Portugal. Math. (N.S.) Vol. 66, Fasc. 1, 2009, 107–114

An existence theorem for a perturbed singular elliptic problem

Giovanni Anello

(Communicated by Miguel Ramos)

Abstract. We prove the existence of a positive solution for singular elliptic problems of the type $-\Delta u = \alpha(x)u^{-\beta} + \lambda f(x, u)$ in Ω , $u_{|\partial\Omega} = 0$, where β is any positive real number.

Mathematics Subject Classification (2000). Primary 34B16; Secondary 34B18. **Keywords.** Singular elliptic problems, classical solution, positive solution.

1. Introduction

Let $\Omega \subset \mathbb{R}^N$ be a non-empty bounded open set with boundary $\partial \Omega$ of class C^2 . Let $\alpha : \Omega \to \mathbb{R}$ and $f : \overline{\Omega} \times [0, +\infty[\to \mathbb{R}]$ be two given real functions.

The purpose of this article is to establish an existence theorem of positive solutions for the perturbed elliptic singular boundary value problem

$$-\Delta u = \alpha(x)u^{-\beta} + \lambda f(x, u) \quad \text{in } \Omega, \\ u_{|\partial\Omega} = 0,$$
 (P_{\lambda})

where $\lambda \in \mathbb{R}$ is nonnegative and sufficiently small. Here β is a positive real exponent.

Since the paper [2], problems like (P_{λ}) have been widely studied (for the most recent articles see, for instance, [1], [4], [6], [7]). A rather recurrent assumption to get the existence of solutions for problem (P_{λ}) is to impose that $\beta < 1$. Under this assumption, several results concerning existence as well as multiplicity and uniqueness for problem (P_{λ}) are available. On the contrary, it seems that relatively less articles deal with problem (P_{λ}) assuming no restriction on β . In this case, for $\lambda = 0$ we refer to [3], and for $\lambda = 1$ we refer to [1] where a variational approach is presented. Recently problem (P_{λ}) was studied in [4] where the *p*-Laplacian operator (p > 1) was considered. In [4], *f* is supposed to be a Carathéodory function and bounded on every set of the type $\Omega \times [0, s]$, with s > 0. In particular, in [4] it is shown that there exists λ_0 such that, for all $\lambda \in [0, \lambda_0]$, problem (P_{λ}) admits a positive weak solution in $W_0^{1,p}(\Omega)$, provided that either there exists a nonnegative function $\phi \in C_0^1(\overline{\Omega})$ and q > N such that $\alpha \phi \in L^q(\Omega)$ and f is nonnegative (Theorem 1.1 of [4]) or $\alpha \in L^{\infty}(\Omega)$ with $\operatorname{essinf}_{\Omega} \alpha > 0$ and $\beta < \frac{1}{N}$ (Theorem 1.3 of [4]). The proofs of these results are based on a super and sub-solution argument which does not work any longer when the assumption $\beta < \frac{1}{N}$ is removed in Theorem 1.3 of [4]. Here we study problem (P_{λ}) without assuming any restriction on β and keeping the perturbation term $\lambda f(x, t)$ in this general form, allowing f to change sign as well. In particular our result will be directly comparable to Theorem 1.3 of [4] in the case p = 2. Indeed, we will assume that the infimum of α on Ω is positive (note that this condition does not meet the one imposed on α in Theorem 1.1 of [4]). We observe that when $\beta > 3$, this assumption implies that no weak solution can exist. This fact can be deduced by adapting to our case the proof of Theorem 2 of [3]. So we are led to look for the existence of a classical solution for problem (P_{λ}) , that is, a function $u_{\lambda} \in C(\overline{\Omega}) \cap C^2(\Omega)$ satisfying the equation $-\Delta u = \alpha(x)u^{-\beta} + \lambda f(x, u)$ and the boundary condition $u_{|\partial\Omega} \equiv 0$ pointwise in Ω and $\partial \Omega$, respectively.

In order to get a classical solution we have to impose standard assumptions on the nonlinearity. Precisely, we assume that

(H) there exists $\gamma \in]0, 1[$ such that α and f are locally Hölderian with exponent γ in Ω and in $\Omega \times [0, +\infty[$, respectively.

In the main result of this paper we will establish the existence of a positive classical solution for small nonnegative λ under a further suitable local condition on f. The idea of the proof is suggested by the arguments presented in [1].

2. The result

We start stating the following well-known comparison lemma (for the proof, see for instance [5] where the reader can find an even more general version)

Lemma 1. Let $g: \Omega \times]0, +\infty[\to \mathbb{R}$ be a continuous function such that $t \to t^{-1}g(x,t)$ is strictly decreasing in $]0, +\infty[$ for all $x \in \Omega$. Let $u, v \in C^2(\Omega) \cap C(\overline{\Omega})$ satisfying

$$\begin{cases} -\Delta u \le g(x, u), \ -\Delta v \ge g(x, v) & \text{in } \Omega, \\ u \le v & \text{in } \partial \Omega \end{cases}$$

Then $u \leq v$ in Ω .

Now we are able to prove the main result. From now on, we will make use of the following notations:

$$L_{s} = \sup_{\substack{x \in \bar{\Omega} \\ t \neq \tau}} \sup_{\substack{t, \tau \in [0, s] \\ t \neq \tau}} \frac{f(x, t) - f(x, \tau)}{t - \tau};$$

if $u: \Omega \to \mathbb{R}$ is a given function, we put $u_+(x) = \max\{u(x), 0\}$ for each $x \in \Omega$.

Theorem 1. Assume condition (H) and that $L_s < +\infty$ for all s > 0. Moreover, assume $\sup_{\overline{\Omega} \times [0,T]} |f| < +\infty$ for all T > 0 and α continuous and positive on $\overline{\Omega}$. Then, for every $\beta > 0$, there exists λ_0 such that, for each $\lambda \in [0, \lambda_0]$, problem (P_{λ}) admits a positive classical solution $u \in C(\overline{\Omega}) \cap C^{2+\gamma}(\Omega)$.

Proof. Let $\beta > 0$. Let $u_1 \in C(\overline{\Omega}) \cap C^{2+\gamma}(\Omega)$ be the unique positive solution of the problem $-\Delta u = \alpha(x)$ in Ω , $u_{|\partial\Omega} = 0$, and put

$$\lambda_1 = \frac{\left(\max\{2^{1/\beta}, 2(\beta+1)\} \|u_1\|_{\infty}\right)^{-\beta/(\beta+1)}}{\sup_{\Omega \times [0, T]} |f|} \cdot \inf_{\Omega} \alpha,$$

where

$$T = \left(2(\beta + 1) \|u_1\|_{\infty}\right)^{1/(\beta + 1)}.$$

Moreover, define

$$h_n(t) = \begin{cases} \min\{(\min\{t, T\})^{-\beta}, n\} & \text{if } t > 0, \\ n & \text{if } t \le 0, \end{cases}$$

for each $n \in \mathbb{N}$, and

$$f_T(x,t) = \begin{cases} f(x,t) & \text{if } (x,t) \in \Omega \times [0,T], \\ f(x,T) & \text{if } (x,t) \in \Omega \times [T,\infty[.$$

Now consider the following problem

$$-\Delta u = \alpha(x)h_n(u) + \lambda f_T(x, u) \quad \text{in } \Omega, \\ u_{|\partial\Omega} = 0.$$
 (P_{\lambda, n})

Let us show that for all $\lambda \in [0, \lambda_1]$ the functions

$$\bar{u} = (2(\beta+1)u_1)^{1/(\beta+1)}$$
 and $\underline{u} = 2^{-1/(\beta+1)} ||u_1||_{\infty}^{-\beta/(\beta+1)} u_1$

are, respectively, a supersolution and, if $n > (||u_1||_{\infty})^{-\beta/(\beta+1)}$, a subsolution of problem $(P_{\lambda,n})$. Indeed, for $\lambda \in [0, \lambda_1]$ and $n \in \mathbb{N}$, one has

$$-\Delta \bar{u} = 4\beta (2(\beta+1)u_1)^{(-2\beta-1)/(\beta+1)} (\nabla u_1)^2 - 2(2(\beta+1)u_1)^{-\beta/(\beta+1)} \Delta u_1$$

$$\geq 2\alpha(x)(\bar{u})^{-\beta} \geq 2\alpha(x)h_n(\bar{u})$$

and consequently

$$-\Delta \bar{u} \ge \alpha(x)h_n(\bar{u}) + \lambda f(x,\bar{u}).$$

Hence \bar{u} is a supersolution of $(P_{\lambda,n})$. Now let $n > (||u_1||_{\infty})^{-\beta/(\beta+1)}$ and, again, $\lambda \in [0, \lambda_1]$. Then, one has

$$-\Delta \underline{u} + \lambda \sup_{\bar{\Omega} \times [0,T]} |f| = \frac{1}{2} \alpha(x) \left\| \frac{u_1}{2} \right\|_{\infty}^{-\beta/(\beta+1)} + \lambda \sup_{\bar{\Omega} \times [0,T]} |f| \le \alpha(x)n \tag{1}$$

and

$$\begin{split} -\Delta \underline{u} &= \frac{1}{2} \alpha(x) \left\| \frac{u_1}{2} \right\|_{\infty}^{-\beta/(\beta+1)} \\ &\leq \frac{1}{2} \alpha(x) \left\| \frac{u_1}{2} \right\|_{\infty}^{-\beta/(\beta+1)} \left(\frac{u_1}{\|u_1\|_{\infty}} \right)^{-\beta} \\ &= \frac{1}{2} \alpha(x) 2^{\beta/(\beta+1)} \|u_1\|_{\infty}^{\beta^2/(\beta+1)} (u_1)^{-\beta} = \frac{1}{2} \alpha(x) (\underline{u})^{-\beta}, \end{split}$$

which implies that

$$-\Delta \underline{u} + \lambda \sup_{\bar{\Omega} \times [0,T]} |f| \le \alpha(x) (\underline{u})^{-\beta}.$$
 (2)

From (1) and (2) it follows that

$$-\Delta \underline{u} \le \alpha(x)h_n(\underline{u}) + \lambda f(x,\underline{u})$$

and so \underline{u} is a subsolution of $(P_{\lambda,n})$.

Therefore, by a standard argument, we infer that for every $\lambda \in [0, \lambda_1]$ and every $n > (||u_1||_{\infty})^{-\beta/(\beta+1)}$, problem $(P_{\lambda,n})$ admits a classical solution

$$u_{\lambda,n} \in \{u \in C^{2+\gamma}(\overline{\Omega}) \mid \underline{u}(x) \le u(x) \le \overline{u}(x) \text{ for each } x \in \Omega\}.$$

Now put

$$\lambda_2 = \frac{\min\{1, T^{-\beta}\} \cdot \min_{\bar{\Omega}} \alpha}{M + T \cdot |L_T|}$$

where $M = \sup_{\overline{\Omega} \times [0, T]} |f|$. Then it is easy to show that for all $\lambda \in [0, \lambda_2[, n \in \mathbb{N},$ and $x \in \Omega$ the function $t \to t^{-1}(\alpha(x)h_n(t) + \lambda f_T(x, t))$ is strictly decreasing in $[0, +\infty[$. To this aim, if λ is as above and if $t_1 > t_2 > 0$, it is enough to show that

$$\alpha(x)(t_2h_n(t_1) - t_1h_n(t_2)) < \lambda(t_1f_T(x, t_2) - t_2f_T(x, t_1)).$$
(3)

To prove (3), observe that, on the one hand, we have

$$t_2 h_n(t_1) - t_1 h_n(t_2) \le n(t_2 - t_1)$$
 if $n \le (\min\{t_2, T\})^{-\beta}$

and

$$t_2 h_n(t_1) - t_1 h_n(t_2) \le T^{-\beta}(t_2 - t_1)$$
 if $n \ge (\min\{t_2, T\})^{-\beta}$,

hence

$$t_2 h_n(t_1) - t_1 h_n(t_2) \le \min\{1, T^{-\beta}\}(t_2 - t_1).$$
(4)

On the other hand, for $x \in \Omega$, we have

$$t_1 f_T(x, t_2) - t_2 f_T(x, t_1) = (t_1 - t_2) f_T(x, t_2) - t_2 (f_T(x, t_1) - f_T(x, t_2))$$

$$\ge (t_2 - t_1) M + T \cdot |L_T| (t_2 - t_1)$$

$$= (t_2 - t_1) (M + T \cdot |L_T|).$$
(5)

Consequently, (3) follows easily from (4), (5) and the choice of λ .

Now observe that $h_{n+1}(t) \ge h_n(t)$ for every t > 0 and every $n \in \mathbb{N}$. Then, by Lemma 1, if we put $\lambda_3 = \min\{\lambda_1, \lambda_2\}$, for each $\lambda \in [0, \lambda_3]$ and $n > (||u_1||_{\infty})^{-\beta/(\beta+1)}$ we have

$$u_{\lambda,n}(x) \le u_{\lambda,n+1}(x) \tag{6}$$

for each $x \in \Omega$. Therefore, $u_{\lambda,n}(x)$ is definitively non-decreasing uniformly with respect to $x \in \Omega$. We claim that $u_{\lambda,n}(x)$ is a Cauchy sequence in $L^{\infty}(\Omega)$ for sufficiently small λ .

Indeed, fix $R > \operatorname{diam}(\Omega)$, and put $\lambda_0 = \min\left\{\lambda_3, \frac{1}{R^2 L_T}\right\}$ and $\delta(x) = \cos\left(\frac{x_1}{R}\right)$, where x_1 is the first coordinate of $x \in \Omega$. Now let $\varepsilon > 0$. Observe that $\delta(x) \ge \varepsilon$

 $\cos 1 > 0$ for each $x \in \Omega$. Let $\lambda \in [0, \lambda_0]$. Then, for every $n, m \in \mathbb{N}$ with $n \ge m > \max\{(\|u_1\|_{\infty})^{-\beta/(\beta+1)}, \varepsilon^{-\beta}\}$, we have

$$\begin{aligned} -\Delta \big(u_{\lambda,m}(x) + \varepsilon \delta(x) \big) &= \alpha(x) h_m \big(u_{\lambda,m}(x) \big) \\ &+ \lambda \big(f_T \big(x, u_{\lambda,m}(x) \big) - f_T \big(x, u_{\lambda,m}(x) + \varepsilon \delta(x) \big) \big) \\ &+ \lambda f_T \big(x, u_{\lambda,m}(x) + \varepsilon \delta(x) \big) - \varepsilon \Delta \delta(x) \\ &\geq \alpha(x) h_n \big(u_{\lambda,m}(x) + \varepsilon \delta(x) \big) + \lambda f_T \big(x, u_{\lambda,m}(x) \big) \\ &- \lambda |L_T| \varepsilon \delta(x) + \frac{\varepsilon}{R^2} \delta(x) \\ &= \alpha(x) h_n \big(u_{\lambda,m}(x) + \varepsilon \delta(x) \big) + \lambda f_T \big(x, u_{\lambda,m}(x) \big) \\ &+ \varepsilon (R^{-2} - \lambda |L_T|) \cos 1 \\ &\geq \alpha(x) h_n \big(u_{\lambda,m}(x) + \varepsilon \delta(x) \big) + \lambda f_T \big(x, u_{\lambda,m}(x) \big). \end{aligned}$$

This shows that $u_{\lambda,m} + \varepsilon \delta$ is a supersolution of the problem

$$\begin{cases} -\Delta u = \alpha(x)h_n(u) + \lambda f_T(x, u) & \text{in } \Omega, \\ u_{|\partial\Omega} = 0. \end{cases}$$

Consequently, by Lemma 1, one has $u_{\lambda,n}(x) \le u_{\lambda,m}(x) + \varepsilon \delta(x) \le u_{\lambda,m}(x) + \varepsilon$ for each $x \in \Omega$. Hence, in view of (6), we easily infer that $u_{\lambda,n}(x)$ is a Cauchy sequence in $L^{\infty}(\Omega)$ and so it converges to some $u_{\lambda} \in L^{\infty}(\Omega)$. Clearly we have

$$\underline{u}(x) \le u_{\lambda}(x) \le \overline{u}(x) \tag{7}$$

for a.a. $x \in \Omega$. This implies that u_{λ} is a.e. positive in Ω and that $u_{\lambda}^{-\beta} \in L^{\infty}_{loc}(\Omega)$.

Now let σ any real positive number. Since $u_{\lambda,n}$ is a classical solution of $(P_{\lambda,n})$, we easily deduce

$$\begin{split} \|(u_{\lambda,n} - \sigma)_{+}\|^{2} &= \int_{\Omega} \alpha(x) h_{n} \big(u_{\lambda,n}(x) \big) \big(u_{\lambda,n}(x) - \sigma \big)_{+} dx \\ &+ \lambda \int_{\Omega} f_{T} \big(x, u_{\lambda,n}(x) \big) \big(u_{\lambda,n}(x) - \sigma \big)_{+} dx \\ &\leq \big(\max_{\Omega} \alpha \sigma^{-\beta} + \lambda \sup_{(x,t) \in \Omega \times [0,T]} |f| \big) \int_{\Omega} (u_{\lambda,n} - \sigma)_{+} dx. \end{split}$$

This implies that the sequence $(u_{\lambda,n} - \sigma)_+$ is bounded in $W_0^{1,2}(\Omega)$. Thus, up to a subsequence, it is weakly converging in $W_0^{1,2}(\Omega)$ and, by standard embedding theorems, strongly in $L^2(\Omega)$ to $(u_{\lambda} - \sigma)_+$. Therefore,

$$(u_{\lambda} - \sigma)_+ \in W^{1,2}_0(\Omega)$$
 for each $\sigma > 0$.

Now let $\varphi \in C_0^{\infty}(\Omega)$ and fix

$$\sigma \in \left]0, \inf_{x \in \overline{\operatorname{supp}\varphi}} \underline{u}(x)\right[.$$

Taking into account that $u_{\lambda,n}(x)$ is non-decreasing with respect to *n* and that $u_{\lambda,n}(x) \ge \underline{u}(x)$ for all $x \in \Omega$, by the choice of σ we have

$$(u_{\lambda,n}(x) - \sigma)_+ = u_{\lambda,n}(x) - \sigma$$
 and $(u_{\lambda}(x) - \sigma)_+ = u_{\lambda}(x) - \sigma$

in $\overline{\operatorname{supp} \varphi}$. It follows that $u_{\lambda,n}(x)$ converges weakly in $W_0^{1,2}(\Omega)$ and strongly in $L^2(\Omega)$ to u_{λ} on $\overline{\operatorname{supp} \varphi}$. Using again the fact that $u_{\lambda,n}$ is a classical solution of problem $(P_{\lambda,n})$, it turns out that

$$\int_{\Omega} \nabla u_{\lambda,n}(x) \nabla \varphi(x) \, dx = \int_{\Omega} \left(\alpha(x) h_n \left(u_{\lambda,n}(x) \right) + \lambda f_T \left(x, u_{\lambda,n}(x) \right) \right) \varphi(x) \, dx.$$

Hence, as $n \to \infty$, we get

$$\int_{\Omega} \nabla u_{\lambda} \nabla \varphi \, dx = \int_{\Omega} \left(\alpha(x) u_{\lambda}(x)^{-\beta} + \lambda f_T \left(x, u_{\lambda}(x) \right) \right) \varphi(x) \, dx.$$

By the arbitrariness of the function φ , we conclude that u_{λ} solves the equation

$$-\Delta u = \alpha(x)u^{-\beta} + \lambda f_T(x, u)$$

in distributional sense. Then, from the standard interior regularity theory, one has $u_{\lambda} \in C^{2+\gamma}(\Omega)$ and

$$-\Delta u_{\lambda}(x) = \alpha(x)u_{\lambda}(x)^{-\beta} + \lambda f_T(x, u_{\lambda}(x))$$

for all $x \in \Omega$. Moreover, from (7) and the regularity of $\partial \Omega$ (see Theorem 5.1 of [1]), one has $u_{|\partial\Omega} \equiv 0$ and $u_{\lambda} \in C^{2+\gamma}(\Omega) \cap C(\overline{\Omega})$ as well. Finally, note that since $u_{\lambda}(x) \leq T$ for a.a. $x \in \Omega$, in the previous equation we can replace the function f_T with the function f. The proof is now complete.

Remark 1. Condition $L_s < +\infty$ for all s > 0, imposed on f, is clearly weaker than the Lipschitz condition with respect to the second variable (uniformly with respect to the first one) on every interval [0, s]. For example, we have $L_s \leq 0$ whenever $f(x, \cdot)$ is non increasing for all $x \in \Omega$. Nevertheless, when the previous Lipschitz condition is fulfilled, we can improve the conclusion of Theorem 1 allowing λ to belong to a interval of the type $[-\lambda_1, \lambda_1]$, as it can be easily checked applying Theorem 1 to f and -f. **Remark 2.** As we have just said in the introduction, Theorem 1 is comparable to Theorem 1.3 of [4] in the case p = 2. Here we are able to remove any condition on β (except its positivity), but we require some further condition on the nonlinearity of f. Clearly, in view of Theorem 1.3 of [4], it would be interesting to extend Theorem 1 to the quasilinear case by replacing the Laplacian with the *p*-Laplacian operator (p > 1). However, in this case the proof of Theorem 1 does not seem to work due to the nonlinear feature of the *p*-Laplacian operator.

References

- A. Canino and M. Degiovanni, A variational approach to a class of singular semilinear elliptic equations. J. Convex Anal. 11 (2004), 147–162. Zbl 1073.35092 MR 2159469
- [2] M. G. Crandall, P. H. Rabinowitz, and L. Tartar, On a Dirichlet problem with a singular nonlinearity. *Comm. Partial Differential Equations* 2 (1977), 193–222. Zbl 0362.35031 MR 0427826
- [3] A. C. Lazer and P. J. McKenna, On a singular nonlinear elliptic boundary-value problem. Proc. Amer. Math. Soc. 111 (1991), 721–730. Zbl 0727.35057 MR 1037213
- [4] K. Perera and Z. Zhang, Multiple positive solutions of singular *p*-Laplacian problems by variational methods. *Bound. Value Probl.* (2005), 377–382. Zbl 05050326 MR 2202224
- [5] J. Shi and M. Yao, Positive solutions for elliptic equations with singular nonlinearity. *Electron. J. Differential Equations* (2005), no. 4, 11 pp. Zbl 1129.35344 MR 2119054
- [6] Y. Sun, S. Wu, and Y. Long, Combined effects of singular and superlinear nonlinearities in some singular boundary value problems. J. Differential Equations 176 (2001), 511–531. Zbl 1109.35344 MR 1866285
- [7] Z. Zhang, Critical points and positive solutions of singular elliptic boundary value problems. J. Math. Anal. Appl. 302 (2005), 476–483. Zbl 02136662 MR 2107848

Received November 1, 2007; revised December 6, 2007

G. Anello, Department of Mathematics, University of Messina, 98166 S.Agata, Messina, Italy

E-mail: ganello@unime.it