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Abstract. An existence result for a solution of a class of nonlinear parabolic equations in
Orlicz spaces is established. The data belongs to L1, no growth assumption is made on
the nonlinearities and the N-function does not satisfy the D2 condition.
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1. Introduction

In this work we are concerned with the problem of existence of a renormalized so-

lution for a class of nonlinear parabolic equations of the type:

qbðuÞ
qt

� div
�
aðx; t; u;‘uÞ

�
� div

�
FðuÞ

�
¼ f in W� ð0;TÞ; ð1:1Þ

bðuÞðt ¼ 0Þ ¼ bðu0Þ in W; ð1:2Þ
u ¼ 0 on qW� ð0;TÞ: ð1:3Þ

Here W is a bounded open set of RN ðNb 2Þ, T is a positive real number,

and Q ¼ W� ð0;TÞ. The function b is assumed to be a strictly increasing C1-

function. When the data f and bðu0Þ lie in L1ðQÞ and L1ðWÞ, respectively, then
Au ¼ �div

�
aðx; t; u;‘uÞ

�
is a Leray–Lions operator defined on W

1;x
0 LMðWÞ,

where M is an appropriate N-function (see assumptions (3.2)–(3.5) in Section 3).

The function F is assumed to be continuous on R.

The di‰culties that arise in problem (1.1)–(1.3) are due to the following facts:

the data f and bðu0Þ only belong to L1, the function FðuÞ does not belong to�
L1

loc

�
ð0;TÞ �W

��N
(because the function F is just assumed to be continuous on

R) and the N-function M does not satisfy the D2 condition (see (2.1) of Section 2).

Therefore, proving existence of a weak solution (i.e., in the distribution meaning)



seems to be a hard task. To overcome this di‰culty, in this paper we will apply

the framework of renormalized solutions. This notion was introduced by Lions

and Di Perna [16] in their study of the Boltzmann equation (see also P.-L. Lions

[26] for a few applications to fluid mechanics models). This notion was then

adapted to an elliptic version of (1.1), (1.2), (1.3) by Boccardo, J.-L. Diaz, D. Gia-

chetti, F. Murat [11], and by F. Murat [27]. At the same time, the equivalent no-

tion of entropy solution was developed independently by Bénilan and al. [2] for the

study of nonlinear elliptic problems.

For the parabolic equation (1.1)–(1.3) the existence and uniqueness of a

renormalized solution has been proved by D. Blanchard, F. Murat and H.

Redwane [6] (see also A. Porretta [28]) in the case where bðuÞ ¼ u and f is

replaced by f þ divðgÞ, with g a Lp 0 ðQÞN . The case where the operator Au ¼
�div

�
aðx; t; u;‘uÞ

�
is a Leray–Lions which is coercive and grows like j‘ujp�1

with respect to ‘u (but which is not restricted by any growth condition with re-

spect to u), where b is a strictly increasing function of u (that can possibly blow

up for some finite r0) and aðx; t; s; xÞ is independent of s and linear with respect

to x, existence and uniqueness has been established by D. Blanchard and H. Red-

wane [9]. The case where b is a maximal monotone graph on R and aðx; t; s; xÞ is
independent of t, existence and uniqueness has been established by D. Blanchard

and A. Porretta [8] (see also D. Blanchard [4], D. Blanchard and F. Murat [5], H.

Redwane [30], J. Carrillo [12], J. Carrillo and P. Wittbold [13], [14]).

Let us remark that equations (1.1)–(1.3) find natural applications in physical

sciences. Non-standard examples of N-functions which occur in the mechanics

of solids and fluids include M1ðtÞ ¼ t logð1þ tÞ, M2ðtÞ ¼
Ð t
0 s

1�a
�
arcsinhðsÞ

�a
ds

where 0a aa 1 and M3ðtÞ ¼ t log
�
1þ logð1þ tÞ

�
(see M. Fuchs and L. Gong-

bao [19] and M. Fuchs and G. Seregin ([20]–[31]). Note that that M1ðtÞ and

M3ðtÞ do not satisfy the D2-condition.

As an application of our results, we prove the existence of a renormalized so-

lution of the problem

ea1u
qu

qt
� div

�
ð1þ jujÞ‘u log2bðeþ j‘ujÞ

�
� divðea2uÞ ¼ f in W� ð0;TÞ; ð1:4Þ

uðt ¼ 0Þ ¼ u0 in W; ð1:5Þ
u ¼ 0 on qW� ð0;TÞ; ð1:6Þ

where a1b 0, a2 a R and 0 < ba 1
2 .

The plan of the paper is as follows. In Section 2 we give some preliminaries

and the definition of N-function and Orlicz–Sobolev space. In Section 3 we make

precise all the assumptions on b, F, f and u0. In Section 4 we give the definition

of a renormalized solution of (1.1)–(1.3). In Section 5 we establish the existence of

such a solution (Theorem 5.1).
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2. Preliminaries

Let M : Rþ ! Rþ be an N-function, i.e., M is continuous, convex, with MðtÞ > 0

for t > 0,
MðtÞ
t

! 0 as t ! 0 and
MðtÞ
t

! l as t ! l. Equivalently, M admits the

representation: MðtÞ ¼
Ð t
0 aðsÞ ds where a : Rþ ! Rþ is non-decreasing, right

continuous, with að0Þ ¼ 0, aðtÞ > 0 for t > 0 and aðtÞ ! l as t ! l. The N-

function M conjugate to M is defined by MðtÞ ¼
Ð t
0 aðsÞ ds, where a : Rþ ! Rþ

is given by aðtÞ ¼ supfs j aðsÞa tg.
The N-function M is said to satisfy the D2 condition if, for some k > 0,

Mð2tÞa kMðtÞ for all tb 0: ð2:1Þ

When this inequality holds only for tb t0 > 0, M is said to satisfy the D2-

condition near infinity.

Let P and M be two N-functions. PWM means that P grows essentially less

rapidly than M, i.e., for each e > 0,

PðtÞ
MðetÞ ! 0 as t ! l: ð2:2Þ

This is the case if and only if

M�1ðtÞ
P�1ðtÞ ! 0 as t ! l: ð2:3Þ

We will extend these N-functions into even functions on all R. Let W be an open

subset of RN . The Orlicz class LMðWÞ (resp. the Orlicz space LMðWÞ) is defined as

the set of (equivalence classes of ) real-valued measurable functions u on W such

that:

ð
W

M
�
uðxÞ

�
dx < þl ðresp:

ð
W

M
uðxÞ
l

� �
dx < þl for some l > 0Þ: ð2:4Þ

Note that LMðWÞ is a Banach space under the norm

kukM;W ¼ inf l > 0

����
ð
W

M
uðxÞ
l

� �
dxa 1

� �
ð2:5Þ

and LMðWÞ is a convex subset of LMðWÞ. The closure in LMðWÞ of the set of

bounded measurable functions with compact support in W is denoted by EMðWÞ.
The equality EMðWÞ ¼ LMðWÞ holds if and only if M satisfies the D2-condition for

all t or for t large, according to whether or not W has infinite measure.
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The dual of EMðWÞ can be identified with LMðWÞ by means of the pairingÐ
W uðxÞvðxÞ dx, and the dual norm on LMðWÞ is equivalent to k � kM;W. The space

LMðWÞ is reflexive if and only if M and M satisfy the D2 condition for all t or for t

large, according to whether or not W has infinite measure.

We now turn to the Orlicz–Sobolev space. W 1LMðWÞ (resp. W 1EMðWÞ) is the
space of all functions u such that u and its distributional derivatives up to order 1

lie in LMðWÞ (resp. EMðWÞ). This is a Banach space under the norm

kuk1;M;W ¼
X
jaja1

k‘aukM;W: ð2:6Þ

Thus W 1LMðWÞ and W 1EMðWÞ can be identified with subspaces of the product

of N þ 1 copies of LMðWÞ. Denoting this product by PLM , we will use the

weak topologies sðPLM ;PEMÞ and sðPLM ;PLMÞ. The space W 1
0 EMðWÞ is

defined as the (norm) closure of the Schwartz space DðWÞ in W 1EMðWÞ and

the space W 1
0 LMðWÞ as the sðPLM ;PEMÞ closure of DðWÞ in W 1LMðWÞ. We

say that un converges to u for the modular convergence in W 1LMðWÞ if for

some l > 0,
Ð
W Mð‘

aun�‘ au
l

Þ dx ! 0 for all jaja 1. This implies convergence for

sðPLM ;PLMÞ. If M satisfies the D2 condition on Rþ (near infinity only when W

has finite measure), then modular convergence coincides with norm convergence.

Let W�1LMðWÞ (resp. W�1EMðWÞ) denote the space of distributions on W

which can be written as sums of derivatives of ordera 1 of functions in LMðWÞ
(resp. EMðWÞ). It is a Banach space under the usual quotient norm.

If the open set W has the segment property, then the space DðWÞ is dense

in W 1
0 LMðWÞ for the modular convergence and for the topology sðPLM ;PLMÞ

(cf. [21]). Consequently, the action of a distribution in W�1LMðWÞ on an element

of W 1
0 LMðWÞ is well defined. For more details see [1], [23].

For K > 0, we define the truncation at height K , TK : R ! R by

TKðsÞ ¼ min
�
K ;maxðs;�KÞ

�
¼

s if jsjaK ;
Ks
jsj if jsj > K :

(
ð2:7Þ

The following abstract lemmas will be applied to the truncation operators.

Lemma 2.1 (cf. [21]). Let F : R ! R be uniformly lipschitzian, with Fð0Þ ¼ 0. Let

M be an N-function and let u a W 1LMðWÞ (resp. W 1EMðWÞ).
Then F ðuÞ a W 1LMðWÞ (resp. W 1EMðWÞ). Moreover, if the set of discontinuity

points D of F 0 is finite, then

q

qxi
FðuÞ ¼ F 0ðuÞ qu

qxi
a:e: in fx a W j uðxÞ B Dg;

0 a:e: in fx a W j uðxÞ a Dg:

(
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Lemma 2.2 (cf. [21]). Let F : R ! R be uniformly lipschitzian, with Fð0Þ ¼ 0. We

suppose that the set of discontinuity points of F 0 is finite. Let M be an N-function.

Then the mapping F : W 1LMðWÞ ! W 1LMðWÞ is sequentially continuous with re-

spect to the weak-* topology sðPLM ;PEMÞ.

Let W be a bounded open subset of RN , T > 0 and set Q ¼ W� ð0;TÞ. Let M

be an N-function. For each a a NN , denote by ‘a
x the distributional derivative

on Q of order a with respect to the variable x a NN . The inhomogeneous Orlicz–

Sobolev spaces are defined as

W 1;xLMðQÞ ¼ fu a LMðQÞ j‘a
xu a LMðQÞ for all jaja 1g;

W 1;xEMðQÞ ¼ fu a EMðQÞ j‘a
xu a EMðQÞ for all jaja 1g:

ð2:8Þ

The last space is a subspace of the first one, and both are Banach spaces under

the norm

kuk ¼
X
jaja1

k‘a
xukM;Q: ð2:9Þ

We can easily show that they form a complementary system when W satisfies the

segment property. These spaces are considered as subspaces of the product space

PLMðQÞ which have as many copies as there is a-order derivatives, jaja 1. We

shall also consider the weak topologies sðPLM ;PEMÞ and sðPLM ;PLMÞ. If

u a W 1;xLMðQÞ then the function t ! uðtÞ ¼ uðt; �Þ is defined on ð0;TÞ with

values in W 1LMðWÞ. If, further, u a W 1;xEMðQÞ then the concerned function

is a W 1EMðWÞ-valued and is strongly measurable. Furthermore the following im-

bedding holds: W 1;xEMðQÞHL1
�
0;T ;W 1EMðWÞ

�
. The space W 1;xLMðQÞ is not

in general separable. If u a W 1;xLMðQÞ, we cannot conclude that the function

uðtÞ is measurable on ð0;TÞ. However, the scalar function t 7! kuðtÞkM;W is in

L1ð0;TÞ. The space W
1;x
0 EMðQÞ is defined as the (norm) closure in W 1;xEMðQÞ

of DðQÞ. We can easily show as in [22] that when W has the segment property,

then each element u of the closure of DðQÞ with respect of the weak-* topology

sðPLM ;PEMÞ is a limit, in W 1;xLMðQÞ, of some subsequence ðuiÞHDðQÞ for

the modular convergence; i.e., there exists l > 0 such that for all jaja 1,

ð
Q

M
‘a
xui � ‘a

xu

l

� �
dx dt ! 0 as i ! l: ð2:10Þ

This implies that ðuiÞ converges to u in W 1;xLMðQÞ for the weak topology

sðPLM ;PLMÞ. Consequently,

DðQÞsðPLM ;PE
M
Þ ¼ DðQÞsðPLM ;PL

M
Þ: ð2:11Þ
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This space will be denoted by W
1;x
0 LMðQÞ. Furthermore, W 1;x

0 LMðQÞBPEM ¼
W 1;x

0 EMðQÞ. Poincaré’s inequality also holds in W 1;x
0 LMðQÞ, i.e., there is a con-

stant C > 0 such that for all u a W
1;x
0 LMðQÞ one has,

X
jaja1

k‘a
xukM;QaC

X
jaj¼1

k‘a
xukM;Q: ð2:12Þ

Thus both sides of the last inequality are equivalent norms on W
1;x
0 LMðQÞ. We

have then the following complementary system

W
1;x
0 LMðQÞ F

W
1;x
0 EMðQÞ F0

 !
; ð2:13Þ

with F being the dual space of W
1;x
0 EMðQÞ. It is also, except for an isomor-

phism, the quotient of PLM by the polar set W 1;x
0 EMðQÞ?, and will be denoted by

F ¼ W�1;xLMðQÞ. It is shown that

W�1;xLMðQÞ ¼
n
f ¼

X
jaja1

‘a
x fa j fa a LMðQÞ

o
: ð2:14Þ

This space will be equipped with the usual quotient norm

k f k ¼ inf
X
jaja1

k fakM;Q; ð2:15Þ

where the infinum is taken on all possible decompositions

f ¼
X
jaja1

‘a
x fa; fa a LMðQÞ: ð2:16Þ

The space F0 is then given by

F0 ¼
n
f ¼

X
jaja1

‘a
x fa j fa a EMðQÞ

o
ð2:17Þ

and is denoted by F0 ¼ W�1;xEMðQÞ.

Remark 2.3. We can easily check, using Lemma 2.1, that each uniformly lipschit-

zian mapping F , with Fð0Þ ¼ 0, acts in inhomogeneous Orlicz–Sobolev spaces of

order 1: W 1;xLMðQÞ and W 1;x
0 LMðQÞ.
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In the sequel we have to use the following results which concern mollification

with respect to time and space variable and some trace results.

Thus we define for all m > 0 and all ðx; tÞ a Q:

umðx; tÞ ¼ m

ð t
�l

~uuðx; sÞ exp
�
mðs� tÞ

�
ds where ~uuðx; sÞ ¼ uðx; sÞwð0;TÞ: ð2:18Þ

Lemma 2.4 (cf. [17]). (1) If u a LMðQÞ then um ! u as m ! þl in LMðQÞ for the
modular convergence.

(2) If u a W 1;xLMðQÞ then um ! u as m ! þl in W 1;xLMðQÞ for the modular

convergence.

(3) If u a W 1;xLMðQÞ then qum
qt

¼ mðu� umÞ a W 1;xLMðQÞ.

We will use the following technical lemmas.

Lemma 2.5 (cf. [17]). Let M be an N-function. Let ðunÞ be a sequence of

W 1;xLMðQÞ such that un * weakly in W 1;xLMðQÞ for sðPLM ;PEMÞ and
qun
qt

¼ hn þ kn in D 0ðQÞ with hn is bounded in W�1;xLMðQÞ and kn is bounded in the

space L1ðQÞ. Then un ! u strongly in L1
locðQÞ.

If further, un a W 1;x
0 LMðQÞ then un ! u strongly in L1ðQÞ.

Lemma 2.6 (cf. [18]). Let W be a bounded open subset of RN with the segment

property. Then

u a W 1;x
0 LMðQÞ

���� quqt a W�1;xLMðQÞ þ L1ðQÞ
� �

HC
�
½0;T �;L1ðWÞ

�
:

Lemma 2.7 (cf. [3]). Let Q be an open bounded subset of RN which satisfies the

segment property. If u a W 1
0 LMðWÞ, then

ð
Q

div u dx dt ¼ 0:

3. Assumptions and statement of main results

Throughout this paper, we assume that the following assumptions hold true:

W is a bounded open set on RN ðNb 2Þ, T > 0 is given and we set Q ¼
W� ð0;TÞ,

b : R ! R is a strictly increasing C1-function with bð0Þ ¼ 0: ð3:1Þ

35Existence of a solution in Orlicz spaces



Let M and P be two N-function such that PWM. Consider a second order par-

tial di¤erential operator A : DðAÞHW 1;xLMðQÞ ! W�1;xLMðQÞ in divergence

form,

AðuÞ ¼ �div
�
aðx; t; u;‘uÞ

�
;

where

a : W� ð0;TÞ � R� RN ! RN is a Carathéodory function satisfying ð3:2Þ

for almost every ðx; tÞ a Q and for every s a R, xA x� a RN ,

jaðx; t; s; xÞja b½cðx; tÞ þ k1M
�1PðkjsjÞ þM�1MðkjxjÞ�; ð3:3Þ

½aðx; t; s; xÞ � aðx; t; s; x�Þ�½x� x�� > 0; ð3:4Þ
aðx; t; s; xÞxb aMðjxjÞ; ð3:5Þ

where cðx; tÞ a EMðQÞ, cb 0 and a; b; k > 0 are a given real numbers. Suppose

that

F : R ! RN is a continuous function; ð3:6Þ
f is an element of L1ðQÞ; ð3:7Þ

u0 is an element of L1ðWÞ such that bðu0Þ a L1ðWÞ: ð3:8Þ

Remark 3.1. As already mentioned in the introduction, problem (1.1)–(1.3) does

not admit a weak solution under the assumptions (3.1)–(3.8) (even when bðuÞ ¼ u)

since the growths of FðuÞ is not controlled with respect to u so that the term

�div
�
FðuÞ

�
is not in general defined as a distribution, even when u belongs to

W 1;x
0 LMðQÞ.

Let prove the following lemma which will be needed later.

Lemma 3.2. With the assumptions (3.2)–(3.5) let ðznÞ be a sequence in W
1;x
0 LMðQÞ

such that

zn * z in W
1;x
0 LMðQÞ for s

�
PLMðQÞ;PEMðQÞ

�
; ð3:9Þ�

aðx; t; zn;‘znÞ
�
n
is bounded in

�
LMðQÞ

�N
; ð3:10Þð

Q

½aðx; t; zn;‘znÞ � aðx; t; zn;‘zwsÞ�½‘zn � ‘zws� dx dt ! 0 ð3:11Þ

as n and s tend to þl, and where ws is the characteristic function of

Qs ¼ fðx; tÞ a Q j j‘zja sg:
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Then

‘zn ! ‘z a:e: in Q; ð3:12Þ

lim
n!l

ð
Q

aðx; t; zn;‘znÞ‘zn dx dt ¼
ð
Q

aðx; t; z;‘zÞ‘z dx dt; ð3:13Þ

Mðj‘znjÞ ! Mðj‘zjÞ in L1ðQÞ: ð3:14Þ

Proof. Fix r > 0. Let s > r and Qr ¼ fðx; tÞ a Q j j‘zja rg. We have

0a

ð
Qr

½aðx; t; zn;‘znÞ � aðx; t; zn;‘zÞ�½‘zn � ‘z� dx dt

a

ð
Qs

½aðx; t; zn;‘znÞ � aðx; t; zn;‘zÞ�½‘zn � ‘z� dx dt

¼
ð
Qs

½aðx; t; zn;‘znÞ � aðx; t; zn;‘zwsÞ�½‘zn � ‘zws� dx dt

a

ð
Q

½aðx; zn;‘znÞ � aðx; zn;‘zwsÞ�½‘zn � ‘zws� dx dt: ð3:15Þ

Together with (3.11) this implies that

lim
n!l

ð
Qr

½aðx; t; zn;‘znÞ � aðx; t; zn;‘zÞ�½‘zn � ‘z� dx dt ¼ 0: ð3:16Þ

Following the same argument as in [21], one can show that

‘zn ! ‘z a:e: in Q: ð3:17Þ

On the one hand we haveð
Q

aðx; t; zn;‘znÞ‘zn dx ¼
ð
Q

½aðx; t; zn;‘znÞ � aðx; zn;‘zwsÞ�½‘zn � ‘zws� dx dt

þ
ð
Q

aðx; t; zn;‘zwsÞð‘zn � ‘zwsÞ dx dt

þ
ð
Q

aðx; t; zn;‘znÞ‘zws dx dt: ð3:18Þ

Since
�
aðx; t; zn;‘znÞ

�
n
is bounded in

�
LMðQÞ

�N
, using (3.17) we obtain that

aðx; zn;‘znÞ * aðx; t; z;‘zÞ weakly in
�
LMðQÞ

�N
for sðPLM ;PEMÞ; ð3:19Þ
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which implies that

ð
Q

aðx; t; zn;‘znÞ‘zws dx !
ð
Q

aðx; t; z;‘zÞ‘zws dx dt ð3:20Þ

as n ! l. Letting also s ! l, one has

ð
Q

aðx; t; z;‘zÞ‘zws dx !
ð
Q

aðx; t; z;‘zÞ‘z dx dt: ð3:21Þ

On the other hand it is easy to see that the second term on the right-hand side of

(3.18) tends to 0 as n ! l. Consequently, from (3.9), (3.20) and (3.21) we have

lim
n!l

ð
Q

aðx; t; zn;‘znÞ‘zn dx dt ¼
ð
Q

aðx; t; z;‘zÞ‘z dx dt: ð3:22Þ

By virtue of (3.5) and Vitali’s theorem, one can deduce that

Mðj‘znjÞ ! Mðj‘zjÞ in L1ðQÞ: r

Remark 3.3. It should be interest to note that the condition (3.10) is not neces-

sary in the case where the N-function M satisfies the D2-condition.

4. Definition of a renormalized solution

As already mentioned in the introduction, problem (1.1)–(1.3) does not admit a

weak solution under assumptions (3.1)–(3.8) since the growths of FðuÞ is not con-
trolled with respect to u (so that these fields are not in general defined as distribu-

tions, even when u belongs W 1;x
0 LMðQÞ).

The definition of a renormalized solution for problem (1.1)–(1.3) can be stated

as follows.

Definition 4.1. A measurable function u defined on Q is a renormalized solution

of problem (1.1)–(1.3) if

TKðuÞ a W
1;x
0 LMðQÞ for all Kb 0 and bðuÞ a Ll

�
0;T ;L1ðWÞ

�
; ð4:1Þð

fðt;xÞ AQ jmajuðx; tÞjamþ1g
aðx; t; u;‘uÞ‘u dx dt ! 0 as m ! þl; ð4:2Þ

and if, for every function S in W 1;lðRÞ with compact support, we have
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qBSðuÞ
qt

� div
�
SðuÞaðx; t; u;‘uÞ

�
þ S 0ðuÞaðx; t; u;‘uÞ‘u

� div
�
SðuÞFðuÞ

�
þ S 0ðuÞFðuÞ‘u ¼ fSðuÞ in D 0ðQÞ; ð4:3Þ

where BSðzÞ ¼
Ð z
0 b

0ðrÞSðrÞ dr and

BSðuÞðt ¼ 0Þ ¼ BSðu0Þ in W: ð4:4Þ

The following remarks are concerned with a few comments on Definition 4.1.

Remark 4.2. Equation (4.3) is formally obtained through pointwise multiplica-

tion of equation (1.1) by SðuÞ. Note that due to (4.1) each term in (4.3) has a

meaning in L1ðQÞ þW�1;xLMðQÞ.
Indeed, if K is such that suppSH ½�K ;K �, the following identifications are

made in (4.3):

• BSðuÞ belongs to W 1
0 LMðQÞ since S is a bounded function and ‘BSðuÞ ¼

SðuÞb 0�TKðuÞ
�
‘TKðuÞ. The functions S and b 0 � TK are bounded on R so

that (4.1) implies that ‘BSðuÞ a
�
LMðQÞ

�N
.

• SðuÞaðx; t; u;‘uÞ identifies with SðuÞa
�
x; t;TKðuÞ;‘TKðuÞ

�
a.e. in Q. Since

jTKðuÞjaK a.e. in Q and SðuÞ a LlðQÞ, we obtain from (3.3), (4.1) that

SðuÞa
�
x; t;TKðuÞ;‘TKðuÞ

�
a
�
LMðQÞ

�N
:

• S 0ðuÞaðx; t; u;‘uÞ‘u identifies with S 0ðuÞa
�
x; t;TKðuÞ;‘TKðuÞ

�
‘TKðuÞ, and in

view of (3.1) and (4.1) one has

S 0ðuÞa
�
x; t;TKðuÞ;‘TKðuÞ

�
‘TKðuÞ a L1ðQÞ:

• SðuÞFðuÞ and S 0ðuÞFðuÞ‘u identify with

SðuÞF
�
TKðuÞ

�
and S 0ðuÞF

�
TKðuÞ

�
‘TKðuÞ;

respectively. Due to the properties of S and (3.6), the functions S, S 0

and F � TK are bounded on R so that (4.1) implies that SðuÞF
�
TKðuÞ

�
a�

LlðQÞ
�N

and S 0ðuÞF
�
TKðuÞ

�
‘TKðuÞ a

�
LMðQÞ

�N
.

The above considerations show that equation (4.3) holds in D 0ðQÞ and
qBSðuÞ

qt

belongs to W�1;xLMðQÞ þ L1ðQÞ and BSðuÞ a W 1;xLMðQÞBLlðQÞ. It follows

that BSðuÞ belongs to C0
�
½0;T �;L1ðWÞ

�
so that the initial condition (4.4) makes

sense.
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5. Existence result

This section is devoted to establish the following existence theorem.

Theorem 5.1. Under assumption (3.1)–(3.8) there exists at at least a renormalized

solution of Problem (1.1)–(1.3).

Proof. The proof is divided into 5 steps. In step 1, we introduce an approximate

problem. In Step 2, we establish a few a priori estimates which allow us to prove

that the approximate solutions un converge to u, bðuÞ belongs to Ll
�
0;T ;L1ðWÞ

�
and u satisfies (4.1). In step 3, we define a time regularization of the field TKðuÞ
and we establish Lemma 5.7, which allows us to control the parabolic contribution

that arises in the monotonicity method when passing to the limit. In this step we

also prove an energy estimate (Lemma 5.6). Step 4 is devoted to prove that u sat-

isfies (4.2). At last, step 5 is devoted to prove that u satisfies (4.3) and (4.4) of

Definition 4.1.

Step 1. Let us introduce the following regularization of the data:

bnðrÞ ¼ Tn

�
bðrÞ

�
þ 1

n
r for n a N�; ð5:1Þ

Fn is a Lipschitz continuous bounded function from R into RN ; ð5:2Þ

such that Fn uniformly converges to F on any compact subset of R as n tends

to þl,

fn a L2ðQÞ : k fnkL1 a k f kL1 and fn ! f in L1ðQÞ as n tends to þl; ð5:3Þ
u0n a Cl

0 ðWÞ : kbnðu0nÞkL1 a kbðu0ÞkL1 and bnðu0nÞ ! bðu0Þ in L1ðWÞ ð5:4Þ

as n tends to þl.

Let us now consider the following regularized problem:

qbnðunÞ
qt

� div
�
aðx; t; un;‘unÞ

�
� div

�
FnðunÞ

�
¼ fn in Q; ð5:5Þ

un ¼ 0 on ð0;TÞ � qW; ð5:6Þ
bnðunÞðt ¼ 0Þ ¼ bnðu0nÞ in W: ð5:7Þ

As a consequence, proving existence of a weak solution un a W 1;x
0 LMðQÞ of (5.5)–

(5.7) is an easy task (see e.g. [25], [29]).

Step 2. The estimates derived in this step rely on standard techniques for prob-

lems of the type (5.5)–(5.7).
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Lemma 5.2. Assume that (3.1)–(3.8) hold true and let un be a solution of the ap-

proximate problem (5.5)–(5.7). Then for all K > 0, we have

kTKðunÞkW 1; x
0

LM ðQÞ aKðk f kL1ðQÞ þ kbðu0ÞkL1ðWÞÞCCK for all n;

where C is a constant independent of n, and

ð
W

Bn
KðunÞðtÞ dxaKðk f kL1ðQÞ þ kbðu0ÞkL1ðWÞÞCCK for all n

for almost any t in ð0;TÞ and where Bn
KðrÞ ¼

Ð r
0 TKðsÞb 0

nðsÞ ds.

Proof. We take TKðunÞwð0; tÞ as test function in (5.5). For every t a ð0;TÞ we ob-

tain that

qbnðunÞ
qt

;TKðunÞwð0; tÞ
� 	

þ
ð
Qt

a
�
x; t;TKðunÞ;‘TKðunÞ

�
‘TKðunÞ dx dt

þ
ð
Qt

FnðunÞ‘TKðunÞ dx dt ¼
ð
Qt

fnTKðunÞ dx dt; ð5:8Þ

which implies that

ð
W

Bn
KðunÞðtÞ dxþ

ð
Qt

a
�
x; t;TKðunÞ;‘TKðunÞ

�
‘TKðunÞ dx dt

þ
ð
Qt

FnðunÞ‘TKðunÞ dx dt ¼
ð
Qt

fnTKðunÞ dx dtþ
ð
W

Bn
Kðun

0Þ dx; ð5:9Þ

where Bn
KðrÞ ¼

Ð r
0 TKðsÞb 0

nðsÞ ds.
The Lipschitz character of Fn and Stokes’ formula together with the boundary

condition (5.6) give

ð
Qt

FnðunÞ‘TKðunÞ dx dt ¼ 0: ð5:10Þ

Due to the definition of Bn
K we have

0a

ð
W

Bn
Kðun

0Þ dxaK

ð
W

jbnðun
0Þj dxaKkbðu0ÞkL1ðWÞ: ð5:11Þ

Using (5.10), (5.11) and Bn
KðunÞb 0, it follows from (5.9) that
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ð
Q

a
�
x; t;TKðunÞ;‘TKðunÞ

�
‘TKðunÞ dx dtaKðk fnkL1ðQÞ þ kbnðun

0ÞkL1ðWÞÞ

aCK ; ð5:12Þ

which implies by virtue of (3.5), (5.3) and (5.4) that

ð
Q

M
�
‘TKðunÞ

�
dx dtaKðk f kL1ðQÞ þ kbðu0ÞkL1ðWÞÞCCK : ð5:13Þ

We deduce from that above inequality (5.9) and (5.11) that

ð
W

Bn
KðunÞðtÞ dxa ðk f kL1ðQÞ þ kbðu0ÞkL1ðWÞÞCCK ð5:14Þ

for almost any t in ð0;TÞ. r

Lemma 5.3. Let un be a solution of (5.5)–(5.7). Then

lim
K!l

measfðx; tÞ a Q j junj > Kg ¼ 0 uniformly with respect to n:

Proof. Due to Lemma 5.7 of [21], there exist positive constants d, l such that

ð
Q

MðvÞ dx dta d

ð
Q

Mðlj‘vjÞ dx dt for all v a W 1;x
0 LMðQÞ: ð5:15Þ

Taking v ¼ TK ðunÞ
l

in (5.15) and using (5.13), one has

ð
Q

M
TKðunÞ

l

� �
dx dtaCK ; ð5:16Þ

where C is a constant independent of K and n. This implies that

measfðx; tÞ a Q j junj > Kga C 0K

M K
l

� � ; ð5:17Þ

where C 0 is a constant independent of K and n. Finally,

lim
K!l

measfðx; tÞ a Q j junj > Kg ¼ 0 uniformly with respect to n: r

Now we turn to prove the almost every convergence of un and bnðunÞ.
For that take a C2ðRÞ non-decreasing function xk such that xkðsÞ ¼ s for

jsja k
2 and xkðsÞ ¼ k for jsjb k.
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Multiplying the approximating equation by x 0
k

�
bnðunÞ

�
, we get

q

qt

�
xk
�
bnðunÞ

��
� div

�
aðx; t; un;‘unÞx 0

k

�
bnðunÞ

��
þ aðx; t; un;‘unÞx 00

k

�
bnðunÞ

�
b 0
nðunÞ‘un � div

�
x 0
k

�
bnðunÞ

�
FnðunÞ

�
þ x 00

k

�
bnðunÞ

�
b 0
nðunÞFnðunÞ‘un ¼ fnx

0
k

�
bnðunÞ

�
; ð5:18Þ

which implies that

xk
�
bnðunÞ

��
is bounded in W

1;x
0 LMðQÞ; ð5:19Þ

and

qxk
�
bnðunÞ

��
qt

is bounded in L1ðQÞ þW�1;xLMðQÞ; ð5:20Þ

independently of n as soon as k < n. Due to Definition (3.1) and (5.1) of bn, it is

clear that

fjbnðunÞja kgH fjunja k�g

as soon as k < n and k � is a constant independent of n. As a first consequence we

have

‘xk
�
bnðunÞ

��
¼ x 0

k

�
bnðunÞ

�
b 0
n

�
Tk � ðunÞ

�
‘Tk � ðunÞ a:e: in Q ð5:21Þ

as soon as k < n. Secondly, the following estimate holds true



x 0
k

�
bnðunÞ

�
b 0
n

�
Tk � ðunÞ

�


LlðQÞa kx 0kLlðRÞ

�
max
jrjak �

�
b 0ðrÞ

�
þ 1
�

as soon as k < n.

As a consequence of (5.13), (5.21) we then obtain (5.19). To show that (5.20)

holds true, due to (5.18) we obtain

q

qt

�
xk
�
bnðunÞ

��
¼ div

�
aðx; t; un;‘unÞx 0

k

�
bnðunÞ

��
� aðx; t; un;‘unÞx 00

k

�
bnðunÞ

�
b 0
nðunÞ‘un

þ div
�
x 0
k

�
bnðunÞ

�
FnðunÞ

�
� x 00

k

�
bnðunÞ

�
b 0
nðunÞFnðunÞ‘un

þ fnx
0
k

�
bnðunÞ

�
: ð5:22Þ
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Since supp x 0 and supp x 00 are both included in ½�k; k�, un may be replaced by

Tk � ðunÞ in each of these terms. As a consequence, each term on the right-hand

side of (5.22) is bounded either in W�1;xLMðQÞ or in L1ðQÞ. Hence lemma 2.5

(cf. [17]) allows us to conclude that xk
�
bnðunÞ

�
is compact in L1ðQÞ:

Due to the choice of xk, we conclude that for each k, the sequence Tk

�
bnðunÞ

�
converges almost everywhere in Q, which implies that the sequence bnðunÞ con-

verges almost everywhere to some measurable function v in Q. Thus by using

the same argument as in ([5], [7], [6], [9]), we can show the following lemma.

Lemma 5.4. Let un be a solution of the approximate problem (5.5)–(5.7). Then

un ! u a:e: in Q; ð5:23Þ
bnðunÞ ! bðuÞ a:e: in Q: ð5:24Þ

We now establish that bðuÞ belongs to Ll
�
0;T ;L1ðWÞ

�
. First note that (5.23)

makes it possible to pass to the limit-inf in (5.14) as n tends to þl. We obtain

that

1

K

ð
W

BKðuÞðtÞ dxa ðk f kL1ðQÞ þ kbðu0ÞkL1ðWÞÞCC;

for almost any t in ð0;TÞ. Now the definition of BKðsÞ and the fact that 1
K
BKðuÞ

converges pointwise to bðuÞ, as K tends to þl, shows that bðuÞ belongs to

Ll
�
0;T ;L1ðWÞ

�
, as claimed.

Now we prove the following result.

Lemma 5.5. Let un be a solution of the approximate problem (5.5)–(5.7). Then

�
a
�
x; t;TkðunÞ;‘TkðunÞ

��
n
is bounded in

�
LMðQÞ

�N
: ð5:25Þ

for all kb 0.

Proof. Let j a
�
EMðQÞ

�N
with kjkM�Q ¼ 1. In view of the monotonicity of a, one

easily has

ð
Q

a
�
x; t;TkðunÞ;‘TkðunÞ

�
j dx dt

a

ð
Q

a
�
x; t;TkðunÞ;‘TkðunÞ

�
‘TkðunÞ dx dt

þ
ð
Q

a
�
x; t;TkðunÞ; j

��
‘TkðunÞ � j

�
dx dt; ð5:26Þ
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and

�
ð
Q

a
�
x; t;TkðunÞ;‘TkðunÞ

�
j dx dt

a

ð
Q

a
�
x; t;TkðunÞ;‘TkðunÞ

�
‘TkðunÞ dx dt

�
ð
Q

a
�
x; t;TkðunÞ;�j

��
‘TkðunÞ þ j

�
dx dt: ð5:27Þ

Since TkðunÞ is bounded in W
1;x
0 LMðQÞ, one easily deduces that a

�
x; t;TkðunÞ;

‘TkðunÞ
�
is a bounded sequence in

�
LMðQÞ

�N
. Thus, up to a subsequence,

a
�
x; t;TkðunÞ;‘TkðunÞ

�
* jk in

�
LMðQÞ

�N
for sðPLM ;PEMÞ ð5:28Þ

for some jk a
�
LMðQÞ

�N
. r

Step 3. This step is devoted to introduce for Kb 0 fixed a time regularization

wi
m; j of the function TKðuÞ and to establish the following proposition:

Proposition 5.6. Let un be a solution of the approximate problem (5.5)–(5.7).

Then for any kb 0:

‘un ! ‘u a:e: in Q; ð5:29Þ
a
�
x; t;TkðunÞ;‘TkðunÞ

�
* a

�
x; t;TkðuÞ;‘TkðuÞ

�
weakly in

�
LMðQÞ

�N
; ð5:30Þ

Mðj‘TkðunÞjÞ ! Mðj‘TkðuÞjÞ strongly in L1ðQÞ; ð5:31Þ

as n tends to þl.

Proof. This proof is devoted to introduce for kb 0 fixed, a time regularization of

the function TkðuÞ in order to perform the monotonicity method. This kind of

regularization has been first introduced by R. Landes (see Lemma 6 and Proposi-

tion 3, p. 230, and Proposition 4, p. 231, in [24]). More recently, it has been ex-

ploited in [10] and [15] to solve some nonlinear evolution problems with L1 or

measure data.

Let vj a DðQÞ be a sequence such that vj ! u in W
1;x
0 LMðQÞ for the modular

convergence and let ci a DðWÞ be a sequence which converges strongly to u0 in

L1ðWÞ:
Let wi

m; j ¼ TkðvjÞm þ e�mtTkðciÞ where TkðvjÞm is the mollification with respect

to time of TkðvjÞ. Note that wi
m; j is a smooth function having the following prop-

erties:
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qwi
m; j

qt
¼ m

�
TkðvjÞ � wi

m; j

�
; wi

m; jð0Þ ¼ TkðciÞ; jwi
m; jja k; ð5:32Þ

wi
m; j ! TkðuÞm þ e�mtTkðciÞ in W

1;x
0 LMðQÞ; ð5:33Þ

for the modular convergence as j ! l,

TkðuÞm þ e�mtTkðciÞ ! TkðuÞ in W 1;x
0 LMðQÞ; ð5:34Þ

for the modular convergence as m ! l.

Let now the function hm defined on R by

hmðsÞ ¼
1 if jsjam;

�jsj þmþ 1 if ma jsjamþ 1;

0 if jsjbmþ 1;

8<
:

for any mb k.

Using the admissible test function j
m; i
n; j;m ¼

�
TkðunÞ � w

m
i; j

�
hmðunÞ as test func-

tion in (5.5) leads to

qbnðunÞ
qt

; jm; i
n; j;m

� 	
þ
ð
Q

aðx; t; un;‘unÞ
�
‘TkðunÞ � ‘w

m
i; j

�
hmðunÞ dx dt

þ
ð
Q

aðx; t; un;‘unÞ
�
TkðunÞ � w

m
i; j

�
‘unh

0
mðunÞ dx dt

þ
ð
fmajunjamþ1g

FnðunÞ‘unh 0
mðunÞ

�
TkðunÞ � w

m
i; j

�
dx dt

þ
ð
Q

FnðunÞhmðunÞ
�
‘TkðunÞ � ‘w

m
i; j

�
dx dt ¼

ð
Q

fnj
m; i
n; j;m dx dt: ð5:35Þ

Let eðn; j; m; iÞ > 0 be a positive sequence such that

lim
i!l

lim
m!l

lim
j!l

lim
n!l

eðn; j; m; iÞ ¼ 0:

The very definition of the sequence w
m
i; j makes it possible to establish the fol-

lowing lemma.

Lemma 5.7. Let j
m; i
n; j;m ¼

�
TkðunÞ � w

m
i; j

�
hmðunÞ. For any kb 0 we have

qbnðunÞ
qt

; jm; i
n; j;m

� 	
b eðn; j; m; iÞ; ð5:36Þ
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where 3 ; 4 denotes the duality pairing between L1ðQÞ þW�1;xLMðQÞ and

LlðQÞBW 1;x
0 LMðQÞ.

Proof. This lemma will be proved in Appendix. r

Now we turn to complete the proof of Proposition 5.6. First, it is easy to see

that

ð
Q

fnj
m; i
n; j;m dx dt ¼ eðn; j; mÞ: ð5:37Þ

Indeed, by the almost everywhere convergence of un, we have that�
TkðunÞ � w

m
i; j

�
hmðunÞ converges to

�
TkðuÞ � w

m
i; j

�
hmðuÞ in LlðQÞ weak-* and then

ð
Q

fn
�
TkðunÞ � w

m
i; j

�
hmðunÞ dx dt !

ð
Q

fn
�
TkðuÞ � w

m
i; j

�
hmðuÞ dx dt

so that�
TkðuÞ � w

m
i; j

�
hmðuÞ !

�
TkðuÞ � TkðuÞm � e�mtTkðciÞ

�
in LlðQÞ weak-* as j !l:

Also �
TkðuÞ � TkðuÞm � e�mtTkðciÞ

�
! 0 in LlðQÞ weak-* as m ! þl:

Then we deduce that

ð
Q

fn
�
TkðunÞ � w

m
i; j

�
hmðunÞ dx dt ¼ eðn; j; mÞ: ð5:38Þ

Similarly, Lebesgue’s convergence theorem shows that

FnðunÞhmðunÞ ! FðuÞhmðuÞ strongly in
�
EMðQÞ

�N
as n ! þl

and

FnðunÞwfmajunjamþ1g
�
TkðunÞ � w

m
i; j

�
! FðuÞwfmajujamþ1g

�
TkðuÞ � w

m
i; j

�
strongly in

�
EMðQÞ

�N
as n ! þl.

Then by virtue of ‘TkðunÞ * ‘TkðuÞ weakly in
�
LMðQÞ

�N
and

‘unwfmajunjamþ1g ¼ ‘Tmþ1ðunÞwfmajunjamþ1g
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a.e. in Q, one has

ð
Q

FnðunÞhmðunÞ
�
‘TkðunÞ � ‘w

m
i; j

�
dx dt !

ð
Q

FðuÞhmðuÞ
�
‘TkðuÞ � ‘w

m
i; j

�
dx dt

as n ! þl, and ð
fmajunjamþ1g

FnðunÞ‘un
�
TkðunÞ � w

m
i; j

�
dx dt

!
ð
fmajujamþ1g

FðuÞ‘u
�
TkðuÞ � w

m
i; j

�
dx dt

as n ! þl. On the other hand, by using the modular convergence of wm
i; j as

j ! þl and letting m tend to infinity, we get

ð
Q

FnðunÞhmðunÞ
�
‘TkðunÞ � ‘w

m
i; j

�
dx dt ¼ eðn; j; mÞ; ð5:39Þ

and

ð
fmajunjamþ1g

FnðunÞ‘un
�
TkðunÞ � w

m
i; j

�
dx dt ¼ eðn; j; mÞ: ð5:40Þ

Concerning the third term of the right-hand side of (5.35) we obtain thatð
fmajunjamþ1g

aðx; t; un;‘unÞ‘unh 0
mðunÞ

�
TkðunÞ � w

m
i; j

�
dx dt

a 2k

ð
fmajunjamþ1g

aðx; t; un;‘unÞ‘un dx dt: ð5:41Þ

Then by (5.25) we deduce that

ð
fmajunjamþ1g

aðx; t; un;‘unÞ‘unh 0
mðunÞ

�
TkðunÞ � w

m
i; j

�
dx dta eðn; m;mÞ: ð5:42Þ

Finally, by means of (5.35)–(5.42), we obtain that

ð
Q

aðx; t; un;‘unÞ‘unh 0
mðunÞ

�
TkðunÞ � w

m
i; j

�
hmðunÞ dx dta eðn; j; m;mÞ: ð5:43Þ
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Splitting the first integral on the left-hand side of (5.44) where junja k and

junj > k, we can write

ð
Q

aðx; t; un;‘unÞ
�
‘TkðunÞ � ‘w

m
i; j

�
hmðunÞ dx dt

¼
ð
Q

a
�
x; t;TkðunÞ;‘TkðunÞ

��
‘TkðunÞ � ‘w

m
i; j

�
hmðunÞ dx dt

�
ð
fjunj>kg

aðx; t; un;‘unÞ‘wm
i; jhmðunÞ dx dt:

Since hmðunÞ ¼ 0 if junjbmþ 1, one has

ð
Q

aðx; t; un;‘unÞ
�
‘TkðunÞ � ‘w

m
i; j

�
hmðunÞ dx dt

¼
ð
Q

a
�
x; t;TkðunÞ;‘TkðunÞ

��
‘TkðunÞ � ‘w

m
i; j

�
hmðunÞ dx dt

�
ð
fjunj>kg

a
�
x; t;Tmþ1ðunÞ;‘Tmþ1ðunÞ

�
‘w

m
i; jhmðunÞ dx dt ¼ I1 þ I2: ð5:44Þ

In the following we pass to the limit in (5.44): first we let n tend to þl, then we

let j, then m and finally m, tend to þl. Since a
�
x; t;Tmþ1ðunÞ;‘Tmþ1ðunÞ

�
is

bounded in
�
LMðQÞ

�N
, we have that a

�
x; t;Tmþ1ðunÞ;‘Tmþ1ðunÞ

�
* jm weakly

in LMðQÞ in sðPLM ;PEMÞ as n tends to infinity. Since ‘w
m
i; jhmðunÞwfjun j>kg

con-

verges to ‘w
m
i; jhmðuÞwfjuj>kg

strongly in EMðWÞ as n tends to infinity, it follows that

I2 ¼
ð
Q

jm‘w
m
i; jhmðuÞwfjuj>kg

dx dtþ eðnÞ:

By letting j ! l, we get

I2 ¼
ð
Q

jm
�
‘TkðuÞm � e�mt‘TkðciÞ

�
hmðuÞwfjuj>kg

dx dtþ eðn; jÞ;

which, by letting m ! þl, implies that

I2 ¼
ð
Q

jm‘TkðuÞmhmðuÞwfjuj>kg
dx dtþ eðn; j; mÞ:
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Using now the term I1 of (5.44) one can easily show thatð
Q

a
�
x; t;TkðunÞ;‘TkðunÞ

��
‘TkðunÞ � ‘w

m
i; j

�
hmðunÞ dx dt

¼
ð
Q

�
a
�
x; t;TkðunÞ;‘TkðunÞ

�
� a
�
x; t;TkðunÞ;‘TkðvjÞws

j

��
� ½‘TkðunÞ � ‘TkðvjÞws

j �hmðunÞ dx dt

þ
ð
Q

a
�
x; t;TkðunÞ;‘TkðvjÞws

j

�
½‘TkðunÞ � ‘TkðvjÞws

j �hmðunÞ dx dt

þ
ð
Q

a
�
x; t;TkðunÞ;‘TkðunÞ

�
‘TkðvjÞws

j hmðunÞ dx dt

�
ð
Q

a
�
x; t;TkðunÞ;‘TkðunÞ

�
‘w

m
i; jhmðunÞ dx dt ¼ J1 þ J2 þ J3 þ J4; ð5:45Þ

where ws
j denotes the characteristic function of the subset

W j
s ¼ fðx; tÞ a Q j j‘TkðvjÞja sg:

As before, in the following we pass to the limit in (5.45): first we let n ! þl,

then we let j, then m and finally m, tend to þl. Starting with J2, observe first that

J2 ¼
ð
Q

a
�
x; t;TkðunÞ;‘TkðvjÞws

j

�
‘TkðunÞhmðunÞ dx dt

�
ð
Q

a
�
x; t;TkðunÞ;‘TkðvjÞws

j

�
‘TkðvjÞws

j hmðunÞ dx dt:

Since a
�
x; t;TkðunÞ;‘TkðvjÞws

j

�
hmðunÞ ! a

�
x; t;TkðuÞ;‘TkðvjÞws

j

�
hmðuÞ strongly in

ðEMÞN and ‘TkðunÞ * ‘TkðuÞ weakly in
�
LMðQÞ

�N
for sðPLM ;PEMÞ. More-

over, it is easy to show thatð
Q

a
�
x; t;TkðunÞ;‘TkðvjÞws

j

�
‘TkðvjÞws

j hmðunÞ dx dt

!
ð
Q

a
�
x; t;TkðuÞ;‘TkðvjÞws

j

�
‘TkðvjÞws

j hmðuÞ dx dt

as n tends to þl. We get

J2 ¼
ð
Q

a
�
x; t;TkðuÞ;‘TkðvjÞws

j

�
½‘TkðuÞ � ‘TkðvjÞws

j �hmðuÞ dx dtþ eðnÞ:
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Since ‘TkðvjÞws
j hmðuÞ ! ‘TkðuÞwshmðuÞ strongly in

�
EMðQÞ

�N
as j ! l and

a
�
x; t;TkðuÞ;‘TkðvjÞws

j

�
! a

�
x; t;TkðuÞ;‘TkðuÞws

�
strongly in

�
LMðQÞ

�N
as j

goes to l, we have

J2 ¼ eðn; jÞ: ð5:46Þ

By letting n ! l and since a
�
x; t;TkðunÞ;‘TkðunÞ

�
* jk weakly in

�
LMðQÞ

�N
and hmðunÞ ¼ 1 in fðx; tÞ j junja kg, we have

J3 ¼
ð
Q

jk‘TkðvjÞws
j dx dtþ eðnÞ;

which gives

J3 ¼
ð
Q

jk‘TkðuÞws dx dtþ eðn; jÞ ð5:47Þ

by letting j ! l.

Concerning J4 we can write

J4 ¼ �
ð
Q

jk‘w
m
i; jmhmðuÞ dx dtþ eðnÞ; ð5:48Þ

which implies that, by letting j ! l,

J4 ¼
ð
Q

jk½‘TkðuÞ � e�mt‘TkðcjÞ� dx dtþ eðn; jÞ: ð5:49Þ

By letting m ! l we obtain

J4 ¼ �
ð
Q

jk‘TkðuÞ dx dtþ eðn; j; m; sÞ: ð5:50Þ

We then conclude that

ð
Q

a
�
x; t;TkðunÞ;‘TkðunÞ

�
½‘TkðunÞ � ‘w

m
i; j�hmðunÞ dx dt

¼
ð
Q

�
a
�
x; t;TkðunÞ;‘TkðunÞ

�
� a
�
x; t;TkðunÞ;‘TkðvjÞws

j

��
� ½‘TkðunÞ � ‘TkðvjÞws

j �hmðunÞ dx dtþ eðn; j; m; sÞ: ð5:51Þ
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Now observe that

ð
Q

�
a
�
x; t;TkðunÞ;‘TkðunÞ

�
� a
�
x; t;TkðunÞ;‘TkðuÞws

��
� ½‘TkðunÞ � ‘TkðuÞws�hmðunÞ dx dt

¼
ð
Q

�
a
�
x; t;TkðunÞ;‘TkðunÞ

�
� a
�
x; t;TkðunÞ;‘TkðvjÞws

j

��
� ½‘TkðunÞ � ‘TkðvjÞws

j �hmðunÞ dx dt

þ
ð
Q

a
�
x; t;TkðunÞ;‘TkðvjÞws

j

�
½‘TkðunÞ � ‘TkðvjÞws

j �hmðunÞ dx dt

�
ð
Q

a
�
x; t;TkðunÞ;‘TkðuÞws

�
½‘TkðunÞ � ‘TkðuÞws�hmðunÞ dx dt

þ
ð
Q

a
�
x; t;TkðunÞ;‘TkðunÞ

�
½‘TkðvjÞws

j � ‘TkðuÞws�hmðunÞ dx dt:

Passing to the limit in n and j in the last three terms on the right-hand side of the

last equality, we get

ð
Q

a
�
x; t;TkðunÞ;‘TkðvjÞws

j

�
½‘TkðunÞ � ‘TkðvjÞws

j �hmðunÞ dx dt

�
ð
Q

a
�
x; t;TkðunÞ;‘TkðuÞws

�
½‘TkðunÞ � ‘TkðuÞws�hmðunÞ dx dt ¼ eðn; jÞ

and

ð
Q

a
�
x; t;TkðunÞ;‘TkðunÞ

�
½‘TkðvjÞws

j � ‘TkðuÞws�hmðunÞ dx dt ¼ eðn; jÞ: ð5:52Þ

This implies that

ð
Q

�
a
�
x; t;TkðunÞ;‘TkðunÞ

�
� a
�
x; t;TkðunÞ;‘TkðuÞws

��
� ½‘TkðunÞ � ‘TkðuÞws�hmðunÞ dx dt

¼
ð
Q

�
a
�
x; t;TkðunÞ;‘TkðunÞ

�
� a
�
x; t;TkðunÞ;‘TkðvjÞws

j

��
� ½‘TkðunÞ � ‘TkðvjÞws

j �hmðunÞ dx dtþ eðn; jÞ: ð5:53Þ
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On the other hand, we haveð
Q

�
a
�
x; t;TkðunÞ;‘TkðunÞ

�
� a
�
x; t;TkðunÞ;‘TkðuÞws

��
½‘TkðunÞ � ‘TkðuÞws�

¼
ð
Q

�
a
�
x; t;TkðunÞ;‘TkðunÞ

�
� a
�
x; t;TkðunÞ;‘TkðuÞws

��
� ½‘TkðunÞ � ‘TkðuÞws�hmðunÞ dx dt

þ
ð
Q

a
�
x; t;TkðunÞ;‘TkðunÞ

�
½‘TkðunÞ � ‘TkðuÞws�

�
1� hmðunÞ

�
dx dt

�
ð
Q

a
�
x; t;TkðunÞ;‘TkðuÞws

�
½‘TkðunÞ � ‘TkðuÞws�

�
1� hmðunÞ

�
dx dt:

ð5:54Þ

Since hmðunÞ ¼ 1 in fjunjamg and fjunja kgH fjunjamg for m large

enough, we deduce from (5.54) thatð
Q

�
a
�
x; t;TkðunÞ;‘TkðunÞ

�
� a
�
x; t;TkðunÞ;‘TkðuÞws

��
½‘TkðunÞ � ‘TkðuÞws�

¼
ð
Q

�
a
�
x; t;TkðunÞ;‘TkðunÞ

�
� a
�
x; t;TkðunÞ;‘TkðuÞws

��

� ½‘TkðunÞ � ‘TkðuÞws� þ
ð
fjunj>kg

a
�
x; t;TkðunÞ;‘TkðuÞws

�
� ‘TkðuÞws

�
1� hmðunÞ

�
dx dt:

It is easy to see that the last terms of the last equality tend to zero as n ! þl,

which implies that

ð
Q

�
a
�
x; t;TkðunÞ;‘TkðunÞ

�
� a
�
x; t;TkðunÞ;‘TkðuÞws

��
½‘TkðunÞ � ‘TkðuÞws�

¼
ð
Q

�
a
�
x; t;TkðuÞ;‘TkðuÞ

�
� a
�
x; t;TkðuÞ;‘TkðuÞws

��
� ½‘TkðuÞ � ‘TkðuÞws�hmðunÞ dx dtþ eðn; jÞ:

Combining (5.36), (5.45), (5.46), (5.47), (5.50) and (5.54) we obtain

ð
Q

�
a
�
x; t;TkðunÞ;‘TkðunÞ

�
� a
�
x; t;TkðunÞ;‘TkðuÞws

��
� ½‘TkðunÞ � ‘TkðuÞws� dx dta eðn; j; m;m; sÞ: ð5:55Þ
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To pass to the limit in (5.55) as n, j, m, s tend to infinity, we obtain

lim
s!l

lim
n!l

ð
Q

�
a
�
x; t;TkðunÞ;‘TkðunÞ

�
� a
�
x; t;TkðunÞ;‘TkðuÞws

��
� ½‘TkðunÞ � ‘TkðuÞws� dx dt ¼ 0: ð5:56Þ

This implies, by Lemma 3.2, the desired statement and finishes the proof of

Proposition 5.6. r

Step 4. In this step we prove that u satisfies (4.2).

Lemma 5.8. The limit u of the approximate solution un of (5.5)–(5.7) satisfies

lim
m!þl

ð
fmajujamþ1g

aðx; t; u;‘uÞ‘u dx dt ¼ 0: ð5:57Þ

Proof. Taking T1

�
un � TmðunÞ

�
as test function in (5.5), we obtain

qbnðunÞ
qt

;T1

�
un � TmðunÞ

�� 	
þ
ð
fmajunjamþ1g

aðx; t; un;‘unÞ‘un dx dt

þ
ð
Q

div
hð un

0

FðrÞT 0
1

�
r� TmðrÞ

�i
dx dt ¼

ð
Q

fnT1

�
un � TmðunÞ

�
dx dt: ð5:58Þ

Using the fact that
Ð un
0 FðrÞT 0

1

�
r� TmðrÞ

�
dx dt a W

1;x
0 LMðQÞ and Stokes’ for-

mula, we get

ð
W

Bm
n

�
unðTÞ

�
dxþ

ð
fmajunjamþ1g

aðx; t; un;‘unÞ‘un dx dt

a

ð
Q

�� fnT1

�
un � TmðunÞ

��� dx dtþ ð
W

Bm
n ðu0nÞ dx; ð5:59Þ

where Bm
n ðrÞ ¼

Ð r
0 b

0
nðsÞT1

�
s� TmðsÞ

�
ds.

In order to pass to the limit as n tends to þl in (5.59), we use Bm
n

�
unðTÞ

�
b 0

and (5.3)–(5.4), we obtain that

lim
n!þl

ð
fmajunjamþ1g

aðx; t; un;‘unÞ‘un dx dt

a

ð
fjuj>mg

j f j dx dtþ
ð
fju0j>mg

jbðu0Þj dx: ð5:60Þ
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Finally by (3.7), (3.8) and (5.60) we get

lim
m!þl

lim
n!þl

ð
fmajunjamþ1g

aðx; t; un;‘unÞ‘un dx dt ¼ 0: ð5:61Þ

To this end, observe that for any fixed mb 0 one hasð
fmajunjamþ1g

aðx; t; un;‘unÞ‘un dx dt

¼
ð
Q

aðx; t; un;‘unÞ½‘Tmþ1ðunÞ � ‘TmðunÞ� dx dt

¼
ð
Q

a
�
x; t;Tmþ1ðunÞ;‘Tmþ1ðunÞ

�
‘Tmþ1ðunÞ dx dt

�
ð
Q

a
�
x; t;TmðunÞ;‘TmðunÞ

�
‘TmðunÞ dx dt:

According to (5.30)–(5.31), one is at liberty to pass to the limit as n tends to þl
for fixed mb 0 and to obtain

lim
n!þl

ð
fmajunjamþ1g

aðx; t; un;‘unÞ‘un dx dt

¼
ð
Q

a
�
x; t;Tmþ1ðuÞ;‘Tmþ1ðuÞ

�
‘Tmþ1ðuÞ dx dt

�
ð
Q

a
�
x; t;TmðuÞ;‘TmðuÞ

�
‘TmðuÞ dx dt

¼
ð
fmajujamþ1g

aðx; t; u;‘uÞ‘u dx dt: ð5:62Þ

Taking the limit as m tends to þl in (5.62) and using the estimate (5.61) it possi-

ble to conclude that (5.57) holds true and the proof of Lemma 5.7 is complete. r

Step 5. In this step, u is shown to satisfy (4.3) and (4.4). Let S be a function in

W 1;lðRÞ such that S has a compact support. Let K be a positive real number

such that suppðSÞH ½�K ;K �. Pointwise multiplication of the approximate equa-

tion (5.5) by SðunÞ leads to

qBSðunÞ
qt

� div
�
SðunÞaðx; t; un;‘unÞ

�
þ S 0ðunÞaðx; t; un;‘unÞ‘un

� div
�
SðunÞFðunÞ

�
þ S 0ðunÞFðunÞ‘un ¼ fSðunÞ in D 0ðQÞ; ð5:63Þ

where BSðzÞ ¼
Ð z
0 b

0ðrÞSðrÞ dr.
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It what follows we pass to the limit as n tends to þl in each term of (5.63).

Limit of
qBn

S
ðunÞ
qt

.

Since S is bounded and Bn
SðunÞ converges to BSðuÞ a.e. in Q and in LlðQÞ

weak-*. Then
qBn

S
ðunÞ
qt

converges to
qBSðuÞ

qt
in D 0ðQÞ as n tends to þl.

Limit of �div
�
SðunÞaðx; t; un;‘unÞ

�
.

Since suppSH ½�K ;K �, we have

SðunÞaðx; t; un;‘unÞ ¼ SðunÞa
�
x; t;TKðunÞ;‘TKðunÞ

�
a:e: in Q:

The pointwise convergence of un to u as n tends to þl, the bounded character of

S, (5.23) and (5.30) of Lemma 5.6 imply that

SðunÞa
�
x; t;TKðunÞ;‘TKðunÞ

�
* SðuÞa

�
x; t;TKðuÞ;‘TKðuÞ

�
weakly in

�
LMðQÞ

�N
for sðPLM ;PEMÞ as n tends to þl because SðuÞ ¼ 0 for jujbK a.e. in Q.

Moreover,

SðuÞa
�
x; t;TKðuÞ;‘TKðuÞ

�
¼ SðuÞaðx; t; u;‘uÞ a:e: in Q:

Limit of S 0ðunÞaðx; t; un;‘unÞ‘un.

Since suppS 0 H ½�K ;K �, we have

S 0ðunÞaðx; t; un;‘unÞ‘un ¼ S 0ðunÞa
�
x; t;TKðunÞ;‘TKðunÞ

�
‘TKðunÞ a:e: in Q:

The pointwise convergence of S 0ðunÞ to S 0ðuÞ as n tends to þl, the bounded char-

acter of S 0 and (5.30)–(5.31) of Lemma 5.6 allow to conclude that

S 0ðunÞaðx; t; un;‘unÞ‘un * S 0ðuÞa
�
x; t;TKðuÞ;‘TKðuÞ

�
‘TKðuÞ weakly in L1ðQÞ;

as n tends to þl. Moreover,

S 0ðuÞa
�
x; t;TKðuÞ;‘TKðuÞ

�
‘TKðuÞ ¼ S 0ðuÞaðx; t; u;‘uÞ‘u a:e: in Q:

Limit of SðunÞFnðunÞ.

Since suppSH ½�K ;K �, we have

SðunÞFnðunÞ ¼ SðunÞFn

�
TKðunÞ

�
a:e: in Q:

56 E. Azroul, H. Redwane and M. Rhoudaf



As a consequence of (3.6), (5.2) and (5.23), it follows that

S 0ðunÞFnðunÞ ! S 0ðuÞF
�
TKðuÞ

�
strongly in

�
EMðQÞ

�N
;

as n tends to þl. The term S 0ðuÞF
�
TKðuÞ

�
is denoted by S 0ðuÞFðuÞ.

Limit of S 0ðunÞFnðunÞ‘un.

Since S a W 1;lðRÞ with suppSH ½�K ;K �, we have

S 0ðunÞFnðunÞ‘un ¼ Fn

�
TKðunÞ

�
‘S 0ðunÞ a:e: in Q:

Moreover, ‘S 0ðunÞ converges to ‘S 0ðuÞ weakly in LMðQÞN as n tends to þl,

while Fn

�
TKðunÞ

�
is uniformly bounded with respect to n and converges a.e. in Q

to F
�
TKðuÞ

�
as n tends to þl. Therefore

S 0ðunÞFnðunÞ‘un * F
�
TKðuÞ

�
‘S 0ðuÞ weakly in LMðQÞ:

Limit of fnSðunÞ.

Due to (5.3) and (5.23), we have

fnSðunÞ ! fSðuÞ strongly in L1ðQÞ;

as n tends to þl.

As a consequence of the above convergence result, we are in a position to pass

to the limit as n tends to þl in equation (5.63) and to conclude that u satisfies

(4.3).

It remains to show that BSðuÞ satisfies the initial condition (4.4). To this end,

firstly note that, S being bounded, Bn
SðunÞ is bounded in LlðQÞ. Secondly, (5.63)

and the above considerations on the behavior of the terms of this equation show

that
qBn

S
ðunÞ
qt

is bounded in L1ðQÞ þW�1;xLMðQÞ. Thus an Aubin type lemma (see,

e.g., [32], Corollary 4) and (see also Lemma 2.6) implies that Bn
SðunÞ lies in a com-

pact set of C0
�
½0;T �;L1ðWÞ

�
. It follows that on the one hand Bn

SðunÞðt ¼ 0Þ ¼
Bn
Sðu0nÞ converges to BSðuÞðt ¼ 0Þ strongly in L1ðWÞ. On the other hand, the

smoothness of S implies that

BSðuÞðt ¼ 0Þ ¼ BSðu0Þ in W:

As a conclusion of step 1 to step 5, the proof of theorem 5.1 is complete. r
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6. Appendix

Proof Lemma 5.7. Integration by parts and the use of the properties of wm
i; j yieldðT

0

qbnðunÞ
qt

; jm; i
n; j;m

� 	
dx dt ¼

ðT
0

qbnðunÞ
qt

; hmðunÞTkðunÞ
� 	

dx dt

�
ðT
0

qbnðunÞ
qt

; hmðunÞwm
i; j

� 	
dx dt ¼ I n1 þ I

n;m
2 : ð6:1Þ

We denote by

Bn
m;kðrÞ ¼

ð r
0

b 0
nðsÞhmðsÞTkðsÞ ds;

Bn
mðrÞ ¼

ð r
0

b 0
nðsÞhmðsÞ ds:

By a standard argument we can write the first term on the right-hand side of (6.1)

as

I n1 ¼
hð

W

Bn
m;kðunÞ dx

iT
0
¼
ð
W

�
Bn
m;k

�
unðTÞ

�
� Bn

m;k

�
unð0Þ

��
dx

¼
ð
W

�
Bn
m;k

�
unðTÞ

�
� Bn

m;kðun0Þ
�
dx: ð6:2Þ

To pass to the limit in (6.2) as n ! þl, we first observe that b 0
nðunÞhmðunÞ ¼

b 0�Tmþ1ðunÞ
�
þ 1

n

� �
hmðunÞ for n (with n > mþ 1) large enough. Then we deduce

that

I n1 ¼
ð
W

�
Bm;k

�
uðTÞ

�
� Bm;kðu0Þ

�
dxþ eðnÞ; ð6:3Þ

where Bm;kðsÞ ¼
Ð r
0 b

0ðsÞhmðsÞTkðsÞ ds.
The second term on the right-hand side of (6.1) can be written as

I
n;m
2 ¼ �

ðT
0

qbnðunÞ
qt

; hmðunÞwm
i; j

� 	
dt

�
ð
W

½Bn
mðunÞw

m
i; j �

T
0 dxþ

ð
W

ðT
0

an
mðunÞ

qw
m
i; j

qt
dx dt

¼ �
ð
W

�
Bn
m

�
unðTÞ

�
w

m
i; jðTÞ � Bn

mðu0nÞTkðciÞ
�

þ m

ð
W

ðT
0

Bn
mðunÞ

�
TkðvjÞ � w

m
i; j

�
dx dt: ð6:4Þ
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By passing to the limit as n tends to infinity in (6.4) we get

I
n;m
2 ¼ �

ð
W

Bm

�
uðTÞ

�
w

m
i; jðTÞ � Bmðu0ÞTkðciÞ dx

þ m

ð
W

ðT
0

BmðuÞ
�
TkðvjÞ � w

m
i; j

�
dx dtþ eðnÞ;

where BmðsÞ ¼
Ð r
0 b

0ðsÞhmðsÞ ds.
Now letting j ! þl, we get

I
n;m
2 ¼ �

ð
W

�
Bm

�
uðTÞ

��
TkðuÞmðTÞ þ e�mTTkðciÞ

�
� Bmðu0ÞTkðciÞ

�
dx

þ m

ð
W

ðT
0

Bm

�
uðTÞ

��
TkðuÞ �

�
TkðuÞm � e�mTTkðciÞ

�
dx dtþ eðn; jÞ: ð6:5Þ

Therefore, passing to the limit, first in m and then in j, in the first terms on the

right-hand side of the last equality, we deduce that

�
ð
W

�
Bm

�
uðTÞ

��
TkðuÞmðTÞ þ e�mTTkðciÞ

�
� Bmðu0ÞTkðciÞ

�
dx

¼
ð
W

�
Bm

�
uðTÞ

��
Tk

�
uðTÞ

�
� Bmðu0ÞTkðu0Þ

�
dxþ eðm; iÞ: ð6:6Þ

Let wi
m ¼

�
TkðuÞ

�
m
þ e�mtTkðciÞ and note that

qwi
m

qt
¼ m

�
TkðuÞ � wi

m

�
. Then the

second term on the right-hand side of (6.6) can be rewritten as

m

ð
W

ðT
0

BmðuÞ
�
TkðuÞ �

�
TkðuÞm � e�mtTkðciÞ

�
dx dt

¼ m

ð
W

ðT
0

�
BmðuÞ � Bm

�
TkðuÞ

���
TkðuÞ � wi

m

�
dx dt

þ m

ð
W

ðT
0

�
Bm

�
TkðuÞ

�
� Bmðwi

mÞ
��
TkðuÞ � wi

m

�
dx dt

þ m

ð
W

ðT
0

Bmðwi
mÞ
�
TkðuÞ � wi

m

�
dt dx

¼ II
m
1 þ II

m
2 þ II

m
3 ; ð6:7Þ

where

II
m
1 ¼ m

ð
fu>kg

ðT
0

�
BmðuÞ � BmðkÞ

�
ðk � wi

mÞ dx dt

þ m

ð
fu<�kg

ðT
0

�
BmðuÞ � Bmð�kÞ

�
ð�k � wi

mÞ dx dtb 0: ð6:8Þ
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As BmðsÞ is non-decreasing for s and �kawi
ma k, it follows that

II
m
2 b 0: ð6:9Þ

Moreover,

II
m
3 ¼ m

ð
W

ðT
0

Bmðwi
mÞ
�
TkðuÞ � wi

m

�
dx dt

¼
ð
W

ðT
0

Bmðwi
mÞ
qwi

m

qt
dx dt ¼

ð
W

�
B
�
wi
mðTÞ

�
� B

�
wi
mð0Þ

�
dx; ð6:10Þ

where BmðsÞ ¼
Ð s
0 BmðrÞ dr. Also wi

m ! TkðuÞ a.e. in Q as m, i tend to þl and

jwi
mja k. Then Lebesque’s convergence theorem shows that

II
m
3 ¼

ð
W

�
B
�
TkðuÞðTÞ

�
� B

�
Tkðu0Þ

��
dxþ eðm; iÞ: ð6:11Þ

In view of (6.5)–(6.11), one has

I
n;m
2 ¼

ð
W

�
Bm

�
uðTÞ

�
Tk

�
uðTÞ

�
� Bmðu0ÞTkðu0Þ

�
dx

þ
ð
W

�
B
�
TkðuÞðTÞ

�
� B

�
Tkðu0Þ

��
dxþ eðm; iÞ: ð6:12Þ

As a consequence of (6.1), (6.3) and (6.12), we deduce that

qbnðunÞ
qt

; jm; i
n; j;m

� 	
b

ð
W

�
Bm;k

�
uðTÞ

�
� Bm;kðu0Þ

�
dx

�
ð
W

�
Bm

�
uðTÞ

�
Tk

�
uðTÞ

�
� Bmðu0ÞTkðu0Þ

�
dx

þ
ð
W

�
B
�
TkðuÞðTÞ

�
� B

�
Tkðu0Þ

��
dxþ eðn; j; m; iÞ: ð6:13Þ

Observe that for any z a R we have

B
�
TkðzÞ

�
¼
ðTkðzÞ

0

BmðrÞ dr

¼
h
r

ð r
0

b 0ðtÞhmðtÞ dt
iTkðzÞ

0
�
ðTkðzÞ

0

rb 0ðrÞhmðrÞ dr

¼ TkðzÞ
ðTkðzÞ

0

b 0ðtÞhmðtÞ dt�
ðTkðzÞ

0

TkðrÞb 0ðrÞhmðrÞ dr

¼ TkðzÞam
�
TkðzÞ

�
� am;k

�
TkðzÞ

�
: ð6:14Þ
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Finally, we deduce that

qbnðunÞ
qt

; jm; i
n; j;m

� 	
b 0þ eðn; j; m; iÞ: ð6:15Þ

This is due to the fact that for jrj < k, we have

B
�
TkðrÞ

�
¼ TkðrÞBmðrÞ � Bm;kðrÞ;

and if r > k we have

Bm;kðrÞ ¼
ð k
0

b 0ðsÞhmðsÞs dsþ k

ð r
k

b 0ðsÞhmðsÞ ds

�TkðrÞBmðrÞ ¼ �k

ð k
0

b 0ðsÞhmðsÞ ds� k

ð r
k

b 0ðsÞhmðsÞ ds

BðkÞ ¼ k

ð k
0

b 0ðsÞhmðsÞ ds�
ð k
0

b 0ðsÞhmðsÞs ds:

The case r < �k is similar to the previous one. This conclude the proof of

Lemma 5.7. r
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