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1. Introduction

It is known that many pattern forming processes in biomedical models of disease

are described by delay di¤erential equation with piecewise constant argument, a

model developed originally by Busenerg and Cooke (we refer the reader to [2]

for more details). The introductions of these equations were motivated by the

fact that they represent a hybrid of discrete and continuous dynamical systems,

so they combine the properties of both di¤erential and di¤erential-di¤erence

equation. In the recent years, these kind of equations have attracted the attention

of many authors, and we refer the reader for the bibliographic references given at

the end of this paper.

In [1] the authors consider the equation

y 0ðtÞ þ ayðtÞ þ byð½t�Þ ¼ 0; tb 0

where ½ � � denotes the greatest-integer function. There they determine the set of all

periodic solutions of this equation.

In [12] the following more general equation is discussed:

y 0ðtÞ þ aðtÞyðtÞ þ bðtÞyð½t�Þ ¼ 0; tb 0 ð1:1Þ



where aðtÞ and bðtÞ are continuous real functions with positive integer period o.

Again the authors are able to identify the corresponding set of periodic solutions.

In the present paper we study the following equation

x 0ðtÞ þ f
�
t; xðt� hÞ; xð½t� k�Þ

�
¼ 0 ð1:2Þ

where h, k are integers, f a CðR3;RÞ, and f ðtþ T ; u; vÞ ¼ f ðt; u; vÞ for

ðt; u; vÞ a R3. Here the period T is assumed to be a positive integer. It is clear

that (1.2) is a more general model than (1.1).

The main aim of this paper is to establish su‰cient conditions for the existence

and uniqueness of T-periodic solutions of (1.2). Our results are new and they also

answer, to some extent, the question of what is the set of all periodic solutions of

(1.2). An example to illustrate our theorem will be given in Section 3 below.

Definition 1.1. We will say that a function xðtÞ, defined on R, is a solution of

(1.2) if it satisfies the following conditions:

(i) xðtÞ is continuous on R;

(ii) the derivative x 0ðtÞ exists at each point t a R, with the possible exception of

the points ½t� a R, where one-side derivatives must exist;

(iii) equation (1.2) is satisfied on each interval ½n; nþ 1ÞHR with integer end-

points.

Let us recall now some basic concepts related to the Mawhin’s continuation

theorem (for more details, see [7]). Let X and Y be two Banach space and

L : domðLÞBX ! Y be a Fredholm map of index zero, i.e., L is a linear mapping

such that imL is closed in Y and dimkerL ¼ codim imL < þl. Then there exist

continuous projectors P : X ! domL and Q : Y ! Y such that imP ¼ kerL and

imL ¼ kerQ ¼ imðI �QÞ. It follows that LjdomLBkerP : domLBkerP ! imL is

invertible. We denote the inverse of that map by KP. Let W be an open bounded

subset of X and N : W ! Y be a continuous mapping. N is called L-compact on

W if QNðWÞ is bounded and KPðI �QÞN : W ! X is compact. Note that ImQ is

isomorphic to Ker L, so we fix an isomorphism J : imQ ! kerL.

Theorem 1.1. Lex X and Y be two Banach space and L : domLBX ! Y be

a Fredholm mapping of index zero. Suppose that W is open bounded in X and

N : W ! Y is L-compact on W. Furthermore, suppose that

(i) for each l a ð0; 1Þ and x a qW, LxA lNx;

(ii) for each x a qWBkerL, QNxA 0, and

(iii) degðJQN;WBkerL; 0ÞA 0.

Then Lx ¼ Nx has at least one solution in WB domL.
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The following conditions will always be assumed throughout this paper.

(A) there exist constants b1, b2 with b1 þ b2 <
2
T
such that

j f ðt; u1; v1Þ � f ðt; u2; v2Þja b1ju1 � u2j þ b2jv1 � v2j;

(B) f ðt; u; vÞ is either strict monotonically decreasing with respect to u and v or

strict monotonically increasing with respect to u and v.

We will also use the following conditions, where d and M are positive constants.

ðC1Þ f ðt; u; vÞ > 0 for t a R and u; vb d;

ðC2Þ f ðt; u; vÞ < 0 for t a R and u; vb d;

ðC3Þ f ðt; u; vÞ > 0 for t a R and u; va�d;

ðC4Þ f ðt; u; vÞ < 0 for t a R and u; va�d;

ðD1Þ f ðt; u; vÞb�M for ðt; u; vÞ a R3;

ðD2Þ f ðt; u; vÞaM for ðt; u; vÞ a R3.

2. The main result

Using the Mawhin’s continuation theorem, we will prove

Theorem 2.1. If any of the following conditions are satisfied, then (1.2) has a

unique T-periodic solution:

(1) ðC1Þ, ðC3Þ and ðD1Þ;
(2) ðC2Þ, ðC4Þ and ðD1Þ;
(3) ðC1Þ, ðC3Þ and ðD2Þ;
(4) ðC2Þ, ðC4Þ and ðD2Þ.

We will only give a proof of existence of a unique solution of (1.2) under con-

dition (1). The proofs assuming any of the other conditions are similar.

It is easy to see that xðtÞ is a T-periodic solution of (1.2) if and only if xðtÞ is a
T-periodic solution of the equation

xðtÞ ¼ xð0Þ �
ð t

0

f
�
s; xðs� hÞ; xð½s� k�Þ

�
ds: ð2:1Þ

Let

XT ¼ fx a CðR;RÞ j xðtþ TÞ ¼ xðtÞ for all t a Rg

3Existence and uniqueness of periodic solutions for a delay di¤erential equation



and endowed X with the norm

kxk1 ¼ max
t A ½0;T �

jxðtÞj:

Let

Y ¼ fy a CðR;RÞ j yð0Þ ¼ 0; yðtÞ ¼ atþ hðtÞ for some a a R; h a XTg

and endowed Y with the norm

kyk2 ¼ jaj þ khk1:

It is clear that both ðXT ; k � k1Þ and ðY ; k � k2Þ are Banach spaces. We define map-

pings L;N : XT ! Y by

LxðtÞ ¼ xðtÞ � xð0Þ;

NxðtÞ ¼ �
ð t

0

f
�
s; xðs� hÞ; xð½s� k�Þ

�
ds:

Note that if we set

a ¼ � 1

T

ðT

0

f
�
s; xðs� hÞ; xð½s� k�Þ

�
ds

and

hðtÞ ¼ �
ð t

0

f
�
s; xðs� hÞ; xð½s� k�Þ

�
ds� at;

then one can easily check that hðtÞ is a T-periodic function of t for any x a XT .

This shows that N is well defined.

On the other hand, we have kerL ¼ fx a XT j xðtÞ ¼ xð0Þ for all t a Rg and

imL ¼ Y BXT . So we can also define projections P : XT ! XT and Q : Y ! Y

as follows:

PxðtÞ ¼ xð0Þ;
QyðtÞ ¼ at if yðtÞ ¼ atþ hðtÞ:

Then XT ¼ kerPakerL and Y ¼ imLa imQ. It is clear that imL ¼
fy a XT j yð0Þ ¼ 0g is closed in Y and codim imQ ¼ 1 ¼ dimkerL. Therefore L

is a Fredholm operator of index zero.
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Lemma 2.1. Let L and N be defined as above. If W is an open bounded subset of

XT , then N is L-compact on W.

Proof. It is easy to see that

QNxðtÞ ¼ � t

T

ðT

0

f
�
s; xðs� hÞ; xð½s� k�Þ

�
ds; ð2:2Þ

hence

kQNxðtÞk2 ¼
��� 1
T

ðT

0

f
�
s; xðs� hÞ; xð½s� k�Þ

�
ds
���: ð2:3Þ

Let us denote the inverse of the map LjdomLBkerP: domLBkerP ! Y by KP.

Then

KPðI �QÞNxðtÞ ¼ �
ð t

0

f
�
s; xðs� hÞ; xð½s� k�Þ

�
ds

þ t

T

ðT

0

f
�
s; xðs� hÞ; xð½s� k�Þ

�
ds: ð2:4Þ

From (2.3) we find that QNðWÞ is bounded. Since (2.4) holds and N is a com-

pletely continuous mapping, the Ascoli–Arzela theorem shows that KPðI �QÞNW

is relatively compact, thus N is L-compact on W. r

Denote now by CD be the set of all xðtÞ a XT such that x 0ðtÞ exists at each

t a R with the possible exception of ½t�, where a one-side derivative exists. Then

we have:

Lemma 2.2. Suppose that xðtÞ a CD and x a ½0;T �. Then

kxk1a jxðxÞj þ 1

2

ðT

0

jx 0ðsÞj ds:

Proof. It is clear that both x 0ðtÞ and jx 0ðtÞj are integrable in any ½a; b�HR. Since

xðtÞ is continuous for any t a ½x; xþ T �, we have

xðtÞ ¼ xðxÞ þ
ð t

x

x 0ðsÞ ds

and

xðtÞ ¼ xðxþ TÞ þ
ð t

xþT

x 0ðsÞ ds ¼ xðxÞ �
ð xþT

t

x 0ðsÞ ds:
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These two equations show that for any t a ½x; xþ T �,

2xðtÞ ¼ 2xðxÞ þ
ð t

x

x 0ðsÞ ds�
ð xþT

t

x 0ðsÞ ds;

or

xðtÞ ¼ xðxÞ þ 1

2

nð t

x

x 0ðsÞ ds�
ð xþT

t

x 0ðsÞ ds
o
:

This yields

jxðtÞja jxðxÞj þ 1

2

ð xþT

x

jx 0ðsÞj ds:

Noting that xðtÞ a XT , the above inequality obviously implies that

kxk1a jxðxÞj þ 1

2

ðT

0

jx 0ðsÞj ds: r

Now we can show

Lemma 2.3. Equation (1.2) has at most one T-periodic solution.

Proof. Suppose that x1ðtÞ and x2ðtÞ are two T-periodic solutions of (1.2). Set

zðtÞ ¼ x1ðtÞ � x2ðtÞ. Then we have

z 0ðtÞ þ f
�
t; x1ðt� hÞ; x1ð½t� k�Þ

�
� f

�
t; x2ðt� hÞ; x2ð½t� k�Þ

�
¼ 0: ð2:5Þ

Therefore, zðtÞ a CD. Now we have two possibilities:

Case (i): For all t a ½0;T �, zðtÞA 0. Without loss of generality, we may as-

sume that zðtÞ > 0, i.e., x1ðtÞ > x2ðtÞ for all t a ½0;T �. Integrating (2.5) from 0 to

T , we find

ðT

0

�
f
�
t; x1ðt� hÞ; x1ð½t� k�Þ

�
� f

�
t; x2ðt� hÞ; x2ð½t� k�Þ

��
dt ¼ 0: ð2:6Þ

Combining condition (B) and x1ðtÞ > x2ðtÞ, either

f
�
t; x1ðt� hÞ; x1ð½t� k�Þ

�
� f

�
t; x2ðt� hÞ; x2ð½t� k�Þ

�
> 0 for all t a ½0;T �

or

f
�
t; x1ðt� hÞ; x1ð½t� k�Þ

�
� f

�
t; x2ðt� hÞ; x2ð½t� k�Þ

�
< 0 for all t a ½0;T �

holds. This contradicts (2.6).
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Case (ii): There exists some x a ½0;T � such that zðxÞ ¼ 0. It then follows from

Lemma 2.2 that

kzk1a jzðxÞj þ 1

2

ðT

0

jz 0ðsÞj ds ¼ 1

2

ðT

0

jz 0ðsÞj ds:

On the other hand, condition (A) leads to

jz 0ðtÞj ¼
�� f �t; x1ðt� hÞ; x1ð½t� k�Þ

�
� f

�
t; x2ðt� hÞ; x2ð½t� k�Þ

���
a b1jx1ðt� hÞ � x2ðt� hÞj þ b2jx1ð½t� k�Þ � x2ð½t� k�Þj
a ðb1 þ b2Þkzk1:

Integrating both sides of the above inequality from 0 to T , we obtain

ðT

0

jz 0ðtÞj dta ðb1 þ b2ÞTkzk1a
b1 þ b2

2
T

ðT

0

jz 0ðtÞj dt:

Since b1 þ b2 <
2
T
, we conclude that

ðT

0

jz 0ðtÞj dt ¼ 0:

Therefore, we must have

z 0ðtÞ ¼ 0 for t a ½0;T �nf0; 1; . . . ;Tg:

Now, since zðtÞ is continuous, there exists a constant C such that zðtÞ ¼ C, or

x1ðtÞ ¼ x2ðtÞ þ C. Thus, we deduce from (2.5) that, for t a ½0;T �nf0; 1; . . . ;Tg,
we have

f
�
t; x1ðt� hÞ; x1ð½t� k�Þ

�
� f

�
t; x2ðt� hÞ; x2ð½t� k�Þ

�
¼ 0:

Combining condition (B) and x1ðtÞ ¼ x2ðtÞ þ C, we conclude that C ¼ 0.

Hence, in any case, x1ðtÞ ¼ x2ðtÞ for all t a ½0;T �, so equation (1.2) has at most

one T-periodic solution. r

Next, in order to apply Theorem 1.1, we consider the following equation:

xðtÞ ¼ xð0Þ � l

ð t

0

f
�
s; xðs� hÞ; xð½s� k�Þ

�
ds ¼ 0; ð2:7Þ

where l a ð0; 1Þ.
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The following lemma is clear, so we omit its proof.

Lemma 2.4. Suppose that gðtÞ is a real bounded continuous function on ½a; bÞ and
limt!b� gðtÞ exists. Then there is a point x a ða; bÞ such that

ð b

a

gðsÞ ds ¼ gðxÞðb� aÞ:

Lemma 2.5. Suppose that ðC1Þ, ðC3Þ and ðD1Þ hold. Then, for any T-periodic
solution xðtÞ of (2.7), we have jxðtÞjad þ 2TM for all t a ½0;T �.

Proof. Let xðtÞ be a T-periodic solution of (2.7). Then we have

ðT

0

f
�
s; xðs� hÞ; xð½s� k�Þ

�
ds ¼ 0: ð2:8Þ

We claim that there exists a t1 a ½0;T � such that

jxðt1Þj < d: ð2:9Þ

First note that, by Lemma 2.4, there exist xi a ði � 1; iÞ ði ¼ 1; 2; . . . ;TÞ such
that

0 ¼
ðT

0

f
�
s; xðs� hÞ; xð½s� k�Þ

�
ds

¼
XT
i¼1

ð i

i�1

f
�
s; xðs� hÞ; xð½s� k�Þ

�
ds

¼
XT
i¼1

�
f
�
xi; xðxi � hÞ; xði � 1� kÞ

��
:

If jxði � 1� kÞj < d for some i, then jxðxi � hÞj < d, and we are done. Otherwise,

by ðC1Þ, ðC3Þ and the above equation, there must exist h1 and h2 such that

xðh1Þb d and xðh2Þa�d. Noting that xðtÞ is continuous on R, the mean value

theorem yields xðh3Þ such that �d < xðh3Þ < d. Since xðtÞ is periodic, there is

some t1 a ½0;T � such that jxðt1Þj ¼ jxðh3Þj < d. So the claim follows.

Next, if we write

FþðtÞ ¼ max
�
f
�
t; xðt� hÞ; xð½t� k�Þ

�
; 0
�

ð2:10Þ

and

F�ðtÞ ¼ max
�
�f

�
t; xðt� hÞ; xð½t� k�Þ

�
; 0
�
; ð2:11Þ
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then FþðtÞ and F�ðtÞ are piecewise continuous functions on R, and we have

f
�
t; xðt� hÞ; xð½t� k�Þ

�
¼ FþðtÞ � F�ðtÞ; ð2:12Þ

and

�� f �t; xðt� hÞ; xð½t� k�Þ
��� ¼ FþðtÞ þ F�ðtÞ:

In view of ðD1Þ and (2.11), the last equation yields that

jF�ðtÞj ¼ F�ðtÞaM; t a R:

Therefore

ðT

0

F�ðsÞ dsaTM:

From (2.8), (2.12) and the last equation, we have

ðT

0

FþðsÞ ds ¼
ðT

0

F�ðsÞ dsaTM:

Hence

ðT

0

�� f �t; xðt� hÞ; xð½t� k�Þ
���a 2TM:

The last equation combined with (2.9) shows that for any t a ½0;T �,

jxðtÞj ¼
���xðt1Þ � l

ð t

t1

�
f
�
s; xðs� hÞ; xð½s� k�Þ

��
ds
���

a jxðt1Þj þ l

ðT

0

�� f �s; xðs� hÞ; xð½s� k�Þ
��� ds

a d þ 2MT :

This completes the proof of the lemma. r

Proof of Theorem 2.1. It follows from Lemma 2.3 that (1.2) has at most one T-

periodic solution. Thus to prove Theorem 2.1, it su‰ces to show that (1.2) has

at least one T-periodic solution. To do this, we apply Theorem 1.1.
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We set

W :¼ fx a XT j kxk1 < Dg;

where D is a fixed constant with D > d þ 2MT . It is easy to see that W is an

open bounded subset of XT , L is a Fredholm mapping of index zero and N is

L-compact on W. By Lemma 2.5, we have that D > d þ 2MT and that

LxA lNx for each l a ð0; 1Þ; x a qW:

Since kerL ¼ fx a XT j xðtÞ ¼ xð0Þ for all t a Rg, we see that a function x a
kerLB qW must be constant with either xðtÞCD or xðtÞC�D. If the isomor-

phism J : imQ ! kerL is defined by JðatÞ ¼ a, a a R, then by (2.2), ðC1Þ and

ðC3Þ we get

JQNðxÞ ¼ � 1

T

ðT

0

f ðs; x; xÞ dsA 0: ð2:13Þ

In particular, we see that

� 1

T

ðT

0

f ðs;D;DÞ ds < 0; � 1

T

ðT

0

f ðs;�D;�DÞ ds > 0;

which shows that

degðJQN;WBkerL; 0ÞA 0:

In this way, we conclude from Lemma 2.3 and Theorem 1.1 that (1.2) has a

unique T-periodic solution. r

3. An example

We claim that the equation

x 0ðtÞ þ 1

3þ cosðptÞ xð½t� k�Þ þ 2

5p

�
xðt� hÞ � 1

�
þ ln

�
1þ 2 sin2ðptÞ

�
¼ 0; ð3:1Þ

where k and h are fixed integers, has a unique 2-periodic solution.

Proof. Note that equation (3.1) amounts to (1.2) with the choice

f ðt; x; yÞ ¼ 1

3þ cosðptÞ yþ
2

5p
ðx� 1Þ þ ln

�
1þ 2 sin2ðptÞ

�
:
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Hence, we have T ¼ 2, b1 ¼ 1
2 , b2 ¼ 2

5p . It is straightforward to check that

conditions (1) in Theorem 2.1 hold. Therefore, (3.1) has a unique 2-periodic

solution. r
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