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A class of integral domains whose integral closures are
small submodules of the quotient field
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Abstract. Let ðV ;MÞ be a valuation domain which is distinct from its quotient field K , and
let p : V ! V=M be the canonical surjection. Let D be a subring of V=M. It is proved
that the pullback R :¼ p�1ðDÞ has the property that V (and hence each integral overring
of R) is a small R-submodule of K . Applications include all classical DþM constructions
and locally pseudo-valuation domains.

Mathematics Subject Classification (2000). Primary 13G05, 13A15, 13C99; Secondary
13B21, 13F30.

Keywords. Integral domain, quotient field, small submodule, valuation domain, overring,
integrality, maximal ideal, pullback, DþM construction, locally pseudo-valuation domain.

1. Introduction

All rings considered below are commutative with 1A 0; all subrings, subalge-

bras and modules are unital. Recall that if R is a ring and E is an R-submodule

of an R-module F , then E is called a small R-submodule of F if, whenever an

R-submodule G of F satisfies E þ G ¼ F , it must be the case that G ¼ F . Con-

sider a (commutative integral) domain R with quotient field K ; let R 0 denote the

integral closure of R (in K). Our main interest here is in finding a new su‰cient

condition that R 0 be a small R-submodule of K . Our main result, Theorem 2.1 (b),

accomplishes somewhat more than this.

The motivation for this work was the following result of Zöschinger [15], Fol-

gerung 1.8: if R is a Noetherian domain which is distinct from its quotient field K ,

then R 0, the integral closure of R, is a small R-submodule of K . It does not seem

to have been noticed that each integrally closed domain which is not a field has

this property. In fact, more generally, if R is any domain that is properly con-

tained in its quotient field K , then R is a small R-submodule of K . This fact fol-

lows from work of Pareigis [13], it was generalized by Harada in [10], Theorem 1,



and recovered in [10], Proposition 2, and it was extended to certain base rings that

are not domains by Rayar [14], Proposition 1. (To see the relevance of [14], note

that if R is any domain with quotient field K , then K is the injective envelope of

the R-module R.) For another generalization due to Harada, see [9].

As explained following Corollary 2.2, many of the domains R satisfying the

hypotheses of Theorem 2.1 are not Noetherian and, hence, are not susceptible to

the methods of [15]. The rings addressed in Theorem 2.1 can be viewed as pull-

backs of the kind that have proved to be useful in constructing counterexamples in

multiplicative ideal theory for several decades. In Corollary 2.2, we isolate the ap-

plication to the most special type of such a pullback, the classical DþM construc-

tion, which essentially goes back to Krull. Corollary 2.4 gives an application to the

pseudo-valuation domains of Hedstrom-Houston [11] and, more generally, to the

locally pseudo-valuation domains that were introduced in [6].

Besides the conventions noted above, we adopt the following. If D is a domain

with quotient field F , then an overring of D is any D-subalgebra of F , i.e., any ring

S such that DJSJF ; MaxðAÞ denotes the set of all maximal ideals of a ring A,

andHdenotes proper inclusion. Any unexplained material is standard, as in [8].

2. Results

Our main result shows that certain pullbacks that have received considerable at-

tention (cf. [7], Section 2, and the B, I , D construction in [4]) satisfy the conclusion

of the motivating result of Zöschinger [15], Folgerung 1.8.

Theorem 2.1. Let R be a domain that is properly contained in its quotient field, K.

Suppose that R has a nonzero ideal M which is the maximal ideal of some valuation

overring V of R. (Equivalently, suppose that R has a valuation overring V AK such

that V �V=M D ¼ R, where M is the maximal ideal of V and D is a subring of

V=M.) Then:

(a) If E is an R-submodule of K, then either EJV or V JE.

(b) V is a small R-submodule of K.

(c) Each integral overring of R is a small R-submodule of K.

(d) R 0, the integral closure of R, is a small R-submodule of K.

Proof. The parenthetical comment is apparent, with D :¼ R=M.

(a) The proof of (a) is inspired by the first part of the proof of [2], Theorem 3.1.

Suppose that EUV . We shall prove that V JE. Choose e a EnV . Since V is a

valuation domain, e�1 must be a nonunit of V , that is, an element of M. It fol-

lows that 1 ¼ e�1e a ME, so that

66 D. E. Dobbs



V J ðMEÞV ¼ ðMVÞE ¼ MEJRE ¼ E;

as desired.

(b) Suppose that the assertion fails. Then there is an R-submodule E of K such

that EHK and V þ E ¼ K . As V þ E ¼ K UV , we must have EUV . There-

fore, by (a), V JE, whence

K ¼ V þ EJE þ E ¼ EHK ;

the desired contradiction.

(c), (d): Any submodule of a small submodule is itself a small submodule. Ac-

cordingly, since each integral overring of R is contained in V (cf. [8], Theorem

19.8), the assertions follow from (b), thus completing the proof. r

Notice that the rings R and V in Theorem 2.1 have the same quotient field

since MA 0. Thus, the result of Pareigis(–Harada–Rayar) that was mentioned

in the Introduction ensures that V is a small V -submodule of K . The above argu-

mentation for parts (a) and (b) of Theorem 2.1 was necessary in order to replace

‘‘V -submodule’’ with ‘‘R-submodule’’.

Corollary 2.2 summarizes the import of parts (b) and (c) of Theorem 2.1 in

case the given pullback R is a classical DþM construction.

Corollary 2.2. Let V be a valuation domain of the form V ¼ LþM, where L is

a field and MA 0 is the maximal ideal of V. Let D be a subring of L. Put

R :¼ DþM. Then V (and hence any integral overring of R) is a small R-submodule

of the quotient field of R (that is, of the quotient field of V ).

Many non-Noetherian domains R arise in the context of Theorem 2.1 (cf. [7],

Theorem 2.3). In fact, this is well known even in the context of Corollary 2.2, [2],

Theorem 2.1 (m), where to ensure a non-Noetherian R, one need only arrange at

least one of the following three conditions: V is not a discrete rank 1 valuation

domain; D is not a field; D is a field such that ½L : D� ¼ l.

Before applying Theorem 2.1 to locally pseudo-valuation domains, we pause

to show that the property being studied is a local property.

Corollary 2.3. (a) Let R be a domain. Let S be an overring of R such that SRnM
is a small RM-submodule of K for each maximal ideal M of R. Then S is a small

R-submodule of K.

(b) Let R be a domain such that ðRMÞ0 is a small RM-submodule of K for each

maximal ideal M of R. Then R 0 is a small R-submodule of K.

(c) Let R be a domain that is properly contained in its quotient field, K. Suppose

that for each maximal ideal M of R, there exists a valuation overring of R with
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maximal ideal MRM. Then each integral overring of R (in particular, R 0) is a small

R-submodule of K.

Proof. (a) More generally, one has that if A is a ring and B is an A-submodule

of an A-module C such that BAnM is a small AM -submodule of CAnM for each

M a MaxðAÞ, then B is a small A-submodule of C. Indeed, if G is an A-submodule

of C such that Bþ G ¼ C, we shall prove that G ¼ C. If M a MaxðAÞ,
then working with the canonical images inside CAnM , we have BAnM þ GAnM ¼
ðBþ GÞAnM ¼ CAnM . Since BAnM is assumed small, it follows that GAnM ¼ CAnM .

Therefore, by globalization, G ¼ C, as asserted.

(b) It is well known that if M a MaxðRÞ, then ðRMÞ0 ¼ ðR 0ÞRnM (cf. [8], Prop-

osition 10.2). Accordingly, the assertion follows from (a) by taking S :¼ R 0.
(c) Once again invoking the fact that any submodule of a small submodule

is itself a small submodule, we see that it su‰ces to prove that R 0 is a small

R-submodule of K . By (b), it is enough to show that if M a MaxðRÞ, then

ðRMÞ0 is a small RM-submodule of K . This, in turn, follows by applying Theorem

2.1 (d) to the ring RM . The proof is complete. r

Recall from [11] that a quasilocal domain ðR;MÞ is called a pseudo-valuation

domain (in short, a PVD) if there is a (necessarily uniquely determined) valuation

overring V of R with maximal ideal M. According to [1], Proposition 2.6, the

PVDs are precisely the pullback rings R as in the hypotheses of Theorem 2.1 for

which D is a field. Recall from [6] that a domain R is called a locally pseudo-

valuation domain (in short, an LPVD) if RM is a PVD for each M a MaxðRÞ.
Of course, the most familiar examples of PVDs (resp. LPVDs) are the valuation

(resp. Prüfer) domains.

Corollary 2.4. (a) Let ðR;MÞ be a PVD that is properly contained in its quotient

field, K. Let V be the valuation overring of R with maximal ideal M. Then V (and

hence any integral overring of R) is a small R-submodule of K.

(b) Let R be an LPVD that is properly contained in its quotient field, K. Then

R 0 (and hence any integral overring of R) is a small R-submodule of K.

Proof. (a) By the above remarks, one need only combine parts (b) and (c) of

Theorem 2.1 with the characterization of PVDs in [1], Proposition 2.6.

(b) The assertion follows by combining the definitions of LPVD and PVD with

Corollary 2.3 (c). (Notice that this leads to another proof of (a) since any PVD is

also an LPVD.) For an alternate proof of (b), combine (a) with either Corollary

2.3 (a) or Corollary 2.3 (b). This completes the proof. r

We close with a couple of remarks.
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Remark 2.5. (a) In view of [15], Folgerung 1.8, and Theorem 2.1 (d), one can ask

whether there exists any domain R, properly contained in its quotient field K , for

which R 0 is not a small R-submodule of K . We do not know the answer. If such a

domain R exists, it follows from [10], Theorem 1, that R 0 cannot be a finitely gen-

erated R-module. By Corollary 2.3 (a), if such R exists, we may as well assume

that it is quasilocal. We note that examples are known of quasilocal domains D

such that D 0 has infinitely many maximal ideals. These are reasonable candidates

since, for any such D, D 0 cannot be a finitely generated D-module by [3], Proposi-

tion 3, p. 329, and D cannot be a Noetherian ring by [12], Theorem 33.10 (2).

However, we have been unable to determine for any of these D whether D 0 is a
small D-submodule of its quotient field.

(b) The above focus should not be shifted from R 0 (the integral closure of a

given domain R properly contained in its quotient field K) to R�, the complete in-

tegral closure of R. Indeed, it is possible for such R to have R� ¼ K , which is, of

course, not a small R-submodule of K . For an explicit example of an R with this

behavior, consider any valuation domain R which is not a field and which has no

prime ideal of height 1. The fact that R� ¼ K follows from [5], Lemma 4.2 (which

applies since R is a conducive domain, in the sense of [5], but not a G-domain).
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