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Abstract. This article is concerned with nonlinear stability properties of periodic travelling
wave solutions of the classical Korteweg—de Vries and Boussinesq equations. Periodic
travelling wave solutions with a fixed fundamental period L will be constructed by using
Jacobi’s elliptic functions. It will be shown that these solutions, called cnoidal waves, are
nonlinearly stable in the respective energy space by periodic disturbances with period L.
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1. Introduction

The original Korteweg—de Vries and Boussinesq equations were among the first
models for nonlinear, dispersive wave propagation [11], [12], [25]. These equations
possess special travelling wave solutions known as Scott Russel’s solitary waves or
solitons [1], [10], [11], [12], [28] (the latter name, which suggests an analogy with
particles, is appropriate since the solitary waves retain their form even after joint
interactions), and cnoidal waves (Korteweg and de Vries generalization of the sin-
usoidal wave—cf. Korteweg—de Vries [25], Benjamin [7], Boussinesq [11], [12]
and Lamb [26]). The cnoidal wave solutions are periodic travelling waves written
in terms of the Jacobian elliptic functions (see Section 2 below).

Stability results for solitary waves of the Korteweg—de Vries and Boussinesq
equations go back to the works of Benjamin [6], Bona [8], Bona et al. [9], Bona
and Sachs [10], Souganidis and Strauss [32] and Weinstein [34], [35].

*During the preparation of this article the author benefitted from many conversations with Professors
N. Cohen, J. V. T. Benavides and F. O. de Paiva at IMECC-UNICAMP. The author is also grateful to
the referee for many helpful criticisms and suggestions which led to a real improvement of this article.
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The aim of this article is to investigate the nonlinear stability of periodic trav-
elling wave solutions ¢(x — ct) of the Korteweg—de Vries equation

Uy + Ul + Uy = 0, (1.1)

and of the Boussinesq equation

7/[2
Uy — Uy + (7 + uxx) =0. (12)

The latter equation has the following equivalent form

{u, 0 2 (1.3)

for x € R, # > 0. Here subscripts ¢ and x denote partial differentiation with respect
to ¢ and x.

The above equations have important conservation laws. In fact, if v = u(x, ?)
is an appropriately smooth solution of (1.1), then the integrals

L

E(u) = EJL [”)2; —%u3] dx and F(u)= %Jo u? dx (1.4)

are independent of the temporal variable 7. Also, if U(x,t) = (u(x, ), v(x,1)) is a
solution of system (1.3), we have the following invariants of motion, which are in-
tegrals over x of the densities:

u(x,t), u(x,0), u(x,0v(x), 1 (uz(x, 1) + 02 (x, 0) + uP(x, 1) — %u3(x, ).

The last two, which we denote by / and H respectively, are impulse and energy
integrals, while the first two are Casimirs with no dynamical significance. These
invariants turn out to be relevant quantities in the investigation of stability proper-
ties of travelling waves. In fact, we prove here stability for cnoidal wave solutions
of the Boussinesq system (1.3) in the space ngr([O,L]) X Lger([O,L]) associated
with the conserved quantities / and H above. Note that

L L
I= J uwdx and H = %J (uz(x, 1)+ v (x, 1) + u(x, 1) — %Lﬁ(x, t)) dx
0 0
(1.5)

are smooth functionals on H! ([0, L]) x L2, ([0, L]).

per per
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The periodic travelling wave of speed ¢ and period L to equations (1.1) and
(1.2), if it exists, is a solution of (1.1) and (1.3), respectively, depending only on
E=x—ct.

Inserting the L-periodic travelling wave u(x, 1) = ¢.(x — ct) in (1.1), we see that
¢, must satisfy

1
4+ 50— che = Ay, (16)

where Ay 1is an integration constant, which will be considered equal to zero
here (actually, one may always perform the change of unknown ¢, = ¢, +
V2 + 24, —c). So the travelling wave equation (1.6) takes the form

E'(8,) + cF'(¢,) = 0. (1.7)

The characterization of the periodic travelling wave ¢, of speed ¢ as a critical point
of the functional E + cF is crucial to the stability argument.

Nonlinear stability of L-periodic travelling wave solutions associated to the
generalized KdV and Boussinesg-type equations was studied by Benjamin in [7],
by Angulo, Bona and Scialom in [4], by Angulo and Quintero in [5], by Angulo
[3], and by Hakkaev, Iliev and Kirchev in [19]. In [7], Benjamin proved that the
trivial nonzero solution of the problem, namely the constant ¢, = 2c¢, is stable if
c< 4L—”22. Angulo, Bona and Scialom considered the constant of integration A4
in (1.6) different from zero and obtained a nonlinear stability result for cnoidal
wave solutions of the KdV equation, which are defined in an a priori fundamental
interval [0, L] and have mean zero on it (see [4]). In [5], the authors showed that
special periodic travelling wave solutions with an arbitrary fundamental period L
of a one-dimensional Boussinesq-type equation are orbitally stable in the space
{ue H)(0,L]] fOL udx =0} for a range of their speeds of propagation and
periods. In [3], the author proves nonlinear stability of dnoidal waves associated
to the Schrodinger and modified Korteweg—de Vries equations. In [19], the au-
thors prove stability of periodic travelling shallow-water waves determined by
Newton’s equation.

Korteweg—de Vries and Boussinesq equations are strongly related. In fact,
substituting the L-periodic travelling wave solution ¢ = (¢.(x — ct), Y (x — cr))
in (1.3) leads to the system

' 2\/ 1.8
I (R ) )

where ' denotes dig and ¢ = x —ct. Integrating (1.8), we obtain the nonlinear
system
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{_c¢c(é) = ‘//L(é) + Kla
— (&) = 4,() — #(6) — L (&) + Ko,

where K;, K, are integration constants that will be considered equal to zero here.
Then ¢, must satisfy

(1.9)

2
o (- B0 (1.10)

where w = w(c) = 1 — ¢? will be considered positive. So (1.10) takes the form of
(1.6) and hence a KdV-type theory of existence and stability of cnoidal wave so-
lutions can be established in the case of the Boussinesq equation (see Theorem 1.4
below).

In this article we first show the existence of a smooth curve ¢ — ¢, of cnoidal
wave solutions to equation (1.1), with a fixed period L. Then orbital stability of
these solutions is established in leer([O, L)) for a certain range of their speeds of
propagation and periods by using the Lyapunov method [35]. By orbital stability
we mean stability modulo spatial translation. More precisely, our first result is the
following.

Theorem 1.1. Let c € (4L—“22 ) +oo). Then the orbit Oy is H;er([O, L])-stable with re-
gard to the flow of the Korteweg—de Vries equation.

Here the set ¢y = {¢.(- +5)|s € R} is the orbit generated by the L-periodic
cnoidal wave solution given by Theorem 2.1 below.

Remark 1.2. The proof of Theorem 1.1 is an adaptation to the periodic case
(p =1) of Theorem 4.1 in [2].

In order to prove our theorem we construct the Lyapunov functional of the
form &[u] = E(u) + c¢F(u), where E and F are the well-defined C*-mappings of
leer([O, L]) into R given by (1.4). We find that restricted to the manifold of func-
tions, u € H),([0, L]) for which F(u) = F(¢,), 4.(-) is a local minimum, provided
that

%F((/ﬁc(-)) > 0. (1.11)

Condition (1.11) is arrived at through a spectral analysis of the operator %, (see
(3.1), obtained by linearizing the travelling wave equation (1.6) about ¢,. Here it
is seen that stability relies on a suitable lower bound on the second variation of the
energy functional &. This lower bound is obtained by using the analysis of a con-
strained variational problem for %Z,,.
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Remark 1.3. Condition (1.11) is the analogue of the convexity condition obtained
by Shatah [31] (see also [18]) for the stability of standing waves for the Klein—
Gordon equations. In fact, relation (1.7) implies that condition (1.11) is equiva-
lent to the convexity of the function

d(c) = E(¢.(-)) + cF(4.())- (1.12)

With respect to the system (1.3), as a consequence of the theory presented for
KdV before, we conclude the existence of a smooth curve ¢ — q?c = (4., ¥.) of
cnoidal wave solutions to system (1.3), with a fixed period L. Then orbital stabil-
ity of these solutions is established in H ([0, L]) x L. ([0, L]) for a certain range
of their speeds of propagation and periods. Specifically, our second result is the
following.

Theorem 1.4. Let ¢ € (=1,1) and L>2n. Then the orbit O is H . ([0, L]) x

per([O L])-stable with regard to the flow of the Boussinesq equation, provided that
?>1 andl—c2>4L%2.

The outline of the proof is as follows. First, we prove local existence of
smooth solutions for the initial value problem (1.2) with initial conditions

u(x,0) =up(x) and  u,(x,0) =u(x). (1.13)

The nonlinear stability of the periodic travelling wave solutions of this equation
follows the same general lines as those in the KdV case, which are based on ideas
described in [6], [8], [10] and [35].

We remark that stability of $C is established with respect to perturbations of
periodic functions of the same period L in H} ([0, L]) x Léer([o, L)).

Finally, local existence coupled with the stability result is shown to imply the
conditions that lead to global existence, at least for initial data close to the stable

cnoidal wave.

Remark 1.5. Also for Boussinesq’s model, as we will see below, it is important to
mention that stability relies on the convexity property of the so-called moment of
instability

where H and I are the functionals defined by (1.5).
The following notation will be used:

Sy =L, =l fodx,

er([0, ])

i =S o, = I fode+ [7 19 dx

([0, L])
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1A= 0Nz, = (o s )2,

=171, g’ = (Eract f} f’zd 2,

(f20): ) =) w0)dnz az = Sy fud+ [ god,
1D = 19z, xez U [y
P T P A fra [Egd)

£([0, L]) er([0,

2. Existence of a smooth curve of cnoidal wave solutions with a fixed period
L for the equation (1.1) and system (1.3)

In this section we establish the existence of a family of even L-periodic travelling
wave solutions ¢ = ¢.(x — ct) for the equation

2
¢”—C¢+%:0 (2.1)

such that the mapping ¢ +— ¢, is C!.
Multiplying (2.1) by ¢’, a second integration is possible yielding the first-order
equation

(#(0) = 3 [-°(0) + 364 + 68,] = 5 po(#(9))

—_— | =

= 36— B~ o) (s — 9 22

where By is an integration constant and f3, f,, f; are the zeros of the polynomial
ps(t) = =13 + 3ct? + 6B, and so satisfy the relations

3¢=p+ P+ B,
0 =1, + B3 + B3f1,
By =t B1/2fs3

Moreover, we assume that ff; < f, < 3 and ff; > 0, and we obtain from (2.2) that
Py < ¢ <p;. By defining ¢ =¢/Bs, (2.2) becomes (p')* =5 (p—m)(p— 1)
(1 — @), where ; = f;/B5, i = 1,2. We also impose the crest of the wave to be at
¢ =0, that is, ¢(0) = 1. Now we define a further variable {y via the relation
9 =1+ (17, — 1)sin*y and thus obtain that

Wt =gt-m] - (=)

and y(0) = In order to write this in a standard form we deﬁne k? = } Z?
/= /13—;(1 - ) It follows that 0 < k> < 1 and / > 0 and we obtain Io dt

vV 1—k2 sin® t_
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VIE. Therefore, from the definition of the Jacobi elliptic function y = sn(u; k)
(see (5.1), we can write the last equality as siny =sn(v/I&k), and hence
¢ =1+ (g, — 1)sn?(\/1& k). Using the relation sn” 4 cn? = 1, we arrive finally
to the conventional form

HE) = HEBr o s) = a + (B —ﬂz)cnzl ﬂ%ﬁlf;k], (23)

where
By — P PaB3
=222 _p =B+ —3c= , <B,<pB (24
5g h=hth pg P<h<h 24
From (2.4) we have that f3,, f; belong to the ellipse X given by
B3 + B3 + oy = 3¢(By + f3) = 0, (2.5)

and since f§, < f;, it follows that 0 < 8, < 2¢ < i3 < 3c.
Next, since cn? has fundamental period 2K (k), ¢ has fundamental period 7,
equal to

43
=3

B VB =P

Now we prove that Ty > 2—’2 Initially we express Ty as a function of f;
and c¢. In fact, following (2.5), every f; € (2¢,3¢) defines a unique real value of
P> € (0,2¢) such that (f,, ;) is in the interior of the ellipse X and

2By =3¢ — By +1/9¢ + 6¢ps — 382, (2.6)
So, by defining f, = 3¢ — 8, — f;, we obtain for
35 — 3¢ — /9¢2 + 6cfs — 363
38y — 3¢+ \/9¢2 + 6cps — 363

K(k).

kz(ﬂSv C) -

that
46

\/353 ~3c4\/9¢2 + 6cfy — 33

Then by fixing ¢ > 0, we have that Ty(f;,¢) — o0 as 3 — 3c and Ty(f3,¢) — 2775
as i3 — 2¢. So, since the mapping f; € (2¢,3¢) — Ty(f3,c) is strictly increasing

(see proof of Theorem 2.1), it follows that T > f/—”;

Ty(P3,c) = K (k(B3),c).
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Now we obtain a cnoidal wave solution with period L. For ¢y > 4L—”22 there is a
unique f3; 5 € (2¢o, 3¢o) such that Ty(B; ¢, co) = L. So, for ¢y and f;  such that
(B2.0,B3.0) € Z(co), we have that the cnoidal wave ¢(-) = ¢(-; By ¢, 2.0, 3,0) With
B1.o = 3¢o — .o — Ps.o has fundamental period L and satisfies (2.1) with ¢ = c.

By the above analysis the cnoidal wave ¢(-; 8, f, f3) in (2.3) is completely de-
termined by ¢ and f; and will be denoted by ¢,(-; 5) or ¢,.

Next we show the existence of a smooth curve of cnoidal wave solutions for
equation (2.1). In other words, we show that at least locally the choice of f;

above depends smoothly of ¢.
Theorem 2.1. Let L >0 arbitrary but fixed. Consider ¢ >4LL22 and Py =
Ps(co) € (2co,3co) such that Ty, = L. Then the following holds:

(1) There exists an interval .J(co) around co, an interval J(B5 o) around f; (co),
and a unique smooth function A : . (co) — J(Ps ) such that A(co) = B5 o and

4/6

\/ 3 — 3¢+ /9¢2 + 65 — 33
where ¢ € (co), By = A(c), and k* = k*(c) € (0,1) is defined in (2.7).

(2) The cnoidal wave solution given by (2.3), ¢.(;81,0,,05), determined by
By = (o), py = Py(c) and [y = f5(c), has fundamental period L and satisfies
the equation (2.1). Moreover, the mapping

K(k) =L, (2.8)

ce J(C()) — ¢c € H;er([ovl‘])

is a smooth function.

(3) H(co) can be chosen as <4L—”22,+oo).

Proof. The idea of the proof is to apply the Implicit Function Theorem. We con-
sider the open set Q = {(ﬂ, ¢)|e> 4L—”22,[)’ € (2¢, 3c)} < R? and define ¥ : Q — R
by

G

\/3,6’— 3¢ 4 1/9¢2 4 6¢f — 3p7

where k(f3, c) is defined in (2.7), with ;3 = . By the hypotheses, ¥(f; ¢, co0) = L.
Denoting a = a(f) = 3 — 3c and b = b(f) = 9¢* + 6¢ff — 3°, we have that

W(p,c) = K (k(p,c)),

a¥ _ Va+ VB[AVEE ¢ — 4VEKj[a+ VB [3 + 1o (6c — 6p)]
op a+ b '
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Now from (2.7) it follows that dkz = %. Since ‘Z;g =2k j’/‘;, we obtain that
dﬁ =5 \/_2“ +6b > > 0. Thus, %\;’ > 0 In fact,

N, dK 1 (2P +6b) 1 (3Vb—a)
op WO Vb(a+ b)) 63 Vb(a+ b))

dK 1 (242 + 6b)

2a° + 6b)(E — k" K) > (3Vb — a)(a + Vb)k*k*K

K>0

<~
& (2a> 4 6b)E > (3Vb — a)(a + Vb)k*k"K + (2a* + 6b)k"*K
<~
<~

o~ o~ o~ o~

)
2a° + 6b)E > (2aV'b + 3b — a®)k*k"K + (24> + 6b)k"* K
)

2a* + 6b)E > (2aVb + 3b)k*k"?K + a*k"”K + a*k"* K + 6bk"”K.

Now (2a> + 6b)E = (1 + k™?)a*E + k*a*E + 6bE = k*(1 + k*)a*E +
k(1 + k")a*E + k*a®E + 6bE. Since a > /b and the fact that k — E(k) +
K(k) is strictly increasing implies that (1 +k”)E > 2k"?K, we have that
k*(1 + k"*)a*E > 2k*k"a*K > 2av/bk*k"> K. Moreover, 6bE = 6k>bE + 6k">bE
and E — k"?K > 0 imply that 3k’bE > 3bk’k">K. Also, by using the inequal-
ity (1+k”)E>2k”K, we obtain that 3k’bE + 6k"*bE = 3bE + 3k"bE =
3(1 4+ k"?)bE > 6bk"K.

Now we have to show that k2a’E + k" (1 + k'*)a*E — a’k”K — a’k"K > 0.
This follows from k(1 + k"*)a’E > 2k"*a*K and the relation k%a*E + k"*a*K —
a*k"K = k*a’E — k*k"*a®K = k*a*(E — k"*K) > 0. Therefore, there exists a
unique smooth function A, defined in a neighborhood .#(cy) of ¢y, such that
¥(A(c),c) = L for every ¢ € #(co). So we obtain (2.8). Finally, since ¢y was cho-
sen arbitrarily in the interval .# = CLL; ,+00 ), it follows that A can be extended
to .#. This completes the proof of theorem. O

Corollary 2.2. Consider the mapping A : .9 (co) — J(Bs,y) determined by Theo-
rem 2.1. Then A is a strictly increasing function in I (c).

Proof. By Theorem 2.1 we have that ¥(A(c),c) = L for every ¢ € .#(co) and so

d . . o¥ec
™M)=~

(2.9)

We will show that 0¥/dc < 0. In order to do this, we denote again a(c) = 3§ — 3¢
and b(c) = 9¢? + 6¢f — 3%, and we note that
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v _ 4/64/a(c) + /b(c) fl—llf %
dc a(c) ++/b(c)
| VK (ale) + VB) (=3 +1b(e) 2 (18¢ + 6p))
a(c) ++/b(c) 7

where k(f, ¢) is defined by (2.7), with f; = . Now

ok 1 (3c—3ﬁ)b(c)_l/2(180+6/>’)—6 b(c)

oc 2k )+ /b 2 <0
1 -1/2 —6+/b(c)+18c+6p
and —3+5b(c)” /7 (18¢c + 6f) = 2\/’T> > 0 because —6+/b(c) + 18¢ + 6
>0 3c+f>/b(c) © 9 +6¢f+ 2 > 9c> 4 6¢f — 3> < 48> > 0. So it
follows that ‘”’ < 0, and the proof is completed. O

Now we prove that the modulus function k(c) is strictly increasing.

Lemma 2.3. Consider ¢ € ( = ) B3 = A(c) and the modulus function

383(¢) — 3¢ — 1/9¢2 + 6cBy(c) — 33 ()’
383(c) — 3¢+ 1/9¢2 + 6cBy(c) — 3y ()’

k(c) =k(A(c),c) =

Then 4k(c) >0

Proof. Denoting a(c) = 3f5(c) — 3¢ and b(¢) = 9¢2 + 6wp;(c) — 3f5(c)?, we have
that

%(c)—i 2a> + 6b
de " =2k | Vb(a + vB)?

Using that f5(c) = £ A(c) by (2.9), we get that

b L 2re
dc 2k \ Vb(a+ v/b)?
dK {1 (ab1/2(186+6ﬁ3)+6\/17)} N K(atvB) " (=3+16712(18c165))

1 | —ab='/?(18¢ 4 6f;) — 63/b
Bi(c) + % @t V) :

& |2k PR 2

dK [ 1 2a2+6b K(a+vB)™ (=3+b-12(68,-60))
& [ﬂ \/zmﬁ)m} 2

—ab™'?(18¢ + 68;) — 6vb
(a+vb)’

> 0.

T
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Now the last inequality is true if and only if

1] 2a+6b (K “12( 3 Y g,
2k{¢5(a+¢5)2}2( +Vb) ( 345671218 +6ﬁ3)>

1

ab™'?(18¢ + 6;) + 6Vb| K
~ % \ 2

(a+Vb)® 2

(a+vb)™'/? (—3 + %b*‘/2<6ﬁ3 - 6c)>v

and this happens if and only if

(2a® + 6b)[~3 + 16712 (18¢ + 65)]
> a(18¢ + 6f5) + 6b][—3 +1b71/2(6f3; — 6¢)]. (2.10)

Now (2.10) is equivalent to —6a® + 4 x 18¢v/b + 3a(18c + 6f;) > 0, which is sat-
isfied since 3a(3¢ + ;) — a* = a(9¢ + 35 — 3B5 + 3¢) = 12ac > 0. This completes
the proof. O

From the last results above we conclude the following existence theorem.

Theorem 2.4. Let L > 2n. Then there exists a smooth curve of cnoidal wave solu-
tions for the system (1.3) in HJ ([0, L]) x Hy ([0, L]), n,m >0, which satisfy
the system (1.9) with integration constants K, = K, = 0, this curve is given, for

w(e) =1—c% by

4n? 47
N (_\/‘ ) _F) = Vo)

Proe)(€) = Bo+ (B3 — By)en’ [ Py 1_2/31 ¢ k] )

Moreover,

where the smooth function By = B3(w(c)) is given by Theorem 2.1, k = k(w(c)) by
p—, w246y —3p2
(2.7), py = WPINOIOB T g B — 3w — By — B

> M2 — 2

3. Stability of cnoidal waves for the KdV equation

In this section we shall show that the orbit (y_is stable in the H,..([0, L])-sense by

the flow of the KdV equation, that is, for each ¢ > 0 there is & = d(¢) > 0 such that
if infycp|luo — ¢.(- + 5)||; < 0 then the solution u(¢) of (1.1) with u(0) = uy satisfies
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inf [lu(r) — 4.(- +5)[|; <e
seR

for all ¢ for which u(z) exists. Before we start to study stability we show the
following result about the periodic initial value problem associated to the KdV
equation.

Theorem 3.1. Let L > 0 fixed. Then the periodic initial value problem associated
to the KdV equation (1.1) is globally well posed in Hp,([0,L]), s > 1/2.

cr

Proof. See Colliander, Keel, Staffilani, Takaoka and Tao in [14] (or [24]). ]

3.1. Spectral analysis. In this section we study the spectral properties associated

to the periodic eigenvalue problem considered on [0, L]

e _

L= [+ e o=, (3.1)
v(0) = o(L), v'(0) = v'(L),

where ¢ > 4L—7‘22 and ¢, is the L-periodic cnoidal wave (2.3) given by Theorem 2.1.
The theory of compact self-adjoint operators implies that the spectrum of %,
is a countable infinite set of eigenvalues (4,),- , With

Ho St St S Sy = - (32)

counting twice double eigenvalues and u, — o0 as n — oo. In fact, since ¥, =
(—%\,22+c +(—¢.) =L+ 4, with ¥ having a discrete spectrum, it follows
from Weyl’s essential spectral theorem [33] that Gess(Zen) = 0ess(-L) = 0. Here
we shall denote by v, the corresponding eigenfunction to the eigenvalue u,. By
the conditions v(0) = v(L), v'(0) = v'(L), v, can be extended to the whole of
(—o0,+00) as a continuously differentiable function with period L. Next, by
using the classical Floquet theory (cf. Ince [20] and Magnus and Winkler [30]) we
show that the first two eigenvalues y, and u; of %, are simple, #; = 0 and the
corresponding eigenfunction is % o,

From Floquet’s theory, the periodic eigenvalue problem (3.1) is related to the
following semi-periodic eigenvalue problem considered on [0, L]:

{ffcnf =/,
J0) = —=f(L), /'(0) = =f"(L).

This is also a self-adjoint problem and therefore determines a sequence of eigen-
values (v,),- o With

A

VWEVIEVMEVEs-o, (3.3)
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counted with multiplicities and v, — o0 as n — oo. We shall denote by f, the
corresponding eigenfunction to the eigenvalue v,. A function f such that
Sf(x+ L) =—f(x) for all x is said to be semi-periodic with semi-period L. Evi-
dently, such a function has period 2L. So we have that the Hill equation

Lenf = of (3.4)
has a solution of period L if and only if o = u,, n =0,1,2,..., as well as it has
a solution of period 2L if and only if o = v,, n =0,1,2,.... If all eigenfunctions

of (3.4) are bounded we say that they are stable; otherwise we say that they are
unstable.

Next it follows from the oscillation theorem ([30], Theorem 2.1, p. 11) applied
to the differential equation (3.4) that the sequences (3.2) and (3.3) satisfy the in-
equalities

Lo < VoSt < VIS <mEm<uySpy.... (3.5)

The eigenfunctions of (3.4) are stable in the intervals (u, vo), (£;,v1),.... These
intervals are called intervals of stability. At the endpoints of these intervals the
solutions of (3.4) are, in general, unstable. This is always true for o = 1, (yq is
always simple). The solutions of (3.4) are stable for 0 = p,, | or 0 = u,,,, if
and only if s, | = t5,,,, and they are stable for 0 = vy, or 0 = v,y if and only
if v3, = vau1. The intervals (—oo, ug), (vo, vi), (41, 145), - - ., are called intervals of
instability, omitting however any interval which is absent as a result of having a
double eigenvalue. The interval of instability (—oo,u,) will always be present.
We note that the absence of an instability interval means that there is a value of
o for which all solutions of (3.4) have either period L or semi-period L, that is,
coexistence of solutions of (3.4) with period L or period 2L occurs for that value
of o.

Before establishing our theorem, we note that the number of zeros of v, and f,
is determined in the following form ([30], Theorem 2.14, p. 43):

(i) vy has no zeros in [0, L],
(i1) van+1 and vy, have exactly 2n + 2 zeros in [0, L), (3.6)
(i) f2, and f5,.1 have exactly 2n + 1 zeros in [0, L).
Theorem 3.2. Let Ly be the linear operator defined on Hlfer([O, L)) by (3.1). Then

the first two eigenvalues w, and p, of Len are simple and satisfy py < w, = 0, and ¢,
is the eigenfunction of .

Proof. From (3.5) and (3.6), it follows that 0 = 1, < u,. In fact, since L. = 0
and ¢/ has two zeros in [0, L), we have that 0 is either x, or x,. We will show that
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0 = x,. Indeed, define the transformation 7, v(x) := v(#x) for

772 =12/(B5 = B1)s (3.7)

where the f3;, i =1,2,3, are defined in (2.2) and also reappear in Theorem 2.1.
Then using the explicit form (2.3) for ¢,, we see that problem (3.1) is equivalent
to the eigenvalue problem

2

{[—% + 12k sn%(x) | y = py, (3.8)
¥(0) = ¥(2K), y'(0) = y'(2K),
for y = Ty,

p=—12[c—py—pl/(f3—P1) (3.9)

The first three eigenvalues p, p; and p, and their corresponding eigenfunctions are
known explicitly. Since p; = 4 + 4k is a simple eigenvalue of (3.8) with eigen-
function y;(x) = en(x) sn(x) dn(x) = CT,4., it follows from (3.9) that =0 is a
simple eigenvalue of problem (3.1) with corresponding eigenfunction ¢.. Consider
the Lamé polynomials [20] defined by

Po(x) = dn(x)[1 — (1 +2k* — /1 — k2 + 4k*) sn?(x))
and
Py(x) = dn(x)[1 — (1 +2k* + /1 — k2 + 4k*) sn?(x)].

These functions have period 2K and are the corresponding eigenfunctions to the
eigenvalues p, and p,, respectively. In fact, the equation

, 5k

PRt e,

has two roots, namely, p, =2+ 5k*> —2V1 —k?+4k* and p, =2+ 5k>+
1 — k? 4+ 4k*. Since Py has no zeros in [0,2K| and P, has exactly 2 zeros in

[0,2K) it must be the case that Py is the eigenfunction associated to p,, the first

eigenvalue of (3.8). On the other hand, since p, < p, for all k* € (0, 1), we obtain

from (3.9) and the relation —f, (1 + k%) = (2 — k?)p; — 3¢ the inequality

71ﬂ3—c
Moo=

po+ (¢ — B3) <0.

It follows that the first eigenvalue yu, of %, is negative and has eigenfunction
vo(x) = Py (%x), with # given by (3.7). Moreover, as p; < p, for all k € (0,1), it
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follows from (3.9) that

1 py—c
ﬂz:ZkZ——i-lpZ+(c_ﬁ3)>0’

and so u, is the third eigenvalue of %, with eigenfunction v,(x) = P, (% x). O

Remark 3.3. It can be shown that the first three intervals of instability associated
to P are (—oo, ), (vo, v1), (141, 14,) and that the last interval of instability of %,
is (Vg, V3).

We now use the function d(c) given by (1.12) to prove the following result
which is the heart of Theorem 3.5 below.

Lemma 3.4 (Convexity of d(c)). If c € (“Li; ) +oo) then d(c) is a convex function.

Proof. By (2.8), we have that a+\/5:48XL—22K2, and by (2.7) we have that
a— Vb =42UK o we conclude that

2\ g2 2\ x2
_M(LERIK? e 48(1 KK

a =

L2 L2
Thus,
3ﬂ3 — 3C = 478(12122)1(2 s
201_12\2 4
9¢2 + 6¢fy — 33 = BUAK,

Solving the system above, we get

8K2\/3k" + (1 +Kk2)°

)

C =

and

SK2[2(1 4 k) + /3k™ + (1 4 k2)]
ﬁ?ﬁ = L2 N

Now by (2.1) we have that [, ¢? dé = 2¢ [ ¢. d¢, from which, by using (1.7), we
get

L

40 = (60 + FG. o) + Fd) = Fg) =c [ o
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Using that fOL cn [ /}‘ ﬂ‘ I k] dé = [w}, we get

%(j:qs?d«:) =2 :¢c(§)df+2c%(J;¢cdf)

(" d (B = By) (E - K"”K)
2] e e g PP ESEL

L

=2 . $.(&) d&+ 2¢p5(c) L

.2
[(ﬁ;{(kfz) (Ek) k’; K(k))}k’(c)L. (3.10)

2_
Tk

Then convexity of d follows, provided that f8, is an increasing function of ¢, since
¢, > 0 and the last term in (3.10) is also positive. In fact, from equation (2.6) we
have that

61/9¢2 + 6¢fy — 33 + 18¢ + 6 + 2B3[3¢ — 35 — \/9¢ + 6cfy — 367
4\/9¢> + 6cfy — 33

Pa(c) =

is positive since 5 > 0 (see Corollary 2.2) and 3¢ — 3f; — \/962 + 6¢f3; — 3,6’§ >0
if and only if 3 > 2¢. This shows that 5, is an increasing function for f; > 2c.
Also, the last term in (3.10) is positive, since %{(ﬂ:& Ba) % [ﬂ}}:
BrkK (k)* > 0. [

The next result has been proved in the real case in ([2], Lemma 4.6 and Lemma

47).

Theorem 3.5. Let ¢, the cnoidal wave solution given by Theorem 2.1 and

4 2
ce (ﬁ, oo). Define

o ={ € Hy ([0, L]) | <Y, 6> = 0 and ||z 0,17 = 1}

and

- {lp € per([o LD ‘ <¢ ¢c> - <¢ ¢c¢ >=0 and ”lp“L2 L0,L]) — 1}

Then the linear operator ¥, satisfies
(a) y = min{<$cnl//a ¢> | lp € ‘Q/} = O:

(b) (:=min{{LuY, > | € B} > 0 and consequently { Ly, > = ||y for all
lﬁ with <lp7 ¢c> = <¢,¢c¢£> =0.
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Proof. (a) From the characterization of the eigenvalues of %, (Theorem 3.2) it
follows that y is finite. Since {¢.,d.> =0 and Len(¢.) = 0 it follows that y < 0.

Now we show that the minimum is attained. Let (i;) be a minimizing se-
quence, i.e., Y; € o/ for all j and (L, ;> — y as j — co. Then for any & > 0
we can choose Y; so that

L L L
0<c< I lpjfzdx—i—cj npjzdxs J ¢C.¢j2dx+y+£. (3.11)
0 0 0

Since ||¢,|\Lz 0,2)) = L, (3.11) implies that ||zﬁ,||H1 0,2)) is uniformly bounded as j
varies. Thus there exists a subsequence, which we denote again by (l// ), such that
<$mlpj, Y;> —yasj— coand y; — ¥ weakly in H1 ([0,L]). By weak conver-
gence in Lper([ L)), <¥,é.> —0 We also have ||l//|| =1 and fo ¢Clp dx —
fo ¢ dx, since the embedding per( [0,L]) = L2 ([0, L)) is compact. Moreover

per

7 < (Lenlh by < liminf (Lnly > = .

Hence, the minimum is attained at x/;

Now we want to show that y > 0. In this case, we will apply Lemma E1 in
Weinstein [34] in the case that 4 = %, and R = ¢,.. In fact, from Theorem 3.2
we have that %, has the necessary spectral properties required by Lemma E1.
Then y > 0if (Z.'¢,,¢.> <0. Now from Theorem 2.1 we have that the mapping
cEe “LLZZ, w ) — ¢, is of class C!, so by taking differentiation with regard to ¢ in
(2.1) we obtain that f = — < ¢, satlsﬁes

Therefore we get

_ 1d (" 1d ("
Loty =5 5| #Oa<0 o 3L B0

But from Lemma 3.4 we have

%—J P2 (&) dé >0 (3.12)

for ¢ > “LL;.

Thus y = 0. This finishes the proof of (a).

(b) From part (a) it is inferred that { > 0. We will prove that { > 0 by showing
that the assumption { = 0 leads to a contradiction. We first show that { = 0 im-
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plies that the minimum is attained in the admissible class. We then consider an
associated Lagrange multiplier problem to deduce { > 0.

If { = 0, using the same analysis as that in proof of (a) above, it is easy to see
that the minimum is attained at an admissible function l/; # 0. Then there exists
(tﬁ, Ay O, f,) among the critical points of the Lagrange multiplier problem

gcn(l/;) = /l*l/; + O(*¢c +ﬂ*¢c¢é (313)

So taking the inner product of (3.13) with  and 4., we get 1. =, = 0. There-
fore, focnl/; = o.¢.. Now, since Lf =¢, with [ = —%qﬁc, it follows that
Len(Y — 0. f) = 0. So there is an 0 € R such that  — o/ = 04. since the null
space of %, has dimension 1 and is spanned by ¢.. From (3.12) we have that
{f,¢.> #0, 50 . =0. Then y = 04 and hence ¢/ is orthogonal to ¢.4., which
is a contradiction. Therefore the minimum in (b) is positive and the proof of the
theorem is completed. ]

Remark 3.6. It follows from Poincaré’s inequality that { Ly, ) > ¢’ ||lp||% for
allyy € H. ([0, L]) with (¢, ¢.> = <, 440> = 0 for some ' > 0, since ¢, > 0.

3.2. Proof of Theorem 1.1. In this section we shall use the Lyapunov method
for studying the nonlinear stability of solutions u(x, ) = ¢.(x — ct) with ¢, given
by Theorem 2.1. The proof is based on ideas developed by Benjamin [6], Bona [§]
and Weinstein [35].

We use the conserved quantity

Exavlu] = E(u) + cF (u)

as a Lyapunov function.
Initially we measure the deviation of the solution u(#) from the orbit ¢y using
the metric

pc(u(t), (Oaﬁ(.) = /Inf Q(y),

where
2 2
Q(y) = lu'(-+y,1) - ¢é||L§CT([OA,L]) + cflu(-+ y,1) - ¢c||L§cr([0,L])

and the infimum is taken over all y € [0, L]. Since Q, is a continuous function of
», the minimum is attained in an interval of time [0, 7] (see [8]) and this defines
v = y(1). Hence, we have that

pe(u(t), Oy) = \/Qu(¥(2)) (3.14)

for all £ € [0, 7.
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Consider the perturbation

u(x+ y,t) = ¢.(x) + v(x,1), (3.15)

for 1 € [0, 7] and y = y(¢) determined by (3.14). The property of the minimum
leads to the constraint

J $e (X)L (x)v(x, 1) dx = 0. (3.16)

0

By conservation of &xgqy, scale invariance, representation (3.15), the embedding

per([O L)) — L} ([0, L]) for all r > 2, and the fact that ¢, satisfies (2.1), we have

the following variation for &xav[u] = E(u) + cF(u):

Aéxav(t) = Exavluo] — Exav(g,]
= &xav (u(-,1) — Exav(4.())
= &xav(u(-+ »,1)) — Exav(¢.(-)
= &xav (¢ +v(1)) — Exav(de)

1
= 5 {Zew,0) = CiJol, (317)

where C; > 0 is a constant. Now we obtain a suitable lower bound on the qua-
dratic form in (3.17). Initially we consider the normalization ||u(¢)||* = ||¢,||* for
every ¢ € [0, T]. By (3.15),

1
(90> = =5 ol (3.18)

Define P := <HL¢¢T\2> ¢, and P, := v — P|. Without lost of generality, we may sup-
pose that ||¢,|| = 1. Then

(Lenv,v) = (P, P ) + 2{Len Py, PL) + {ZenPL, PL).

Moreover, by (3.16) we get (P,,¢.> =<P.,p.¢.> =0. Therefore, Theorem
3.5(b) and (3.18) imply that

(P, P >P,P)= C[HUHZ _};HUHA‘]- (3.19)
Also, by (3.18),

<$cnP\|7 P\|> 1 <gcn¢m ¢ >||U|| (320)
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Finally,

(LenP 1 PPy = =0 A LenP 1, 4> = =20 {P L, Lend)
=~ Yol * 14117 (3.21)

Using (3.19), (3.20) and (3.21) and the fact that {(Zu¢,,¢.> < 0 we obtain
from (3.17) that

Aékav(1) = Dollolli = Dilo]ly = Dalo]fy,
where Dy, D, D, are positive constants. Hence, from (3.14) it follows that
Aéxkav (1) = g(p.(u(1),0y)) (3.22)

for all ¢ € [0, T], where g(s) = As*> — Bs® — Cs* with 4, B,C > 0. The essential
properties of g are g(0) = 0 and ¢g(s) > 0 for s small. The stability result can be
derived from (3.22) as follows. Let ¢ > 0 be sufficiently small. Then, by the con-
tinuity of &xav in {u e leer([O,LD [|u]] = ||4.]|}, there is a d = d(e) such that if
p.(uo, (9(/56) < 0, then

Angv(O) < g(e)

for t € [0,T]. Since Aékqv is constant in time, g(p, (u(r),C4,)) < g(¢). There-
fore, since p, (u(t), Uy,) is a continuous function of time, p, (u(t), ¢y, ) < ¢ for all
te[0,T], ie., ¢, is orbitally stable in leer([O,L]) with regard to small perturba-
tions that preserve the Lgsr-norm. To prove stability relative to general small per-
turbations we use that the mapping ¢ € “LLZ' — ¢, 1s continuous and the preceding
theory. To see this, fix ¢ and let ¢, be the cnoidal wave whose stability is in
question. Let ¢ > 0 be given and let uy be the initial data for (1.1) for which
lluo — .||y <0, where J will be determined conveniently. For ¢ small enough

there exists d near ¢ such that F(uy) = F(¢,) and ¢’ such that ||¢, — ¢,[|, <J', by
the continuity of the mapping ¢ € “LL; — ¢,.. Moreover, |[ug — ¢,4||; < |luo — ¢.lI;
+ |4 — d4ll; <0 +6". Making use of the stability result for perturbations pre-
serving the Lger-norm if § is small enough, we obtain that p,(u(t), ¢y,) < e for
all 7€ [0, 7], since 6" is independent of . Thus, p,(u(t), Oy ) < p.(u(1),0y,) +
pe(ba. Uy,) <Le+6 for all t € [0, T], with 6 independent of 7. The desired result

follows.

4. Stability of L-periodic travelling wave solutions for the Boussinesq system

Let X := HL,([0,L]) x L2 ([0,L]) and ¢ = (¢.(x — ct),.(x —ct)) € X be an

per per
L-periodic travelling wave solution for the system (1.3). Now we show that the
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orbit (5 is stable in the X sense by the flow of system (1.3), that is, for each ¢ > 0
there exists 0 = d(¢) > 0 such that if infcpl|iy — 75(¢)||y < I, then the solution
(1) of (1.3) with #(0) = i satisfies

-

infl (1) — 75(¢)llx <&

for all ¢ for which & = (u, v) exists.

4.1. Local existence theory. In the present section a theorem asserting the
local well-posedness of the initial value problem (1.2)—(1.13) is stated. The well-
posedness theorem is a straightforward consequence of the abstract techniques of
Kato [22], [23] for quasi-linear evolution equations, and consequently the proof is
omitted.

To apply Kato’s theory to the initial value problem (1.2)—(1.13), we consider
the equivalent formulation (1.3)—(4.1) with

(4.1

for x € R.
For T > 0 and s € R define the following spaces of solutions and initial condi-
tions

per per

Y = H;;;z([O,L]) x HSH([0, L)).

{XS(T) = C(0, T; H:2([0, L])) n C(0, T; H3,.([0, L])), 42

per

Theorem 4.1. Let (uy,vo) € Y for some s > 1/2. Then there exist T > 0, which
depends only on ||(ug, vo)|| y, and unique functions u € Xs(T) and v € X,_1(T'), which
solve the initial value problem (1.3)—(4.1). Moreover, the pair (u,v) depends contin-
uously on (uy, vo) in the sense that the associated mapping (ug, vo) — (u,v) is contin-
uous from Y into the space X,(T) x X;—1(T).

This theorem follows directly from the general results of Kato (1974, 1983) on
quasi-linear evolution equations. The functional analytic setting for Kato’s theory
consists of a pair of reflexive Banach spaces X and Y, with Y continuously and
densely imbedded in X. A central role in the theory is played by a Banach space
isomorphism S of Y onto X, and the norms on these two spaces are chosen in
such a way that S is an isometry. The theory applies to the abstract, quasi-linear
evolution equation

U,+A(t,U)U = F(t,U)  for t > 0 with U(0) = 4, (4.3)
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where ;Z is a given initial value. The theory asserts that there exists a positive time
T such that (4.3) possesses a unique solution in C(0,7; YY)~ C'(0, T; X) under
certain assumptions.

To apply Kato’s theory to the situation envisaged in Theorem 4.1, take
X = H3.(10,L]) x H3;'([0,L]) with 5> 1/2, and take Y as in (4.2). Also, let

S = (I — 2,1, — 0%) with I, denoting the identity operator, let 4 be the matrix

of differential operators
4 0 —0y
T\ —a,+ad 0 )
and take the nonlinear operator F' to be
F=F(tuv) = (_(u_2> )
2

With this choice of 4 and F, and writing

(4.3) reduces to (1.3)—(4.1) if ¢ = (uo,v9), and it is straightforward to verify that
the hypotheses required in Kato’s theory are satisfied.

A consequence of Theorem 4.1 is stated in the following corollary. Define for
T>0andseR

Yy(T) = X,(T) n C*(0, T, Hy;* ([0, L])).

Corollary 4.2. Let (up,v9) € Y for some s > 1/2. Then there exist T > 0, which
depends only on ||(uo, vo) ||y, and a unique function u € Yy(T) which is a solution of
eq. (1.2) in the distributional sense on R x [0, T], and for which u(-,0) = uy and
u;(-,0) =v). The solution u depends continuously on (uo,vo) in the sense that the
associated mapping (ug, vo) — u is continuous from Y into the space Y(T).

Remark 4.3. If s > 5/2, then the solution is classical, which means that all deriv-

atives featured in the equation exist pointwise and are jointly continuous functions
of x and .

4.2. Spectral analysis. In this section we study the spectral properties associated
to the linear operator

L= (H” + CI”)(¢w(c)a lpw(c’)) (44)
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determined by the periodic solutions (¢, ¥,,)) found in Theorem 2.4. We com-
pute the Hessian operator .. by calculating the associated quadratic form, which
is denoted by 2.. By definition, 2.(g, %) is the coefficient of &> in

H(¢w(c) +ég, lpw(c) + Ch) + CI<¢w(c) +ég, lpw(c) + 6//1)7

and so is given by

L1 1
Qc(gah) :J {2 (g2 +g)% +h2) _§¢w(c’)gz + Cgh} dX

Il
—
< ~

1 1
{100 0% g+ 3 ) b
gl 1 2
= 91(g) + 3 i+ coll (@3)

Note that .QC is the sum of the quadratic form 2! associated to the operator

f; +1—¢*—¢, and the non-negative term 1|4+ cglls- From the equations
(1.8) for the cnoidal wave (4, V(). it follows that g = ¢}, and h =, sat-
isfy Z.(g,h) = 0. To see that this is the only eigenfunction corresponding to the
eigenvalue zero and the other expected properties of the operator %, we will first
consider the following periodic eigenvalue problem:

c‘(fclnv = <_g[d_‘:2+ I—c®— ¢w(c))v = MU,
0(0) = v(L), v'(0) = (L),

where ¢,, is given by Theorem 2.1. The operator %/, has the same spectral struc-
ture of %.,. We can see this by replacing ¢ with 1 — ¢? in the proof of Theorem
3.2.
To prove that the kernel of %, is spanned by % (Do)
dratic form 2.(g,h) as the pairing of (g,/) against (g
L2,(10. L)) — H (0, L)) x L2, ([0, L]) duality, where (g,
erator

‘/{u () ) consider the qua-
,h) in the H ([0, L]) x
h)" is the unbounded op-

applied to (g,h)". Then %,(g,h)" = 0 implies that

{_g// + (1 - Cz>g - ¢w(c‘)g = 03
h=—cg
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From the properties of the operator %, = —a§ + w — ¢,, established in Theorem
3.2, it follows that g = 24, and h = —cg = —cAd), ) = A, where 0 # /. € R.
To show that there is a single, simple, negative eigenvalue, consider .323 defined
in (4.5) above. By Theorem 3.2, the operator %, has exactly one negative eigen-
value which is simple, say s, with associated eigenfunction y. Thus, 2! takes on a
negative value and so does 2.. In fact, considering E = (y,—cx), we have

- 1 1,
Zo(7) = Qi) +5llex = exll” = Qi) = 540 < 0.

Denoting by 4y the lowest eigenvalue of .%,, we will show that the next eigenvalue
A1 1s 0, which is known to be simple, and so 4, is in fact strictly positive. These
results are proved using the (min-max) Rayley—Ritz characterization of eigen-
values (see [15], [33]), namely

m o2, nnn2c
e wheto gl -+ ]
g, 1 )1+ >=0

Choosing ¢; = {, ¥, = 0 we obtain the lower estimate

> min % 46
(9,)X\(0} ||g |7 + ||
<g,201=0

The right-hand side of (4.6) is non-negative on the subspace

{(g,h) € X\{0} {9,531 = 0},

since ch, (9) = 0 by Theorem 3.2. Thus, 4; = 0 and, from earlier considerations,
A1 is simple and 4, > 0.
The above analysis can be summarized in the form of the following theorem:

Theorem 4.4. Let %, be the linear operator defined on H_,.([0, L]) x Hp..([0, L])

per
by (4.4). Then the first two eigenvalues Ay and 1, of ¥, are simple and satisfy

yd

Ao < 41 = 0. Moreover, §,,, is the eigenfunction of 4.

In analogy with the analysis of Section 3, we prove now the key ingredient of
Theorem 4.6 below.

Lemma 4.5 (Convexity of m(c)). Let ¢ € (—1,1) and L > 2n. Then the function
m(c) is convex, provided that ¢* > % and 1 — ¢* > “Li;.
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Proof. Lemma 3.4 and relation (H + ¢I)'(4,,,¥,,) = 0 imply that

I’}’ZN(C) = %I(¢w7 lpw)

d L
- %JO ¢wlpw

d (* )

:-J:ﬁ,dx—c%”;qﬁﬁ,dx}

L d - dw
_ 2, 4 2 5 | aw
=, ¢ dx — ¢ T ”0 b, dx} yE

b 2d [t
= — . &, dx + 2c T ”0 o, dx}

=2 :—w JOL ¢, dx +2¢2 % (w LL b dx)}

- L 5 L d L
=2|-w JO B, dx + 2c (L b+ L é, dx)}

:2-(302— I)JL(ﬁ dx—|—2c2wi<JL¢ dxﬂ >0
] 0o " dw\Jy "

if 2> 1 since £ ([, dx) > 0. O

Theorem 4.6. Let §, = (D) W) = (Druey, =€) be the cnoidal wave solu-

tion given by Theorem 2.4, and let w = w(c) =1 — ¢* € ‘*LL;, 1). Let

—
W

[ = inf{{Z(9), (@) (@) € Hpe,([0,L]) x Ly, (0, L]), 1§ = 1,<8,1'(¢,)> = 0}

and
Y = inf{{Zu(§), (§)> | (§) € Hper([0, L]) x L3, ([0, L]),
17 = 1.5, 1'(6,)> = 0.<5, (4,41, ¢ 4,)> = 0}.
Then for ¢* > % the linear operator ¥, satisfies ' = 0 and Y > 0.

Proof. We first observe that <$cq_o’,g3>:<$cngo,(p>+f(f(c¢ + ) dx for
¢ = (p,x). From this and Theorem 3.2 it follows that I'" is finite. Since

PLT'(4,)> =0 and Z.(¢)) = 0, it follows that T < 0.
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Now we show that the minimum is attained. To this end, let {(g;,/;)} be
a sequence of H,..([0,L]) nger([O,L])-functions with [|(g;, ;)| =1 for all j,

{gj, hj), 1 (¢wwn)> =0 for all j and

Jlim < Le(g, 1), (g 1) =T (4.7)
It follows that ||(g;,%;)| is uniformly bounded in per([O L)) x Lger([O,L]) as
J varies. So there is a subsequence of {(g;,/h;)}, which we denote again by
{(g7./)}. and a function (g, /) € Hy. ([0, L]) x L2 ([0, L]) such that (gj, ;) —
(g,h) weakly in H. ([0, L]) x L}..([0,L]) = L. ([O L)) x L2, (]0,L]). Since the

per per per

embedding per([O L]) < Lger([O L]) is compact, we also obtain a subsequence of

{(g;)}, which we denote again by {(g;)}, such that
gi — 9 in Lper([07L])'

Now from (4.7) it follows that

L
L9y ly), (95, i) > = Jo {(g;)z +4; + I — 4,97 +2cgihiydx — T

as j — oo. So, for all ¢ > 0, there exists J € N such that
L L L L L
H (g;)zd)H-J g/.zdx+J h]-zdx—J ¢wg/-2dx+J 2cgjh; dx — F‘ <e¢
0 0 0 0 : 0
for all j > J, or in other words,
L L L L L
0<1l< J gjzdx—N—J (gj)z—f—J hj2 dx < J ¢ng2 dx—J 2cgihjdx + T +e.
0 0 0 0 0

Since ¢g; — ¢ in Lper([O L]) and hj — h in Léer([o L]) as j— oo, we have

jo gih; dx — Io ghdx. This together w1th the boundedness of ¢,, implies that
L L
< J ¢,,9° dx — J 2cqghdx +T +e. (4.8)
0 0

We conclude that (g, /) # 0 by (4.8), since ¢ is arbitrary.
By Fatou’s Lemma, H(g,h)||L§“<[QLDXL§”<[O’LD < 1. Now we shall divide the

proof that I' = 0 into two parts: (a) ||(g,/)]] < 1 and (b) ||(g,h)]| = 1.

(a) Suppose that ||(g,h)|| <1 and I' < 0. Then define (g.,h.) = H(q Z)H which

is admissible. By weak convergence of (g;,/;) to (g, h) in Hper([O L)) x Lgcr([O, L))
we get
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L
(g, 2)11?

a contradiction. Hence, in this case I' = 0 and the minimum is attained at (g., /).

(b) If ||(g, )HLz 0.1 <L (0.1) = 1 then (g, 4) is the minimum.

Now we prove that I >0if ¢2 >3 I and conclude that I' = 0. Here we will ap-
ply [34], Lemma El, in the case that A Lrand R=T (¢W (). In fact, from the
analysis made above we have that %, has the necessary spectral properties re-
quired by Lemma El. Then I' > 0 if (. 'I’ (8, ( )1’ (¢ 4)> < 0. Now, from
Theorem 2.4 we have that the mapping (—\/ 1 - Lz , \/ 1 - ) Prueys Wauie)) 18

of class C!, so differentiating the system (1.3) with regard to ¢, we obtain that
(gﬂ h) = - % (¢w(c)7 lﬁw((r)) satisfies

| e = a'xz de _
- <% l/jw ) ( ¢ 1 > (% lpw ) ¢u (¢W lp” )

We then have

FS<$F(g*7h*)7(g*uh*)>: r<r7

Thus, from (4.9) we deduce that

TG ) T Guth) <O & 1 0,) 20

Now Lemma 4.5 implies that £7(4,, ) > 0if ¢ > 1. Thus T = 0if ¢* > 1/3.
Now we show that Y > 0. It is easy to see that Y > 0. We will prove
Y > 0 by showing that the assumption Y = 0 leads to a contradiction. Suppose
that Y =0. Then, by similar argument to that in Theorem 3.5(b), there exists
a function ¢ = (p,v) which satisfies |’a”Léﬂ([O,L])nger([O,L]) =1, {g,I'(¢,)> =0,
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2N/ N/
?, <(¢7‘) , —c(%) >> = 0and {Z.¢,py = 0. Moreover, there are A., 0., u, such

that
2\ (7Y

Taking the inner product of (4.10) with @, we get A, =0. Taking again the
inner product of (4.10) with L4 = (¢!, —c4.), we obtain that u, =0. Then
%5 =0.I'%). Now, since Z.((g,h)) =1I'(¢,), with (g,h) = —4£4,_ it follows
that (¢ — 0.(g,h)) = 0 and so there is o € R such that ¢ — 0.(g, ) = o/, Since

— —

41(¢,) > 0 for all ¢ such that ¢> > 1, we have ((g,%),1'(¢,)> # 0 for all ¢ such

that ¢* > 1, from which we conclude that 0, = 0. Thus, ¢ = a¢/, is orthogonal to
aN\/ aN\/

<<¢7) , 7c<¢7> >, a contradiction. This completes the proof of the theorem. [

4.3. Proof of Theorem 1.4. We define

—

(x + ,1) — ¢ (x) = mI'(¢,(x)) + Z(x, 1), (4.11)

where (Z(-,1),1'(4,,(-))) =0, m € R, and y = y(z) is chosen to be the minimum
for

| 2

)

Ou(y) = [l (- + 3.0) = FioI* + clliC- + v,1) = by

with #(x, ) = (u(x, 1), v(x, 7)) and Z(x, 1) = (a(x,),b(x,)). Here the deviation of
the solution #(7) from the orbit €; . is measured by

pw(c) (ﬁ(t)7 @Jw(l,)) = ®t (y(t)) .
Therefore Z(¢) satisfies the compatibility condition

L

jL a(x, ), Bl dx — j b, 1)yl dx = 0, (4.12)
0 0

or in other words, ((a(x,1),b(x, 1)), (¢, 41, —cé,$,,)) = 0. Next, using that H and
I are invariant by translation, the representation (4.11), the classical embedding
ngr([O, L]) — L. ([0, L]) for every r > 2, and the fact that ¢, satisfies (1.10), we
have the following variation for &[u] = H (i) + cI(ii) and &(-) := (- + y(1), 1) —
¢w('):

—

A8 = &(iy) — 6(4,)
= 6(a(,0) - 6(,)

=|
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—

=&(a(-+y(1),1)) — 6(4,)

1
= 28" (4.)5,5> + o(|[F]1})

NSNS

(L5,8) + o(||5l]3)

2 - - - 1
> T ($).1'($)) +mLd'(§,), ) +5 (L), D)
= CIE +o(l#l}). € >o. (4.13)

The inequality in (4.13) is arrived at as follows. First Taylor expand the third
equality in the first line about (}w. The first variation of & at q;w vanishes by
(1.9). The second variation is the quadratic function in .

So, using the spectral structure of .Z,, Theorem 4.6 and constraint (4.12) we get
from (4.13)

N =012 s -3 -2
A&(t) = DollZllx = DillZllx + o7l %), (4.14)
where Dy, D are positive constants, since m = o(||5]| ;). In fact, we have that

m( LA (9,), 2> = m{ LI (), 0 — m* LT (). ().

— —

Now, since |m<{ZL.1'(¢,,), )| < |m||| L1 (4,)| ||Vl y, it follows that
m{ZL.I'($,),5) = O(Im| |5 x) = o(|[3lI3),

since m = o(||7]| ;). Similarly, it is easy to see that m2{ Z.I'(¢,),I'(4,)> = O(m?)

12
= o([[7lly)-
Finally, since

2l = 15 = mI"($)llx = 18]y = Iml 1T ($)llx = E]lx — o(lI7]x)

2 2 2 . o . e
we have that 2% > [[6% +o(|#3) and since [Zl]y = |7~ mI'(d,)]y <

3]l + lm| [[1'(6,,)] . it follows that ||Z]|3 < 3]} + o(|[3]|}). Hence, from (4.14)
it follows that

Aé(t) = h(pw(c) (Zi(l), @;Z“m))’

where h(s) = Fys? — Fis® with Fy, F; > 0. The theorem follows by similar argu-
ments used in proof of Theorem 1.1. In fact, let ¢ > 0 be sufficiently small.
Then, by the continuity of & in @ € H),. ([0, L]) x L}, ([0, L]), there is a J = ()

such that if p,, ) (i, 05 . ‘)) < 0, then for ¢ € [0, T,

A&(0) < he).



254 L. K. Arruda

Since A& is constant in time, A(p, (ﬁ(l),@gi(‘))) < h(¢). Therefore, since
Pu(oy(#(1), 05 ) is a continuous function of time, p, ) (i(1),0;) <e for all
t € [0, T]. The desired result follows.

4.4. A global existence theorem. In this section it is shown that if the initial
data (ug,vo) lies close enough to the initial data (¢, ¥,)) corresponding to a
stable cnoidal wave, then the local solution of (1.3)—(4.1), guaranteed by Theorem
4.1, admits a unique extension to a global smooth solution. The precise statement
is as follows.

Theorem 4.7. Let L?> > 4n* such that 1 —c* > 4n?/L? and c e (—17 _\/T§) V)

(‘/%1 - Let ($y(), W) denote a cnoidal wave solution of (1.3)-(4.1), with
w(c) =1 —c% Then there exists § = (c) > 0 such that for all (uy,vo) € Y and
3 e R with

[0(-) = Py (- + Dl + oo () = Yooy (- + Hllo <9,

the solution (u,v) of (1.3)—(4.1) corresponding to the initial data (uy,vy) is global
and lies in X(T) x X;_1(T) for all positive T. Moreover, for all T > 0, the map-
ping sending (ug,vo) to the solution (u,v) of (1.3)—(4.1) is continuous from Y into
X,(T) x X, \(T).

Proof. Let T* be the maximal time of existence of the solution (u#,v). The goal is
to show that 7% = +o0. It suffices to show that the pair (u, v) remains bounded in
X forall 0 <t < T < T* with bound independent of 7. This is true for all initial
values sufficiently close to a stable cnoidal wave by Theorem 1.4. Thus the proof
is finished. O

5. Appendix

In this appendix we recall some properties of the Jacobi elliptic integrals that have
been used in this work (see [13]).
First, we define the normal elliptic integral of the first kind,

Jy dt _ Jw do _ Fipk),

0/ (1 =2)(1 =k Jo\/1 —k2sin?0

where y = sin ¢, and the normal elliptic integral of the second kind,

¥ _ 122 4
J\@dtzj VIR sin? 0d0 = E(p.).
0 1—1¢ 0
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In their algebraic forms, these two integrals possess the following properties: the
first is finite for all real (or complex) values of y, including infinity; the second
has a simple pole of order 1 for y = oo. The number k is called the modulus.
This number may take any real or imaginary value. Here we wish to take
0 < k < 1. The number k' is called the complementary modulus and is related to
k by k' = /1 — k2. The variable ¢ is the argument of the normal elliptic integrals.

When y =1, the integrals above are said to be complete. In this case, one
writes:

Jl dt _ JML ) KOO = K.

0/ =) (1 =k22)  Jo \/1—k2sin?0

and

1 1— k2t2 n/2
J 7dt:J V1 - k2sin20d0 = E(n/2,k) = E(k) = E.
0

o\ 1—1¢2

Some special values of K and E are: K(0)=E(0)==/2, E(1)=1 and
K(1) =+o00. Fork € (0,1), one has K'(k) > 0, K" (k) > 0, E'(k) <0, E"(k) <0
and E(k) < K(k). Moreover, E(k) + K (k) and E(k)K (k) are strictly increasing
functions on (0, 1).

Now we give some derivatives of the complete elliptical integrals K and E, that
we used in this work:

dK E—k"K

dk kK7
dE._E—-K

dk k-

d’E _ 1dK  E—-k"K
k> kdk Kk

We will now define the Jacobian Elliptic Functions. The elliptic integral

=F(p,k) (5.1)

N dt 4 do
u(wisk) =u= | -
o VA =2)(1=k22)  Jo\/1—k2sin?0

is a strictly increasing function of the real variable y;, hence we can define its in-
verse function by y; = sing = sn(u; k) (or briefly y; = snu, when it is not neces-
sary to emphasize the modulus). The function snu is an odd elliptic function.
Other two basic functions can be defined by
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en(u; k) = \/1 —yi= \/1 —sn2(u; k),
dn(u;k) = /1 - k297 = /1 — K2 sn(u: k),

requiring that sn(0,k) = 0, cn(0,k) = 1 and dn(0, k) = 1. The functions cnu and
dn u are therefore even functions. The functions snu, cnu, and dnu are called Ja-
cobian elliptic functions and are one-valued functions of the argument u. These
functions have a real period, namely 4K, 4K and 2K, respectively. The most im-
portant properties of the Jacobian elliptic functions which have been used in this
work are summarized by the formulas given below.

1. Fundamental relations:
sn?u+cen’u=1,
k2sn*u + dn*u =1,
k”sn*u+ cn?u = dn’u,
—1<snu<l,-1<cnu<l, k?”<dnu<l.
2. Special values:
sn(—u) = —snu, en(—u) = cnu, dn(—u) = dnu, sn0 = 0,
cn0=1,snK=1,cnK =0,
sn(u +4K) = snu, cn(u+4K) = cnu, dn(u + 2K) = dnu,
sn(u+ 2K) = —snu, cn(u + 2K) = —cnu.

Finally, we have

sn(u,0) = sinu, cn(u, 0) = cosu,

sn(u,1) =tanhu, cn(u, 1) = sechu.

3. Differentiation of the Jacobian elliptic functions:

0 0
p» sn(u) = cnudnu, E» en(u) = —snudnu,
a_au dn(u) = —k*snucnu.
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