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There is no odd perfect polynomial over F2
with four prime factors
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Abstract. A perfect polynomial over the binary field F2 is a polynomial A a F2½x� that
equals the sum of all its divisors. If gcdðA; x2 þ xÞ ¼ 1 then we say that A is odd. It
is believed that odd perfect polynomials do not exist. In this article we prove this for
odd perfect polynomials A with four prime divisors, i.e., polynomials of the form
A ¼ PaQbRcSd where P, Q, R, S are distinct irreducible polynomials of degree > 1 over
F2 and a, b, c, d are positive integers.
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1. Introduction

A multiperfect number n is a positive integer n > 1 such that n divides the sum

sðnÞ of all its positive divisors. When the quotient sðnÞ=n ¼ 2, n is called a perfect

number. All known multiperfect numbers are even. It is believed that there are

no odd multiperfect numbers, but this has not been proved.

We investigate in this article an analogue over the ring F2½x�:
For a polynomial A a F2½x�, where F2 is the binary field f0; 1g, let

sðAÞ ¼
X

d jA
d

be the sum of divisors of A. Let oðAÞ be the number of distinct prime (irreducible)

polynomials that divide A. Observe that s is multiplicative, a fact that shall be

used many times without more reference in the rest of the paper. A perfect poly-

nomial A is a polynomial that divides sðAÞ, or, equivalently, is a polynomial A

such that sðAÞ ¼ A.



The notion of perfect polynomial over F2 was introduced by Canaday [2],

the first doctoral student of Leonard Carlitz. He studied mainly the case when

gcdðA; x2 þ xÞA 1. We call these polynomials even. He discovered the following

list of five even perfect polynomials with four irreducible factors and claimed that

the list is complete, leaving open the case of the odd ones:

C1ðxÞ ¼ x2ðxþ 1Þðx2 þ xþ 1Þ2ðx4 þ xþ 1Þ;
C2ðxÞ ¼ C1ðxþ 1Þ;

C3ðxÞ ¼ x4ðxþ 1Þ4ðx4 þ x3 þ x2 þ xþ 1Þ;

C4ðxÞ ¼ x6ðxþ 1Þ3ðx3 þ x2 þ 1Þðx3 þ xþ 1Þ;
C5ðxÞ ¼ C4ðxþ 1Þ:

In other words Canaday’s conjecture says:

There is no odd perfect polynomial in F2½x�:

Some work has been done on this. A simple congruence argument shows that

an odd perfect polynomial in F2½x� must be a perfect square. Also (trivially) there

is no odd perfect polynomial over F2 with oðAÞ ¼ 1. Canaday [2], Theorem 17,

proved the inexistence of odd perfect polynomials with two prime factors, i.e.,

with oðAÞ ¼ 2. Recently, we proved in [5] the inexistence of perfect polynomials

over F2 with oðAÞ ¼ 3.

The object of this paper is to prove that there is no odd perfect polynomial

over F2 with oðAÞ ¼ 4.

In contrast with the case of perfect numbers, observe that Sylvester [7] already

proved in 1888 that every odd perfect number requires at least five prime factors.

More recent results about multiperfect numbers are surveyed in [6].

2. Some facts and the general strategy of the proof

We denote, as usual, by N the set of non-negative integers. The first two facts

(over F2) come from Canaday [2]:

Lemma 2.1 ([2], Lemma 5). Let F be a perfect field of characteristic 2. Let

P;Q a F½x� and n;m a N such that P is irreducible and Q is not constant, i.e.,

Q B F and sðP2nÞ ¼ 1þ � � � þ P2n ¼ Qm. Then m a f0; 1g.

The following lemma is a consequence of the proof of Lemma 6 in [2].
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Lemma 2.2. Let F be a perfect field of characteristic 2. Let P;Q a F½x� and

n;m a N such that P is irreducible, m > 1 and sðP2nÞ ¼ 1þ � � � þ P2n ¼ QmC for

some C a F½x�. Then

degðPÞ > 2 degðQÞ:

In other words, if degðPÞ ¼ degðQÞ then m ¼ 1.

We need a more detailed result.

Lemma 2.3. Let F be a perfect field of characteristic 2. Let a; b; c; d a N be non-

negative integers. Let P, Q, R, S be four distinct, irreducible polynomials in F½x�
such that d ¼ degðQÞ ¼ degðPÞ. Assume that

1þ S þ S2 ¼ PaQbRc: ð1Þ

Observe that degðRÞ may be unequal to d. Then the following cases occur:

(a) If a is even, then

degðSÞ > ðaþ b� 1Þ degðPÞ þ ðc� 1Þ degðRÞ;

if a is even and b ¼ 0, then

degðSÞ > a degðPÞ þ ðc� 1Þ degðRÞ:

(b) If c is even, then

degðSÞ > c degðRÞ þ ðaþ b� 2Þ degðPÞ;

if c is even and b ¼ 0, then

degðSÞ > c degðRÞ þ ða� 1Þ degðPÞ:

(c) If c is odd and b ¼ 0, then

degðSÞ > ðc� 1Þ degðRÞ þ ða� 1Þ degðPÞ;

while if c is odd, then

degðSÞ > ðc� 1Þ degðRÞ þ ðaþ b� 2Þ degðPÞ:

Proof. We only prove the first assertion in (c), the other proofs are similar. By

di¤erentiation relative to x of both sides of (1) (observe that di¤erentiation of
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squares yields zero), we get

S 0 ¼ RcPa�1Qb�1ðaP 0Qþ bQ 0PÞ: ð2Þ

But S is prime so that S 0A 0. Thus, degðaP 0Qþ bQ 0PÞb 0. So by taking

degrees on both sides of (2) we get degðS 0Þb c degðRÞ þ ðaþ b� 2Þ degðPÞ. By

observing that degðSÞ > degðS 0Þ we obtain the result. r

We also need the following.

Lemma 2.4. Let F be a perfect field of characteristic 2. Let Q a F½x� be a non-

constant polynomial, i.e., Q B F. Let n;m > 0 be two positive integers. Let S a F½x�
be defined by

S ¼ 1þ � � � þQn:

Then Q does not divide the polynomial 1þ S þ � � � þ S2m.

Proof. The hypothesis implies that SC 1 ðmodQÞ. If the conclusion is false then

we obtain the contradiction 1 ¼ 2mþ 1C 1þ S þ � � � þ S2mC 0 ðmodQÞ. r

Canaday [2], Lemma 14, claimed but did not prove next lemma. Here we give

a short proof.

Lemma 2.5. Let P;Q a F2½x� be primes. Let m, n be two positive integers. Assume

that

sðP2mÞ ¼ sðQ2nÞ: ð3Þ

Then either fP;Qg ¼ fx; xþ 1g and m ¼ n ¼ 1, or P ¼ Q and m ¼ n.

Proof. We may write (3) as

P2mþ1 þ 1

Pþ 1
¼ Q2nþ1 þ 1

Qþ 1
;

from which we get either Q ¼ P so that m ¼ n, or P2mC 1 ðmodQÞ,
Q2nC 1 ðmodPÞ so that

PmC 1 ðmodQÞ; QnC 1 ðmodPÞ: ð4Þ

If Q jPþ 1 and P jQþ 1 then Q and P have the same degree. So Q and Pþ 1

have the same degree. Thus Q ¼ Pþ 1. Moreover, P and Q ¼ Pþ 1 are
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primes, so fP;Qg ¼ fx; xþ 1g and m ¼ n ¼ 1. This establishes the case sðx2Þ ¼
x2 þ xþ 1 ¼ s

�
ðxþ 1Þ2

�
.

We may then assume that QFPþ 1. We have PD 1 ðmodQÞ. From (4) we

get immediately that

1þ � � � þ Pm�1C 0 ðmodQÞ: ð5Þ

But (3) can be also written as

ð1þ � � � þ PmÞ2 þ Pð1þ � � � þ Pm�1Þ2 ¼ ð1þ � � � þQnÞ2 þQð1þ � � � þQn�1Þ2;

from which we get by di¤erentiation relative to x:

P 0ð1þ � � � þ Pm�1Þ2 ¼ Q 0ð1þ � � � þQn�1Þ2: ð6Þ

Thus, using (5) and (6), we get that Q divides

1þ � � � þQn�1;

which is impossible. This finishes the proof of the lemma. r

For completeness we give a short proof of the simple but useful fact:

Lemma 2.6. Let A a F2½x� be an odd perfect polynomial. Then A is a perfect

square.

Proof. Assume on the contrary that A has a primary factor of the form Q2mþ1 so

that for some polynomial B a F2½x� one has

A ¼ Q2mþ1B; ð7Þ

with gcdðQ;BÞ ¼ 1. From the equality A ¼ sðAÞ and the multiplicativity of s we

get

A ¼ ð1þ � � � þQ2mþ1ÞsðBÞ;

so that by evaluating both sides in 0 we obtain that

Að0Þ ¼
�
1þQð0Þ þ � � � þQð0Þ2mþ1�sðBÞð0Þ: ð8Þ

But from (7) we have 1 ¼ Að0Þ ¼ Qð0Þ2mþ1
Bð0Þ, i.e., Qð0Þ ¼ 1. So (8) gives a con-

tradiction in F2:

1 ¼ ð2mþ 2ÞsðBÞð0Þ ¼ 0:

This completes the proof of the lemma. r
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The following result is [5], Lemma 4.1:

Lemma 2.7. Let P;Q a F2½x� be two primes of the same degree d. If Q divides

sðP2Þ then P does not divide sðQ2Þ.

The following lemma is the case p ¼ 2 of [5], Lemma 2.3, or [4], Lemma 2.5.

It improves a result of Beard et al. ([1], Theorem 7):

Lemma 2.8. Let A a F2½x� be a perfect polynomial. Then the number of monic

minimal primes of A, i.e., of prime divisors of minimal degree of A, is even.

The object of the paper is to prove our main result:

Theorem 2.9. There are no odd perfect polynomials A a F2½x� with four prime divi-

sors, i.e., of the form A ¼ PaQbRcSd where P, Q, R, S are distinct irreducible poly-

nomials of degree > 1 over F2 and a, b, c, d are positive integers.

The general strategy of the proof is as follows. Let A be an odd perfect poly-

nomial with oðAÞ ¼ 4. From Lemma 2.6 we see that we may assume that for

some primes P;Q;R;S a F2½x� and for positive integers a, b, c, d we have

A ¼ P2aQ2bR2cS2d ¼ sðAÞ: ð9Þ

We shall show that this is impossible. For that purpose put d1 ¼ degðPÞ, d2 ¼
degðQÞ, d3 ¼ degðRÞ, d4 ¼ degðSÞ. We distinguish three main cases according to

the possible configurations arising from Lemma 2.8:

Case 1: 1 < d1 ¼ d2 ¼ d3 ¼ d4.

Case 2: 1 < d1 ¼ d2 < d3 ¼ d4.

Case 3: 1 < d1 ¼ d2 < d3 < d4.

Here the order is from the easiest case to more involved ones.

Case 1 reduces quickly to the case A ¼ P2Q2R2S2 that has already been dealt

with as a special case of [5], Theorem 5.5.

In Case 2 it is easy to prove that c ¼ d ¼ 1, while in Case 3 we obtain immedi-

ately that d ¼ 1.

We have then, by using the multiplicativity of s, a system of four equations in

the four unknowns P, Q, R, S to consider (see below).

For instance, the first equation of this systems is of the form sðP2aÞ ¼
Qb1Rc1Sd1 , where we discuss the possible values of the exponents. The rest of

the proof consists of applying repeatedly Lemma 2.2, of checking that the expo-

nents of the prime divisors are the same for both A and sðAÞ, of checking that

the degrees are the same on both sides of each equation of the system, and of using

(if necessary and only in Case 3) Lemma 2.3 to get a contradiction. Sometimes the
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contradiction is immediate, sometimes it is more involved. The other lemmas and

some congruence arguments are also appropriately used to produce contradic-

tions.

We may write the general system to resolve as

sðP2aÞ ¼ Qb1Rc1Sd1 ; ð10Þ

sðQ2bÞ ¼ Pa2Rc2Sd2 ; ð11Þ

sðR2cÞ ¼ Pa3Qb3Sd3 ; ð12Þ

sðS2dÞ ¼ Pa4Qb4Rc4 ; ð13Þ

where a; b; c; d > 0 are positive numbers, while the exponents on the right-hand

side are non-negative numbers so that some of them may be zero.

3. List of all cases to consider

Case 1: 1 < d1 ¼ d2 ¼ d3 ¼ d4.

Case 2: 1 < d1 ¼ d2 < d3 ¼ d4. That includes:

Case 2A: d3 ¼ 0 and c4 ¼ 0. Subcase b1 ¼ a2 ¼ 0. Subcase b1 ¼ a2 ¼ 1.

Case 2B: c4 ¼ 1 and d3 ¼ 0. Subcase b1 ¼ 1 and a2 ¼ 1.

Case 2B: c4 ¼ 1 and d3 ¼ 0. Subcase b1 ¼ 1 and a2 ¼ 1. Sub-Case b1 ¼ 1 and

a2 ¼ 0. Subcase b1 ¼ 0 and a2 ¼ 1. Subcase b1 ¼ 0 and a2 ¼ 0.

Case 3: 1 < d1 ¼ d2 < d3 < d4. That includes:

Case 3A: d3 > 0.

Case 3A11a: b1 ¼ 0, a2 ¼ 0 and c2 ¼ 0. Case 3A11b: b1 ¼ 0, a2 ¼ 0 and c2 ¼ 1.

Case 3A12a: b1 ¼ 1, a2 ¼ 1 and c2 ¼ 0. Case 3A12b: b1 ¼ 1, a2 ¼ 1 and c2 ¼ 1.

Case 3A13a: b1 ¼ 0, a2 ¼ 1 and c2 ¼ 0: Case 1: a > 1 Case 2: a ¼ 1. Case 3A13b:

b1 ¼ 0, a2 ¼ 1 and c2 ¼ 1. Case 3A14a: b1 ¼ 1, a2 ¼ 0 and c2 ¼ 0: Case 1: c > 1,

Case 2: c ¼ 1. Case 3A14b: b1 ¼ 1, a2 ¼ 0 and c2 ¼ 1.

Case 3B: d3 ¼ 0.

Case 3B1a: b1 ¼ 0, a2 ¼ 0, c1 ¼ 0, c2 ¼ 0. Case 3B1b: b1 ¼ 0, a2 ¼ 0, c1 ¼ 1,

c2 ¼ 1. Case 3B1c: b1 ¼ 0, a2 ¼ 0, c1 ¼ 1, c2 ¼ 0. Case 3B1d: b1 ¼ 0, a2 ¼ 0,

c1 ¼ 0, c2 ¼ 1. Case 3B2a: b1 ¼ 1, a2 ¼ 1, c1 ¼ 0, c2 ¼ 0. Case 3B2b: b1 ¼ 1,

a2 ¼ 1, c1 ¼ 1, c2 ¼ 1: Case 1: c > 1 Subcase 1: c > 1 and a3 ¼ 2, b3 ¼ 3 Subcase

2: c > 1 and a3 ¼ 3, b3 ¼ 2 Case 2: c ¼ 1.

Case 3B2c: b1 ¼ 1, a2 ¼ 1, c1 ¼ 1, c2 ¼ 0. Case 3B2d: b1 ¼ 1, a2 ¼ 1, c1 ¼ 0,

c1 ¼ 1. Case 3B3a: b1 ¼ 1, a2 ¼ 0, c1 ¼ 0, c2 ¼ 0. Case 3B3b: b1 ¼ 1, a2 ¼ 0,

c1 ¼ 1, c2 ¼ 1. Case 3B3c: b1 ¼ 1, a2 ¼ 0, c1 ¼ 1, c2 ¼ 0. Case 3B3d: b1 ¼ 1,

a2 ¼ 0, c1 ¼ 0, c2 ¼ 1. Case 3B4*: b1 ¼ 0, a2 ¼ 1, c1; c2 a f0; 1g.
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4. Complete details of the solution of some typical cases; the other are similar

4.1. Case 1: 1H d1F d2 F d3 F d4. This is the simplest case. By applying

Lemma 2.2 to each of the equations of the system we get immediately that all

exponents

b1; c1; d1; a2; c2; d2; a3; b3; d3; a4; b4; d4;

are in f0; 1g. Now we take degrees on both sides of (10) to (13) and divide both

sides by d1 > 0 to get

2a 2a ¼ b1 þ c1 þ d1a 3; 2a 2b ¼ a2 þ c2 þ d2a 3;

2a 2c ¼ a3 þ b3 þ d3a 3; 2a 2d ¼ a4 þ b4 þ c4a 3:

Thus a ¼ b ¼ c ¼ d ¼ 1 and so A ¼ P2Q2R2S2, which is impossible in view of [5],

Theorem 5.5.

4.2. Case 3A12a: b1 F 1, a2 F 1 and c2F 0. Our system is now:

E1: 1þ � � � þ P2a ¼ QR,

E2: 1þ � � � þQ2b ¼ PS,

E3: 1þ � � � þ R2c ¼ Pa3Qb3S,

E4: 1þ S þ S2 ¼ Pa4Qb4Rc4 .

The exponents of P, Q, R on both sides of sðAÞ ¼ A are the same so that

2a ¼ 1þ a3 þ a4, 2b ¼ 1þ b3 þ b4, c4 ¼ 2c� 1. By comparing degrees on both

sides of the first three equations we obtain that d3 ¼ ð2a� 1Þd1, d4 ¼ ð2b� 1Þd1
and d4 ¼

�
4ac� 2c� ða3 þ b3Þ

�
d1. Hence

a3 þ b3 ¼ 4ac� 2c� 2bþ 1;

from which it follows that

a4 þ b4 ¼ 2aþ 4bþ 2c� 4ac� 3:

Observe in particular that d4 > d3 is equivalent to b > a.

Now c4 ¼ 2c� 1 is odd, thus, by using Lemma 2.3 (d) in E4, we get

d4 > ð2c� 2Þd3 þ ða4 þ b4 � 2Þd1:

Using the values of d3 ¼ ð2a� 1Þd1 and d4 ¼ ð2b� 1Þd1 yield

2b� 1 > 2ðc� 1Þð2a� 1Þ þ ða4 þ b4 � 2Þ:
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So, after some computation, we finally obtain that

0 > b� a� 1;

that is, ba a, which contradicts d4 > d3.

4.3. Case 3A13a: b1F 0, a2F 1 and c2F 0. The first and the third equations

of our system are

E1: 1þ � � � þ P2a ¼ R,

E3: 1þ � � � þ R2c ¼ Pa3Qb3S.

First observe that by Lemma 2.4 applied to E1 and E3 we have a3 ¼ 0.

So our system becomes:

E1: 1þ � � � þ P2a ¼ R,

E2: 1þ � � � þQ2b ¼ PS,

E3: 1þ � � � þ R2c ¼ Qb3S,

E4: 1þ S þ S2 ¼ Pa4Qb4Rc4 .

The exponents of P, Q, R on both sides of sðAÞ ¼ A are the same so that

2a ¼ 1þ a4, 2b ¼ b3 þ b4, c4 ¼ 2c� 1. By comparing degrees on both sides of

the first three equations we get d3 ¼ 2ad1, d4 ¼ ð2b� 1Þd1 and d4 ¼ ð4ac� b3Þd1.
This implies that

b3 ¼ 4ac� 2bþ 1 and b4 ¼ 4b� 4ac� 1:

Since c4 is odd, by applying Lemma 2.3 (c) to E4 we get

d4 > 2ðc� 1Þd3 þ ða4 þ b4 � 2Þd1

and so 2b� 1 > 4ac� 4aþ ða4 þ b4 � 2Þ. This leads to

3 > 2b� 2a:

But d4 > d3 is equivalent here to 2b� 2a > 1. Thus,

b ¼ aþ 1:

Hence

b4 ¼ 4a� 4acþ 3
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is odd and so b4b 1. This is equivalent to

ca 1þ 1

2a
a

3

2
:

Thus c ¼ 1. One has then b4 ¼ 3, b3 ¼ 2a� 1, a4 ¼ 2a� 1 and c4 ¼ 1. So our

system becomes

E1: 1þ � � � þ P2a ¼ R,

E2: 1þ � � � þQ2aþ2 ¼ PS,

E3: 1þ Rþ R2 ¼ Q2a�1S,

E4: 1þ S þ S2 ¼ P2a�1Q3R.

We consider two cases:

4.3.1. Case 1: aI 1. By di¤erentiation of E3 we get

R 0 ¼ Q2a�2ðQ 0S þQS 0Þ:

Di¤erentiation of E1 leads to

R 0 ¼ ð1þ � � � þ Pa�1Þ2P 0:

Thus

ð1þ � � � þ Pa�1Þ2P 0 ¼ Q2a�2ðQ 0S þQS 0Þ: ð14Þ

Recall that degðPÞ ¼ degðQÞ so that degðQÞ > degðP 0Þ. Thus, gcdðQ;P 0Þ ¼ 1

and so

1þ � � � þ Pa�1 ¼ Qa�1M ð15Þ

for some polynomial M a F2½x�. If a is odd then by Lemma 2.2 we get a a f1; 2g.
But a > 1, hence a ¼ 2, which is impossible.

Thus a is even. Let us write the equation above in the form

1þ Pa ¼ ð1þ PÞQa�1M: ð16Þ

By di¤erentiation of (16) followed by division of both sides by Qa�2 we get

0 ¼ P 0QM þ ð1þ PÞðQ 0M þQM 0Þ:

Reducing modulo Q we obtain that
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0C ð1þ PÞQ 0M ðmodQÞ:

Observe that gcd
�
Q; ð1þ PÞQ 0� ¼ 1, so that

Q jM:

Thus, we obtain from (15) that

Qa j 1þ � � � þ Pa�1:

So, from (14) we get

Q2a jQ2a�2ðQ 0S þQS 0Þ:

If follows that

Q2 jQ 0S þQS 0:

But gcdðQ;Q 0Þ ¼ 1, hence

Q jS;

which is impossible since S and Q are primes and degðSÞ ¼ d4 > d1 ¼ degðQÞ.

4.3.2. Case 2: aF 1. Here our system is

E1: 1þ Pþ P2 ¼ R,

E2: 1þQþQ2 þQ3 þQ4 ¼ PS,

E3: 1þ Rþ R2 ¼ QS,

E4: 1þ S þ S2 ¼ PQ3R.

From E3 and E1 we have

QS ¼ 1þ Pþ P4;

so that

Q3S3C 1 ðmodPÞ:

From E4 we get

S3C 1 ðmodPÞ:

Thus,
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Q3C 1 ðmodPÞ:

But from E2 it follows that

Q5C 1 ðmodPÞ:

Thus,

Q2C 1 ðmodPÞ:

But this means that P divides ð1þQÞ2. Recall that the irreducible polynomials P,

Q satisfy degðPÞ ¼ degðQÞ > 1. Therefore, P divides 1þQ. So P ¼ 1þQ, which

is impossible.

4.4. Case 3B2b: b1F 1, a2F 1, c1F 1, c2F 1. The system becomes

E1: 1þ � � � þ P2a ¼ QRS,

E2: 1þ � � � þQ2b ¼ PRS,

E3: 1þ � � � þ R2c ¼ Pa3Qb3 ,

E4: 1þ S þ S2 ¼ Pa4Qb4Rc4 .

The exponents of P, Q, R on both sides of sðAÞ ¼ A are the same so that

2a ¼ 1þ a3 þ a4, 2b ¼ 1þ b3 þ b4, c4 ¼ 2c� 2. From E1, E2 we get immediately

by taking degrees that b ¼ a. By comparing degrees on both sides of the equations

E1 and E3 we obtain that d4 þ d3 ¼ ð2a� 1Þd1, 2cd3 ¼ ða3 þ b3Þd1. Thus

a3 þ b3 þ a4 þ b4 ¼ 4a� 2:

Since c4 is even we use Lemma 2.3 (b) in E4 to get

d4 > ð2c� 2Þd3 þ ða4 þ b4 � 2Þd1:

In other words,

d4 > ða3 þ b3 þ a4 þ b4 � 2Þd1 � 2d3;

that is,

ð2a� 1Þd1 � d3 > ð4a� 4Þd1 � 2d3:

This becomes

d3 > ð2a� 3Þd1;
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and so

d3 > ð2a� 1Þd1 � 2d1 ¼ d3 þ d4 � 2d1:

Hence

d4 < 2d1:

Since d4 > d3 we obtain that

2d1 > d3 > ð2a� 3Þd1:

Thus, a a f1; 2g. If a ¼ 1 we get d1 ¼ ð2a� 1Þd1 ¼ d3 þ d4 > d3, which is a

contradiction. Thus, a ¼ 2. This implies that a3 þ a4 ¼ 3, and also b3 þ b4 ¼ 3.

4.4.1. Case 1: cI 1. Since cb 2 and d3 > d1, we have

4d1a 2cd1 < 2cd3 ¼ ða3 þ b3Þd1

and also b3a 3, so that

4 < a3 þ b3a a3 þ 3:

Thus, a3 a f2; 3g. Observe that a3 ¼ 2 implies b3 ¼ 3 and that a3 ¼ 3 implies

b3 > 1. Moreover, note also that

2a c <
a3 þ b3

2
a 3;

so we get c ¼ 2.

Now d4 > d3 is equivalent to 3d1 � d3 > d3, so

6d1 > 4d3 ¼ ða3 þ b3Þd1:

It follows that

4 < a3 þ b3 < 6;

and hence

a3 þ b3 ¼ 5:

It remains to consider two subcases:

4.4.2. Subcase 1: cI 1 and a3F 2, b3F 3. One has c ¼ 2, we have also

b ¼ a ¼ 2 and a4 ¼ 1, b4 ¼ 0. Thus our system becomes
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E1: 1þ � � � þ P4 ¼ QRS,

E2: 1þ � � � þQ4 ¼ PRS,

E3: 1þ � � � þ R4 ¼ P2Q3,

E4: 1þ S þ S2 ¼ PR2.

One has:

d3 þ d4 ¼ ð2a� 1Þd1 ¼ 3d1;

and from E4 we get

d3 � d4 ¼ � 1

2
d1:

Thus

d3 ¼
5

4
d1; d4 ¼

7

4
d1:

By applying Lemma 2.3 (b) in E4 (or Lemma 2.2) we get

d4 > 2d3:

Thus we arrive at the contradiction

7 > 10:

4.4.3. Subcase 2: cI 1 and a3 F 3, b3 F 2. This is the same as Case 1, by

permuting P and Q.

4.4.4. Case 2: cF 1. Observe that d4 > d3 is equivalent to 3d1 � d3 > d3. Thus

3d1 > 2d3 ¼ ða3 þ b3Þd1:

Thus,

a3 þ b3 < 3:

But we have also

2d3 ¼ ða3 þ b3Þd1 > 2d1:

Therefore we get the contradiction
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2 < a3 þ b3 < 3:

This finishes the proof of the theorem.
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