
Portugal. Math. (N.S.) Portugaliae Mathematica
Vol. 66, Fasc. 1, 2009, 81–94 6 European Mathematical Society

The counting hierarchy in binary notation
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Abstract. We present a new recursion-theoretic characterization of FCH, the hierarchy of

counting functions, in binary notation. Afterwards we introduce a theory of bounded arith-

metic, TCA, that can be seen as a reformulation, in the binary setting, of Jan Johannsen and
Chris Pollett’s system D0

2 . Using the previous inductive characterization of FCH, we show
that a strategy similar to the one applied to D0

2 can be used in order to characterize FCH as
the class of functions provably total in TCA.
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1. Introduction

For the past two decades several theories of bounded arithmetic were introduced

because of their connection to computational complexity theory. We can, for in-

stance, mention the work of Samuel Buss [1], where he introduces theories like

S1
2 , U

1
2 , and V1

2 and proves they characterize, respectively, PTIME, PSPACE and

EXPTIME as the class of functions provably total in these theories, with appropri-

ate graphs. For related work in the area, see also [12], [13], [9], [10] and [2].

In this article we focus on a particular class, the hierarchy of counting functions,

FCH. Since it was introduced by Wagner in 1986 [19], by means of some computa-

tional considerations over the classaP, several characterizations of this computa-

tional complexity class emerged. We present an inductive characterization of FCH

which di¤ers from other characterizations in virtue of the use of binary notation

instead of numerical notation and of closing the class with respect to some count-

ing operations instead of some sums (see [18]).

*The author is grateful to CMAF, Fundação Calouste Gulbenkian, Fundação para a Ciência e a
Tecnologia and FEDER.



Next, our purpose is to find a system of bounded arithmetic, in binary notation,

that characterizes FCH in the sense that the algorithms the theory proves total are

exactly the ones in the Counting Hierarchy. Our departure point is a paper of

Johannsen and Pollett [10], published in the Annual Symposium on LICS in 1998,

where an hierarchy of second-order bounded arithmetic theories D0
k for kb 1

is defined. In particular D0
2 characterizes FCH. Based on D0

2 , we introduce a

second-order theory TCA (an acronym for theory for counting arithmetic) in binary

notation, and using the previous characterization of FCH we show that the prov-

ably total functions in this theory (having appropriate graphs) are still the func-

tions in FCH.

Apropos bounded arithmetic theories related with counting, we should also

mention the systems C0
3 , C

0
2 and Db

1 -CR ([10], [11]) by Johannsen and Pollett and

the system VTC0 ([14], [15], [16]) by Phuong Nguyen and Stephen Cook. All these

systems were developed in order to capture the computational power of particular

classes of thresholds circuits. As commented in [10]: ‘‘A phenomenon that is com-

monly observed in Complexity Theory is that proofs of results about counting com-

plexity classes (aP, Modp P etc.) can often be scaled down to yield results about

small depth circuit classes with the corresponding counting gates.’’

The systems above characterize classes of functions computable by constant-

depth threshold circuits of polynomial or quasi-polynomial size (TC0, qTC0,

respectively). The first-order theory C0
3 characterizes qTC0 and is isomorphic to

D0
2 via the so called RSUV-isomorphism [10]. The first-order theory C0

2 character-

izes TC0 and is RSUV-isomorphic to D0
1 [10]. It was noticed in [11] that to capture

exactly the class TC0 it is enough to consider the subsystem Db
1 -CR of C0

2 . Db
1 -CR

is a ‘‘minimal’’ first-order theory to TC0. Another way to characterize TC0 via for-

mal systems is considering the finitely axiomatizable second-order theory VTC0

(see [14], [15], [16]). It is known that VTC0 is RSUV-isomorphic to Db
1 -CR and the

former system appears to be weaker than D0
1 ([16]).

We summarize the prior work discussed above in the following scheme:

qTC0  � � � C0
3  �����!RSUV

D0
2 � � � ! FCAð2t2ðnÞÞ ¼ FCH

TC0  � � � C0
2  �����!RSUV

D0
1 � � � � ! FCAð2t1ðnÞÞ

Db
1 � CR ��!RSUV

VTC0

��
�! j

with t1ðnÞ:¼OðnÞ and
tkþ1ðnÞ:¼2 tk ðlognÞ

The option (in TCA) for a language that directly describes finite sequences of

zeros and ones, instead of the numerical notation adopted in the theories above,

comes in the sequel of a similar choice done by Fernando Ferreira in [4] in the

context of PTIME and seems more natural for dealing with sub-exponential

computability. This way (and this was our main motivation), TCA is compatible

82 G. Ferreira



with Ferreira’s theories of feasible analysis [5] being a natural candidate (after

properly improved) for pursuing new results in weak analysis.

Note that Sb
1-NIAJ TCA and the former theory was introduced as a base sys-

tem to develop a theory for analysis, BTFA [5], where a basic portion of ordinary

mathematics can be formalized [3].

The intent is that TCA works as a base theory for building a second-order sys-

tem for analysis TCA2, following the informal correspondence:

BTFA

Sb
1-NIA

P
TCA2

TCA
:

The enrichment of TCA and the questions concerning the formalization of

analysis in this framework are mentioned here just as a motivation. They are not

dealt with in this paper.

The interest in systems connected with FCH instead of PTIME is justified by [6],

where counting was proved to be a consequence of integration, even in weak sys-

tems like BTFA. Therefore, a theory like TCA2 seems to be the appropriate setting

to formalize Riemann Integration (see [7] and [8]).

2. The hierarchy of counting functions

With the aim of studying the complexity of computing the permanent of a matrix,

Valiant defined, in the late 1970s, the classaP [17] that consists of the functions f

for which there exists a nondeterministic Turing Machine, M, working in polyno-

mial time, such that for all x, f ðxÞ is the number of accepting computations, in

M, induced by the input x.

Based inaP, Wagner introduced in [19]1 the class FCH, the hierarchy of count-

ing functions, through the definition

FCH ¼ 6
ib0

iaP;

where 0aP ¼ P and ði þ 1ÞaP ¼aP iaP, for ib 0, i.e., ði þ 1ÞaP is the class

of functions that ‘‘count’’ the number of accepting computations in a poly-

nomial time nondeterministic Turing Machine, permitting a function in iaP as

an oracle. Some recursion-theoretic characterizations of FCH are already known.

One, due to Vollmer and Wagner [18], states that

FCH is the smallest class of functions that contains the arithmetic operations 0, 1,

þ, _��, � and the projections Pn
j , and is closed under composition and the sumsP2 pðjxjÞ

i¼0 gðx; iÞ, with p a polynomial and jxj the length of x.

1In this paper FCH is denoted by PHCF.

83The counting hierarchy in binary notation



We give an alternative inductive characterization of FCH, in the line of the

PTIME characterization introduced by Ferreira in [4]. Since it is presented in

binary notation, we need to introduce some operations. Let 2<o (also known as

f0; 1g�) be the set of all finite sequences of 0’s and 1’s, where the empty sequence is

denoted by e. For x and y elements in 2<o, x ŷ represents the concatenation of x

by y (we usually omit the symbol ^ and just write xy); xJ y means that x is an

initial subword of y (string prefix); jxj denotes the length of x, i.e., the number of

0’s and 1’s in the word x; xjy is the truncation of x by y defined by

xjy :¼
x; if jxja jyj;
z; if zJ xbjzj ¼ jyj;

�

x� y is the product of x by y defined as being the word x concatenated with itself

length of y times; x � y (resp. xC y) abbreviates 1� xJ 1� y (resp. 1� x ¼
1� y) meaning that the length of x is less than or equal (resp. equal) to the

length of y; and al is the linear order defined by xal y :,
�
x � ybsðxC yÞ

�
4�

xC ybbzJ xðz0J xbz1J yÞ
�
4ðx ¼ yÞ, i.e., it is defined first according to

length and then, within the same length, lexicographically.

Remark 2.1. • Between 2<o and N, we consider the natural bijection that

respects the linear orders al (in 2<o) and a (in N).

• Despite using the same symbol, from the context it will be clear if 0 refers

to the word in 2<o that corresponds to the natural number 1 by the previous

bijection, or if it refers to the number 0 in N that corresponds to the empty

word, e, in 2<o. A similar consideration holds for 1.

• Again by the bijection between 2<o and N, given a function, we consider the

function as the same and we denote it in the same way in spite of being pre-

sented in binary or numerical notation. From the context it will be clear in

what notation the function is.

A new inductive characterization of FCH is presented in the proposition below.

Proposition 2.2. FCH is the smallest class of functions that includes the initial

functions

(1) C0ðxÞ ¼ x0,

(2) C1ðxÞ ¼ x1,

(3) Pn
i ðx1; . . . ; xnÞ ¼ xi for 1a ia n,

(4) Qðx; yÞ ¼ 0; if xJ y;

e; otherwise;

�
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and is closed under the following schemes:

• composition

f ðxÞ ¼ g
�
h1ðxÞ; . . . ; hkðxÞ

�
,

• bounded recursion on notation

f ðx; eÞ ¼ gðxÞ,
f ðx; y0Þ ¼ h0

�
x; y; f ðx; yÞ

�
jtðx; yÞ

,

f ðx; y1Þ ¼ h1
�
x; y; f ðx; yÞ

�
jtðx; yÞ

,

where t is a bounding function2, i.e., t belongs to the smallest class of functions

that includes e , 0, 1, ,̂ �, Pn
j and is closed under composition

• cardinality

cðx; eÞ ¼ 0; if f ðx; eÞ ¼ 0;

e; otherwise;

�
c
�
x;SðyÞ

�
¼ S

�
cðx; yÞ

�
; if f

�
x;SðyÞ

�
¼ 0;

cðx; yÞ; otherwise;

�

where S is the successor function defined by SðeÞ ¼ 0, Sðx0Þ ¼ x1, Sðx1Þ ¼
SðxÞ0.

The idea of the last scheme is that cðx; yÞ ¼afwal y : f ðx;wÞ ¼ 0g, where
aA denotes the number of elements in the set A.

Proof. Let C be the class of functions introduced in the proposition. We want to

prove that FCH ¼ C.

The initial functions of C are in P, which is contained in FCH. FCH is closed

under composition and as PJaPJPaP J 2aPJP2aP J 3aPJP3aP J � � �J
FCH and PkaP is closed under bounded recursion on notation, we have that FCH

is also closed under this kind of recursion. In order to prove that FCH is closed

under cardinality take f ðx; yÞ in FCH. We have to see that cðx; yÞ is in FCH.

Since cðx; yÞ ¼afwal y : f ðx;wÞ ¼ 0g, we have cðx; yÞ ¼
Py

i¼0 gðx; iÞ, where

gðx; yÞ ¼ 1; if f ðx; yÞ ¼ 0;

0; otherwise:

�

Since g a FCH, we have that cðx; yÞ is in FCH. So, by definition of C, CJ FCH.

Conversely, considering the definition of FCH given by Vollmer and Wagner,

already mentioned, let us prove that FCHJC. Since PJC (note that in [4], P is

characterized exactly as being C without the cardinality scheme), it is immediate

that 0, 1, þ, _��, �, Pn
j are in C. By definition, C is closed under composition, so we

just have to prove that C is closed under the sums presented in the characterization

2The bounding functions ensure that the recursion scheme does not produce functions with exponen-
tial growth.
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of FCH. Since hðxÞ ¼ 2pðjxjÞ a PJC and C is closed under composition, it is

enough to prove that if g a C, then f ðx; yÞ :¼
Py

i¼0 gðx; iÞ a C. Now

f ðx; yÞ ¼
Xy

i¼0
gðx; iÞ ¼ gðx; 0Þ þ gðx; 1Þ þ � � � þ gðx; yÞ

¼afv : v < gðx; 0Þg þafv : v < gðx; 1Þg þ � � � þafv : v < gðx; yÞg
¼af3v; i4 : ia ybv < gðx; iÞg
¼a

�
u : bv; i � u

�
u ¼ 3v; i4bia ybv < gðx; iÞ

��
;

where 3v; i4 is the code of ðv; iÞ, done in PTIME, for instance in the follow-

ing manner: 3v; i4 ¼ codðvÞ11 codðiÞ, with codðeÞ ¼ e, codðx0Þ ¼ codðxÞ01j11�x1 ,
codðx1Þ ¼ codðxÞ10j11�x1 . Consider

hðx; y; uÞ ¼ 0; if bv; i � u
�
u ¼ 3v; i4bia ybv < gðx; iÞ

�
;

e; otherwise:

�

Note that bz � xjðx; zÞ $afzal 1� x : wðx; zÞ ¼ 0gA e$ cwðx; 1� xÞA e,

where w is the characteristic function of j and cw is the function obtained

by cardinality from w. So it is easy to see that h a C. Moreover, f ðx; yÞ ¼
afu : hðx; y; uÞ ¼ 0g ¼ ch

�
x; y; tðx; yÞy11tðx; yÞy11

�
, where t is a bounding func-

tion such that gðx; iÞa tðx; iÞ. We just have to prove that, in fact, there exists t a

bounding function for g, because, as a consequence of that and of the monotonic-

ity of t, we have that tðx; yÞy11tðx; yÞy11 majors u. Since g a CJ6
ib0 iaP,

there exists kb 1, k a N, such that g a kaP ¼aPðk�1ÞaP. So there exists a non-

deterministic Turing machine M, working in polynomial time p with an oracle in

ðk � 1ÞaP such that gðx; iÞ is the number of acceptance states of M with input x, i.

Without loss of generality we may suppose that M has only two possibilities for

the next move, so gðx; iÞa 2pðjxj; jijÞ. This way we prove that there exists t a bound-

ing function for g. Therefore f a C. Being C closed under the previous sums we

have that FCHJC. r

3. Theory for counting arithmetic (TCA)

Let L be the first-order language with equality which has the constants 0, 1, e, the

binary function symbols ,̂ � and the binary relation symbols ¼,J.

Let Lb
2 be the second-order language with equality that results from L adding

second-order variables denoted by X t;Y q; . . . with t, q terms of L and a relation

symbol a that infixes between a term of L and a second-order variable. The

idea behind these variables is that in the standard model first-order variables are

86 G. Ferreira



elements in 2<o, while second-order variables are subsets X t of 2<o verifying

x a X t ! x � t, where t is a term not depending on x.

The terms in Lb
2 coincide with the terms in L and the class of formulas in Lb

2

can be defined as the smallest class of expressions containing the atomic formulas

t1 J t2, t1 ¼ t2, t1 a F t, with t1, t2 terms and F t a second-order variable, and

closed under the Boolean operations s,b,4, !, the first-order quantifications

Ex, bx, the bounded first-order quantifications Ex � t, bx � t and the second-order

quantifications EF t, bF t. Note that in Lb
2 , ðEx � tÞP and ðbx � tÞP are treated

as new formulas and not as abbreviations for Exðx � t! PÞ and bxðx � tbPÞ,
respectively. It is a technical detail that helps in some proofs in sequent calculus.

The theory we present next is closely connected with D0
2 , a theory introduced

in [10] by Johannsen and Pollett.

Definition 3.1. TCA (Theory for counting arithmetic) is the second-order theory

in the language Lb
2 , which has the following axioms:

• Basic axioms

(1) xe ¼ x,

(2) xðy0Þ ¼ ðxyÞ0,
(3) xðy1Þ ¼ ðxyÞ1,
(4) x� e ¼ e,

(5) x� y0 ¼ ðx� yÞx,
(6) x� y1 ¼ ðx� yÞx,
(7) xJ e$ x ¼ e,

(8) xJ y0$ xJ y4x ¼ y0,

(9) xJ y1$ xJ y4x ¼ y1,

(10) x0 ¼ y0! x ¼ y,

(11) x1 ¼ y1! x ¼ y,

(12) x0A y1,

(13) x0A e,

(14) x1A e.

• EyEF tðy a F t ! y � tÞ, with t a term where y does not occur.

• Induction on notation for S
1;b
0 -formulas: AðeÞbEx

�
AðxÞ ! Aðx0ÞbAðx1Þ

�
!

ExAðxÞ, with A a S1;b
0 -formula (i.e., with no quantifications of second-order

and where all the first-order quantifications are bounded). Note that in the

standard model these formulas define exactly the predicates in the polynomial

hierarchy PH (also known as Meyer–Stockmeyer hierarchy).

• PH bounded comprehension: bF tEy � t
�
y a F t $ AðyÞ

�
, with A a S1;b

0 -

formula that may have other free variables other than y, but where the vari-

able F t does not occur, and t a term in which y does not occur.

• Replacement for S
1;b
0 -formulas3:

Ex � tbF qjðx;F qÞ ! bGðtq
01Þðtq 01ÞEx � tjðx;Gðtq 01Þðtq 01ÞÞ;

3In [7], we call this scheme ‘‘Substitution for S1; b
0 -formulas’’. It was pointed out to us that ‘‘substitu-

tion’’ is not the standard designation for this scheme. This is the reason why we are using the more tradi-
tional epithet ‘‘replacement’’ ([1], [10] and [15]).
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with j a S1;b
0 -formula, t a term where x does not occur, q 0 :¼ q½t=x�, i.e., q 0

is the term that results from q replacing all the occurrences of x by the term

t, and j results from j replacing all the occurrences of s a F q by 3x; s4 a
Gðtq

01Þðtq 01Þ, where 3 ; 4 is the pairing function that results from the coding in-

troduced in the proof of Proposition 2.2. (This is a technical axiom that per-

mits a kind of ‘‘permutations’’ between bounded first-order universal quanti-

fications and second-order existential quantifications.)

• Counting axiom:

bCv CountðCv;F tÞ; where v :¼ ðtt11Þðtt11Þ and CountðCv;F tÞ

abbreviates the conjunction of Ex � tb1j � v3x; j4 a Cv—a clause which

states the functionality of Cv—together with

ðe B F t ! 3e; e4 a CvÞbð� a F t ! 3e; 04 a CvÞ;

and

Ex <l 1� t
��
SðxÞ B F t ! Ej � vð3x; j4 a Cv ! 3SðxÞ; j4 a CvÞ

�
b
�
SðxÞ a F t ! Ej � vð3x; j4 a Cv ! 3SðxÞ;Sð jÞ4 a CvÞ

��
;

where b1j � vjð jÞ abbreviates the formula bj � v
�
jð jÞbEk � v

�
jðkÞ !

k ¼ j
��
, S is the successor function and t is a term where x does not occur.

In the last scheme, the idea behind the formula Count is that Cv counts the

number of elements in F t. Given x � t, we have that 3x; j4 a Cv if and only if

there exists j elements less than or equal to x (by the order al) in F t.

In order to present some properties in the theory TCA, we define some classes

of formulas. A S1;b
1 -formula (resp. P1;b

1 -formula) is a formula in the language Lb
2

of the form: bF t1
1 . . . bF tk

k jðF t1
1 ; . . . ;F tk

k ; p;G
rÞ (resp. EF t1

1 . . . EF tk
k jðF t1

1 ; . . . ;F tk
k ;

p;G
rÞ), where j is a S1;b

0 -formula. A S1;b
1 -extended formula (resp. P1;b

1 -extended

formula) is a formula that can be built in a finite number of steps, starting with

S1;b
0 -formulas and allowing conjunctions, disjunctions, bounded first-order quanti-

fications and second-order existential (resp. universal) quantifications. A formula

is D1;b
1 (resp. D1;b

1 -extended ) in TCA if it is equivalent in TCA to both a S1;b
1 -

formula (resp. a S1;b
1 -extended formula) and a P1;b

1 -formula (resp. a P1;b
1 -extended

formula).

Proposition 3.2. The following is provable in TCA:

(1) replacement for S1;b
1 -extended formulas.

(2) bounded comprehension for D1;b
1 -extended formulas.
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(3) induction on notation for D1;b
1 -extended formulas.

(4) minimization scheme for D1;b
1 -extended formulas, i.e., TCA ‘ bxjðxÞ !

bx
�
jðxÞbEy <l xsjðyÞ

�
, with j a D1;b

1 -extended formula.

Proof. (1) Replacement for S1;b
1 -formulas follows immediately since two

second-order existential quantifiers can be transformed into one. In fact,

bF tbHqjðF t;HqÞ $ bGð1tq1Þð1tq1ÞjðGð1tq1Þð1tq1ÞÞ, where j results from j, replacing

all the occurrences of s a F t and s a Hq by 3e; s4 a G and 30; s4 a G, respectively.

By replacement, every S1;b
1 -extended formula is equivalent to a S1;b

1 -formula, so we

have (1).

(2) Take jðxÞ a D1;b
1 -extended formula and consider cðx;X eÞ the formula

jðxÞ $ e a X e.

In TCA, we know that Ex � tbX ecðx;X eÞ. By replacement for S1;b
1 -extended

formulas, we have bGðtq
01Þðtq 01ÞEx � t

�
jðxÞ $ 3x; e4 a Gðtq

01Þðtq 01Þ�.
Consequently, by comprehension for S1;b

0 -formulas, we know that bF tEx �
t
�
x a F t $ jðxÞ

�
.

(3) Suppose that

jðeÞbEx
�
jðxÞ ! jðx0Þbjðx1Þ

�
; (*)

with j a D1;b
1 -extended formula.

Take a. Applying the bounded comprehension scheme for D1;b
1 -extended for-

mulas, we have bF a0Ex � a0
�
x a F a0 $ jðxÞ

�
. From (*) we know, in particular,

that jðeÞbExJ a
�
jðxÞ ! jðx0Þbjðx1Þ

�
. So e a F a0bExJ aðx a F a0 ! x0 a

F a0bx1 a F a0Þ. By induction on notation for S1;b
0 -formulas, we have ExJ

aðx a F a0Þ. So a a F a0, which implies jðaÞ. Since a is arbitrary, we conclude

that ExjðxÞ.
(4) Take j a D1;b

1 -extended formula and consider cðxÞ the D1;b
1 -extended for-

mula defined by Ey <l xsjðyÞ. It can easily be proved that slow induction for

S1;b
0 -formulas is valid in TCA, i.e., yðeÞbEx

�
yðxÞ ! y

�
SðxÞ

��
! ExyðxÞ, with y a

S1;b
0 -formula. Using a strategy similar to the one adopted in ð3Þ, we can expand

the result and prove that slow induction for D1;b
1 -extended formulas is valid in

TCA. So TCA ‘ cðeÞbEx
�
cðxÞ ! c

�
SðxÞ

��
! ExcðxÞ. Suppose that bxjðxÞ.

Take b such that jðbÞ. If Ey <l bsjðyÞ, the result follows. If not, i.e, scðbÞ,
because we have cðeÞ we know that sEx

�
cðxÞ ! c

�
SðxÞ

��
. Thus bx

�
cðxÞb

sc
�
SðxÞ

��
, i.e., bx

��
Ey <l xsjðyÞ

�
b

�
by <l SðxÞjðyÞ

��
, and we obtain that

bx
�
Ey <l xsjðyÞbjðxÞ

�
. r

Theorem 3.3. A function f in FCH can be defined in TCA by jf a D1;b
1 -extended

formula satisfying TCA ‘ Exbz � bf ðxÞjf ðx; zÞ and TCA ‘ jf ðx; zÞbjf ðx; yÞ !
z ¼ y, with bf a term.
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Proof. The proof can be done by induction on the complexity of the descrip-

tion of the function f , according to Proposition 2.2, in a very similar way to

the proof of an analogous result in the context of PTIME presented in [4] (see also

[1]). Even knowing that in the present environment the jf formulas we ob-

tain have a di¤erent complexity (D1;b
1 -extended formulas), it causes no problem

since TCA permits induction on notation for formulas with the complexity above.

The only scheme not appearing in [4] we have to consider is cardinality. The

D1;b
1 -extended formula jf , when f results from g by cardinality, is obtained ap-

plying bounded comprehension to jg and then the counting axiom. More pre-

cisely, since jgðx; y; 0Þ is a D1;b
1 -extended formula, applying the bounded compre-

hension scheme, we know that TCA ‘ ExEybF yEw � y
�
w a F y $ jg

�
x;w; 0Þ

�
.

Fix x, y. By the counting axiom (applied to F y) we have bCv CountðCv;F yÞ
with v :¼ ðyy11Þðyy11Þ. Take j 0f ðx; y; zÞ the S1;b

1 -extended formula defined

by bF ybCv
�
Ew � y

�
w a F y $ jgðx;w; 0Þ

�
bCountðCv;F yÞbbs � vðs a Cvbs ¼

3y; z4Þ
�
, bf ðx; yÞ :¼ v and j 00f ðx; y; zÞ the P1;b

1 -extended formula defined by

Ew � bf ðx; yÞ
�
j 0f ðx; y;wÞ ! w ¼ z

�
.

We can show that TCA ‘ j 0f ðx; y; zÞ $ j 00f ðx; y; zÞ and with a meticulous

but quite straightforward work it can be proved that TCA ‘ ExEybz �
bf ðx; yÞj 0f ðx; y; zÞ; TCA ‘ j 0f ðx; y; zÞbj 0f ðx; y; z 0Þ ! z ¼ z 0; TCA ‘ jgðx; e; 0Þ $
j 0f ðx; e; 0Þ; TCA ‘ j 0f ðx; e; 0Þ4j 0f ðx; e; eÞ; TCA ‘ jg

�
x;SðyÞ; 0

�
bj 0f ðx; y; rÞ !

j 0f
�
x;SðyÞ;SðrÞ

�
and TCA ‘ uA 0bjg

�
x;SðyÞ; u

�
bj 0f ðx; y; rÞ ! j 0f

�
x;SðyÞ; r

�
.

Therefore j 0f is the D1;b
1 -extended formula in the conditions of Theorem 3.3 we

were looking for. r

Though in a di¤erent formulation and with some changes in order to charac-

terize the provably total functions in TCA, the main strategy we use is similar to

the one adopted in [10] concerning D0
k and in [1] concerning some second-order

theories. So we just sketch the proof omitting some details and stressing the di¤er-

ences, focusing precisely on the axioms we introduce in a di¤erent manner.

It is possible to formulate the theory TCA in a version of Gentzen’s sequent cal-

culus, denoted by LKFCH and defined in the following way: in addition to the initial

sequents of the form A) A, with A an atomic formula and the sequents for

equality, LKFCH has also the following axioms:

(1) ) AðsÞ, with A a basic axiom of TCA and s terms,

(2) s a F t ) s � t, where the variables in the term s do not occur in t,

(3) ) AðeÞbEx0 s
�
AðxÞ ! Aðx0ÞbAðx1Þ

�
! Ex � sAðxÞ, with A a S1;b

0 -

formula, where the variables in s do not occur,

(4) ) bF sEy � s
�
y a F s $ AðyÞ

�
, with A a S1;b

0 -formula where F s does not

occur,

(5) ) bCv CountðCv;F tÞ,
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and all the second-order inference rules (like the ones presented in [1] with the

obvious modifications to our language), complemented with the following replace-

ment rule:

G; a � t) bF qjða;F qÞ
G) bGqEx � tjðx;GqÞ :

Here a is a proper variable, j a S1;b
0 -formula, q ¼ ðtq 01Þðtq 01Þ and q 0 and j are

presented in the replacement scheme.

In order to simplify notation, in the next theorems we omit the bounding term

in the second-order variables and we abbreviate as usual F1; . . . ;Fn, n a N, by F

and bF1; . . . ; bFn (resp. EF1; . . . ; EFn) by bF (resp. EF ).

Theorem 3.4. Suppose that LKFCH ‘ G) D, where G and D are formed

by S1;b
1 -formulas. Consider G :¼ bXj1ðx;F ;XÞ; . . . ; bXjnðx;F ;XÞ and D :¼

bYc1ðx;F ;YÞ; . . . ; bYcmðx;F ;YÞ where ji and ci are S1;b
0 -formulas, Y ¼

Y1; . . . ;Yk and j1; . . . ; jn, c1; . . . ;cm have di¤erent components of X, Y, respec-

tively.

Consider jðx;F ;XÞ :¼5n

j¼1 jj and cðx;F ;YÞ :¼4m

i¼1 ci and denote by

yðx;F ;X ;YÞ the formula jðx;F ;XÞ ! cðx;F ;YÞ.
Then there are terms tiðxÞ ð1a ia kÞ, S1;b

1 -extended formulas M S
i ðw; x;F ;XÞ

and P1;b
1 -extended formulas MP

i ðw; x;F ;XÞ ð1a ia kÞ such that

TCA ‘ ExEFEXyðx;F ;X ; fw � t1ðxÞ : M S
1 ðw; x;F ;XÞg; . . . ;

fw � tkðxÞ : M S
k ðw; x;F ;XÞgÞ

and

TCA ‘ ExEFEXEw � tiðxÞ
�
M S

i ðw; x;F ;XÞ $MP
i ðw; x;F ;XÞ

�
ð1a ia kÞ;

and the predicates w � tiðxÞbM D
i ðw; x;F ;XÞ are in CHX ;F i.e., in the class of pred-

icates whose characteristic functions are in FCHX ;F .4

In the previous result M D
i is either M S

i or MP
i according to our conveniences

(e.g., to have the formulas in the right classes) and we denote by yðx;F ;X ;

fw � t1ðxÞ : M S
1 ðw; x;F ;XÞg; . . .Þ the formula yðx;F ;X ;G; . . .Þ, where the occur-

rences of s a G are replaced with s � t1ðxÞbM S
1 ðs; x;F ;XÞ.

Proof. Let P be a LKFCH-proof of G) D. By the free cut elimination theorem

we can suppose that P has just S1;b
1 -formulas. Let us prove, by induction on the

4FCHX ;F is the class of functions resulting from FCH by adding (in the characterization of FCH given
by Proposition 2.2) X , F , considered as functions of 2<o in f�; 0g, as initial functions.
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number of lines in P, that for every sequent P) L in P there exist the terms and

the formulas described in the theorem.

If P) L is an initial sequent other than (4) and (5) (including the axiom for

induction), nothing has to be proved. For axiom (4), considering that P) L

is ) bF sEy � s
�
y a F s $ AðyÞ

�
with A a S1;b

0 -formula, we define M S
1 ðw; x;XÞ

and MP
1 ðw; x;XÞ as being Aðw; x;XÞ and t1 :¼ s. For axiom (5), P) L is

) bCðtt11Þðtt11Þ CountðC;F tÞ. If

wF tðxÞ ¼ e; if x B F t;

0; if x a F t;

�

we have that wF t a FCHF t

, so cwF t a FCHF t

. In an obvious way the result in The-

orem 3.3 can be extended to FCHF t

, so that j ¼ cwF t ðiÞ can be defined in TCA by

a D1;b
1 -extended formula we denote by jD

cw
F t
ði; jÞ. Then we define M S

1 ðw; x;F tÞ
as being bi � tbj � t1

�
w ¼ 3i; j4bjS

cw
F t
ði; jÞ

�
. Similarly MP

1 ðw; x;F tÞ is defined,
replacing jS

cw
F t
ði; jÞ with jP

cw
F t
ði; jÞ and t1ðxÞ :¼ ðtt11Þðtt11Þ.

In the induction step we just sketch the case of the replacement rule. Suppose

that P) L is G 0 ) bGEx � tjðx;GÞ, obtained from G 0, a � t) bFjða;F Þ, with
j a S1;b

0 -formula (the rule is only applied to formulas of this complexity).

By induction hypotheses for this last sequent there exist ðM 0ÞS1 ðw; x; y;XÞ,
ðM 0ÞP1 ðw; x; y;XÞ and t 01ðx; yÞ in the desired conditions. For G 0 ) bGEx �
tjðx;GÞ define M S

1 ðw; x;XÞ as being by � tbs � t 01
�
ðM 0ÞS1 ðs; x; y;XÞbw ¼

3y; s4
�
, and define MP

1 ðw; x;XÞ as being by � tbs � t 01
�
ðM 0ÞP1 ðs; x; y;XÞbw ¼

3y; s4
�
and t1ðxÞ :¼

�
tðxÞt 01

�
x; tðxÞ

��
1� 11. r

From the previous theorem we get the following result.

Theorem 3.5. If TCA ‘ Exbyjðx; yÞ, with j a S1;b
1 -formula, then there exists a

function f a FCH such that, for all s a 2<o, we have j
�
s; f ðsÞ

�
.

Moreover, there exist a D1;b
1 -extended formula y in TCA and a term tðxÞ such

that

(1) f ðsÞ ¼ t$ yðs; tÞ,
(2) TCA ‘ ExEy

�
yðx; yÞ ! jðx; yÞ

�
,

(3) TCA ‘ Exby � tyðx; yÞ,
(4) TCA ‘ Exb1yyðx; yÞ.

Proof. Suppose that TCA ‘ Exbyjðx; yÞ. Since j is a S1;b
1 -formula it is possible

to prove that there exists a term tðxÞ such that TCA ‘ Exby � tðxÞjðx; yÞ. Hence

there exists an LKFCH-proof of ) by � tðxÞjðx; yÞ. Being j a S1;b
1 -formula,

suppose it is bU1 . . . bUk ~jj, with ~jj a S1;b
0 -formula. Then there exists an
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LKFCH-proof of ) bU1 . . . bUkby � t~jj. The result follows applying Theorem

3.4 and defining f ðsÞ as being my � tðsÞ~jjðs; y; fw � t1ðsÞ : M S
1 ðw; sÞg; . . . ;

fw � tkðsÞ : M S
k ðw; sÞgÞ and yðx; yÞ :$ ~jjðx; y; fw � t1ðxÞ : M D

1 ðw; xÞg; . . . ;
fw � tkðxÞ : M D

k ðw; xÞgÞ b Ey 0 <l ys~jjðx; y 0; fw � t1ðxÞ : M D
1 ðw; xÞg; . . . ; fw �

tkðxÞ : M D
k ðw; xÞgÞ, where M S

i , M D
i come from Theorem 3.4. To verify that

this formula works, use Proposition 3.2. To confirm that f a FCH, notice

that it is possible to prove that for any predicate tðx; y;XÞ in CHX satisfying

ExEXby � tðxÞtðx; y;XÞ we have f ðx;XÞ :¼ my � tðxÞtðx; y;XÞ a FCHX (in the

present case we do not have second-order variables X ). r

Thus the provably total functions in TCA with S1;b
1 -graphs are exactly the func-

tions of FCH.
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