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Stability criteria for certain third order nonlinear delay
di¤erential equations
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(Communicated by Luı́s Sanchez)

Abstract. In this paper we study the asymptotic stability of the trivial solution of third
order nonlinear delay di¤erential equations of the form

x 000ðtÞ þ f
�
xðtÞ; x 0ðtÞ

�
x 00ðtÞ þ g

�
xðt� rÞ; x 0ðt� rÞ

�
þ h
�
xðt� rÞ

�
¼ 0;

where r > 0 is a constant delay. In proving our result we make use of Lyapunov’s second
method by constructing a Lyapunov functional.
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1. Introduction

In an 1892 paper (for an English translation see [11]), the Russian mathematician

Lyapunov introduced a novel approach, now called Lyapunov’s second (or direct)

method, to stability analysis. This approach consists in finding a scalar function,

now called Lyapunov function, which depends on the system variables and satis-

fies certain preset conditions. Lyapunov showed that this function can be used to

deduce the stability properties of solutions to the equations governing the system.

The stability in the sense of Lyapunov is based on the following physical sta-

bility definitions: Physically, we may have three basic stability aspects, depending

on stability considerations of a motion on its orbit, of the orbit of a motion, and of

the boundedness of the motion and its orbit. A motion or its orbit is considered as

stable, if, by giving a small disturbance to the motion or to its orbit, the disturbed

motion or its orbit, initially near to the unperturbed motion or to its orbit, remains

near to it all time. More specifically, if for small disturbances the e¤ect on the

motion or on its orbit is small, we say that the motion or its orbit is in a ‘‘stable’’

situation. If for small disturbances the e¤ect is considerable, the situation is



‘‘unstable’’. If for small disturbances the e¤ect tends to disappear, the situation is

‘‘asymptotically stable’’. If, regardless of the magnitude of the disturbances, the

e¤ect tends to disappear, the situation is ‘‘asymptotically stable in the large’’.

These three di¤erent stability aspects are of a qualitative type.

Lyapunov’s second method is fairly general and can be applied to stability test-

ing of linear and nonlinear, time-varying continuous systems and their di¤erential

equations. Since the use of Lyapunov’s second method for the investigation of

stability criteria of equations with delay encountered some principal di‰culties,

Krasovskii [10] carried out the use of functionals defined on equations’ trajectories

instead of Lyapunov functions. Later, the qualitative behavior of solutions of

delay di¤erential equations, or more generally of functional di¤erential equations

of first and second order, has been studied extensively and is still the object of

intensive research.

There is a wide range of literature dealing with the theory of stability of solu-

tions of first and second order linear and nonlinear di¤erential equations with

delay. In particular, in the ordinary case the reader is referred to the books of

Burton ([1], [2]), Èl’sgol’ts [3], Èl’sgol’ts and Norkin [4], Gopalsamy [5], Hale [6],

Hale and Verduyn Lunel [7], Kolmanovskii and Myshkis [8], Kolmanovskii and

Nosov [9], Krasovskii [10] and Yoshizawa [16] and the references cited in these

sources.

It should be noted that in spite of the existence of many results on the stability

of solutions of delay di¤erential equations of first and second order, there are only

a few results on the same subject concerning nonlinear delay di¤erential equations

of third order. The reader is referred to the papers of Sadek [13], Sinha [14], Tunç

[15], Zhu [17], and the references therein.

All these papers do not contain an explanatory example on the stability of

solutions of third order nonlinear delay di¤erential equations. That the stability

of solutions of third order nonlinear delay di¤erential equations is not dealt with

in many papers is, perhaps, due to the construction of Lyapunov functionals for

the delay di¤erential equations of higher order. On the other hand, systems of

delay di¤erential equations do now attract a lot of interest in various areas of

science. For many real systems have the after-e¤ect property, i.e., the future states

depend not only on the present but also on the past history. For instance, after-

e¤ect is believed to occur in mechanics, control theory, physics, chemistry, biol-

ogy, medicine, economics, atomic energy, information theory, etc. This wide

occurrence of after-e¤ect is reason to regard it as a universal property of the sur-

rounding world. For a comprehensive treatment of the subject we refer the reader

to the book by Kolmanovskii and Myshkis [8], and the books mentioned above.

The aim of this article is to study the asymptotic stability of the trivial solution

of the third order nonlinear delay di¤erential equation

x 000ðtÞ þ f
�
xðtÞ; x 0ðtÞ

�
x 00ðtÞ þ g

�
xðt� rÞ; x 0ðt� rÞ

�
þ h
�
xðt� rÞ

�
¼ 0 ð1Þ
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or its equivalent system

x 0ðtÞ ¼ yðtÞ; y 0ðtÞ ¼ zðtÞ;
z 0ðtÞ ¼ �f

�
xðtÞ; yðtÞ

�
zðtÞ � g

�
xðtÞ; yðtÞ

�
� h
�
xðtÞ

�
þ
ð t
t�r

gx
�
xðsÞ; yðsÞ

�
yðsÞ dsþ

ð t
t�r

gy
�
xðsÞ; yðsÞ

�
zðsÞ ds

þ
ð t
t�r

h 0�xðsÞ�yðsÞ ds:
ð2Þ

Here r is a positive constant, that is, r is a constant delay; the functions f , g

and h depend only on the arguments displayed explicitly and the primes in

equation (1) denote di¤erentiation with respect to t a Rþ, Rþ ¼ ½0;lÞ. It is

generally assumed that the functions f , g and h are continuous for all values of

their arguments on R2 and R, respectively. Additionally it is supposed that the

derivatives h 0ðxÞC d
dx
hðxÞ, gxðx; yÞC q

qx
gðx; yÞ and gyðx; yÞC q

qy
gðx; yÞ exist

and are continuous. Throughout the article xðtÞ, yðtÞ and zðtÞ are abbreviated as

x, y and z, respectively. Moreover, it is assumed that solutions of equation (1)

exist and are unique, and all solutions considered are real-valued.

It should be noted that, in 1965, Ponzo [12] described a technique involving

integration by parts for constructing a Lyapunov function for the third order non-

linear di¤erential equation without delay:

x 000ðtÞ þ f
�
xðtÞ; x 0ðtÞ

�
x 00ðtÞ þ g

�
xðtÞ; x 0ðtÞ

�
x 0ðtÞ þ h

�
xðtÞ

�
¼ 0:

Ponzo constructed a Lyapunov function and established su‰cient conditions

for the asymptotical stability of the trivial solution of this equation. He does,

however, not give any explanatory example on the subject. The motivation for

the present paper especially comes from the paper of Ponzo [12] and the works

mentioned above. Our aim here is to improve the results by Ponzo [12] to the

nonlinear delay equation (1) and to prove the asymptotic stability of trivial

solution of that equation. We also give an explanatory example related to the

equation (1). The equation discussed in Ponzo [12] is also a special case of equa-

tion (1) in the case of r ¼ 0.

2. Preliminaries

We will start with some basic information on the general autonomous delay

di¤erential system; see also Burton [2], Èl’sgol’ts [3], Èl’sgol’ts and Norkin [4],

Gopalsamy [5], Hale [6], Hale and Verduyn Lunel [7], Kolmanovskii and Myshkis

[8], Kolmanovskii and Nosov [9], Krasovskii [10], and Yoshizawa [16].

73Stability criteria for third order nonlinear delay di¤erential equations



Consider the general autonomous delay di¤erential system

x 0 ¼ f ðxtÞ; xtðyÞ ¼ xðtþ yÞ; �ra ya 0; tb 0; ð3Þ

where f : CH ! Rn is a continuous map, f ð0Þ ¼ 0, and we suppose that f takes

closed bounded sets into bounded sets of Rn. Here ðC; k � kÞ is the Banach

space of continuous functions f : ½�r; 0� ! Rn with supremum norm, r > 0, CH

is the open H-ball in C; CH :¼ ff a ðC½�r; 0�;RnÞ j kfk < Hg. Standard existence

theory, see Burton [1], shows that if f a CH and tb 0, then there is at least one

continuous solution xðt; t0; fÞ such that on ½t0; t0 þ aÞ satisfying equation (3) for

t > t0, xtðt; fÞ ¼ f and a is a positive constant. If there is a closed subset

BHCH such that the solution remains in B, then a ¼ l. Further, the symbol

j � j will denote the norm in Rn with jxj ¼ max1aianjxij.

Definition 1 (See [1]). Let f ð0Þ ¼ 0. The zero solution of equation (3) is

(a) stable if for each t1b t0 and e > 0 there exists d > 0 such that ½kfka d; tb t1�
imply that jxðt; t1; fÞj < e;

(b) asymptotically stable if it is stable and if for each t1b t0 there is an h such

that kfka h implies that xðt; t0; fÞ ! 0 as t ! l.

Definition 2 (See [14]). If V is a continuous scalar function in CH, we define the

derivative of V along the solutions of (3) by the following relation

_VVð3ÞðfÞ ¼ lim sup
h!0þ

V
�
xhðfÞ

�
� VðfÞ

h
:

Lemma (See [14]). Suppose that f ð0Þ ¼ 0. Let V be a continuous functional

defined on CH ¼ C with Vð0Þ ¼ 0, and let uðsÞ be a function, non-negative and

continuous for 0a s < l, uðsÞ ! l as u ! l with uð0Þ ¼ 0. If for all f a C,

uðjfð0ÞjÞaVðfÞ, VðfÞb 0, _VVð3ÞðfÞa 0, then the solution xt ¼ 0 of (3) is stable.

If we define Z ¼ ff a CH j _VVð3ÞðfÞ ¼ 0g, then the solution xt ¼ 0 of (3) is

asymptotically stable, provided that the largest invariant set in Z is Q ¼ f0g.

3. Main result

The main result of this paper is the following theorem.

Theorem. In addition to the basic assumptions imposed on the functions f , g and h

in equation (1), we assume that there are positive constants a, b, c, c1, l, m, L and M

such that the following conditions hold for all x, y and z:
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(i) f ðx; yÞb aþ 2l ðyA 0Þ.
(ii) gðx; 0Þ ¼ 0, gðx;yÞ

y
b bþ 2m ðyA 0Þ, jgxðx; yÞjaL and jgyðx; yÞjaM.

(iii) hð0Þ ¼ 0, 0 < c1a h 0ðxÞa c.

(iv) ab� c > a
y

Ð y
0 fxðx; hÞh dhþ 1

y

Ð y
0 gxðx; hÞ dhb 0 ðyA 0Þ.

Then the trivial solution of equation (1) is asymptotically stable provided that

r < min
4ma

aLþ aM þ acþ ðLþ cÞð1þ aÞ ;
4l

LþM þ cþMð1þ aÞ

� �
:

Proof. Define the Lyapunov functional V ¼ Vðxt; yt; ztÞ by

Vðxt; yt; ztÞ ¼
1

2
z2 þ ayzþ a

ð y
0

f ðx; hÞh dhþ
ð y
0

gðx; hÞ dhþ hðxÞy

þ a

ð x
0

hðxÞ dxþ r

ð0
�r

ð t
tþs

y2ðyÞ dy dsþ g

ð0
�r

ð t
tþs

z2ðyÞ dy ds; ð4Þ

where the constants r and g will be determined later in the proof. It will be shown

that the above Lyapunov functional and its time derivative d
dt
Vðxt; yt; ztÞ satisfy

the assumptions of the lemma, which implies asymptotic stability of the trivial so-

lution of equation (1).

Now, using the assumptions f ðx; yÞb aþ 2l,
gðx;yÞ

y
b bþ 2m, ðyA 0Þ, and

0 < h 0ðxÞa c, it follows that

ð y
0

f ðx; hÞh dhb aþ 2l

2

� �
y2;

ð y
0

gðx; hÞ dh ¼
ð y
0

gðx; hÞ
h

h dhb
bþ 2m

2

� �
y2

and

h2ðxÞ ¼ 2

ð x
0

hðxÞh 0ðxÞ dxa 2c

ð x
0

hðxÞ dx:

Making use of the above inequalities, the Lyapunov functionalV ¼ Vðxt; yt; ztÞ
defined in (4) can be recast in the form
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Vðxt; yt; ztÞb
1

2
z2 þ ayzþ a2 þ 2al

2

� �
y2 þ bþ 2m

2

� �
y2 þ hðxÞy

þ a

ð x
0

hðxÞ dxþ r

ð0
�r

ð t
tþs

y2ðyÞ dy dsþ g

ð0
�r

ð t
tþs

z2ðyÞ dy ds

b
1

2
ðzþ ayÞ2 þ ab� c

2a

� �
y2 þ ac

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2c�1

ð x
0

hðxÞ dx

s
� a�1jyj

 !2

þ aly2 þ my2 þ r

ð0
�r

ð t
tþs

y2ðyÞ dy dsþ g

ð0
�r

ð t
tþs

z2ðyÞ dy dsb 0:

ð5Þ

Now it is clear from (5) that there exist some positive constants Di ði ¼ 1; 2; 3Þ
such that

V bD1x
2 þD2y

2 þD3z
2 þ r

ð0
�r

ð t
tþs

y2ðyÞ dy dsþ g

ð0
�r

ð t
tþs

z2ðyÞ dy ds:

Therefore, due to the above discussion, the existence of a continuous function

uðjfð0ÞjÞ with uðjfð0ÞjÞb 0, which satisfies the inequality uðjfð0ÞjÞaVðfÞ, can be

easily verified, since the integrals r
Ð 0
�r

Ð t
tþs

y2ðyÞ dy ds and g
Ð 0
�r

Ð t
tþs

z2ðyÞ dy ds are
non-negative.

Now, by di¤erentiating the functional Vðxt; yt; ztÞ and using (4) and (2), we

obtain that

d

dt
Vðxt; yt; ztÞ ¼ �

h
a
gðx; yÞ

y
� h 0ðxÞ � a

y

ð y
0

fxðx; hÞh dh�
1

y

ð y
0

gxðx; hÞ dh
i
y2

�
�
f ðx; yÞ � a

�
z2 þ z

ð t
t�r

gx
�
xðsÞ; yðsÞ

�
yðsÞ ds

þ z

ð t
t�r

gy
�
xðsÞ; yðsÞ

�
zðsÞ dsþ ay

ð t
t�r

gx
�
xðsÞ; yðsÞ

�
yðsÞ ds

þ ay

ð t
t�r

gy
�
xðsÞ; yðsÞ

�
zðsÞ dsþ z

ð t
t�r

h 0�xðsÞ�yðsÞ ds
þ ay

ð t
t�r

h 0�xðsÞ�yðsÞ dsþ ry2r� r

ð t
t�r

y2ðsÞ ds

þ gz2r� g

ð t
t�r

z2ðsÞ ds: ð6Þ
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By noting the assumptions (i)–(iv) of the theorem and the inequality 2jabja
a2 þ b2, one can easily get the following inequalities:

�
�
f ðx; yÞ � a

�
z2a�2lz2;

�
h
a
gðx; yÞ

y
� h 0ðxÞ � a

y

ð y
0

fxðx; hÞh dh�
1

y

ð y
0

gxðx; hÞ dh
i
y2

a�
h
ab� c� a

y

ð y
0

fxðx; hÞh dh�
1

y

ð y
0

gxðx; hÞ dh
i
y2 � 2may2a�2may2;

z

ð t
t�r

gy
�
xðsÞ; yðsÞ

�
zðsÞ dsa M

2
rz2ðtÞ þM

2

ð t
t�r

z2ðsÞ ds;

z

ð t
t�r

gx
�
xðsÞ; yðsÞ

�
yðsÞ dsa L

2
rz2ðtÞ þ L

2

ð t
t�r

y2ðsÞ ds;

ay

ð t
t�r

gx
�
xðsÞ; yðsÞ

�
yðsÞ dsa aL

2
ry2ðtÞ þ aL

2

ð t
t�r

y2ðsÞ ds;

ay

ð t
t�r

gy
�
xðsÞ; yðsÞ

�
zðsÞ dsa aM

2
ry2ðtÞ þ aM

2

ð t
t�r

z2ðsÞ ds;

z

ð t
t�r

h 0�xðsÞ�yðsÞ dsa c

2
rz2ðtÞ þ c

2

ð t
t�r

y2ðsÞ ds;

ay

ð t
t�r

h 0�xðsÞ�yðsÞ dsa ac

2
ry2ðtÞ þ ac

2

ð t
t�r

y2ðsÞ ds:

Substituting the inequalities obtained above into (6), it is easy to see that

d

dt
Vðxt; yt; ztÞa� 2am� aLþ aM þ acþ 2r

2

� �
r

� 	
y2

� 2l� LþM þ cþ 2g

2

� �
r

� 	
z2

þ ðLþ aLþ cþ acÞ
2

� r

� 	 ð t
t�r

y2ðsÞ ds

þ ðM þ aMÞ
2

� g

� 	 ð t
t�r

z2ðsÞ ds: ð7Þ

If we choose r ¼ ðLþaLþcþacÞ
2 and g ¼ ðMþaMÞ

2 , we obtain from (7) that

d

dt
Vðxt; yt; ztÞa� 2am� aLþ aM þ acþ 2r

2

� �
r

� 	
y2

� 2l� LþM þ cþ 2g

2

� �
r

� 	
z2: ð8Þ
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Taking into account (8), we can conclude for some positive constants a and s that

d

dt
Vðxt; yt; ztÞa�ay2 � sz2a 0;

provided that

r < min
4ma

aLþ aM þ acþ ðLþ cÞð1þ aÞ ;
4l

LþM þ cþMð1þ aÞ

� �
:

It can also be easily shown that the largest invariant set in Z is Q ¼ f0g, where
Z ¼ ff a CH j _VVðfÞ ¼ 0g. Namely, the only solution of equation (1) for which
d
dt
Vðxt; yt; ztÞ ¼ 0 is the solution xtC 0. Thus, in view of the above discussion,

one can say that the trivial solution of equation (1) is asymptotically stable. This

completes the proof of theorem. r

Example. Consider third order nonlinear delay di¤erential equation

x 000ðtÞ þ
�
8þ

�
x 0ðtÞ

�2�
x 00ðtÞ þ 4x 0ðt� rÞ þ sin x 0ðt� rÞ þ 2xðt� rÞ ¼ 0: ð9Þ

Now it can be seen that di¤erential equation (9) has the form (1) and may be

expressed as

x 0ðtÞ ¼ yðtÞ; y 0ðtÞ ¼ zðtÞ;

z 0ðtÞ ¼ �
�
8þ y2ðtÞ

�
zðtÞ �

�
4yðtÞ þ sin yðtÞ

�
� 2xðtÞ

þ 2

ð t
t�r

yðsÞ dsþ
ð t
t�r

�
4þ cos yðsÞ

�
zðsÞ ds: ð10Þ

Clearly, by comparing (10) with (1) and taking into account the assumptions of

the Theorem, we have that

f ðyÞ ¼ 8þ y2b 8 ¼ aþ 2l;

gðyÞ ¼ 4yþ sin y; gð0Þ ¼ 0;

gðyÞ
y

¼ 4þ sin y

y
ðyA 0Þ;

4þ sin y

y
b 3 ¼ bþ 2m;

hðxÞ ¼ 2x; hð0Þ ¼ 0; h 0ðxÞ ¼ 2;

c1 a ð0; 2�, c ¼ 2, ab > 2, M ¼ 5 and L ¼ 0 (or L ¼ e for any e > 0).

Hence, the above facts show that all conditions (i) to (iv) of the Theorem are

satisfied.
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Corollary. Take any a a ð2=3; 8Þ in (4). Applying the Theorem, one obtains that

the trivial solution of (9) is asymptotically stable if the delay r satisfies

r < min
2ð3a� 2Þ
9aþ 2

;
2ð8� aÞ
12þ 5a

� �
:

For instance, with a ¼ 1 the result follows for r < 2=11.
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