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A note on the global regularity of steady flows
of generalized Newtonian fluids
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Abstract. We establish regularity results for solutions of a generalized Newtonian model in
a cubic domain. We prove regularity results in the L?-space for the second derivatives of
the velocity and the first derivatives of the pressure. Further, we show that the gradient of
weak solutions is integrable up to the boundary with any finite exponent.
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1. Introduction

In this article we are concerned with the following boundary value problem

—voAu — V- [(u+|2u)’ > Du) + (u-Vu+Vr = f, inQ,
(1.1)
V-u=0, inQ,

where

1
Fu =5 (Vu+ vul),

(u - V)u = uOru, vo, v1 and p are positive constants and p € (1,2). Below we show
L*-regularity, up to the boundary, for the second derivatives of the velocity field
and for the first derivatives of the pressure field. The assumption vy > 0 is crucial
in our proof. However we observe that even if such a case is easier to handle from
a mathematical point of view, it is physically interesting and more realistic.

The up to the boundary regularity problem has been studied by few authors.
In the case p < 2, considered here, the most significant result has been obtained
in [4], in the more difficult case vy = 0 and with a non-flat boundary. For results
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with vo = 0 and a flat boundary see the articles [7], [2] and [9]. Further, cylindrical
domains were considered by the author in the previous articles [12], [13].

Just for completeness, we recall that for p > 2 (the so-called shear thickening
case) regularity results up to the boundary were obtained in the half-space case R
in [1], in the “cubic domain”-case (see below) in [6], [5], and in suitable smooth
domains in [3].

The general outline of our proof follows the one introduced in the pioneering
article [1]. Actually, here we work in the simplified framework introduced in [6],
namely, a three-dimensional cubic domain Q = (]0, 1[)* instead of the half space
RY.

In [4] it is proved that

ue WhiQ)n w>(Q), VrnelLl(Q),

where

Hence, if p < 2 and vy = 0, the integrability exponent / remains strictly less than 2.
In the sequel we show that u € W22(Q) provided that vy > 0.

The second question which arises is the following one: is it possible to prove the
Wl 4-regularity, up to the boundary, of solutions for any finite power ¢? This, in
particular, implies that the solution belongs to C%*(Q), for any « < 1. This result,
under the assumption vy > 0, was proved in [8] for a very large class of problems.
In particular, in this last reference, the boundary condition is non-homogeneous,
there are no convexity assumptions and the power p = p(x) < 2 may depend on x.
We have shown the same result (independently from [8]) in the simpler case (1.1).
Since our proof is very short, we present it to the reader. We observe that, for the
time being, we were not able to prove that the full gradient belongs to L™ (Q); see
[8] for some considerations on this point. However, even for vy = 0 it seems pos-
sible to show better results, namely that u € C1*(Q) for sufficiently small forces.

2. Notations and statement of the main results

Throughout the article Q denotes a three dimensional cube Q = (]0, 1[)*. We de-
note by I' two opposite faces in the x; direction of Q, i.e.,

F={x:|x|<Lx <lLx3=0u{x:|x|<l|xn| <lx=1}

We set x’ = (xy, x2) and say that a function is x’-periodic if it is periodic in both
directions x; and x,. We impose Dirichlet boundary conditions on I" and period-
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icity in the other two directions. Therefore, we can write the boundary conditions
as

wr =0,  uis x"-periodic. (2.1)

By L?(Q), p € [1,+c0], we denote the usual Lebesgue space with norm || - || ,.
Further, we set ||| = -],. By W™?(Q), m a non-negative integer and
p € (1,+00), we denote the usual Sobolev space with norm || - |, ,. We denote
by W, (Q) the closure in W'7(Q) of C(Q) and by W' (Q), p’ = p/(p — 1),
the strong dual of WO1 7(Q) with norm || - ||_; ,,. In notation concerning duality
pairings, norms and functional spaces, we will not distinguish between scalar and
vector fields.

We set

V7 ={ve C(Q):V-v=0}
and
Vy={ve WH(Q):V.-v=0, yr = 0,0 is x"-periodic}.

By V, we denote the dual space of V. Recall that, by appealing to inequalities of
Korn type, one gets the following result (see [17] Proposition 1.1).

Lemma 2.1. There exists a constant ¢ such that
[oll, + [[Voll, < cl|Zvll,  for eachv e V.

This result implies that the two sides of the above inequality give equivalent
norms in V.

We denote by D?u the set of all the second partial derivatives of . The symbol
D?u may denopte any second-order partial derivative 0% u; (with the obvious mean-
ing 03 u; = 1) except for the derivatives d3;u;, j = 1,2. Moreover we set

Ox;0x

3
D3 = |05usl” + D |Gl
=
(i,k)#(3,3)
By the symbol V.7 we denote the second and the third components of the gradient
of .

We denote by ¢ positive constants that may have different values even in the

same equation.

Definition 2.2. Assume that f € V;. We say that u is a weak solution of problem
(1.1)-(2.1) if u € V, and satisfies
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VOJ Vu-Vodx + v J (u+ | 2u))P > Gu - Do dx — J
Q Q

(u-V)gﬂ-udx:J [ pdx
Q

2 (22)
for all p € V5.

The existence of a weak solution can be obtained using arguments of the
theory of monotone operators, following J.-L. Lions [16]. For a proof of the exis-
tence result we refer to [15].

Note that we can replace ¢ by u in (2.2). Then, using Lemma 2.1, it is easy to
get the estimates

IVull < el F1] -1 2

- (2.3)
lZull, < (1720 + 1),

By restriction of (2.2) to divergence-free test functions with compact support and
by de Rham’s Theorem, one can associate the pressure field 7z, determined up to a
constant.

Our aim is to prove the following regularity theorems.

Theorem 2.3. Let be p €[3,2), [ € L*(Q), u a weak solution of problem (1.1)—
(2.1), and & the corresponding pressure field. Then u e W*2(Q), Vr € L*(Q) and

ID%ull + [Vall < el F I+ 111). (2.4)

Theorem 2.4. Let p € [%,2), f e L3(Q), and u, m as in Theorem 2.3. Then,
besides the regularity stated in Theorem 2.3, there holds

ue WhHi(Q)  forall g e (1,+x0).
The above assumption on f may be replaced by the condition
few Q) forall g < +oo.

In the remaining part of this section we recall some preliminary results. The
first one is a well known regularity result of solutions of the Stokes system, due
to Cattabriga [11]. Let us consider the following Stokes problem:

AW =VII+ G inQ,
V-W=0 inQ, (2.5)
Wir =0, W x'-periodic.

A field W is called a g-weak solution of (2.5) if W e V, for some g € (1,+00), and
W satisfies the identity



Global regularity of generalized Newtonian fluids 215

J VW-Vgodx:J G-pdx (2.6)
Q Q

forallp e V.

Lemma 2.5. For every G e W=14(Q), 1 < g < +c0, there exists one and only one
g-weak solution W of the Stokes problem (2.5). Moreover, the solution satisfies the
estimate

Wl + 1T, < GlIG]| -y 4

where C, is a positive constant and 11 is the pressure field associated to W by de
Rham’s Theorem.

For the proof of the above result we refer to [11], [14].
Lemma 2.6. IfVg =V - G for some G € LY(Q), then g € LY(Q) and
lg—all, < clGll,.
where § is the mean value of g in Q.

For the proof we refer, for instance, to [10].

3. Proof of Theorem 2.3

As in previous articles (see, for instance, [6], [7], [12]), we replace the use of the
differential quotients method in the tangential directions by formal differentiation
in the same directions.

Let us define the second order tensor S as

S = (u+|D|)"D,
where D is an arbitrary second order tensor. It is easy to verify that

0S;; _
—LCyCu = (p—1)(u+|D)"?|C? (3.1)
0Dy

for any tensors C. Moreover,

0S;
0Dy

< (3 -p)(u+D)" (3.2)
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Define, for s = 1,2,

Ji(u) = J V- [(u+ | Zu))’ 9] - O dx
Q
and

I(u) = JQ(“ + | 2u|)"2|0,Dul* dx. (3.3)

By integrating twice by parts and taking into account (3.1) it is easily seen that (see
[7] for details)

Js(u) = (p = DI(w). (3-4)

Let us consider the following generalized Stokes system:

—voAu — V- [(u+ |2u))’ > Du) +Vr = f inQ, }

(3.5)
V-u=0 inQ,

with the boundary conditions (2.1). For such a system we prove the following

result

Proposition 3.1. Let p € [3,2), /€ L*(Q), and (u,nt) be a weak solution of prob-
lem (3.5)—(2.1). Thenu e W**(Q), Vr € L*(Q) and

1D?ul| + (V]| < cllf1. (3.6)

The proof of this result is split into three fundamental steps: the first step con-
sists of estimating the tangential derivatives of the velocity and pressure fields; the
second step consists of estimating the normal derivatives of the velocity field; the
last step, which is a direct consequence of the previous ones, consists of estimating
the normal derivative of the pressure field. In order to make the reading easier, we
prefer to present each step in a separate lemma.

Lemma 3.2. Let p € (1,2), f € L*(Q), and let (u, ) be a weak solution of problem
(3.5)—(2.1). Then D*u,V.n € £*(Q) and, for s = 1,2,

ID2ul® + L () + |V.m* < e /1. (3.7)

Proof. Multiplying equation (3.5); by 0Zu, s = 1,2, integrating twice by parts
and, finally, using (3.4) one has
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VOJ \V.Vu|* dx +vi(p—1) J (1 + |2ul)P2|0,2u|* dx = —J f-iudx. (3.8)
Q Q Q

By applying the Holder and Cauchy—Schwarz inequalities, one obtains that
V. Vul| < || f]

and
L(u) < || f]I.

As far as the pressure term is concerned, let us differentiate the first equation (3.5);
with respect to x;, s = 1,2:

Vo =V - 0,Vu+ V- 8,[(u+ |2u|)’ > Du] + 0 f .
From Lemma 2.6, we only have to estimate the term 0,[(x + |Zu|)” *%u]. Since

O[(u+ | 2u)"*7u)
= (u+|2u)" 20, 2u+ (p — 2)(u+|2u))’ > |2u| " (Gu - 0,2u)Tu, (3.9)

we have
0[(p+ |2u))" > 2u)| < (3 — p)(u+ |Zul)’"*|0,Zul

almost everywhere in Q. Hence d,[(x + |Zu|)” > %u] belongs to L*(Q) and
J 051+ [2u))" 2 20| dx < eI (w).
Q

By applying Lemma 2.6 we have

lo])* < eu L) + 0,Vull* + e f17, s = 1.2,
from which, by the above estimates on |V, Vu| and I;(u), one obtains (3.7). O
Lemma 3.3. Let p € [3,2), f € L*(Q), and let (u, 7t) be a weak solution of problem
(3.5)—(2.1). Then

2
> ol < el f]. (3.10)
=1
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Proof. By using (3.9), the j-th equation (3.5);, j = 1,2, takes the form

20003515 + vi (u+ | Zul)" 203
2
+20(p =Dt |2u)" N\ Tul ' D Y Dot = F =2+ 20, (3.11)
=1
where

2
Fi(x) = —[2v +vi(u+12u))’ ) aq
k=1

3
—2vi(p = 2)(u+ |2u)" | 2ul ™! [5§3u3933@1‘3 + D Gt T D
I,m, k=1
(k,m) #(3,3)

Equations (3.11), j = 1,2, can be treated as a 2 x 2 linear system in the unknowns

0%u;, j=1,2. We denote the elements of the matrix 4 = A(x) associated with
such a system as a;, where j,/ = 1,2. Then we can rewrite the system as

Zz: @103 = Gj, (3.12)
=1
where the elements of the matrix of the system are given by
ay = [2vo +vi(p -+ |2u)" 105 + 201 (p = 2) (u+ | 2ul) |2~ 2315
and
Gj = F; = 2fj + 20;m.

Note that a;; = aj; moreover, if £ = (;,&,,0) then

2
> @i&é = 2o+ n(u+ |7ul) )|
Jil=1

+2n(p = 2)(p+ | 2u))" 7| 2ul” [(Zu)l;,

where (Zu)¢ = (Zu);¢;; hence

2
S ai= [ (p-3) g2 @)
J=1
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This means that, in the hypothesis p > 3, the matrix 4 = (ay) is definite positive
a.e.in x € Q. From (3.12) and (3.13) with ; = 5u), j = 1,2, we get

3 12 2 12 '
[21}0 + 2w (p — 5) (u+ |2u))f 2} Z 0351 < {Z |G1|2} a.e.inx e Q.
I=1 I=1 (3.14)

Straightforward calculations show that, for j = 1,2,
|G < e[2vo + 2vi (p = 3) (1 + |2ul)” 2] | D2u| + 2|07 + 2| ]
almost everywhere in Q. By using the above estimate in (3.14) and dividing both

sides by [2vo +2v1 (p —3) (e + | Zu|)’ ] we get

2
> 105w < e|D2u| + 5—(|Var| + |£]), (3.15)

c
5—(
=1 2V0

almost everywhere in Q. From the hypothesis and the previous lemma, all the

terms on the right-hand side belong to L*(€2). The lemma is proven. O

From the above two lemmas we have obtained D?u e L?(Q) and
1D?ull < ¢l f1I-

Lemma 3.4. Let p € [3,2), f € L*(Q), and let (u,n) be a weak solution of
problem (3.5)—(2.1). Then

1037l < <[lf]]- (3.16)

Proof. From the third of the three equations (3.5);, one can estimate d3x in terms
of quantities already estimated. Since

037 < ¢[vo +2vi(p = 2)(u + |Zul)" )| D*ul + | f3],

almost everywhere in Q, straightforward calculations together with Lemmas 3.2—
3.3 lead to (3.16). O

Therefore, we have also obtained
V|| < ¢l £l

and the proof of Proposition 3.1 is complete.
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Proof of Theorem 2.3. For the proof we follow the usual way of treating the con-
vective term (- V)u as a right-hand side and deriving a priori estimates. First of
all we observe that the validity of the identity

L(u-V)u-udx— 0

implies that estimates (2.3) still hold for weak solutions of the complete system
(1.1). Hence the solution belongs to W!2(Q) and

llully » < <[l f]-
Set
F=f—(u-Vu
By Proposition 3.1 it follows that F € L?(Q) implies
[ully,, < el F]|.

Let us estimate the L2-norm of F. By applying Hélder’s inequality, then Sobolev’s
inequality and Gagliardo—Nirenberg’s inequality, there holds

1 Vyul] < [lullgl|Vaally < el Vaul 2| D2ul| 72 + ]| V>
Then by using the Cauchy—Schwarz inequality, we get
(- V)ul| < e||Val|* + €| Vul|* + ]| D?ul].
Therefore
IFL< 1/ + - Vyull < 7]+ el /11 + el Dull.

This enables us to obtain the desired estimate on the W2 2-norm of u. O

4. Proof of Theorem 2.4

For simplicity, from now on, we assume that the force field f is in divergence
form. Indeed it is well known that for any f e L?(Q), there exists a tensor field
F e W'3(Q) such that f =V - F.

Let (u,7) be a weak solution of problem (1.1)—(2.1) and let us consider the fol-
lowing Stokes problem:
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—vAv=—-Vo+wV-S(Qu)+V-F—(u-V)u inQ,
V-v=0 inQ, (4.1

vr =0, v x'-periodic,

with S(2u) = (u+ |Zu|)’ > Zu. We set
G(x)=wV-S(Qu)+V-F—(u-Vu. (4.2)

Lemma 4.1. Let be u € W'(Q) for some r € [6,+c0). Then the correspond-
ing Stokes problem (4.1) admits a unique weak solution v. Further, the solution
v belongs to Wh/(P=1)(Q) and the associated pressure field o belongs to
Lr/(p%)(g).

Proof. By the embedding of W!3(Q) in L4(Q), for any ¢ € (1,+o0), we have
F e L4Q); thus V-F e W=4(Q) for any ¢q € (1,+00). Further, let us note
that u e W' (Q) implies S(Zu) e L"/?~1(Q); thus, as before, V-S(Zu) e
w=Lr/(p=1(Q). Finally (u- V)u belongs to W~17/(P=1)(Q), too. Indeed, for any

p e Wy P(Q), where =77 is the dual exponent of -y, we have

[, vy g = | | - rp-uas] < 190l o 101y < o0,

since ue W!'7(Q) implies that wue LY(Q) for any gq. Hence G(x) e
w=Lrl(r=1)(Q)), where G(x) is defined by (4.2). These arguments allow us to apply
Lemma 2.5, which leads to the desired result. |

Lemma 4.2. Let u be a weak solution of (1.1)—(2.1) and let v be the corresponding
weak solution of (4.1). Then u = v.

Proof. Let us take the difference u — v. By Definition 2.2 and the definition (2.6)
of weak solution for the Stokes problem and Lemma 2.5 we have that u and v be-
long to V; and

V()J V(u—v)-Vp=0 forany ¢ € 7 (Q).
Q

By standard arguments this implies that V(z — v) = 0 a.e. and therefore, employ-
ing the boundary conditions, we get u = v. O

Proof of Theorem 2.4. Set

qo = 67 gn+1 =
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for each non-negative integer n. By Theorem 2.3 we know that f € L3(Q) implies
(at least) that the velocity field u belongs to W?*2(Q), hence to W% (Q), go = 6,
by standard embedding. Assume that u € W% (Q) for some ¢, > 6. By Lemma
4.1 the solution v of system (4.1) belongs to W14+ (Q), with g, given by (4.3).
Furthermore, by Lemma 4.2, this implies that u € W%+ (Q). Observing that the
above sequence monotonically increases and diverges to infinity as n goes to 4 o0,
we obtain that u e W4(Q) for any ¢ < +o0. ]
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