely,

given (up,u;) € H* x H*~! with s > %, it was proved that there exists a unique

local solution u(x,t) e C"([0,T); H*"(R")) (h=0,1) with T bounded from
below by

T =7 ([uollgrares et | gr112) (8.1)

where 7 : [0, c0) x [0, 00) — (0, c0) is strictly positive and continuous. From this
result, assuming (1.19), m(s) € C! and recalling Definition 6.1, we readily deduce
the following fact:

Proposition 8.1. Given (ug,ur) € H* x H*"' with s > 3, let [0, T) be the maximal

interval of existence of the solution u(x,1) e C"([0,T); H*"(R")) (h=0,1) of
problem (1.15), (1.16). Then

T< 4w = li;nojé"zx,g(é, t)dé = +o0. (8.2)
t—1—
Taking account these considerations and having
B, c H*x H'Y? BN c H'W2 5 HN? fork = 1, (8.3)

in the case of Theorem 1.4 we will prove the global solvability by showing that

(uo, 1) € BY (BY if k =1) = sup J@@k(f, N dé < 4o, (8.4)
tel0,7)

independently of T € (0, +o0).
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Case k > 2. Assume that (ug,u;) € BX. As remarked above, problem (1.15),
(1.16) has a unique local solution u(x,) e C"([0, T); H*>*1="(R")) (h=0,1)
for some 7' > 0. Besides, by Definition 1.3 there exist a sequence {p;};.,, p; —
+0o0, and constants #,J > 0 such that

Pf /!
J En(E0) T —de < (8.5)
‘5‘>/7,' /)]
for all j > 1. In the following, using the estimates of Section 7, we will prove (8.4).
To begin with, let us consider the inequality (7.27) with g = T — e <t < T, where
&> 0 will be fixed below. Assuming in Definition (6.12) K > 0 (if K =0 then
u(x,t) = 0), we set

A = 4%d | (2K) + 1. (8.6)

Besides, taking account of Definition 6.1, we may write

EL) =9 (1) + NaXM (), (8.7)
where
G (1) = ij Er(é 1) dé. (8.8)
! P*Jpcia<ap

Then, from (8.6), (8.7), we have
@ ) 1
Dl(r) =1 —quﬁk_l(K—i-(o@,’c(Z)) >3 (8.9)

fort € [T — ¢, T) and p > 0 such that the quantities %‘”(l), AFEM (1) satisfy

K

A
4,0 (1) <75 (8.10)
: K
AEM (1) < 5 (8.11)
Now we choose ¢ > 0 and p, > 1 such that
Py (K 47 +1 np
—|—=+K 1 < 12
% (\/54- )8+ n( e < (8.12)

forall p > p,, and

e (2K) < (8.13)

n
4¢’
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where z, := max|m’(s)| for s € [0, K/d]. Besides, noting that &7 (7 —¢) — 0 as
p — +oo, we may also suppose that

: K ¢ o \p
GV (T —¢) < e AEM(T —¢) <

e

(8.14)

for all p > p,. Due to (8.14), for every p > p, the conditions (8.10), (8.11) are sat-
isfied in some maximal right neighborhood of T — ¢, say [T — ¢, T(p)), with

T(p):=sup{t: T —e<t<T,(8.10), (8.11) hold forall € [T —¢,7)}. (8.15)
Clearly, for all p > p, we have T'—¢ < T(p) < T. In the sequel we will prove
that, if & (¢, 0) satisfies (8.5), then T'(p;) = T provided p; is sufficiently large. To

this end, we now estimate separately g;\p (1) and A*& ,’C\ ?(1).

Estimate of glﬁ\”(t). We observe that £ & (¢, 1) satisfies the elementary inequality

d L m'(s)] , My
Gacn| <3 m e < Biswiaco. 619
Since &) = |§|keo, from Corollary 5.1 we know that
S0 e <260c0) 0.7 (8.17)

provided that || > p(e,2). Hence, for |&] > p(e,2) we have
E1(E T — &) < 264(E,0), (8.18)

and by (8.16) and Gromwall’s Lemma it follows that

£1(.1) < 264(2,0) exp] %J; /()] de (8.19)

forall € [T —e,T). Now, by Definition (8.15), for p > p, we have §(#) < K in
[T —¢& T(p)). Whence, using (6.17) with / = 2, for p > p, we find that

JT |s'(7)| dr < p<%+K>s fort e [T —& T(p)). (8.20)

Thus, setting p,, := max{p,,p(¢,2)} and taking p = p; with p; > p,, from (8.5),
(8.12), (8.19), (8.20), we have
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4,7 (1) < ikJ 261(E,0) exp{’ﬂ <£ + K) g} dé
N

Pi dp<iasay, 20 \Vo
e k—1
K J e'?/’,-’”/\f\

< 261 (&,0) ————d¢&

4 +1 p<IE|<Ap; 0 p_/k

2J K

< _— — .
<K 7<5 (8.21)

for all re[T —e¢, T(pj)). The estimate (8.21) means that, taking p = p; with
p; = py, condition (8.10) is always satisfied as long as (8.11) holds. Thus, it re-
mains to prove that for p = p; sufficiently large (8.11) holds for all 7 € [T — ¢, T).

Estimate of Aké’,i\”(t). Let us consider (7.27) with A given by (8.6), 1) =
T —e<t<Tandp=p;>p, Then, aslong as the conditions (8.10), (8.11) are
satisfied for 1 > T — ¢, due to (8.9) and (8.13) we find the inequality

k t
Ex(E 1) <36k(E, T —¢) +2% |!|)/Jc—1 JT ‘5’/((5,7) dt (8.22)

for all [£] > Ap;. Hence, using (8.18) and applying Gronwall’s Lemma to (8.22),
for p; > p,and t € [T —¢, T(pj)) we find the estimate

npf 1T +e
2|é|k71 e

Er(E 1) <36k(E,T —¢) exp{ } for [¢] = Ap;. (8.23)

Thus, in order to show that (8.11) holds for all € [T — &, T) it will be sufficient to
choose p, > p, such that

o) /20! K
Jy 5k(faT—8)7kd§<€ for p; > p,. (8.24)
E>Ap; p;

To this end, let us take y > 0 such that e 77/2J < K. Then, setting
A; = {|é| > Apj,mﬁ > y} and B; = {\é| > Apj,mﬁ < y}, (8.25)
due to (8.18) and (8.25) for p; > p, we have

Er(E, T —¢) i
“f‘>/\l)j p]

npk/2lE <!
J e e

ool 2!
< L_ 264(6,0) S ———dé + L_ 264(6,0) S ———de

j J j Pj
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o /1E! e?/?
ge’y”/zj zgk(é())ikd@rj 261(8,0) ——d<
4 Pj 5 b
K e/?
< _+J 26,00 de. (8.26)
127 Jig=ap, Pj

The last integral in (8.26) tends to 0 as p; — +o0. Hence, it is clear that condition
(8.24) is satisfied, provided that we take p, > p, sufficiently large.

This means that for jo > 1 such that p; > p,, we have T(Pjo) =T, 1ie., (8.10)
and (8.11) are satisfied in the whole interval [T’ — ¢, T') by taking p = p; . In par-
ticular, by (8.7) we have g,/:jo(t) <K in [T —¢,T). Thus, using the a priori esti-
mate (6.14), we finally obtain that

J&@oﬁs%KQ%+?ﬂ4> (8.27)

forall t € [T — ¢, T). This concludes the proof of Theorem 1.4 in the case k > 2.

Case k =1. Let us suppose that (ug,u;) € BZ. As remarked above, problem
(1.15), (1.16) has a unique local solution u(x,?) e C"([0,T); H3*"(R"))
(h=0,1) for some 7 > 0. Assuming in (6.12) K > 0, we set

K

where g, := max|m’(s)| for s € [0, K/d]. By the Definition 1.3 of B} there exists a
sequence {p;(N)};., p;(N) — +oo, such that

sup e/

J 61(8,0)dE < +o0. (8.29)
j=1 (>, (V)

Now we consider the micro-energy &1(&,¢). By (8.16), with k£ = 1, we find that

L. z>| < M1 0i6 ), (8.30)

where, by (6.17) with k =1,/ =2,

pPK J
s'(O] < —=+ E1(&, 1) d¢E 8.31
|s"(2)] i ) 1(&1) (8.31)
for all p > 0. Hence,

d, _pu (K
7’ =

N ﬁf(t))& (8.32)
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for all p > 0. Now, having K > 0, we define

T(p) = sup{O <t<T:60(1) < % forallz e [O,r)}. (8.33)

It is clear that T'(p) > 0 provided that p > 0 is large enough. Moreover, in
[0,7(p)) we have the estimate &(&,7) < &1(¢,0) exp{%pt}. From this, by
(8.28), we obtain that

eWN/2)p

E7(1) <
! P

| a0 np.1e) (5.34)
[&[>p
for all p > 0 large enough. Finally, let us observe that (8.29) implies that

lim /2n) J
Joteo |El>p;(N)

£1(6,0)dE =0 (8.35)
because p;(N) — +oo. Therefore, there exists an integer jo > 1 such that

e(N/z)p’(N)J £1(E,0)dé < (8.36)
- 71(E, < — .
PN Sy 2V

for all j > jo. This means that, taking p = p;(N) with j > jo, we have

(N) K
MV () < ——

forall 7 € [0, T (p;(N))). From Definition (8.33) of T(p) it follows that T'(p;) = T
when j > jy. Hence, we obtain that

(8.37)

J@% (& 1) de = J 81(E1)dé + j &1(8,1)de

I€[>p;(N)
gpj(N)K(\/ig—i—%) (8.38)

I<l<p;(N)

in [0, T) for all j > jy. This completes the proof.
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