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Exponential stabilization of periodic solutions of a system
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Abstract. We consider a coupled nonlinear dispersive system of Korteweg-de Vries type in
the presence of a dissipative mechanism. First we prove that the Cauchy problem is glob-
ally well posed in a suitable periodic Sobolev space and our main result says that the L> and
L* norms of the solutions decay exponentially fast as t — +o0.
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1. Introduction

We consider a coupled dispersive system of equations of Korteweg-de Vries type
under the effect of dissipative mechanisms

u, — (Hu), — az(Hv), + uu, + ayovy + ax(uv) . + eLu = 0,

1.1
v, — (Hv), — a3(Hu), + vv, + asuu, + ay (uv) . + eLv = 0, (1)

with initial conditions

u(x,0) = g (x),  v(x,0) = g(x) (1.2)

and periodic boundary conditions. In (1.1), a1, a», a3 and ¢ are real constants with
e>0, u=u(x,t), v=ov(x,t) are real-valued functions, 0 < x <1, >0, and H
and L are pseudo-differential operators of orders u > 0 and # > 0, respectively,
whose symbols /1(k) and /(k) satisfy appropriate conditions stated below. A dis-
tinguished special case included in (1.1) (when H =L = —C%) is the following
system

*Partially supported by FAPERGS/Brasil.
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U + Usy + A30xxy + Uty + a1V + ar(uv) , — ellyy = 0,

(1.3)

Ur + Uy + @3Uxy + 00y + @ttty + ay (uv) . — evye = 0.

J. A. Gear and R. Grimshaw [10] derived model (1.3) with ¢ = 0 to describe
strong interactions of two long waves in a stratified fluid. System (1.3) has been
intensively studied in recent years. The Cauchy problem for (1.3) with ¢ = 0 was
studied by J. Bona et al. [8], J. Marshall Ash et al. [2] and F. Linares and M. Pan-
thee [13] (see also the references therein). In [5], E. Bisognin et al. studied the fol-
lowing generalization of system (1.3),

Up + Uyxx + A30xxx + upux + alvpvx + a2(upv)x — EUxx = 0, (1 4)
U + Uxxy + B3y + 070 + aatt’uy + ay (uv?), — evg = 0 .
t XXX 3Uxxx X 2 X 1 x XX )

where p > 1 is any integer, with —co < x < o0 and ¢ > 0. One of the results given
in [5] is that the solutions of (1.4) decay algebraically at the same rate enjoyed by
the solutions of the generalized KdV—Burgers equation provided the initial data
are sufficiently small, |a3| < 1 and p > 4. Nevertheless, when the nonlinearity is
as in (1.3), that is, p =1, in [5] was only showed the asymptotic stability as
t — +o0, without giving any specific rate of decay. Our main concern in this
article is to give a satisfactory answer on the uniform stabilization for the solutions
of system (1.1). Some other works on related dispersive models are [1], [3], [4],
(6], [7], [14], [15] (and the references therein). Let Q = {x e R|0 < x < 1}. For
1 < ¢ < o0, L9Q) denotes the Banach space of measurable functions defined on
Q which are ¢-th power Lebesgue integrable (essentially bounded in the case
g = o). The usual norm of L7(Q) is denoted by || - |[,,. By L](Q) we denote
the space of real functions in L7(Q) which are periodic of period 1 equipped with
the same norm of L4(Q). If s > 0 then we denote by H,/(Q) the space of functions
u in L, (Q) which satisfy

+ o0
lullzgy = D (1 k) ] < 0. (1.5)

k=—o0

Here u; are the Fourier coefficients of u with respect to the system {exp(2kmix) |
k e 7}, and H[f(Q) is a Hilbert space with respect to the inner product

+0o0

(u, U)H,f - Z (1+ |k|2>suk5ka

k=—w0

whose norm (given by (1.5)) is equivalent to the one in the usual Sobolev space
H*(Q) (see for instance R. Temam [17]). Notice that by Parseval’s identity
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(u, U)H]9 = (u,v),. for any u and v in Lj(Q), where (,),. denotes the usual inner
product of L*(Q). _

We denote by LIZ,(Q) (resp. H,(€)) the space of functions u € Lg(Q) (resp.
H;(€Q)) such that

Uy = JQ u(x)dx = 0.

We recall that in le (Q) Poincaré’s inequality holds, that is, there is a positive
constant ¢(Q) such that

l[ull 22 < e()[ux]] 2,
for any u € H)(Q).

Given x> 0 and # > 0, we assume that H and L are pseudo-differential oper-
ators of order x and 7, respectively, defined by

Hu(x) = zw: h(k)up exp(2knix),  Lu(x) = ZOO: [(k)uy exp(2kmix),
k=—o0 k=—w

where the symbols A(k) and /(k) are even real-valued functions satisfying the fol-
lowing hypotheses:
There exist positive constants ¢;, i = 1,...,4 such that

cilk|* < h(k) < ealk)”, alk|" < I(k) < eqlk]” (1.6)
forall k e Z.

Remark. Note that for system (1.3) hypotheses (1.6) are satisfied with h(k) =
/(k) = k*. Note also that we may consider in (1.3) more general dissipative terms
of type &(—1)"0*"u, &(—1)"*"v, which correspond to the symbols /(k) = k>,
me{l,2,...}.

~ The Cauchy problem (1.1)—(1.2) will be considered in the space 9@5(9) =
HJ(Q) x H)(Q) endowed with the inner product and the norm given by
(U, V), = (W) + (0,2)g, and U = (U, V);"?, where U = (u,v), and ¥ =
(w,z) are in #,'(Q2). To simplify notations we also denote by || ||, the natural
norm of L4(Q) x L4(Q) and by (, ), the usual inner product of L*(Q) x L*(Q).
We rewrite (1.1)—(1.2) as

U, — (MU), + F(U), +&BU =0

1.7
U(x,0) = p(x), 7
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v=(0) =)

where

H aH L 0 (18)
M= “r B= ,
asH H 0 L
and the components of F(U) are given by F(U) = (ggg;) with
2 2
FU) =%+ a5+ a(w),
2 2
(1.9)
v? u?
F(U) :7+a27+a1(uv).

Now we can describe the content of the present paper. Under the hypotheses
(1.6), we show in Section 2 that the Cauchy problem (1.7) is globally well posed in
the space 9?;75(9), for s > 5o = max{x+ 1,7} and g, #, a; satisfying suitable con-
ditions (see Theorems 2.5 and 2.7). We first study the linear problem associated
with (1.7) and prove the existence of a unique local solution for the Cauchy prob-
lem (1.7) by using a fixed point theorem and techniques from the theory of semi-
groups of linear operators. Then we use energy estimates to extend the local solu-
tion globally. In Section 3, we show that the energy of the global solution U(-, ?)
of (1.7) stabilizes exponentially. More precisely, we prove the following result: If
2 < g < oo, then there exist positive constants C = C(g, ¢) and y such that

NU(-, t)]| s < Cexp(—ypt) forallz>0. (1.10)

Our proof of (1.10) is based on some techniques developed in the work of C.
Foias and J. C. Saut [9], adapted conveniently to model (1.7). The main point
consists in proving that the function
(BU(a t>7 U(7 t))

UG, 01z

L2

r(t) =

is well defined for any ¢ > 0 if ¢ # 0, and has a finite positive limit as ¢ — +co.
This is possible in our case because the system (1.7) has the backward uniqueness
property (see Lemma 3.3).

Other notations used in this paper are as follows. C(J; X) denotes the space of
functions which are continuous in the real interval J and take values in the Banach
space X. We denote by C a generic constant whose value may be different from a
line or inequality to another. We also use the notation U7 to indicate the trans-
pose of a vector U = (*).
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2. Global well-posedness

In this section we shall prove that the Cauchy problem (1.7) is globally well posed
in the periodic Sobolev space #,’(€2) for suitable values of 5. First we study the
linear problem associated with (1.7)

U, — (MU), + eBU =0,

2.1
U(x70)::¢(x% ( )

where the operators M and B are as in (1.8). We want to prove that problem (2.1)
has a unique global solution using semigroup theory. We consider the initial data
pin # Q) with s > 5o = max{x + 1,7}, and study (2.1) as an evolution equation
in % T (Q). Formally, the solution of (2.1) can be written as

Z e F) g, exp(2kmix),

k=—c0
where ¢, = (ZZ ) and

1 0

1
A(k) = ikh(k)A — el(k)I ~ with A = “and 1 =
a1 0 1

} .2

Lemma 2.1. Assume that |asz| < 1 and let 1,, 1, be the eigenvalues of the ma-
trix A. Then

e — [Dl Dz] = D(k, 1),
D; D,
where
Dy = Dy = S {exp(ikh(k)11) + exp(ikl(k)>1) } exp(—el(k)1), (2.3)

D> = D3 = § sgnaz{exp(ikh(k) A1) — exp(ikl(k)2zt) } exp(—el(k)r).  (2.4)

Proof. This follows from a straightforward calculation using (2.2). O
Lemma 2.2. Assume that (1.6) holds and let |a3] <1, s>0, 0 >0 and n > 0.
Define

E(Hp(x) = i D(k, t)p, exp(2knix), xeR,t>0. (2.5)

k=—0o0
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Then there exists a positive constant C = C(0,n, c3) > 0 such that
IE@0ls0 < CIL+ 0" P ol (26)
Sor all p € J(;,S(Q) and t > 0.
Proof. From (1.6), (2.3) and (2.4) we obtain that
|D;(k,1)| < exp(—¢l(k)t) <exp(—ecslk|"t), j=1,...,4

Thus, by (2.5) we have

+ o0

IE@l3o= Y (L+ k) 1Dk, )yl

k=—o0

“+o0
< 37 401+ 1K) exp(—2ecs k| 0) g |

k=—o0
< 2% sup|(1 + Kk|) exp(~2acs k| "0)] g @7)
keZ

for all £ > 0 whenever sup, .,[(1 + |k|*’) exp(—2ec3|k|"1)] < +o0. Clearly this is
true if § = 0 and (2.6) follows from (2.7) (in fact we obtain that ||E(?)g||, < 2||¢|l,
for all > 0). If 0 > 0, observe that

(1 + |k|*) exp(—2ecs|k|"t) < 1 + iugukﬁ"’ exp(—2ec3|k|"1)]

20/n
<1+ (0> (e1) "M exp <— 20)
c3n 7
20/n
< max{ 1, (i> }[1 + (et) 20/
an

forall k € Z and t > 0. Therefore, if § > 0, then (2.6) also follows from (2.7). [
Lemma 2.3. Under the hypotheses of Lemma 2.2, let E(t) be as defined in (2.5), for
any ¢ € #,)(Q). Then {E(1)},., is a Co semigroup in #,(Q), and the map

te (0,00) — E(t)g is continuous with respect to the topology of 9?},”0(9) for all
0=>0.

Proof. The proof is similar to the one given in Lemma 1.1 by R. J. Iorio [12]. [

As a consequence of Lemma 2.3 we obtain the following result.
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Theorem 2.4. Assume that (1.6) holds, |as| < 1 and s > so = max{u+ 1,n} with
n>0. If g e H,)(Q), then the Cauchy problem (2.1) has a unique solution U(-,1)
such that U € C([0, c0); #,(Q)) and U, € C([0, o0); #;7"(Q)).

Proof. Consider the linear operator R, = —eB+ 0, M in Jf S70(Q) with domain
Z(R;) = Jf;,( ) and write (2.1) in %Y 0(Q) as

U =RU, U(,0) =g. (2.8)

The above choice of Z(R,) implies that 2(R,) ={gpe€ %S‘So( YR €
Jf ' *(Q)}. Denote by ¢ the infinitesimal generator of the semigroup {E(7)},
in %‘ %0(Q). Let us show that ¥ =R,. Ifp € 9( ¢), then ¢ € %Y %(Q) and

there exists g € #,;7°(Q) such that lim, - || Edo-e —9|,_,, =0 This implies
that
tA(k)) g — :
liI(l)’l exp( ( t))(ﬂk P _gk‘ —0 (2.9)
t—0+

for any k € 7, where ¢, = (‘”‘k ) and gx = (";A ). On the other hand, we have that
k

. exp(tA(k)) g — px

t—0+ t

L[ 2
—J [A(k)exp(cA(k))p; — gi]| do

2
- = lim
gk’ t)o

t—0+

= |A(k)p, — il (2.10)

for any k € Z. From (2.9) and (2.10) we deduce that g = R, in c}?p“"‘“’ (©) which
together with g € #,*(Q) shows that ¢ = R,. Using similar arguments we can
show that ¥ = R,. Since we know that {E£(7)},. is a Cy semigroup of linear op-
erators in %""“’(Q) by Lemma 2.3, it follows that U(-,7) = E(¢)¢ is the unique
solution of (2.8) in the desired class. O

Now let us consider the nonlinear problem (1.7). As before, we assume that M
and B are as in (1.8) and the components of F(U) are given by (1.9).

Theorem 2.5 (Local existence and regularity). Assume that (1.6) holds, |az| < 1
and s > sy =max{u+ 1,n} with u>0, n>2. If pe .}’fs( ), then there exist
To >0 and a unique solution U e C([0, Ty); %S( ) of (1.7) such that U, €
C ([0, Tol; Jf‘ *(Q)). Moreover, U € C((0, Tol; 9’/’( ) for all r > s.

Proof. Let T > 0, and consider the set of functions

Yor, = {U € C([0, T]; #;(Q)) such that sup [|U(-,7) — E(t)pl, <1}, (2.11)

0<1<Ty
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endowed with the metric induced by the sup norm of C([0, Ty A *(Q)). In the
complete metric space Y 7, we define the map 2 : Y, 1, — C([0, Tp]; #*) by

1
PU(-,t) = E(t)p — J E(t—0)0<F(U(-,0)) do
0
for 0<t<Ty. Using Lemma 2.2 with 0 =1 and the inequality |uv|,, <
Cllull gsl[oll s> u,v € HY(Q), s> 1/2 (see Lemma 1.1 in [16]) we can show that
P(Ys1,) < Y5 1, and 2 is a contraction in Y 7,, if Ty is chosen sufficiently small.
In fact, if U, V € Y, 7, then

HQWJ%JWWMSLWM_ﬂaﬂUhﬂwMJ
< CJ;[I +e (= 0) 2P0 F (UG 0))| - do

t
<c(+ 2”5"”02J (1+& M1~ dg
0
<c(1 +2||¢||S)2<To S - 1 Tg"”/”>
11 p—

and
[2U( 1) =2V (-, ),

< CJ;[I +e (1 —a) 220 [F(U(0)) = F(V ()], do

<2c( 4200l (To+ e LT swp UV,

0<t<Ty

where C is a positive constant that depends on 7, ¢3, |ai|, |a| and s.
Choosing T, > 0 sufficient small, we can see that [|2U(-,7) — E(t)¢|, < 1 and
|2U(-,t) = 2V (-, Oy < asupy<, <7, [|U = V[, with 0 <o < 1. By the Fixed
Point Theorem it follows that there exists a unique U € Y; 7, such that 2U = U.
This gives a unique solution of the integral equation

U(-, 1) = E(t)p — J; E(t - 0)0,F(U(-, 0)) do (2.12)

for any ¢ € [0, Ty]. Since U € C([0, To]; #,’(Q)) (recall that Z(R,) = #,'(Q)) we
can differentiate (2.12) with respect to ¢ to show that U(-,?) solves (1.7) and
U, € C([0, To); J/;HO(Q)). The regularity result now follows from a bootstrap-
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ping argument. In fact, from (2.12) and (2.6) it is sufficient to show that
w e C((0, To); #,;77(Q)) for all 7 > 0, where

t
w(t) = —J E(t—0)0<F(U(-,0))do  forallte [0, Tp).
0
Assume, without loss of generality, that ¢ e (0,7,) and ' > 0 are such that
t+1t €(0,Ty). Choosing # =17+ 1 in (2.6) with 7 € [0, 1) and proceeding as be-
fore we obtain that

t+1'

nwu+ﬂ»ﬂwmm{scj |E(t+ 1 — )0, (U),, do

t

+[Ea+ -0 - B-)oF ), do
t+1' 5 D1
< C 4200l [+ (et o = ) )
t

!
+ J I(E(+ ¢ — ) — E(t— 0)aF (V). do.
0

Note that the first integral in the last inequality above tends to zero as ¢/ — 0 be-
cause 7 > 2, and applying the dominated convergence theorem we may show that
the second term goes to zero too. Therefore, U e C((0, Ty]; H ‘“(Q)) for all
0<t<1. A repetition of this argument shows that U e C((0, To]; #, > (Q)).
Finally, by induction, it follows that U e C((0, Tol; %”’”( )) for all neN,
which concludes the proof of Theorem 2.5. O

Next we prove some a priori estimates needed to extend the local solution
U(-,t) of (1.7) for all ¢ € [0, o0).

Lemma 2.6. (i) Assume the hypotheses of Theorem 2.5 and let U(-, 1) be a solution
of (1.7) such that U € C([0, T*); Jf},‘(Q)) and U, € C([0, T*);pr‘““’(Q)). Then

WU, Ol < ol forall 0 <t < T". (2.13)

(i) Assume the hypotheses of Theorem 2.5 with 3 > u > 1 and n > 2. Then
there exists a positive constant Cy = Co(ay, az, as, i, 0, T, ||p||,2) such that

UG, D)2 < Co,  forall 0<1<T. (2.14)

Proof. First we multiply the equation in (1.7) by U7 and integrate over Q to
obtain
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d .0 T
—||Ul|;» +2¢| U"BUdx=0. (2.15)
dt Q
Integrating (2.15) in # we get
t
U +sz J UTBU dxdo = g|. (2.16)
0JQ

Note that by (1.6) and Parseval’s identity

+ o0
J UTBU dxdo = Y /(k)(jul” + loel?) = 0.
Q

k=—w

Thus (2.13) follows from (2.16).
Next we multiply the equation in (1.7) by UTF'(U) — 2(MU)" and integrate
over Q to obtain

J (UTF'(U)U, - 2(MU)"U, — UTF'(U)(MU), +2(MU)" (MU),
Q
+ UTF'(U)F(U), —2(MU)"F(U), +eUTF'(U)BU
—2¢(MU)"BU) dx = 0. (2.17)

From (2.17), after some calculations, we find

d L <1 UTF'(U)U - UTMU> dx + sJ

— UTF'(U)BU dx — 25J (MU)"BU dx
dt Jo\3 0

Q

+[ 0, (lUTF’(U)ZU—l— (MU)"MU — UTF’(U)MU> dx =0. (2.18)
o “\4

Observe that the last term in (2.18) vanishes due to the periodicity of U. Thus, an
integration of (2.18) in ¢ yields

Lz(UTMU—%UTF/(U)U) dx+2aJ;JQ(2(MU)TBU_ UTF’(U)BU) dxdo

_ L <¢TM¢ - %(,JTF/(@(/;) dx. (2.19)

Now, by hypotheses (1.6) we have

(1= @)U, < JQ UTMU dx < 2265(1 +|as)||UI . (220)
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Moreover, using the additional hypothesis # > x> 1 and part (i) we also
have

|, vrP v ad < s,
Q

2 2
< GlUILNUN. < Cillolz: (Ul (2.21)

2
||, vTFBY x| < 1011V 18U < 2 Cllol AU 222
and

‘ JQ(MU) TBde‘ < 2(ﬂ+'7)/26‘2€4(1 + |a3|)|| U||,21/2’ (2.23)

for some positive constants C; and C,. Then from (2.20)—(2.23) and (2.19) we de-
duce that

1
||U||i/2£a+ﬂj ||U||i/2ds forall0 <t < T (2.24)
0

for some positive constants o and ff. Therefore, (2.14) follows from (2.24) and
Gronwall’s inequality. This completes the proof of Lemma 2.6. O

Theorem 2.7 (Global existence). Assume that (1.6) holds, |as| <1 and s > sy =
max{u+ l,n} withn>u>1landn =2 If¢p € H,)(Q), then the Cauchy problem

(1.7) has a unique solution U € C([O,oo);]fp“'(Q)) such that U, € C([0, c0);
%X—So(g)).

Proof. First observe that by the construction of 7y in Theorem 2.5 and a well-
known technique (see [11] for example), we can extend the local solution U of
(1.7) to a maximal interval of existence [0, 7*) such that U e C([0, T*); #,(Q)),
U e C([0,T%); #,7"(Q)), and U € C((0, T*); #,/(Q)) for all r >s. Moreover,
either 7" = +oo, or if T* < 400, then lim,,7+||U(-,?)|, = +c0. Thus, to prove
Theorem 2.7 it is sufficient to show that ||U(-,7)||, is bounded on [0,7*) if
T* < +co. From (1.7), using the regularity of U(-,¢) on (0, 7*), we obtain that

Ld

5 4 IUIE = (U, U), = (U F(U)), - (U, BU), (225)

for 0 < ¢ < T*. Since (1.6) holds and # > 2, then from (2.25) we have
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1d, .,
— < —
5 UL < TLIF(U)], - o(U, BU),
< '(U,BU)P|F(U)|, - &(U, BU),
1 )
< — [|F(O)]. 2.26
< —IFW)I; (2.26)

Using (1.9) and the inequality [uv||y, < Cllully.|lvlly, for u,ve Hj(Q) and
s > 1/2, we estimate ||F(U)|? as follows:

IEU)IT < Clllzg, + luollzgy + 10%17,) < CHUlRLIUIG- (2:27)

Therefore, from (2.26), (2.27) and Lemma 2.6 (ii) it follows that
d 2 2 *
EHUHS <C|U|; forall0<r<T" (2.28)

Now, integrating the inequality (2.28) over [0, 7] with 0 < § < ¢ < T* and then let-
ting 0 — 0, we deduce that

sup [[U(-, 1)y = C

0<t<T*

for some positive constant C, which depends on s, 7* and ||¢[|,. This completes
the proof of Theorem 2.7. [

Theorem 2.8 (Continuous dependence). Assume the hypotheses of Theorem 2.7.
Then, for each T >0, the map U : #;(Q) — c([o, T];pr“'(Q)), defined by
U (p) = U where U = U(-,t) is the global solution of (1.7), is continuous.

Proof. Let U and V denote the solutions of (1.7) with initial data U(-,0) = ¢ and
V(-,0) =y, respectively, and let W = U — V. Then W satisfies the initial value
problem

W, — (MW)X+ [F(U) —F(V)]x-i-{;‘BW:O.
W(,O) =9p—y.

Proceeding as in the proof of Theorem 2.7, we obtain that
59

%Hwnﬁ < CEIF(U)-F)|:, 0<t<T. (229)

Estimating the right-hand side of (2.29) using (1.9) with U = (*) and V' = () we
find that
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2 2 2
I1F(U) = F(V)Iiy < Cle, |ar], laa], s)(NU Nl + [ V[ ) "1 (2.30)

Since U and V satisfy (2.28) for any 7 € [0, T, it follows from (2.29) and (2.30)
that

S

Lol < QWE O forallo<i<T,

where C is a positive constant depending on s, |ai|, |aa|, T, ||¢||,, and ||y/||,. Now,
repeating the same argument used after (2.28), we obtain the inequality

WOl < llo —ylFexp(CT), 0<(<T,

which implies the continuity of %. O

3. Asymptotic behavior

Let U = U(-,t) denote the global solution of (1.7) obtained in Theorem 2.7. In
this section we study the asymptotic behavior of U(-,7) as t — +o00. We begin
with the following results.

Proposition 3.1. Under all assumptions of Theorem 2.7 we have:
(a) lim, o, (BU(-,1), U(-,1)),, = 0.
(b) limy— oo [|U(-, 1) 2 = 0.
(©) limyyoe [|U(, 1)l = = 0.

Proof. From (2.16) we have

o0

r(BU, U),»do = J

1
J UTBUdxdo < ~ gl < +o0. (3.1
0 0 Jo 2¢

Multiplying the equation in (1.7) by (BU)" and integrating over Q we obtain

G (BU U+ 26| BUL: = 2| (80)"F/(U)Usd, (32)
Q

because the term [,(BU (MU ), dx is equal to zero due to periodicity. Let us

estimate the right-hand side of (3.2). By Lemma 2.6(ii) and the embedding
Hj/z(Q) — L (Q), 7 =2, we know that || U(-,)||;. < C for any > 0. Thus

2] (BO)F(U)U.d] < CIBUIL UL Ul < CLBULAIU e (33)
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But, using Parseval’s identity and (1.6) we also know that

[Uc(, 0)|[7. < C(BU(-, 1), U(+,1)),, forall t>0. (3.4)
Therefore, from (3.3) and (3.4) we obtain the estimate
)fzj (BU)"F'(U)Usdx| < | BUIE: + C(2)(BU, U),.. (3.5)
Q

Now, integrating (3.2) over [0, 7] and using (3.5) and (3.1), we deduce that

o]

t
(BU,U),. —i—ej |BU|2. do < (B, p),: + C(S)J (BU, U),. do.
0 0

This implies that [,* |BU(-, o)||3. do < 4+o0. Consequently, from (3.2), (3.5) and
(3.1) we conclude that
o0
I

which together with (3.1) implies (a).
By Poincare’s inequality, (3.4) and part (a) we obtain (b). Finally, using the
embedding le (Q) — L, (), (3.4) and part (a) we also conclude (c). 0

d
E(BU, U)LZ

do < +oo,

Next we shall show that, in fact, (BU, U),,, ||U||;2, and ||U||;. decay expo-
nentially to zero as t — 4+o00. To do this we first prove some auxiliary lemmas.

Lemma 3.2. Under all assumptions of Theorem 2.7 there exists a positive constant
C such that

|F(U),|17> < C(BU, U)3. (3.6)

Proof. Using (1.9), the embedding le (Q) — L;O(Q) and Poincaré’s inequality,
we have

IF(U) N2 < ClIUIIZ- |1 Uxl72 < ClIUxl7-. (3.7)
Then (3.6) follows from (3.7), since # > 2. O

The next lemma shows that the system (1.8) has the backward uniqueness
property.

Lemma 3.3. Under all assumptions of Theorem 2.7, if U(-,ty) = 0 for some ty > 0,
then U(-,t) =0 for all 0 <t < 1.
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Proof. Assume that U(-,#)) = 0 for some 7 > 0 and define #; = inf{z € [0, 7] |
U(-,t) = 0}. Then, either (i) #{ =0 or (ii) 0 < #; < #y. Let us show that (ii) does
not occur. In fact, if (ii) holds then U(-,7) #0 forall 0 <7< ¢, and U(-,#) = 0.
Consider the function

(BU('a t)a U(': t))Lz

r(t) = , 0<t<m. (3.8)
UG, 0llz
A direct calculation gives us the identity
1d -
53 7% = WU [(BU, Ur) 2 = k(1) (U, Ur) 2]
= U2 (BU = x(0)U, U)) .,
= |U|;3(BU — k(t)U, (MU), — F(U), — ¢BU),.. (3.9)

Since (kU,BU — kU),, =0, it follows that
(BU —xU,—¢BU),;» = (BU —xU,—¢eBU),, + e(kU,BU — kU),»
= —¢|BU — kU|3-. (3.10)

We also observe that (BU — kU, (MU),),, = 0. Thus, from (3.9) and (3.10) it
follows that

d 2¢ -

%K(t)"i' 2 HBU KUHiz :2||U||L22(BU_KU7 _F(U)X)LZ
U1z

<2||U||2|IBU = kU | F(U), |2

e 1

2 2
7 [1BU = kU2 + —— [|F(U) [| -
||U|| e[ U7 '
Consequently,
d 2 1 2
—1(1) + ——[|BU = kUl 12 < ————[[F(U) ][>
dt ||U||Lz el Ul '

The above inequality and Lemma 3.2 imply that

d BU,U)?
—k(t) + ——||BU — kU||3, < c(BY. Ui

= Ck(1)(BU,U),»  (3.11)
dt ||U|| U7

for 0 <t < t;, where C is a positive constant. From (3.11), using Gronwall’s in-
equality, we obtain that
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o0
k(1) < x(0) exp(CJ (BU(:,0),U(-,0)), do), 0<tr<t. (3.12)
0
On the other hand, observe that for 0 <7 < 11,
d 2(U, U, BU,U
2 1og UG, = 2000 - g, (BT e
1U[7: U122

that is,

—% log||U(-, 0)|[7> = 2ex(1), 0<t<1.

Integrating this equation in ¢ and using (3.12) we obtain that
—log||U(-,)7> < 26Citr +[log|lgllz|,  0<t<n,

where C| is a positive constant. This contradicts the fact that U(-,#;) = 0. There-
fore, (ii) does not occur. Now, since ||U(-,#1)]|;2 = 0, the equation (2.16) implies
that U(-,7) =0 forall 0 < 7 < 1. 0

Lemma 3.3 shows that the function () introduced in (3.8) is well defined for
all > 0 if ¢ # 0. Next we study the asymptotic behavior of «(z) as t — + 0.

Lemma 3.4. Assume all assumptions of Theorem 2.7 and that ¢ # 0. Then the limit
lim, ;o x(t) = 4 exists and is positive.

Proof. Since g # 0 then (3.11) holds for any £ > 0. Let W(1) = z-51—, so that
(BW,W),>» = k(). Then from (3.11) we have o

%K(l‘) +¢|BW —kW|7, < C(BW, W)}, = Cx(1)(BU, U),,.  (3.13)

Fix 7o > 0. Integrating (3.13) over the interval 7y < ¢ < T we obtain that

T T
|IBW — kW |72 do < k(ty) + cj Kk(c)(BU,U),>da. (3.14)

1)

x(T) +£J

fo
From (3.14) and Gronwall’s inequality we deduce that

K(T) < (1) exp(CJT(BU, U), da).

)
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Using (3.1) and the above inequality we conclude that

o0

Jim K(T) < K(to)exp(CJ (BU, U),2do) < +o0. (3.15)

)
Observe that (3.15) also implies lim7_.. o x(T) < limy,—+o x(tp). Consequently,
A =1lim, ., k() exists. To see that it is positive observe that by Poincaré’s in-
equality we have

K(t) = > — =—=>0.
U3, C (BU,U);» C

Therefore 4 > 0. This completes the proof of Lemma 3.4. O
Now we can state and prove our main result in this section.

Theorem 3.5. Assume all assumptions of Theorem 2.7 and that ¢ # 0. Then there
exist positive constants C = C(||¢||;>) and y such that

@) U, t)]| 2 < Cexp(—yt) for all t >0,
(b) (BU(-,1),U(:, t))L2 < Cexp(—yt) forall t > 0,
) UG, 0]l < Cexp(—yt) for all t > 0.

Proof. Since 1 = lim,_, , k() is finite by Lemma 3.4, then from (3.15) we deduce
that

o0

K(z)zzexp(—cj (B(-,o)7U(-,a))L2da>, t> 0. (3.16)

t

From equation (2.15) we know that
: 1> +2 : 0 3.17
dt 1U|lz2 + 2ec(2) | Ull7> = 0. (3.17)

Combining (3.16) and (3.17) we obtain that

o0

%n UG, 0% + mexp(—cj (BU(-,0), U(-,0)) . do) 1UC, 1) <O0.

t

Consequently

13
101 < ol exp( <22 | otr)ar). (318)
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where

o0

o(r) = exp(—CJ

r

(BU(-,0), U(-,0)) . da).

On the other hand, since # > 2, using equation (2.15), Proposition 3.1(b) and
Poincaré’s inequality we deduce that

2 " (BU(,0), U(0)) 2 do < UG 02

t

< C(BU(-,1),U(:,1)) forall 7 >0,

L2
which together with (3.1) implies that

t

J,w(r) dr = Z+J (w(r) = 1) dr

0 0

2[—CJIJOC(BU(-,J),U(',a))deaert—C’, (3.19)
0Jr

where C is a positive constant depending on ¢ and [|¢||,-.
Now, substituting (3.19) into (3.18), we find that

1UC, )32 < |loll72 exp(—24e(r — C)) < Cexp(—22er)  forall > 0,

which proves (a) with y = Ze.
Since x(r) is bounded, (b) follows from (a). Finally, using the embedding
H; (Q) — L, (), (3.4) and part (a) we obtain (c). O
Now our claim (1.10) in the introduction follows from Theorem 3.5 and inter-
polation.
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