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An existence theorem for a perturbed singular
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Abstract. We prove the existence of a positive solution for singular elliptic problems of the
type �Du ¼ aðxÞu�b þ lf ðx; uÞ in W, ujqW ¼ 0, where b is any positive real number.

Mathematics Subject Classification (2000). Primary 34B16; Secondary 34B18.

Keywords. Singular elliptic problems, classical solution, positive solution.

1. Introduction

Let WHRN be a non-empty bounded open set with boundary qW of class C2. Let

a : W ! R and f : W� ½0;þl½ ! R be two given real functions.

The purpose of this article is to establish an existence theorem of positive solu-

tions for the perturbed elliptic singular boundary value problem

�Du ¼ aðxÞu�b þ lf ðx; uÞ in W;

ujqW ¼ 0;

)
ðPlÞ

where l a R is nonnegative and su‰ciently small. Here b is a positive real expo-

nent.

Since the paper [2], problems like ðPlÞ have been widely studied (for the most

recent articles see, for instance, [1], [4], [6], [7]). A rather recurrent assumption to

get the existence of solutions for problem ðPlÞ is to impose that b < 1. Under this

assumption, several results concerning existence as well as multiplicity and unique-

ness for problem ðPlÞ are available. On the contrary, it seems that relatively less

articles deal with problem ðPlÞ assuming no restriction on b. In this case, for

l ¼ 0 we refer to [3], and for l ¼ 1 we refer to [1] where a variational approach

is presented. Recently problem ðPlÞ was studied in [4] where the p-Laplacian op-

erator ðp > 1Þ was considered. In [4], f is supposed to be a Carathéodory func-

tion and bounded on every set of the type W� ½0; s�, with s > 0. In particular, in



[4] it is shown that there exists l0 such that, for all l a ½0; l0�, problem ðPlÞ admits

a positive weak solution in W
1;p
0 ðWÞ, provided that either there exists a nonnega-

tive function f a C1
0 ðWÞ and q > N such that af a LqðWÞ and f is nonnegative

(Theorem 1.1 of [4]) or a a LlðWÞ with essinfW a > 0 and b < 1
N
(Theorem 1.3 of

[4]). The proofs of these results are based on a super and sub-solution argument

which does not work any longer when the assumption b < 1
N
is removed in Theo-

rem 1.3 of [4]. Here we study problem ðPlÞ without assuming any restriction on b

and keeping the perturbation term lf ðx; tÞ in this general form, allowing f to

change sign as well. In particular our result will be directly comparable to Theo-

rem 1.3 of [4] in the case p ¼ 2. Indeed, we will assume that the infimum of a on

W is positive (note that this condition does not meet the one imposed on a in The-

orem 1.1 of [4]). We observe that when b > 3, this assumption implies that no

weak solution can exist. This fact can be deduced by adapting to our case the

proof of Theorem 2 of [3]. So we are led to look for the existence of a classical

solution for problem ðPlÞ, that is, a function ul a CðWÞBC2ðWÞ satisfying the

equation �Du ¼ aðxÞu�b þ lf ðx; uÞ and the boundary condition ujqWC 0 point-

wise in W and qW, respectively.

In order to get a classical solution we have to impose standard assumptions on

the nonlinearity. Precisely, we assume that

(H) there exists g a �0; 1½ such that a and f are locally Hölderian with exponent g

in W and in W� ½0;þl½, respectively.

In the main result of this paper we will establish the existence of a positive clas-

sical solution for small nonnegative l under a further suitable local condition on

f . The idea of the proof is suggested by the arguments presented in [1].

2. The result

We start stating the following well-known comparison lemma (for the proof, see

for instance [5] where the reader can find an even more general version)

Lemma 1. Let g : W� �0;þl½ ! R be a continuous function such that t !
t�1gðx; tÞ is strictly decreasing in �0;þl½ for all x a W. Let u; v a C2ðWÞBCðWÞ
satisfying

�Dua gðx; uÞ; �Dvb gðx; vÞ in W;

ua v in qW:

�

Then ua v in W.
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Now we are able to prove the main result. From now on, we will make use of

the following notations:

Ls ¼ sup
x AW

sup
t; t A ½0; s�

t>t

f ðx; tÞ � f ðx; tÞ
t� t

;

if u : W ! R is a given function; we put uþðxÞ ¼ maxfuðxÞ; 0g for each x a W:

Theorem 1. Assume condition (H) and that Ls < þl for all s > 0. Moreover, as-

sume sup
W�½0;T �j f j < þl for all T > 0 and a continuous and positive on W. Then,

for every b > 0, there exists l0 such that, for each l a ½0; l0�, problem ðPlÞ admits a

positive classical solution u a CðWÞBC2þgðWÞ.

Proof. Let b > 0. Let u1 a CðWÞBC2þgðWÞ be the unique positive solution of the

problem �Du ¼ aðxÞ in W, ujqW ¼ 0, and put

l1 ¼
ðmaxf21=b; 2ðb þ 1Þgku1klÞ�b=ðbþ1Þ

supW�½0;T �j f j
� inf

W
a;

where

T ¼
�
2ðb þ 1Þku1kl

�1=ðbþ1Þ
:

Moreover, define

hnðtÞ ¼ minfðminft;TgÞ�b; ng if t > 0;

n if ta 0;

�

for each n a N, and

fTðx; tÞ ¼
f ðx; tÞ if ðx; tÞ a W� ½0;T �;
f ðx;TÞ if ðx; tÞ a W� ½T ;l½:

�

Now consider the following problem

�Du ¼ aðxÞhnðuÞ þ lfT ðx; uÞ in W;

ujqW ¼ 0:

�
ðPl;nÞ

Let us show that for all l a ½0; l1� the functions

u ¼
�
2ðb þ 1Þu1

�1=ðbþ1Þ
and u ¼ 2�1=ðbþ1Þku1k�b=ðbþ1Þ

l u1
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are, respectively, a supersolution and, if n > ðku1klÞ�b=ðbþ1Þ, a subsolution of

problem ðPl;nÞ. Indeed, for l a ½0; l1� and n a N, one has

�Du ¼ 4b
�
2ðb þ 1Þu1

�ð�2b�1Þ=ðbþ1Þð‘u1Þ2 � 2
�
2ðb þ 1Þu1

��b=ðbþ1Þ
Du1

b 2aðxÞðuÞ�b
b 2aðxÞhnðuÞ

and consequently

�Dub aðxÞhnðuÞ þ lf ðx; uÞ:

Hence u is a supersolution of ðPl;nÞ. Now let n > ðku1klÞ�b=ðbþ1Þ and, again,

l a ½0; l1�. Then, one has

�Duþ l sup
W�½0;T �

j f j ¼ 1

2
aðxÞ u1

2

����
����
�b=ðbþ1Þ

l

þ l sup
W�½0;T �

j f ja aðxÞn ð1Þ

and

�Du ¼ 1

2
aðxÞ u1

2

����
����
�b=ðbþ1Þ

l

a
1

2
aðxÞ u1

2

����
����
�b=ðbþ1Þ

l

u1

ku1kl

� ��b

¼ 1

2
aðxÞ2b=ðbþ1Þku1kb2=ðbþ1Þ

l ðu1Þ�b ¼ 1

2
aðxÞðuÞ�b;

which implies that

�Duþ l sup
W�½0;T �

j f ja aðxÞðuÞ�b: ð2Þ

From (1) and (2) it follows that

�Dua aðxÞhnðuÞ þ lf ðx; uÞ

and so u is a subsolution of ðPl;nÞ.
Therefore, by a standard argument, we infer that for every l a ½0; l1� and every

n > ðku1klÞ�b=ðbþ1Þ, problem ðPl;nÞ admits a classical solution

ul;n a fu a C2þgðWÞ j uðxÞa uðxÞa uðxÞ for each x a Wg:
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Now put

l2 ¼
minf1;T�bg �min

W
a

M þ T � jLT j

where M ¼ sup
W�½0;T �j f j. Then it is easy to show that for all l a ½0; l2½, n a N,

and x a W the function t ! t�1
�
aðxÞhnðtÞ þ lfTðx; tÞ

�
is strictly decreasing in

½0;þl½. To this aim, if l is as above and if t1 > t2 > 0, it is enough to show that

aðxÞ
�
t2hnðt1Þ � t1hnðt2Þ

�
< l

�
t1 fT ðx; t2Þ � t2 fTðx; t1Þ

�
: ð3Þ

To prove (3), observe that, on the one hand, we have

t2hnðt1Þ � t1hnðt2Þa nðt2 � t1Þ if na ðminft2;TgÞ�b

and

t2hnðt1Þ � t1hnðt2ÞaT�bðt2 � t1Þ if nb ðminft2;TgÞ�b;

hence

t2hnðt1Þ � t1hnðt2Þaminf1;T�bgðt2 � t1Þ: ð4Þ

On the other hand, for x a W, we have

t1 fTðx; t2Þ � t2 fT ðx; t1Þ ¼ ðt1 � t2Þ fT ðx; t2Þ � t2
�
fT ðx; t1Þ � fTðx; t2Þ

�
b ðt2 � t1ÞM þ T � jLT jðt2 � t1Þ
¼ ðt2 � t1ÞðM þ T � jLT jÞ: ð5Þ

Consequently, (3) follows easily from (4), (5) and the choice of l.

Now observe that hnþ1ðtÞb hnðtÞ for every t > 0 and every n a N. Then, by

Lemma 1, if we put l3 ¼ minfl1; l2g, for each l a ½0; l3� and n > ðku1klÞ�b=ðbþ1Þ

we have

ul;nðxÞa ul;nþ1ðxÞ ð6Þ

for each x a W. Therefore, ul;nðxÞ is definitively non-decreasing uniformly with

respect to x a W. We claim that ul;nðxÞ is a Cauchy sequence in LlðWÞ for su‰-

ciently small l.

Indeed, fix R > diamðWÞ, and put l0 ¼ min l3;
1

R2LT

n o
and dðxÞ ¼ cos x1

R

� �
,

where x1 is the first coordinate of x a W. Now let e > 0. Observe that dðxÞb
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cos 1 > 0 for each x a W. Let l a ½0; l0�. Then, for every n;m a N with nb

m > maxfðku1klÞ�b=ðbþ1Þ; e�bg, we have

�D
�
ul;mðxÞ þ edðxÞ

�
¼ aðxÞhm

�
ul;mðxÞ

�
þ l

�
fT
�
x; ul;mðxÞ

�
� fT

�
x; ul;mðxÞ þ edðxÞ

��
þ lfT

�
x; ul;mðxÞ þ edðxÞ

�
� eDdðxÞ

b aðxÞhn
�
ul;mðxÞ þ edðxÞ

�
þ lfT

�
x; ul;mðxÞ

�
� ljLT jedðxÞ þ

e

R2
dðxÞ

¼ aðxÞhn
�
ul;mðxÞ þ edðxÞ

�
þ lfT

�
x; ul;mðxÞ

�
þ eðR�2 � ljLT jÞ cos 1

b aðxÞhn
�
ul;mðxÞ þ edðxÞ

�
þ lfT

�
x; ul;mðxÞ

�
:

This shows that ul;m þ ed is a supersolution of the problem

�Du ¼ aðxÞhnðuÞ þ lfT ðx; uÞ in W;

ujqW ¼ 0:

�

Consequently, by Lemma 1, one has ul;nðxÞa ul;mðxÞ þ edðxÞa ul;mðxÞ þ e for

each x a W. Hence, in view of (6), we easily infer that ul;nðxÞ is a Cauchy se-

quence in LlðWÞ and so it converges to some ul a LlðWÞ. Clearly we have

uðxÞa ulðxÞa uðxÞ ð7Þ

for a.a. x a W. This implies that ul is a.e. positive in W and that u�b
l a Ll

locðWÞ.
Now let s any real positive number. Since ul;n is a classical solution of ðPl;nÞ,

we easily deduce

kðul;n � sÞþk
2 ¼

ð
W

aðxÞhn
�
ul;nðxÞ

��
ul;nðxÞ � s

�
þ dx

þ l

ð
W

fT
�
x; ul;nðxÞ

��
ul;nðxÞ � s

�
þ dx

a
�
max
W

as�b þ l sup
ðx; tÞ AW�½0;T �

j f j
� ð

W

ðul;n � sÞþ dx:

This implies that the sequence ðul;n � sÞþ is bounded in W
1;2
0 ðWÞ. Thus, up to a

subsequence, it is weakly converging in W 1;2
0 ðWÞ and, by standard embedding the-

orems, strongly in L2ðWÞ to ðul � sÞþ. Therefore,

ðul � sÞþ a W 1;2
0 ðWÞ for each s > 0:
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Now let j a Cl
0 ðWÞ and fix

s a
�
0; inf

x A supp j
uðxÞ

	
:

Taking into account that ul;nðxÞ is non-decreasing with respect to n and that

ul;nðxÞb uðxÞ for all x a W, by the choice of s we have�
ul;nðxÞ � s

�
þ ¼ ul;nðxÞ � s and

�
ulðxÞ � s

�
þ ¼ ulðxÞ � s

in supp j. It follows that ul;nðxÞ converges weakly in W 1;2
0 ðWÞ and strongly in

L2ðWÞ to ul on supp j. Using again the fact that ul;n is a classical solution of

problem ðPl;nÞ, it turns out that
ð
W

‘ul;nðxÞ‘jðxÞ dx ¼
ð
W

�
aðxÞhn

�
ul;nðxÞ

�
þ lfT

�
x; ul;nðxÞ

��
jðxÞ dx:

Hence, as n ! l, we get

ð
W

‘ul‘j dx ¼
ð
W

�
aðxÞulðxÞ�b þ lfT

�
x; ulðxÞ

��
jðxÞ dx:

By the arbitrariness of the function j, we conclude that ul solves the equation

�Du ¼ aðxÞu�b þ lfTðx; uÞ

in distributional sense. Then, from the standard interior regularity theory, one has

ul a C2þgðWÞ and

�DulðxÞ ¼ aðxÞulðxÞ�b þ lfT
�
x; ulðxÞ

�
for all x a W. Moreover, from (7) and the regularity of qW (see Theorem 5.1 of

[1]), one has ujqWC 0 and ul a C2þgðWÞBCðWÞ as well. Finally, note that since

ulðxÞaT for a.a. x a W, in the previous equation we can replace the function fT
with the function f . The proof is now complete. r

Remark 1. Condition Ls < þl for all s > 0, imposed on f , is clearly weaker

than the Lipschitz condition with respect to the second variable (uniformly with

respect to the first one) on every interval ½0; s�. For example, we have Lsa 0

whenever f ðx; �Þ is non increasing for all x a W. Nevertheless, when the previous

Lipschitz condition is fulfilled, we can improve the conclusion of Theorem 1 al-

lowing l to belong to a interval of the type ½�l1; l1�, as it can be easily checked

applying Theorem 1 to f and �f .
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Remark 2. As we have just said in the introduction, Theorem 1 is comparable to

Theorem 1.3 of [4] in the case p ¼ 2. Here we are able to remove any condition on

b (except its positivity), but we require some further condition on the nonlinearity

of f . Clearly, in view of Theorem 1.3 of [4], it would be interesting to extend The-

orem 1 to the quasilinear case by replacing the Laplacian with the p-Laplacian op-

erator ðp > 1Þ. However, in this case the proof of Theorem 1 does not seem to

work due to the nonlinear feature of the p-Laplacian operator.
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