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Abstract. An existence result for a solution of a class of nonlinear parabolic equations in
Orlicz spaces is established. The data belongs to L!, no growth assumption is made on
the nonlinearities and the N-function does not satisfy the A, condition.
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1. Introduction

In this work we are concerned with the problem of existence of a renormalized so-
lution for a class of nonlinear parabolic equations of the type:

0b(u)

5 div(a(x, t,u, Vu)) — div(®(u)) = f in Q x (0, T), (1.1)
b()(t = 0) = b(ug) in Q, (1.2)
u=0o0n0oQ x (0,T). (1.3)

Here Q is a bounded open set of RY (N >2), T is a positive real number,
and Q =Q x (0, T). The function b is assumed to be a strictly increasing C'-
function. When the data f and b(up) lie in L'(Q) and L'(Q), respectively, then
Au = —div(a(x,t,u,Vu)) is a Leray-Lions operator defined on Wy~ Ly (Q),
where M is an appropriate N-function (see assumptions (3.2)—(3.5) in Section 3).
The function @ is assumed to be continuous on R.

The difficulties that arise in problem (1.1)—(1.3) are due to the following facts:
the data f and b(up) only belong to L', the function ®(u) does not belong to
(L1 ((0,T) x Q)) N (because the function ® is just assumed to be continuous on
R) and the N-function M does not satisfy the A, condition (see (2.1) of Section 2).
Therefore, proving existence of a weak solution (i.e., in the distribution meaning)
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seems to be a hard task. To overcome this difficulty, in this paper we will apply
the framework of renormalized solutions. This notion was introduced by Lions
and Di Perna [16] in their study of the Boltzmann equation (see also P.-L. Lions
[26] for a few applications to fluid mechanics models). This notion was then
adapted to an elliptic version of (1.1), (1.2), (1.3) by Boccardo, J.-L. Diaz, D. Gia-
chetti, F. Murat [11], and by F. Murat [27]. At the same time, the equivalent no-
tion of entropy solution was developed independently by Bénilan and al. [2] for the
study of nonlinear elliptic problems.

For the parabolic equation (1.1)—(1.3) the existence and uniqueness of a
renormalized solution has been proved by D. Blanchard, F. Murat and H.
Redwane [6] (see also A. Porretta [28]) in the case where h(u) =u and f is
replaced by f + div(g), with g € LP/(Q)N. The case where the operator Au =
—div(a(x, t,u, Vu)) is a Leray-Lions which is coercive and grows like |Vu|”"'
with respect to Vu (but which is not restricted by any growth condition with re-
spect to u), where b is a strictly increasing function of u (that can possibly blow
up for some finite ry) and a(x,,s,¢) is independent of s and linear with respect
to ¢&, existence and uniqueness has been established by D. Blanchard and H. Red-
wane [9]. The case where b is a maximal monotone graph on R and a(x, t,s, &) is
independent of ¢, existence and uniqueness has been established by D. Blanchard
and A. Porretta [8] (see also D. Blanchard [4], D. Blanchard and F. Murat [5], H.
Redwane [30], J. Carrillo [12], J. Carrillo and P. Wittbold [13], [14]).

Let us remark that equations (1.1)—(1.3) find natural applications in physical
sciences. Non-standard examples of N-functions which occur in the mechanics
of solids and fluids include M;(f) = tlog(1 + 1), M(t) = [, s'~*(arcsinh(s)) " ds
where 0 < o < 1 and M;(7) = tlog(1 + log(1 + 1)) (see M. Fuchs and L. Gong-
bao [19] and M. Fuchs and G. Seregin ([20]-[31]). Note that that M;(¢) and
M5 (1) do not satisfy the A,-condition.

As an application of our results, we prove the existence of a renormalized so-
lution of the problem

e“‘”% — div((1 + [u])Vulog™ (e + |Vu|)) — div(e®*) = £ in Q x (0,T), (1.4)

u(t =0) = up in Q, (1.5)
u=0onoQ x (0,7), (1.6)

where o1 > 0,0 e Rand 0 < f < %

The plan of the paper is as follows. In Section 2 we give some preliminaries
and the definition of N-function and Orlicz—Sobolev space. In Section 3 we make
precise all the assumptions on b, @, f and uy. In Section 4 we give the definition
of a renormalized solution of (1.1)—(1.3). In Section 5 we establish the existence of
such a solution (Theorem 5.1).



Existence of a solution in Orlicz spaces 31
2. Preliminaries

Let M : R" — R* be an N- functlon i.e., M is continuous, convex, with M(7) > 0
fort >0, () — 0 as t — 0 and 21 t — o0 as t — oo. Equivalently, M admits the
representatlon = [ya(s)ds where a:R"™ — R" is non-decreasing, right
continuous, with a( )—0 a()>0 for t >0 and a()—> o as t — o. The N-
function M conjugate to M is defined by M () = [, a(s) ds, where a: R" — R"
is given by a(f) = sup{s|a(s) < t}.

The N-function M is said to satisfy the A, condition if, for some k& > 0,

M(2t) <kM(t) forallt=>0. (2.1)

When this inequality holds only for ¢>1¢ >0, M is said to satisfy the A,-
condition near infinity.

Let P and M be two N-functions. P « M means that P grows essentially less
rapidly than M, i.e., for each ¢ > 0,

P(1)
M —0 ast— oo. (2.2)
This is the case if and only if
-1
M—»O ast — oo. (2.3)

We will extend these N-functions into even functions on all R. Let Q be an open
subset of R". The Orlicz class #;(Q) (resp. the Orlicz space Ly, (Q)) is defined as
the set of (equivalence classes of) real-valued measurable functions # on Q such
that:

L M (u(x)) dx < +oo  (resp. JQ M(u(/{x)) dx < +oo for some 4 > 0). (2.4)

Note that L,,(Q) is a Banach space under the norm

JQ M(@) dx < 1} (2.5)

and %(Q) is a convex subset of Ly(Q). The closure in Ly (Q) of the set of
bounded measurable functions with compact support in Q is denoted by E(Q).
The equality Ey (Q) = Ly (Q) holds if and only if M satisfies the Ay-condition for
all z or for ¢ large, according to whether or not Q has infinite measure.

lullyr.o = inf{l >0




32 E. Azroul, H. Redwane and M. Rhoudaf

The dual of Ep () can be identified with L;;(Q) by means of the pairing
Jq u(x)v(x) dx, and the dual norm on L;(Q) is equivalent to || - || ;7 . The space
Ly (Q) is reflexive if and only if M and M satisfy the A, condition for all 7 or for ¢
large, according to whether or not Q has infinite measure.

We now turn to the Orlicz—Sobolev space. W 1Ly (Q) (resp. W'Ey(Q)) is the
space of all functions u such that u and its distributional derivatives up to order 1
lie in L/ (Q) (resp. Ep(Q)). This is a Banach space under the norm

lully a0 = D IV*ullar, 0 (2.6)

lo| <1

Thus WLy (Q) and W'Ey(Q) can be identified with subspaces of the product
of N+ 1 copies of Ly(Q). Denoting this product by ITL,,, we will use the
weak topologies o(I1Ly,I1E;) and o(I1Ly, TIL5;). The space W Ey(Q) is
defined as the (norm) closure of the Schwartz space %(Q) in W!Ey/(Q) and
the space W Ly(Q) as the o(I1Ly, [1E3;) closure of 2(Q) in WLy (Q). We
say that u, converges to u for the modular convergence in W!'Ly(Q) if for
some A >0, [ M (w) dx — 0 for all |o| < 1. This implies convergence for
o(TILy, TIL ;). If M satisfies the A, condition on R" (near infinity only when Q
has finite measure), then modular convergence coincides with norm convergence.

Let W 'L(Q) (resp. W 'E(Q)) denote the space of distributions on Q
which can be written as sums of derivatives of order < 1 of functions in L;(Q)
(resp. E;(Q)). It is a Banach space under the usual quotient norm.

If the open set Q has the segment property, then the space Z(Q) is dense
in Wy Ly(Q) for the modular convergence and for the topology a(I1Ly, T1L ;)
(cf. [21]). Consequently, the action of a distribution in W~'L;(Q) on an element
of Wy Ly/(Q) is well defined. For more details see [1], [23].

For K > 0, we define the truncation at height K, Tx : R — R by

: s if |s| < K,
Tk (s) = min(K, max(s, —K)) = % if ls| > K. (2.7)

The following abstract lemmas will be applied to the truncation operators.

Lemma 2.1 (cf. [21]). Let F : R — R be uniformly lipschitzian, with F(0) = 0. Let
M be an N-function and let u € WLy (Q) (resp. W'Ep (Q)).

Then F(u) € WLy (Q) (resp. W'Ey(Q)). Moreover, if the set of discontinuity
points D of F' is finite, then

iF(u): F’(u)f—x! ae.in{x e Qlu(x) ¢ D},
0 a.e.in{x e Q|u(x) € D}.
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Lemma 2.2 (cf. [21]). Let F : R — R be uniformly lipschitzian, with F(0) = 0. We
suppose that the set of discontinuity points of F' is finite. Let M be an N-function.
Then the mapping F : W'Ly (Q) — WLy (Q) is sequentially continuous with re-
spect to the weak-* topology o(I1Ly, I1E3;).

Let Q be a bounded open subset of RV, 7> 0 and set 0 = Q x (0, T). Let M
be an N-function. For each « € N, denote by V¥ the distributional derivative
on Q of order « with respect to the variable x € NV, The inhomogeneous Orlicz—
Sobolev spaces are defined as

W Lar(Q) = {u € Ly (Q) | Viu € Ly (Q) for all |of < 1},
WUYEy(Q) = {u € Ey(Q)|Viu € Ey(Q) for all |o] < 1}.

The last space is a subspace of the first one, and both are Banach spaces under
the norm

lull = > IViull s, - (2.9)

o<1

We can easily show that they form a complementary system when Q satisfies the
segment property. These spaces are considered as subspaces of the product space
I1L,,(Q) which have as many copies as there is a-order derivatives, o] < 1. We
shall also consider the weak topologies o(I1Ly, I1E;) and o(ITLy, I1Ly;). If
ue WH*Ly(Q) then the function t — u(t) = u(t,-) is defined on (0,7) with
values in WLy (Q). If, further, u e WY*E(Q) then the concerned function
is a W!E)/(Q)-valued and is strongly measurable. Furthermore the following im-
bedding holds: W'“Ey(Q) = L' (0, T; W'Ey(Q)). The space W!*Ly(Q) is not
in general separable. If u e W!*Ly/(Q), we cannot conclude that the function
u(t) is measurable on (0, 7). However, the scalar function ¢+ [[u(?)[|,, o is in
L'(0,T). The space W, “Ey(Q) is defined as the (norm) closure in W' Ejy/(Q)
of Z(Q). We can easily show as in [22] that when Q has the segment property,
then each element u of the closure of Z(Q) with respect of the weak-* topology
o(TILy, TIE;) is a limit, in W1*Ly(Q), of some subsequence (u;) = Z(Q) for
the modular convergence; i.e., there exists 4 > 0 such that for all |o| < 1,

JM(W)CJMHO asi— o0 (2.10)
o

This implies that (z;) converges to u in W!~L,/(Q) for the weak topology
o(I1Lys, ITIL ;). Consequently,

)

(Q) o(llLy NIEG;) @(Q) o(HLy, ML) (2'1 1)
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This space will be denoted by W, *Ly(Q). Furthermore, W, *Ly(Q) nT1Ey =
Wol"xEM(Q). Poincaré’s inequality also holds in WOI’XLM(Q), i.e., there is a con-
stant C > 0 such that for all u € Wol"xLM(Q) one has,

D IViula o < € IViully o (2.12)

la <1 o] =1

Thus both sides of the last inequality are equivalent norms on W()l’xLM(Q). We
have then the following complementary system

(WJ“‘LM@) F) 2.13)
Wy “En(Q) Fo )’

with F being the dual space of Wol"xEM(Q). It is also, except for an isomor-
phism, the quotient of TTL j; by the polar set Wol"xE M(Q)l, and will be denoted by
F =W 'L-(0). Itis shown that

W Lg(0) ={f = Y Vis,

lo] <1

freL(0)}. (2.14)
This space will be equipped with the usual quotient norm

171l = inf > 1 flli7. oo (2.15)

Jo| <1

where the infinum is taken on all possible decompositions

f=> Vifi freLgy(Q). (2.16)
lo| <1
The space Fy is then given by
Fo={f=3 Vif|feEz0)} (2.17)
o] <1

and is denoted by Fy = W~ ""E#(Q).

Remark 2.3. We can easily check, using Lemma 2.1, that each uniformly lipschit-
zian mapping F, with F(0) = 0, acts in inhomogeneous Orlicz—Sobolev spaces of
order 1: WLy (Q) and W, "Ly (Q).
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In the sequel we have to use the following results which concern mollification
with respect to time and space variable and some trace results.
Thus we define for all x> 0 and all (x,7) € O:

u,(x,t) =u J_m u(x,s)exp(u(s —t)) ds  where (x,s) = u(x, $)xo,1)- (2.18)

Lemma 2.4 (cf. [17]). (1) If u € Ly(Q) then u, — u as it — +00 in Ly(Q) for the
modular convergence.

(2) If ue WY“Ly(Q) then u, — u as pt — +o0 in WH*Ly(Q) for the modular
convergence.

(3) If u e WYLy (Q) then 4 = p(u — u,) € WLy(Q).

ot
We will use the following technical lemmas.

Lemma 2.5 (cf. [17]). Let M be an N-function. Let (u,) be a sequence of
WYLy (Q) such that u, — weakly in WLy (Q) for o(IlLy,T1E5) and
% = hy + ky in D'(Q) with hy, is bounded in W~"*L(Q) and ky is bounded in the
space L'(Q). Then u, — u strongly in L] .(Q).

If further, u, € Wol"xLM(Q) then u, — u strongly in L'(Q).

Lemma 2.6 (cf. [18]). Let Q be a bounded open subset of RY with the segment
property. Then

{u € WOI’XLM(Q)‘% e W L(0) +L1(Q)} < C([0,T), L1 (Q)).

Lemma 2.7 (cf. [3]). Let Q be an open bounded subset of R™ which satisfies the
segment property. If u € Wi Ly (Q), then

J divudxdt = 0.
0

3. Assumptions and statement of main results

Throughout this paper, we assume that the following assumptions hold true:
Q is a bounded open set on RY (N >2), T >0 is given and we set Q =
Qx (0,7),

b: R — Ris a strictly increasing C'-function with 5(0) = 0. (3.1
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Let M and P be two N-function such that P <« M. Consider a second order par-

tial differential operator 4 : D(A4) = WLy (Q) — W*L(0) in divergence
form,

A(u) = —div(a(x, t,u, Vu)),
where
a:Qx(0,T) x RxRY — R" is a Carathéodory function satisfying (3.2)

for almost every (x,7) € Q and for every s € R, & # &* e RV,

la(x, t,s,&)| < Ble(x, 1) + ki M P(kls|) + M~ M (k|E])], (33)
la(x,t,s,&) —a(x,t,5,E)][E—E7] >0, (3.4)
a(xv 1757 é)é > OCM(|£|)7 (35)

where c(x,t) € Ej;(Q), ¢ >0 and «,f,k > 0 are a given real numbers. Suppose
that

® : R — RY is a continuous function, (3.6)
£ is an element of L'(Q), (3.7)
ug is an element of L'(Q) such that b(ug) € L' (Q). (3.8)

Remark 3.1. As already mentioned in the introduction, problem (1.1)—(1.3) does
not admit a weak solution under the assumptions (3.1)—(3.8) (even when b(u) = u)
since the growths of ®(u) is not controlled with respect to u so that the term
—div(®(u)) is not in general defined as a distribution, even when u belongs to

Wy Ly (Q).
Let prove the following lemma which will be needed later.

Lemma 3.2. With the assumptions (3.2)—(3.5) let (z,) be a sequence in W()I’XLM(Q)
such that

2y — z in Wy Ly (Q) for a(TILy(Q), TIE5(0)), (3.9)
(a(x,1, Zn,Vzn))n is bounded in (LM(Q))N7 (3.10)

J [a(x,t,zy,Vz,) — a(x, t, 2z, Vzy,)][Vzy — Vzy)dxdt — 0 (3.11)
0

as n and s tend to + o0, and where y, is the characteristic function of

0 = {(x,0) € Q[ |Vz| <s}.
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Then
Vz, = Vzae.in Q,

lim J a(x,t,z,,Vz,)Vz, dx dt = J a(x,t,z,Vz)Vzdx dt,
9]

n— o0 Q

M(|Vzy]) — M(|Vz]) in L' (Q).

Proof. Fixr > 0. Lets>rand Q, = {(x,7) € Q| |Vz| <r}. We have

O

A

0< J la(x,t,z,,Vz,) — a(x, t,z,,Vz)|[Vz, — Vz] dx dt

la(x,t,2,,Vzy) — a(x, t, z,,V2)|[Vz, — Vz] dx dt
QS
[a

= J (x,8,2,,Vzy) —a(x,t,2,,Vzx )| [Vzn — Vzy,] dx dt
Oy

IA

J la(x,z,, Vz,) — a(x, z,, Vzy,)|[Vz, — Vzy,] dx dt.
0

Together with (3.11) this implies that

lim J [a(x,t,2,,Vzy) — a(x, t,z,,V2)|[Vz, — Vz] dx dt = 0.
)

n— o0

Following the same argument as in [21], one can show that

Vz, — Vzae. in Q.

On the one hand we have

37

(3.12)
(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

J a(x,t,2,,Vz,)Vz, dx = J [a(x,t,2,,Vzy) — a(x, 2y, Vzx)|[Vza — Vzx,| dx dt
0

0
+ J a(x,t,z,,Vzy,)(Vz, — Vzy,) dx dt
o

+ J a(x,t,z,,Vz,)Vzy, dx dt.
0

(3.18)

Since (a(x, 1,2y, Vz,)), is bounded in (LM(Q))N, using (3.17) we obtain that

a(x,z,,Vz,) — a(x, t,z,Vz) weakly in (LM(Q))N for o(ITL;, TIEy ), (3.19)
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which implies that

J a(x,t,z,,Vz,)Vzy, dx—>J a(x,t,z,Vz)Vzy dx dt (3.20)
0 0

asn — oo. Letting also s — oo, one has

J a(x,t,z,Vz)Vzy, dx —>J a(x,t,z,Vz)Vzdx dt. (3.21)
0 Q

On the other hand it is easy to see that the second term on the right-hand side of
(3.18) tends to 0 as n — co. Consequently, from (3.9), (3.20) and (3.21) we have

lim J a(x,t,zy,Vz,)Vz, dx dt = J a(x,t,z,Vz)Vzdx dt. (3.22)
0

n— o0 Q

By virtue of (3.5) and Vitali’s theorem, one can deduce that
M(|Vz4]) — M(|Vz]) in L'(Q). O

Remark 3.3. It should be interest to note that the condition (3.10) is not neces-
sary in the case where the N-function M satisfies the A,-condition.

4. Definition of a renormalized solution

As already mentioned in the introduction, problem (1.1)—(1.3) does not admit a
weak solution under assumptions (3.1)—(3.8) since the growths of ®(u) is not con-
trolled with respect to u (so that these fields are not in general defined as distribu-
tions, even when u belongs Wol"xLM(Q)).

The definition of a renormalized solution for problem (1.1)—(1.3) can be stated
as follows.

Definition 4.1. A measurable function u defined on Q is a renormalized solution
of problem (1.1)—(1.3) if

Tx(u) € W, Ly (Q) for all K > 0 and b(u) € L* (0, T; L'(Q)),  (4.1)

J a(x,t,u,Vu)Vudxdt - 0 asm — +oo, (4.2)
{(t,x)eQ|m<|u(x,t)|<m+1}

and if, for every function S in W' *(R) with compact support, we have



Existence of a solution in Orlicz spaces 39

aBgt(”) — div(S(ua(x, 1, u, Vu)) + S'(w)a(x, 1, u, Vu)Vu
—div(S(u)®(u)) + S'(u)®(u)Vu = fS(u) in D'(Q), (4.3)
where Bs(z) = [Zb'(r)S(r) dr and
Bs(u)(t = 0) = Bs(ug) in Q. (4.4)

The following remarks are concerned with a few comments on Definition 4.1.

Remark 4.2. Equation (4.3) is formally obtained through pointwise multiplica-
tion of equation (1.1) by S(u). Note that due to (4.1) each term in (4.3) has a
meaning in L'(Q) + W 1*L(0).
Indeed, if K is such that supp S = [—K, K], the following identifications are
made in (4.3):
® Bg(u) belongs to WLy (Q) since S is a bounded function and VBg(u) =
S(u)b'(Tg(u))VTk(u). The functions S and b’ o Tk are bounded on R so
that (4.1) implies that VBs(u) € (LM(Q))N.
® S(u)a(x,t,u, Vu) identifies with S(u)a(x,t, Tx(u),VTk(u)) a.e. in Q. Since
|Tk(u)] < K a.e. in Q and S(u) € L*(Q), we obtain from (3.3), (4.1) that

S(u)a(x,t, Tg(u), VTk(u)) € (LM(Q))N.

® S'(u)a(x, t,u, Vu)Vu identifies with S’(u)a(x, 1, Tk (u), VTk (1)) VTk (u), and in
view of (3.1) and (4.1) one has

S"(u)a(x,t, Tx(u), VTx(u))VTx(u) € L'(Q).
e S(u)®(u) and S'(u)P(u)Vu identify with
Sw)®(Tx(u)) and  S"(u)®(Tk(u))VTk(u),

respectively. Due to the properties of S and (3.6), the functions S, S’
and ® o Tk are bounded on R so that (4.1) implies that S(u)®(Tk(u)) €

(L7(Q))" and S"(u)®(Tx () VTk () € (L (Q))".

The above considerations show that equation (4.3) holds in D’(Q) and
belongs to W"*L(0) + L'(Q) and Bg(u) € W' Ly (Q) nL*(Q). It follows
that Bs(u) belongs to C°([0, T]; L'(Q)) so that the initial condition (4.4) makes
sense.

635 0Bs(u)
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5. Existence result
This section is devoted to establish the following existence theorem.

Theorem 5.1. Under assumption (3.1)—(3.8) there exists at at least a renormalized
solution of Problem (1.1)—(1.3).

Proof. The proof is divided into 5 steps. In step 1, we introduce an approximate
problem. In Step 2, we establish a few a priori estimates which allow us to prove
that the approximate solutions u, converge to u, b(u) belongs to L* (0, T'; L' (Q))
and u satisfies (4.1). In step 3, we define a time regularization of the field Tk (u)
and we establish Lemma 5.7, which allows us to control the parabolic contribution
that arises in the monotonicity method when passing to the limit. In this step we
also prove an energy estimate (Lemma 5.6). Step 4 is devoted to prove that u sat-
isfies (4.2). At last, step 5 is devoted to prove that u satisfies (4.3) and (4.4) of
Definition 4.1.
Step 1. Let us introduce the following regularization of the data:

bu(r) = T, (b(r)) +%r for n e N*, (5.1)

®, is a Lipschitz continuous bounded function from R into RY,  (5.2)

such that @, uniformly converges to ® on any compact subset of R as n tends
to +oo,

fue L*O) : Il < If|l;: and f, — fin L'(Q) as n tends to +c0, (5.3)
Uy, € C(?J(Q) : an(uo,,)HLl < Hb(uo)HL1 and bn(uo,,) — b(uo) in Ll(Q) (54)

as n tends to +o0.
Let us now consider the following regularized problem:

0by (uy)
ot

—div(a(x, 1, uy, Vity)) — div(®,(un)) = f, in O, (5.5)

u, =0o0n (0,7) x 0Q,
by(uy)(t = 0) = by(ugy,) in Q.

As a consequence, proving existence of a weak solution u, € WOI’xLM(Q) of (5.5)—
(5.7) is an easy task (see e.g. [25], [29]).

Step 2. The estimates derived in this step rely on standard techniques for prob-
lems of the type (5.5)—(5.7).
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Lemma 5.2. Assume that (3.1)—(3.8) hold true and let u, be a solution of the ap-
proximate problem (5.5)—(5.7). Then for all K > 0, we have

1Tkl ) < KU sy + Ga0) 1) = CK for ail n

where C is a constant independent of n, and

JQ B (un)(7) dx < K([|f1|1(g) + [1b(0) | 1)) = CK for all n
for almost any < in (0, T) and where Bj(r) = [, Tk(s)b,(s) ds.

Proof. We take Tk (uy) ( ,) as test function in (5.5). For every 7 € (0,7 we ob-
tain that

<(3bna(tun) , TK(”")Z(O,1)> + JQT a(x, t, TK(M,,), VTK(un))VTK(u,,) dx dt
+ J D, (u, ) VT (uy) dx dt = J JuTk (uy) dx dt, (5.8)
O 0.

which implies that

J B (uy)(7) dx + J a(x,t, Tg (un), VTg (uy))V Tk (uy) dx dt
Q O:

+ J D, (u, ) VT (uy) dx dt = J JuTx(uy) dx dt + J B (ug) dx, (5.9)
O Q

QT

where B (r) = [, Tx(s)b)(s) ds.
The Lipschitz character of ®, and Stokes’ formula together with the boundary
condition (5.6) give

J D, (u,) VT (uy) dx dt = 0. (5.10)
0:
Due to the definition of Bf we have

0< JQ By (ug) dx < KJQ |bn(ug)| dx < Kl|b(uo)|| 1) (5.11)

Using (5.10), (5.11) and B} (u,) > 0, it follows from (5.9) that
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JQa(% t, Tk (un), VTk (tn) )V Tk (1) dx dt < K([| full 1) + [1n (@) 1 )
< CK, (5.12)
which implies by virtue of (3.5), (5.3) and (5.4) that

jQM(erwn)) dxdt < K(If 1110 + I1b0) 1) = CK. (5.13)

We deduce from that above inequality (5.9) and (5.11) that

JQ B (un)(7) dx < ([ /|1 (g) + [16(0) [ 1)) = CK (5.14)

for almost any 7 in (0, 7). O
Lemma 5.3. Let uy, be a solution of (5.5)—(5.7). Then

Igim meas{(x,?) € Q| |uy| > K} = 0 uniformly with respect to n.
—00

Proof. Due to Lemma 5.7 of [21], there exist positive constants ¢, 4 such that

J M(v)dxdtgéj MQIVo)) dxdi  forallve Wi Ly(0).  (5.15)
0 0

K(un)

Taking v = % in (5.15) and using (5.13), one has

JQM<TK)(U")> dxdt < CK, (5.16)

(]

where C is a constant independent of K and n. This implies that

meas{(x,1) € 0| [un] > K} < - (5.17)
7 ' S M3 '
where C' is a constant independent of K and n. Finally,
I}im meas{(x, ) € Q||u,] > K} = 0 uniformly with respect to n. O

Now we turn to prove the almost every convergence of u, and bn(un).
For that take a C?(R) non-decreasing function &, such that &(s) =s for
|s| < % and & (s) = k for |s| > k.
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Multiplying the approximating equation by & (b, (u,)), we get

(& (bu(un))) — div(alx, 1, un, Vian) & (b (un)))

+ a(x, t, uy, Vig )& (bu(un)) by (tn) Vity — div (& (b (un) ) @ (1)
+ & (b (10n) ) by () @ (1) Vit = & (b)), (5.18)

9
ot

which implies that

& (bu(u,))) is bounded in Wy L (Q), (5.19)
and
Ok (bultn))) (bgf”"))) is bounded in L'(Q) + W *L;(0), (5.20)

independently of # as soon as k < n. Due to Definition (3.1) and (5.1) of b,, it is
clear that

{Ubn(un)| <k} = {fun| < &7}

as soon as k < n and k* is a constant independent of n. As a first consequence we
have

Ve (bu(un))) = & (ba(un)) by (Ticr (un))VTk- (1) ace. in Q (5.21)

as soon as k < n. Secondly, the following estimate holds true

14 (o)) by (T @) gy < 1€y (max (b)) + 1)

[r|<k*

as soon as k < n.
As a consequence of (5.13), (5.21) we then obtain (5.19). To show that (5.20)
holds true, due to (5.18) we obtain

% (& (baln))) = div(a(x, 1,4, Vi) (ba (1))
- a(xa 1, up, Vun)élg(bn(un))b;(un)vun
+ div(é;{ (bn(u,,))(I)n (un)) — & (bn(un))b;(u,,)(l)n(un)Vun
+ folh (ba(un)).- (5.22)
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Since supp ¢’ and supp &” are both included in [k, k], u, may be replaced by
Tk (u,) in each of these terms. As a consequence, each term on the right-hand
side of (5.22) is bounded either in W~1'*L(0) or in L'(Q). Hence lemma 2.5
(cf. [17]) allows us to conclude that & (b,(uy)) is compact in L'(Q).

Due to the choice of &, we conclude that for each k, the sequence T} (bn(un))
converges almost everywhere in Q, which implies that the sequence b,(u,) con-
verges almost everywhere to some measurable function v in Q. Thus by using
the same argument as in ([5], [7], [6], [9]), we can show the following lemma.

Lemma 5.4. Let u, be a solution of the approximate problem (5.5)—(5.7). Then

u, — uae.inQ, (5.23)
bu(uy) — b(u) a.e. in Q. (5.24)

We now establish that b(u) belongs to L= (0, T; L' (Q)). First note that (5.23)
makes it possible to pass to the limit-inf in (5.14) as n tends to +00. We obtain
that

% o Be@ dx < (1f111g) + 1610 = €.

for almost any 7 in (0, 7'). Now the definition of Bk (s) and the fact that % B (u)
converges pointwise to b(u), as K tends to +oo, shows that b(u) belongs to
L*(0,T;L'(Q)), as claimed.
Now we prove the following result.
Lemma 5.5. Let u, be a solution of the approximate problem (5.5)—(5.7). Then
(a(x,t, Te(un), VTi(uy))), is bounded in (LM(Q))N. (5.25)
for all k > 0.

Proof. Letg € (Ey(Q)) N with [o|| w.o = 1. Inview of the monotonicity of a, one
easily has

J a(x, 1, Ti(un), VTi(uy)) @ dx dt
0
< J a(x, f, Tk(u,,),VTk(u,,))VTk(u,,)dxdt
9

+ JQ a(x,t, Te(un), 9) (VTk(uy) — @) dx dt, (5.26)
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and
—J a(x,t, Tic(up), VT (uy)) o dx dt
0
< J a(x, t, Tk(u,,),VTk(u,,))VTk(un) dxdt
0

_ JQa(x, t, Ti(un), —9) (VTi(un) + @) dx dt. (5.27)

Since Ty (u,) is bounded in WOI’XLM(Q), one easily deduces that a(x, t, Tr(uy),
VTi(uy)) is a bounded sequence in (L7(Q)) N Thus, up to a subsequence,

a(x,t, Ti(un), VT (un)) — o in (Li7(0Q)) N for o(IlLy, IEy)  (5.28)

for some ¢, € (LM(Q))N. O

Step 3. This step is devoted to introduce for K > 0 fixed a time regularization
W,lz ; of the function Tk (u) and to establish the following proposition:

Proposition 5.6. Let u, be a solution of the approximate problem (5.5)—(5.7).
Then for any k > 0:

Vu, — Vua.e. in Q, (5.29)
a(x,t, Tie(up), VT (un)) — a(x, 1, Te(u), VT (1)) weakly in (LM(Q))N, (5.30)
M (VT (u,)|) — M(|VTi(u)|) strongly in L'(Q), (5.31)

as n tends to +co.

Proof. This proof is devoted to introduce for k > 0 fixed, a time regularization of
the function Tj(u) in order to perform the monotonicity method. This kind of
regularization has been first introduced by R. Landes (see Lemma 6 and Proposi-
tion 3, p. 230, and Proposition 4, p. 231, in [24]). More recently, it has been ex-
ploited in [10] and [15] to solve some nonlinear evolution problems with L! or
measure data.

Let v; € D(Q) be a sequence such that v; — u in WOI’XLM(Q) for the modular
convergence and let ; € D(Q) be a sequence which converges strongly to ug in
L'(Q).

Let W/ia i =Tk(vy), +e Tk(lﬁi) where T(v;), is the mollification with respect
to time of 7 (v;). Note that w, ; is a smooth function having the following prop-
erties:
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ow!

B (Telo) =), w0 = Telh), i<k, (532)

Wy = Telw), + e Te(Wy) in Wy Lur(Q), (5.33)

for the modular convergence as j — o,
Te(w), + e Tic() — Tie(w) in Wy Lar(Q), (534)

for the modular convergence as i — 0.
Let now the function /,, defined on R by

1 if |s| < m,
h(s) =< —|s| +m+1 if m<|s| <m+1,
0 if [s|>m+1,

for any m > k. A
Using the admissible test function ¢}, = (T (un) — w}';) hun(u,) as test func-
tion in (5.5) leads to

<8bn(un) ol > +J a(x, t,uy, Vuy) (Vi (uy) — Vw;-‘fj)hm(u,,) dx dt
0

T’ n,j,m
+ | alx, t,u,, Vuy) (Ti (1) — wff]-)Vunh,’n(u,,) dx dt
Jo y
+ Dy, () Vit (1) (T (1) — wffj) dx dt

{m<|u,| <m+1}

+ CDn(u,,)hm(u,,)(VTk(un) — waj) dxdt = J fn%ﬁt,lm dxdt. (5.35)
0 0 o

Let &(n, j, u,i) > 0 be a positive sequence such that

lim lim lim lim &(n, j, 4, i) = 0.
[— 00 U—00 j—00 H— 00

The very definition of the sequence Wﬁ ; makes it possible to establish the fol-
lowing lemma.

Lemma 5.7. Let go,’fj'm = (Ti(n) = W) hn(un).  For any k = 0 we have

abn Uy i . .
< a(t ) 7§0;{:j,m> > 8(”7.}7,“7 l)a (536>
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where ) la;enotes the duality pairing between L'(Q)+ W~ '*L(Q) and
L7(Q) n Wy Lu(Q).

Proof. This lemma will be proved in Appendix. O

Now we turn to complete the proof of Proposition 5.6. First, it is easy to see
that

J, ot e =t .0 (537)

Indeed, by the almost everywhere convergence of u,, we have that
(Ti(un) — i) i () converges to (Ty(u) — wi';) by (u) in L*(Q) weak-* and then

JQ Fo(Tiatn) — 1Y) dx it — JQ Fu(Tiw) = W) (ae) dix
so that
(T () = w2 V() — (Tic () = Tic(w), — e " Ti(,)) in L*(Q) weak-* as j — .
Also

(Tx(u) = T(w), — e " Ti(W,)) — 0 in L (Q) weak-* as g — +oo.

Then we deduce that
JQf,,(Tk(un) — W) () dx dt = &(n, j, ). (5.38)

Similarly, Lebesgue’s convergence theorem shows that
@, (uy) (1) — ®(u)hy, (u) strongly in (EM(Q))N asn — +oo
and
(Dn(“n))({ms\u,,lsrnH} (Tk(“n) - W;fj) - (D(”)X{mg|u|3m+l} (Tk(“) - Wzﬂ/)

strongly in (EM(Q))N as n — +oo.
Then by virtue of VTy(u,) — VT (u) weakly in (LM(Q))N and

V“n)({nzg|un\g;n+l} = VTmH(“n)X{mglun\gmH}
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a.e. in Q, one has

JQ D, (1) s () (VT (1) — VW/';) dx dt — JQ D (u) (1) (VT (u) — Vw}';) dx dt

as n — o0, and

J O (1) Vit (T (1) — w}';) dx it
{m<u,| <m+1}

— J O(u)Vu(Ti (1) — wi';) dx dt
{m<|u| <m+1} ’

as n — +oo0. On the other hand, by using the modular convergence of wl{‘j as
Jj — +oo and letting u tend to infinity, we get

JQ D, (14 ) i (t4) (VT () — VWE;) dx dt = e(n, j, p), (5.39)

and

J D, (14 Vit (Ti () — wi';) dx dt = &(n, J, p). (5.40)
{m<|u,| <m+1} ’

Concerning the third term of the right-hand side of (5.35) we obtain that

J a(x, t, 1y, Vity)Vuyhy, (1) (Ti (1) — wf‘j) dx dt
{m<|u,| <m+1} '

< 2kj a(x, t,uy, Vu,)Vu, dx dt. (5.41)

{m<u,| <m+1}

Then by (5.25) we deduce that

J a(x, t,uy, Vi)Vt hy, () (Tic () — wi';) dxdt < e(n, u,m).  (5.42)
{m<|u,| <m+1} '

Finally, by means of (5.35)—(5.42), we obtain that

J a(x, t,uy, Vi) Vuyh), (u,) (Ti (1) — wf_'j)hm(un) dxdt < e(n, j,u,m). (5.43)
0 ,
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Splitting the first integral on the left-hand side of (5.44) where |u,| <k and
lun| > k, we can write

J a(x, t,uy, Vuy) (Vi (uy) — wa_’j)hm(u,,) dx dt
0 ,
= J a(x, 1, Ti(un), Vi (un)) (Vi () — wa/-)hm(un)dxdt
0 .

— J a(x, t, ty, Vi) VW' sl (u) dx dt.
{|un|>k} '
Since Ay, (u,) = 0 if |u,| > m + 1, one has

J a(x, t,uy, Vi) (VT (uy) — Vw{fj)hm(un) dx dt
0
_ JQa(x, £, Te(ttn), VT (1)) (VT (1) — Vo6l (1) dx i

— J a(x, 1, Ty (un), VTm+1(u,,))wafjh,n(u,1) dxdt=5L+1L. (544)
{lun|>k} ’

In the following we pass to the limit in (5.44): first we let n tend to +oco, then we
let j, then x and finally m, tend to +oo. Since a(x,t, Tyi1(tn), Vi1 () is
bounded in (LM(Q))N, we have that a(x, 7, Tyi1(un), Vi1 (un)) — @, weakly
in Lj;(Q) in o(I1Lj;, T1E)) as n tends to infinity. Since wafjhm(u,,) con-

X{lun|>k}
verges to waf (1) strongly in Ej,(Q) as n tends to infinity, it follows that

A{u|>k}
L= JQ Pu VW (), dxdi + e(n).
By letting j — oo, we get

dxdt + &(n, j),

X{|u|>k}

- jQ 0 (VT (), — €V Ti(0)) (1)

which, by letting 4 — o0, implies that

L = JQ (DmVTk(u)ﬂhm(u);{ﬂubk} dx dt + g(n, ]hu)
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Using now the term 7; of (5.44) one can easily show that

JQ a(x,t, Tic(un), VTi(un)) (VT (tn) — wafj)hm(un) dx dt

_ JQ [a(x, 1, Te(un), V(1)) — a(x, 1, Te(wn), VTk(5)10)]
X (VT (un) = VTi(07) 1 1 (un) dx dt

+ Qa(x, t, Tk (un), Vi (0)2]) [V Tk () = Vi (0) 17 1o (1) dx it

+ | alx, 1, Te(un), VTk(u,,))VTk(vj))(fhm(u,,) dx dt
0

— | a(x, 1, Ti(u), VTk(un))waihm(un) dxdt=J) +J, +J3+Jq, (5.45)
Jo &

where y7 denotes the characteristic function of the subset

Q/ = {(x,1) € Q| |VTk(v))| < s}.

As before, in the following we pass to the limit in (5.45): first we let n — 400,
then we let j, then x and finally m, tend to +oo. Starting with J;, observe first that

J = J a(x, t, Ty (uy), VTk(Uj))(jS)VTk(un)hm(un) dx dt
0
- J a(x,t, Ti(uy), Vﬂc(vj)xj)VTk(Uj))(;hm(un) dx dt.
0

Since a(x t, Ti(tn), VTk (0)27 ) (1) — a(x, 2, T (u), VT (v,)yj)h .(u) strongly in
(Ez)" and VTi(u,) — VTi(u) weakly in (Ly(Q )N for ¢(T1Lys, TIE;;). More-
over, it is easy to show that

J a(x, t, Ti(un), VTi(0)27) Vi (07) 1 o (1) dx dlt
0
— J a(x, , Ti(u), VTk(Uj))(jS)VTk(Uj))(jShm(u) dx dt
0
as n tends to +00. We get

J = JQ a(x7 t, Tr(u), VTk(v_,-))(;) VT (u) — VT/C(u,-))(;]hm(u) dx dt + &(n).
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Since VT (0;)y) () — VTi(u)yhn(u) strongly in (EM(Q))N as j — oo and
a(x,t, Te(u), VTi(v))x}) — a(x,t, Te(u), VTi(u)y,) strongly in (Li(Q))" as j
goes to oo, we have

Jr = ¢(n, j). (5.46)
By letting n — oo and since a(x, 7, Tk (un), VTi(un)) — @) weakly in (LM(Q))N
and i, (u,) = 1in {(x, ?) | |u,| < k}, we have
Jy = JQ oV Ti(v)y; dx dt + &(n),
which gives
Jy = JQ o VT (1) y, dx dt + &(n, j) (5.47)
by letting j — oo.
Concerning J4 we can write
Jy=— JQ O VWt (u) dx dt + &(n), (5.48)
which implies that, by letting j — oo,
Js = JQ Pk [VTi(u) — e VTi (W) dxdt + e(n, j). (5.49)
By letting 1 — oo we obtain
Jy=— JQ o VT (u) dxdt + e(n, j, 1, s). (5.50)

We then conclude that
J a(x, 8, T (), Vi () ) [V T (1) — VW] Vi (14) dx dlt
0 .

_ JQ [a(x, 1, Te(un), V() — @, 1, Te(wn), VTk(5)10)]

VT (un) — VTi(0) 2] 1 (un) dx dt + (n, j, 1, 5). (5.51)
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Now observe that

JQ la(x, 1, Ti(un), VTi(un)) — a(x, t, T (un), VT (u)x) ]
(VT (uy) — VT (u) ) m () dx dt
= JQ la(x, 1, Ti(un), VTic(un)) — a(x, t, Tre(uy), VTk(vj))(jS)]

VT (uy) — VTk(u,-);(}}hm(un) dx dt

+ , a(x, 6, Te(un), VTi(07)7) [V Tic () — VT (0)) 1 () lx dit
- 0 a(x, t, Ti(un), VT (u)xy) [V Tk (tn) — V Tic(u) 1V () dx dlt
+ . a(x,t, Ti(un), Vi () [V Tk (0) 2] = VTic () ) (1) dx dlt.

Passing to the limit in # and j in the last three terms on the right-hand side of the
last equality, we get

JQ (2%, T 1), VI (0)7) (VT tr) = V()1 (1) dix

— JQa(x, 1, Ti (), VT () 0) [V T () — VT () y ) om () dx dt = (n, j)
and
JQ a(x, 1, Ti(un), Vi (uy)) (VT (vj)x; — VTic(u)gslhm(un) dx dt = &(n, j). (5.52)

This implies that

JQ la(x, t, Ti(un), Vi () — a(x, ¢, Ti(un), VIi(u)x,)]
VT (un) = VTk () )i () dx dit
= JQ [a(x, 1, Tie(un), VTk(Un)) — a(x, t, Tre(up), VTk(Uj)X;)]

VT (n) — VT (07) 2 1 (un) dx dt + &(n, j). (5.53)
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On the other hand, we have
JQ la(x, t, Tic(un), Vi (un)) — a(x, ¢, Ti(un), Vi () 15) | [V Tic (1) — VT () 7]
= JQ [a(x; Z Tk(un)v VTk(“n)) - a(x, L Tk(”n)a VTk(”)Xs)}
VT (un) — VT (1) ) (u) dx dt
+ JQa(x, t, Tr(uy), VTk(u,,)) VT (u,) — VTi(u)y’] (l - hm(un)) dx dt
_ JQa(x, £, T (), VT ()03 VT (1) — VT3 (1)) (1 — (1)) dix di.
(5.54)

Since /iy (uy) =1 in {Juy| <m} and {|u,| < k} = {|u,| < m} for m large
enough, we deduce from (5.54) that

JQ la(x, 1, Tie(un), VT (un)) — a(x, 2, Tic(un), VT3 () ) | [V Tk () — VT () 1]
= JQ la(x, 1, Ti(un), VTi(un)) — a(x, t, T (), V(1)) ]

VT () = VT ()] +J a(x, t, Te(un), VT (1))
{lun|>k}
VT (w)y (1 = hy(uy)) dxdt.

It is easy to see that the last terms of the last equality tend to zero as n — + o0,
which implies that

JQ la(x, 1, T(un), VT (un)) — a(x, 2, Ti (), VT3 () ) | [V Tk (i) — Vi () 1]

= JQ la(x, 1, Ti(u), VT (u)) — a(x, t, T (u), VTi(u)x,)]
VT (u) — VT (u)y ) hm(uy) dx dt + &(n, ).

Combining (5.36), (5.45), (5.46), (5.47), (5.50) and (5.54) we obtain

JQ [a(x, Z, Tk(un)v VTk(un)) - a(x, f Tk(un)a VTk(u)X\)]

VT (uy) — VT (w)y,) dxdt < e(n, j, 1,m,s). (5.55)
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To pass to the limit in (5.55) as n, j, m, s tend to infinity, we obtain

lim lim JQ la(x, 1, Ti(un), VTi(un)) — a(x, t, T (), VT (1)) ]

§—00 — 0

VT (up) — VT (u)y,] dx dt = 0. (5.56)

This implies, by Lemma 3.2, the desired statement and finishes the proof of
Proposition 5.6. ]

Step 4. In this step we prove that u satisfies (4.2).
Lemma 5.8. The limit u of the approximate solution u, of (5.5)—(5.7) satisfies

lim

J a(x,t,u, Vu)Vudxdt = 0. (5.57)
M=+0 J i< |u| <m+1}

Proof. Taking T (uy — Tyu(uy)) as test function in (5.5), we obtain

<6bn(un) T (un — Tm(un))> + J a(x, t, uy, Vu,)Vu, dx dt

ot (m<|uy| <m+1}

+ JQ diV[J:n O(r) T (r— Tm(r))} dxdt = JQf,,Tl (un — T(un)) dxdr.  (5.58)

Using the fact that [, ®(r)T|(r — T,u(r)) dxdr € W, Ly(Q) and Stokes™ for-
mula, we get

J B} (un(T)) dx + J a(x, t,uy, Vit )V, dx dt
Q

{m<|u,| <m+1}

< J /T (n — Tm(un))|dxdt+J B! (uon) dx, (5.59)
0 Q

where B (r) = [y by ()T1 (s — Tou(s)) ds.
In order to pass to the limit as » tends to +o0 in (5.59), we use B! (u,(T)) > 0
and (5.3)—(5.4), we obtain that

lim J
=t i< |uy| <m+1}

< J 1] dxdt+J 1b(ut0)| dx. (5.60)
{lul>m} {luo|>m}

a(x, t, uy, Vu,)Vu, dx dt
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Finally by (3.7), (3.8) and (5.60) we get

Iim Ilim

J a(x, t,u,, Vu,)Vu, dx dt = 0. (5.61)
M=+00 n=+00 J oy <y | <m+1}

To this end, observe that for any fixed m > 0 one has

J a(x, t,uy, Vu,)Vu, dx dt
{m<|u,| <m+1}

= J a(x,t,uy, Vi) [V T 1 (un) — VT (uy)] dx dt
0
= J a(x7 Z, Tn1+l(un)7 VTm+l(un))VTm+l(un) dx dt
9
— J a(x, t, Ton(tty), VTm(un))VTm(un) dx dt.
9

According to (5.30)—(5.31), one is at liberty to pass to the limit as # tends to + o0
for fixed m > 0 and to obtain

lim

J a(x, t, uy, Vu,)Vu, dx dt
n=40 ) m < |u,| <m+1}

= J a(x, t, Tonp1(U), Vi1 (u))VTmH (u) dx dt
0

- J a(x,t, Ty(u), VT, (1)) VT, (u) dxdt
0

a(x, t,u, Vu)Vu dx dt. (5.62)

J{m<u<m+1}

Taking the limit as m tends to +oo in (5.62) and using the estimate (5.61) it possi-
ble to conclude that (5.57) holds true and the proof of Lemma 5.7 is complete. []

Step 5. In this step, u is shown to satisfy (4.3) and (4.4). Let S be a function in
W 1> (R) such that S has a compact support. Let K be a positive real number
such that supp(S) = [-K, K]. Pointwise multiplication of the approximate equa-
tion (5.5) by S(u,) leads to

635(14,,)
ot
— div(S(un)®(un)) + S (tn) P (y)Vuy = fS(uy) in D'(Q),  (5.63)

— div(S(un)a(x, t,uy, Viy)) + S (up)a(x, 1, 1y, Vity) Vit

where Bs(z) = [, b'(r)S(r) dr.
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It what follows we pass to the limit as » tends to +oo in each term of (5.63).

A
t

Limit of —3

Since S is bou(nc)led and BY(u,) converges to Bg(u) a.e. in Q and in L*(Q)
Uy 533(14)

weak-*. Then M‘p—t converges to —2— in D'(Q) as n tends to +o0.
Limit of —div(S(u,)a(x, t,u,, Vuy)).
Since supp S = [—K, K], we have
S(up)a(x, t,uy, Vuy) = S(up)a(x, t, Tg (un), VTk (1)) a.e. in Q.

The pointwise convergence of u, to u as n tends to +oo, the bounded character of
S, (5.23) and (5.30) of Lemma 5.6 imply that
S(up)a(x, t, Tk (un), VTk (un)) — S(u)a(x,t, Tg (1), VT (u)) weakly in (LM(Q))N

for o(I1L;;,I1E)) as n tends to 4oo because S(u) =0 for |u| > K a.e. in Q.
Moreover,

S(u)a(x,t, Tg(u), VT (u)) = S(u)a(x, t,u, Vu) a.e. in Q.
Limit of S'(uy)a(x, t, u,, Vi, ) Vity,.
Since supp S’ = [-K, K], we have
S (up)a(x, t,uy, Vi)V, = S"(uy)a(x, t, Tx (uy), VTk (un)) VT (1) a.e. in Q.

The pointwise convergence of S’(u,) to S’(u) as n tends to + oo, the bounded char-
acter of §” and (5.30)—(5.31) of Lemma 5.6 allow to conclude that

S (up)a(x, t, uy, Vi) Vi — S'(u)a(x, t, Tg(u), VTk (u))VTk (u) weakly in L'(Q),
as n tends to +00. Moreover,
S"(w)a(x, t, Tx(u), VTk (1)) VTk (u) = S'(u)a(x, t,u, Vu)Vu a.e. in Q.
Limit of S(u,)®,(uy)-
Since supp S = [—K, K], we have

S ()P () = S(uy) Py (T (uy)) a.e. in Q.
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As a consequence of (3.6), (5.2) and (5.23), it follows that

S (1) D, () — " () (T (u)) strongly in (Ex(Q))",

as n tends to +00. The term S'(u)® (T (u)) is denoted by S’ (u)D(u).
Limit of S'(u,)®,,(u,) Vi,

Since S € W *(R) with supp S = [~K, K], we have
S (1) D (1) Vit = @ (Tk (142) ) VS’ (1) 2. in Q.

Moreover, VS'(u,) converges to VS’(u) weakly in Ly(Q)" as n tends to +oo,
while @, (T K(un)) is uniformly bounded with respect to n and converges a.e. in Q
to ®(Tx(u)) as n tends to +oo. Therefore

S (ttn) Dy (1) Vit — O (T () ) VS’ (u) weakly in Ly, (Q).

Limit of f,S(uy).

Due to (5.3) and (5.23), we have

fuS(u,) — fS(u) strongly in L'(Q),

as n tends to +oo.

As a consequence of the above convergence result, we are in a position to pass
to the limit as n tends to +o0 in equation (5.63) and to conclude that u satisfies
4.3).

It remains to show that Bg(u) satisfies the initial condition (4.4). To this end,
firstly note that, S being bounded, B¢(u,) is bounded in L*(Q). Secondly, (5.63)
and the above considerations on the behavior of the terms of this equation show

OB (uy

that % is bounded in L'(Q) + W~"*L;(Q). Thus an Aubin type lemma (see,
e.g., [32], Corollary 4) and (see also Lemma 2.6) implies that B¢(u,) lies in a com-
pact set of C°([0, T]; L'(Q)). It follows that on the one hand B%(u,)(r =0) =
Bi(ug,) converges to Bs(u)(t = 0) strongly in L'(Q). On the other hand, the

smoothness of S implies that
Bs(u)(l = 0) = BS(UQ) in Q.

As a conclusion of step 1 to step 5, the proof of theorem 5.1 is complete. O



58 E. Azroul, H. Redwane and M. Rhoudaf
6. Appendix

Proof Lemma 5.7. Integration by parts and the use of the properties of w{fj yield

T . T /o
J <6b,,(un) ,(05:;7,”> dydi — J <0br:a(lun) ’hm(un)Tk(”n)> dx dt

0 ot 0

T
B J <abna(zu") ,hm(un)wffj> dedi=1{' + L', (6.1)
0

We denote by

By a standard argument we can write the first term on the right-hand side of (6.1)
as

=[] Bt as] | = | (B (0(T) = B (0)) s
= |, 1B D) - Biawa e (62)
Q

To pass to the limit in (6.2) as n — +o0, we first observe that b/ (u,)hy,(u,) =
(0" (Tns1 (n)) + 1Ay () for n (with n > m + 1) large enough. Then we deduce
that

I' = JQ [Bunic (u(T)) — B, ic(u0)] dx + &(n), (6.3)

where By, (s) = [ b’ (8)Im(s) Tx(s) ds.
The second term on the right-hand side of (6.1) can be written as

T ) ob,(uy,)
mu_ n\Un u
L= . < 5 ,hm(un)wl_’_/>dt

A M

T ow''.
- [Bﬁ,(un)wf‘j}gdx—i—J J o (1) 22 dix dt
Q ' alJo ot

=—QWMMDwmn—wwmnmﬂ

T
+ ﬂJ J B! (un) (T (vy) — wffj) dx dt. (6.4)
alo
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By passing to the limit as n tends to infinity in (6.4) we get

B = = | BTt (1) = Bl T d

+uJ J By (u) (Ti(v) — w')) dxdt + &(n),
alo

where By, (s) = [ b'()hu(s) ds.
Now letting j — +o0, we get

o= JQ (B (u(T)) (T () (T) + T T () = Bon(1a0) T ()] lx
T
" ,uJQ ,[o By (u(T)) (Ti(u) ~ (Tk(u)/t — e " Ty(y;)) dxdt +e(n, j).  (6.5)

Therefore, passing to the limit, first in x# and then in j, in the first terms on the
right-hand side of the last equality, we deduce that

= [ [BaD) (T200,(T) + ¢ #TT1(0) — Bl Tt

= JQ (B (u(T)) (T (u(T)) — Bu(uo) T (uo)] dx + &(p, ). (6.6)

ow

Let wi, = (Tk(u))ﬂ + e " Ty (y;) and note that m"‘ = u(Tx(u) —w}). Then the
second term on the right-hand side of (6.6) can be rewritten as

QJo H

T . .
+,uJ J (B (Tk(w)) — Bm(w;l))(Tk(u) — wl’) dx dt
alo

+u JQ JOT By(w,) (Ti(u) — w,,) dt dx

= II]” + 112” + 113”, (6.7)
where
T

= J J (Bun(1) — Bo(k)) (k — w!) dx
{u>k} JO

+ ﬂj JT(Bm(u) — Byu(—k))(—k — wi) dxdi > 0. (6.8)
{u<—k} JO
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As B,,(s) is non-decreasing for s and —k < w/i < k, it follows that

' > 0. (6.9)

Moreover,

T
I = ,uJQ L By(w,) (Ti(u) — w),) dxdt

I,

where B,,(s) = [ Bu(r)dr. Also wi, — Ti(u) a.e. in Q as , i tend to +oo and
|wj[| < k. Then Lebesque’s convergence theorem shows that

r ow! . .
J Byu(wy) 61‘# dxdt = J (B(WL(T)) — B(WL(O)) dx,  (6.10)
0 Q

I3 = L [B(Ti(u)(T)) — B(Tk(uo))] dx + &(p, i). (6.11)
In view of (6.5)—(6.11), one has
L= JQ (B (u(T)) Tk (u(T)) — Byu(uo) Tic(uo)] dx
+ | [B(Te(u)(T)) — B(Ti(uo))] dx + e(u, ). (6.12)

Q

As a consequence of (6.1), (6.3) and (6.12), we deduce that

<abna—(lun)’¢7/:jlm> 2 Q[Bm,k(u(T)) - B’1l*k(u0)] dx

_ JQ [Bon(u(T)) Tic(u(T)) — Bu(uto) ()] dlx
+ JQ [B(Ti(u)(T)) — B(Tk(uo))] dx + &(n, j,u,i).  (6.13)

Observe that for any z € R we have
Tk<z)

B(Ty(z)) = J B, (r) dr

0

= Tk(Z)O(m<Tk(Z)) — O(m"k(Tk(Z)). (614)
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Finally, we deduce that

6bn Uy i . .
< a(z ) ,(/J,ﬁ‘j_,-_,m> >0+ e(n, j, p, ). (6.15)

This is due to the fact that for |r| < k, we have
B(Tk(r)) = Tic(r)Bun(r) — By, (r),

and if r > k we have

k r
B i (r) = J b'(s)h(s)sds + kJ b'(s)hpm(s) ds
0 k
k r
—Ti(r)Bn(r) = —kJ b (8) () ds — kJ b'(8)hy(s) ds
0 k
B k k
B(k) = kj b'(s)h(s) ds — J b' ()l (s)s ds.
0 0
The case r < —k is similar to the previous one. This conclude the proof of
Lemma 5.7. |
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