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An existence theorem for a perturbed singular
elliptic problem
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Abstract. We prove the existence of a positive solution for singular elliptic problems of the
type —Au = a(x)u " + Af (x,u) in Q, upa = 0, where f is any positive real number.
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1. Introduction

Let Q = RY be a non-empty bounded open set with boundary dQ of class C2. Let
%:Q— Rand f: Q x [0,+00] — R be two given real functions.
The purpose of this article is to establish an existence theorem of positive solu-
tions for the perturbed elliptic singular boundary value problem
—Au=a(x)u P+ if (x,u) inQ,
(e 31 (x,) } 7)

U =0,

where 4 € R is nonnegative and sufficiently small. Here f is a positive real expo-
nent.

Since the paper [2], problems like (P;) have been widely studied (for the most
recent articles see, for instance, [1], [4], [6], [7]). A rather recurrent assumption to
get the existence of solutions for problem (P;) is to impose that f < 1. Under this
assumption, several results concerning existence as well as multiplicity and unique-
ness for problem (P;) are available. On the contrary, it seems that relatively less
articles deal with problem (P;) assuming no restriction on . In this case, for
/.= 0 we refer to [3], and for A =1 we refer to [1] where a variational approach
is presented. Recently problem (P;) was studied in [4] where the p-Laplacian op-
erator (p > 1) was considered. In [4], f is supposed to be a Carathéodory func-
tion and bounded on every set of the type Q x [0, 5], with s > 0. In particular, in
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[4] it is shown that there exists Ay such that, for all 4 € [0, 4], problem (P,) admits
a positive weak solution in WO1 7 (Q), provided that either there exists a nonnega-
tive function ¢ € C}(Q) and ¢ > N such that a¢ € LI(Q) and f is nonnegative
(Theorem 1.1 of [4]) or « € L*(Q) with essinfg o > 0 and j < + (Theorem 1.3 of
[4]). The proofs of these results are based on a super and sub-solution argument
which does not work any longer when the assumption f < % is removed in Theo-
rem 1.3 of [4]. Here we study problem (P,) without assuming any restriction on f§
and keeping the perturbation term Af(x,¢) in this general form, allowing f to
change sign as well. In particular our result will be directly comparable to Theo-
rem 1.3 of [4] in the case p = 2. Indeed, we will assume that the infimum of « on
Q is positive (note that this condition does not meet the one imposed on o in The-
orem 1.1 of [4]). We observe that when f > 3, this assumption implies that no
weak solution can exist. This fact can be deduced by adapting to our case the
proof of Theorem 2 of [3]. So we are led to look for the existence of a classical
solution for problem (P;), that is, a function u; € C(Q) N C?(Q) satisfying the
equation —Au = a(x)u~” + Af (x,u) and the boundary condition usq = 0 point-
wise in Q and 9Q, respectively.

In order to get a classical solution we have to impose standard assumptions on
the nonlinearity. Precisely, we assume that

(H) there exists y € |0, [ such that o and f" are locally Holderian with exponent y
in Q and in Q x [0, 400[, respectively.

In the main result of this paper we will establish the existence of a positive clas-
sical solution for small nonnegative A under a further suitable local condition on
f. The idea of the proof is suggested by the arguments presented in [1].

2. The result

We start stating the following well-known comparison lemma (for the proof, see
for instance [5] where the reader can find an even more general version)

Lemma 1. Let g:Q x]0,400[— R be a continuous function such that t —
tYg(x, ) is strictly decreasing in 10, +oo| for all x € Q. Let u,v e C*(Q) n C(Q)
satisfying

{Au < g(x,u), —Av > g(x,v) inQ,
u<v in 0Q).

Then u < v in Q.
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Now we are able to prove the main result. From now on, we will make use of
the following notations:

L, = sup  sup f(X, t) —f(X,T);

xeQ £:7€0,s] r—r
>7

if u:Q — Risa given function, we put u (x) = max{u(x),0} for each x € Q.

Theorem 1. Assume condition (H) and that Ly < +oo for all s > 0. Moreover, as-
sume supg _( 7, |f| < +oo for all T > 0 and o continuous and positive on Q. Then,
for every > 0, there exists Ay such that, for each A € [0, Xo|, problem (P)) admits a
positive classical solution u € C(Q) n C**7(Q).

Proof. Let > 0. Letu; € C(Q) n C**7(Q) be the unique positive solution of the
problem —Au = a(x) in Q, 1,0 = 0, and put

(max {2, 2(8 + D)} |uy]| )"+ .
A= -inf o,
SupPq.(o, 7)1/ | Q

where
1 1
T = 208+ )u],,) /.

Moreover, define

1) :{min{(min{t, TH P ny if t>0,
! n if 1 <0,

for each n € N, and

Now consider the following problem

—Au = o(x)h,(u) + Afr(x,u) inQ, }
u‘m =0.

Let us show that for all 4 € [0, 4] the functions

u= (2(ﬁ+ l)ul)l/(ﬁ“) and u= 2*1/(/”+1)Hu1‘|;{f/([f+1)u1
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are, respectively, a supersolution and, if n > (||u1||w)_ﬂ /) " a subsolution of

problem (P, ,). Indeed, for 4 € [0,4;] and n € N, one has
—Aa = 4B(2(B + V) I (W) — 228+ Dy ) ) Awy
> 20(x) (@) = 20(x)ha(i1)

and consequently

—Ai > o(x)h, (@) + Af (x, @1).

f+1

Hence # is a supersolution of (P, ,). Now let n > (||u1||w)_ﬂ/( ) and, again,

4 €[0,4;]. Then, one has

R AL
—Au+ 24 sup |f] zia(x) > + A sup |f] <alx)n (1)
Qx[0,7] 0 Qx[0, 7
and
R R
—Au =S a(x)||5
272,
1 u —ﬂ/(ﬂ+1)< u >—/3
< —o(x)||= —_—
2 2 0 ””1“00
1 2 _ 1 -
= 522D | 517 (1) = S ),

which implies that

—Au+4 sup |f] < a(x)(w)". (2)
Qx[0,7)

From (1) and (2) it follows that
—Au < a(xX)ha(u) + 4f (x,u)
and so u is a subsolution of (P, ,).
Therefore, by a standard argument, we infer that for every A € [0, 4;] and every

n> (|lu ||m)7ﬁ/<ﬂ+1>, problem (P, ,) admits a classical solution

U, € {ue C*7(Q) |u(x) < u(x) <a(x) for each x € Q}.
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Now put

~ min{l, 77"} - ming «
: M+ T-|Ly|

where M = SUPG,. (0. 7] |f]. Then it is easy to show that for all 1 € [0, 4], n € N,
and x € Q the function 7 — ' (a(x)h, () + Afr(x, 1)) is strictly decreasing in
[0,400[. To this aim, if 4 is as above and if #; > 1, > 0, it is enough to show that

o(x) (ha(t1) — t1ha(12)) < A(01f7(x, 12) — tafr(x, 11)). (3)
To prove (3), observe that, on the one hand, we have

bha(t) — () < n(ty — 1) if n < (min{s, T}) ™
and

bhy(t) — () < TPty — 1) if n> (min{t, T}) 7,
hence
th(t) — tihy () < min{1, TP} (1, — 1,). (4)

On the other hand, for x € Q, we have

nfr(x,n) — ofr(x,n) = (h — o) fr(x, ) — o(frixn) — fr(x, n))
> (t—ti))M +T-|Lr|(t — 1)
=(—tn)(M+T-|L7|). (5)

Consequently, (3) follows easily from (4), (5) and the choice of /.

Now observe that 4, (¢) > h,(t) for every ¢t > 0 and every n € N. Then, by
Lemma 1, if we put 13 = min{4,, 4, }, for each 1 € [0, 23] and n > (||u, ||OO)75/</j+l>
we have

U n(X) < 1ty i1 (x) (6)

for each x € Q. Therefore, u; ,(x) is definitively non-decreasing uniformly with
respect to x € Q. We claim that u; ,(x) is a Cauchy sequence in L™ (Q) for suffi-
ciently small A.

Indeed, fix R > diam(Q), and put Ag = min{ig,R%LT} and J(x) = cos(}),
where x; is the first coordinate of x € Q. Now let ¢ > 0. Observe that J(x) >
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cosl >0 for each x e Q. Let 1€ [0,4). Then, for every n,m e N with n >
m > max{(|jug||,.) " PV e F}, we have

—A(uy, m(x) + £0(x)) = a(x)hy (s, m(x))
+ 2(fr (x,upm(x)) = fr(x, up,m(x) +€6(x)))
+ 1 (x, 1, m(x) + £6(x)) — eAS(x)
> 0(2) (1, m (%) + £0(x)) + A7 (X, 45,m(X))
— A|Lyled(x) + %5@)
() Iy (147, (%) + £3(x)) + A7 (%, 1 m())
+ &R — A|L7|)cos 1
> 0(x) I (1, (x) + €0(x)) + A7 (x, 15, m(x)).

This shows that u;, ,, + &d is a supersolution of the problem

—Au = a(x)h,(u) + Afr(x,u) in Q,
{u|gg =0.

Consequently, by Lemma 1, one has u, ,(x) < ) ,(x) 4+ &0(x) < u; ,(x) + ¢ for
each x € Q. Hence, in view of (6), we easily infer that u; ,(x) is a Cauchy se-
quence in L*(Q) and so it converges to some u; € L*(Q). Clearly we have

u(x) < u(x) < a(x) (7)

for a.a. x € Q. This implies that u, is a.e. positive in Q and that u;ﬁ e Ly (Q).
Now let ¢ any real positive number. Since u;, , is a classical solution of (P; ,),
we easily deduce

[(uzn —0),||* = J () hn (141,0(X)) (s n(x) — 0) | dx
Q
+ A‘JQfT(xv u/l.,n(x))(ull,n(x) — 0)+dx

<(maxooc ¥+ sup |f]) J (upn — o), dx.
Q (x,1)eQx[0,T) Q

This implies that the sequence (u;,, — ), is bounded in Wol"2 (Q). Thus, up to a
subsequence, it is weakly converging in Wol’z(Q) and, by standard embedding the-
orems, strongly in L*(Q) to (u, — ), . Therefore,

(u — o), € Wol’z(Q) for each o > 0.
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Now let ¢ € C°(Q2) and fix

ce0, inf u(x)|
Xesupp g

Taking into account that u; ,(x) is non-decreasing with respect to n and that
u). (x) = u(x) for all x € Q, by the choice of ¢ we have

(rn(x) =), =win(x) =0 and  (ui(x) —0), =uy(x) -0

in suppg. It follows that u, ,(x) converges weakly in Wol"z(Q) and strongly in
L?*(Q) to u; on suppg. Using again the fact that u),, 1s a classical solution of
problem (P, ,), it turns out that

J Vu; ,(x)Ve(x) dx = J (oc(x)hn (ui,n(x)) + AMr (x7 ui,,,(x)))qo(x) dx.
o) 0

Hence, as n — oo, we get

J Vu,Vpdx = J (o(xX)uz (%) 4 A (3, u(x)) ) () dix.

Q Q

By the arbitrariness of the function ¢, we conclude that u; solves the equation
—Au = a(x)u P + ifr(x,u)

in distributional sense. Then, from the standard interior regularity theory, one has
u; € C**7(Q) and

—Auy(x) = a(xX)u;(x) 7 + Ay (x, u;(x))

for all x € Q. Moreover, from (7) and the regularity of dQ (see Theorem 5.1 of
[1]), one has ujpq =0 and u; € C*77(Q) N C(Q) as well. Finally, note that since
u)(x) < T for a.a. x € Q, in the previous equation we can replace the function fr
with the function f. The proof is now complete. O

Remark 1. Condition L; < +oo for all s > 0, imposed on f, is clearly weaker
than the Lipschitz condition with respect to the second variable (uniformly with
respect to the first one) on every interval [0,5]. For example, we have L; <0
whenever f(x, ) is non increasing for all x € Q. Nevertheless, when the previous
Lipschitz condition is fulfilled, we can improve the conclusion of Theorem 1 al-
lowing A to belong to a interval of the type [—41, 4], as it can be easily checked
applying Theorem 1 to f and —f.
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Remark 2. As we have just said in the introduction, Theorem 1 is comparable to
Theorem 1.3 of [4] in the case p = 2. Here we are able to remove any condition on
P (except its positivity), but we require some further condition on the nonlinearity
of f. Clearly, in view of Theorem 1.3 of [4], it would be interesting to extend The-
orem 1 to the quasilinear case by replacing the Laplacian with the p-Laplacian op-
erator (p > 1). However, in this case the proof of Theorem 1 does not seem to
work due to the nonlinear feature of the p-Laplacian operator.
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