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Abstract. We study some properties of the exponents of the terms appearing in the splitting
perfect polynomials over Fp2 , where p is a prime number. This generalizes the work of
Beard et al. over Fp.
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1. Introduction

Let p be a prime number and let Fq be a finite field of characteristic p with q

elements. Let A a Fq½x� be a monic polynomial. Let oðAÞ denote the number of

distinct monic irreducible factors of A over Fq, and let sðAÞ denote the sum of all

monic divisors of A (s is a multiplicative function). If A divides sðAÞ (so that

sðAÞ ¼ A), then we say that A is a perfect polynomial. E. F. Canaday, the first

doctoral student of Leonard Carlitz, began in 1941 the study of perfect polyno-

mials by working over the ground field F2 [3]. Later, in the seventies, J. T. B.

Beard Jr. et al. extended this work in several directions (see, e.g., [1], [2]). Re-

cently, we became interested in this subject [6], [7], [8], [10]. In our two first papers

we considered the smallest nontrivial field extension of the ground field, namely

F4, while in the remaining papers we continued to work on the binary case by con-

sidering ‘‘odd’’ and ‘‘even’’ perfect polynomials. We began to study the special

case where the polynomial splits over Fq. Our first results about splitting perfect

polynomials are in [9], where Fq ¼ Fpp is the Artin–Schreier extension of Fp. See

also [5] for another direction.

Beard et al. [2], Theorem 7, showed that if a perfect monic polynomial A splits

over Fq, then the integer oðAÞ is a multiple of p, and A may be written as a

product

A ¼ A0 . . .Ar;



where Ai ¼
Q

j A Fp
ðx� ai � jÞNijp

nij�1, r ¼ oðAÞ
p

� 1, a0 ¼ 0, ai a F, ai � al B Fp for

iA l, Nij j q� 1, nij b 0.

We say that a polynomial A a Fq½x� is a splitting perfect polynomial if A has all

its roots in Fq and A is a perfect polynomial. We say that A is trivially perfect if

for any 0a ia r, Ai is perfect. In that case, A is perfect and for any 0a ia r,

there exist Ni; ni a N, such that

Nij ¼ Ni; nij ¼ ni for all j a Fp; Ni j p� 1:

The case when q ¼ p was considered by Beard [1] and Beard et al. [2]. They

showed that a polynomial

A ¼
Y
g A Fp

ðx� gÞNðgÞpnðgÞ�1

is perfect over Fp if and only if the following condition holds:

There exist N; n a N such that N j p� 1; NðgÞ ¼ N; nðgÞ ¼ n for all g a Fp: (*)

Thus, the only splitting perfect polynomials over Fp are of the form

A ¼ ðxp � xÞNpn�1;

where N j p� 1 and n a N.

Their method consists of showing, in a first step, that nðgÞ ¼ nðdÞ for any

g; d a Fp and, in a second step, that NðgÞ ¼ NðdÞ for any g; d a Fp.

If Fq is a nontrivial extension field of Fp, then the condition (*) remains su‰-

cient (see again [1], [2]) but no more necessary (see [6], Theorem 3.4, in the case

p ¼ 2, q ¼ 4).

If A ¼
Q

g A Fq
ðx� gÞNðgÞpnðgÞ�1 is perfect, then two natural cases arise:

Case 1: There exists N a N such that N j q� 1, NðgÞ ¼ N for all g a Fq.

Case 2: There exists n a N such that nðgÞ ¼ n for all g a Fq.

We observe that case 2 does not imply case 1 (consider trivially perfect polyno-

mials).

Let us fix an algebraic closure of Fp. In order to get some progress in the clas-

sification of splitting perfect polynomials over a nontrivial extension field of Fp, we

would like to know if case 1 implies case 2 when we work over the smallest non-

trivial extension field of Fp, namely the quadratic extension Fp2 .

In the rest of the paper, we put q ¼ p2. Our new idea is to consider suitable

(block) circulant matrices (see [4], Sec. 5.6 and 5.8). The object of this paper is to

prove the following result.
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Theorem 1.1. Let N a N be a divisor of q� 1, and let

A ¼
Y
g A Fq

ðx� gÞNpnðgÞ�1

be a splitting perfect polynomial over Fq.

i) If N divides p� 1, then A is trivially perfect so that the integers nðgÞ may di¤er.

ii) If N does not divide p� 1, then nðgÞ ¼ nðdÞ :¼ n, say, for any g; d a Fq so that

A ¼ ðxq � xÞNpn�1
.

2. Proof of Theorem 1.1

We need to introduce some notation. The integers 0; 1; . . . ; p� 1 will be also con-

sidered as elements of Fp.

We put

A ¼
Y
g A Fq

ðx� gÞNpnðgÞ�1; where N divides q� 1;

U ¼ f0; 1; . . . ; p� 1gHN:

If Nb 2, we denote by z2; . . . ; zN a Fq the N-th roots of 1, distinct from 1.

Finally, we denote by Fp a fixed algebraic closure of Fp.

2.1. Preliminary. We put Fq ¼ Fp2 ¼ f j0aþ j1 : j0; j1 a Fpg ¼ Fp½a�, where

a a Fp is a root of an irreducible polynomial of degree 2 over Fp. Every element

iaþ j a Fq will be, if necessary, identified to the pair ði; jÞ a Fp � Fp. We define

the following two order relations:

• on Fp: 0a 1a 2a � � �a p� 1,

• on Fq (lexicographic order): ð j0; j1Þa ðl0; l1Þ if either ð j0 < l0Þ or ð j0 ¼ l0;

j1a l1Þ.

For g a Fq, we put

Lg ¼ fd a Fq : dA g; ðgþ 1� dÞN ¼ 1g ¼ fgþ 1� z2; . . . ; gþ 1� zNg:

Observe that

LgA j if Nb 2 and Lg H fgþ j : j a Fpg if N j p� 1:

For P;Q a Fq½x�, Pm kQ means that Pm divides Q and Pmþ1 does not divide Q.

The following straightforward result is useful.
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Lemma 2.1 (Lemma 2 in [2]). The polynomial A is perfect if and only if for any

irreducible polynomial P a Fq½x� and for any positive integers m1, m2, we have

�
Pm1 kA;Pm2 k sðAÞ

�
) ðm1 ¼ m2Þ:

We obtain an immediate consequence:

Proposition 2.2. If Nb 2, then the polynomial A is perfect if and only if

Npnðgþ1Þ ¼ pnðgÞ þ
X
d AL g

pnðdÞ for all g a Fq:

Proof. For every g a Fq, we may apply Lemma 2.1 to the polynomial P ¼
x� g� 1, where m1 ¼ Npnðgþ1Þ � 1b 1 since Nb 2.

By considering

sðAÞ ¼
Y
d A Fq

s
�
ðx� dÞNpnðdÞ�1� ¼

Y
d A Fq

�
ðx� d� 1Þp

nðdÞ�1
YN
j¼2

ðx� d� zjÞp
nðdÞ
�
;

we see that the exponent of P in sðAÞ is exactly the integer

m2 ¼ pnðgÞ � 1þ
X
d AL g

pnðdÞ:

Furthermore, m2b 1 since Lg is not empty. r

2.2. Circulant matrices. In this section we recall some results about circulant

matrices and block circulant matrices (see [4], Chap. 3 and 4) that will be useful

in the proof of our main result.

Definition 2.3. Let n be a positive integer. A circulant matrix of order n is a

square matrix C ¼ ðc j
i Þ0ai; jan�1 such that the entries c j

i satisfy

c
j
i ¼ c

j�1
i�1 ; c

0
i ¼ cn�1

i�1 for 1a i; ja n� 1:

Definition 2.4. Let n, m be positive integers. A block circulant matrix of type

ðn;mÞ is a square matrix S ¼ ðS j
i Þ0ai; jan�1 of order nm such that

each matrix S
j
i is a square matrix of order m; S

j
i ¼ S

j�1
i�1 ; S0

i ¼ Sn�1
i�1

for 1a i; ja n� 1. Furthermore, if every S
j
i is a circulant matrix, then S is called

a block circulant with circulant blocks.
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Notation. If C is a circulant matrix of order n and if we denote for 0a ja n� 1

cj ¼ c
j
0;

then C may be written as

C ¼ circðc0; . . . ; cn�1Þ ¼

c0 c1 � � � cn�1

cn�1 c0 � � � cn�2

..

. ..
. ..

. ..
.

c1 c2 � � � c0

0
BBBB@

1
CCCCA
:

Analogously, a block circulant matrix S may be written as

S ¼ bcircðS0; . . . ;Sn�1Þ ¼

S0 S1 � � � Sn�1

Sn�1 S0 � � � Sn�2

..

. ..
. ..

. ..
.

S1 S2 � � � S0

0
BBBB@

1
CCCCA
;

where Sj ¼ S
j
0 for 0a ja n� 1.

We shall use several times the following crucial result when n ¼ p.

Lemma 2.5 (see [4], Sec. 3.2). Let n be a positive integer. Any circulant matrix

C ¼ circðc0; . . . ; cn�1Þ is diagonalizable on C, and admits the following eigenvalues:

c0 þ c1o
k þ � � � þ cn�1ðokÞn�1 ¼

Xn�1

l¼0

clðokÞ l for k a f0; . . . ; n� 1g;

where

o ¼ cosð2p=nÞ þ i sinð2p=nÞ a C

is a n-th primitive root of unity.

Lemma 2.6 (see [4], Theorem 5.8.1). Let n be a positive integer and let

S ¼ bcircðS0; . . . ;Sn�1Þ be a block circulant of type ðn; nÞ, with circulant blocks,

then S0; . . . ;Sn�1 are simultaneously diagonalizable on C.

2.3. The proof. For g a Fq we put xg ¼ pnðgÞ. If we identify g ¼ iaþ j and

d ¼ raþ s with the pairs ði; jÞ; ðr; sÞ a F2
p , we may order the unknowns xij and

xrs as

xij axrs , ði; jÞa ðr; sÞ;
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according to the order relation on Fq defined in Section 2.1. We obtain from Prop-

osition 2.2 a linear system of q equations in q unknowns, the xg’s:

Nxgþ1 ¼ xg þ
X
d AL g

xd; g a Fq: ð1Þ

We denote by S the matrix of the linear system (1). For i; j a Fp, we denote by

S
j
i the square matrix of order p corresponding to the coe‰cients of unknowns

xja; xjaþ1 . . . ; xjaþp�1, in the p equations

Nxgþ1 ¼ xg þ
X
d AL g

xd; where g a fia; iaþ 1; . . . ; iaþ p� 1g:

We have, by direct computations, the following results:

Lemma 2.7. The matrix S can be written as a block matrix:

S ¼ ðS j
i Þ0ai; jap�1 ¼

S0
0 � � � S

p�1
0

..

. ..
. ..

.

� � � S
j
i � � �

..

. ..
. ..

.

S0
p�1 � � � S

p�1
p�1

0
BBBBBBBBB@

1
CCCCCCCCCA
:

Lemma 2.8. If ðe j
i Þmn is the entry in row m and column n of S

j
i for 0am; na

p� 1, then:

ðe j
i Þmn ¼ 1 if either ð jaþ n ¼ iaþmÞ or ð jaþ n a L iaþmÞ;

ðe j
i Þmn ¼ �N if jaþ n ¼ iaþmþ 1;

ðe j
i Þmn ¼ 0 otherwise:

By Lemma 2.8, and from the definition of Lg, for g a Fq we obtain:

Lemma 2.9. ðe j
i Þmn ¼ 1 if

�
ði � jÞaþm� nþ 1

�N ¼ 1;

ðe j
i Þmn ¼ �N if ði ¼ j and n ¼ mþ 1Þ;

ðe j
i Þmn ¼ 0; otherwise:
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It follows that

Lemma 2.10. S
j
i ¼ S

j�1
i�1 , S

0
i ¼ S

p�1
i�1 for 1a i; ja p� 1,

ðe j
0Þmn ¼ ðe j

0Þm�1 n�1; ðe
j
0Þm0 ¼ ðe j

0Þm�1 p�1 for 1a j;m; na p� 1:

By putting S
j
0 ¼ Sj, we deduce from Lemma 2.10 the following two lemmas:

Lemma 2.11. The matrix S is a block circulant matrix:

S ¼ bcircðS0; . . . ;Sp�1Þ:

Lemma 2.12. Every matrix Sj, j a U, is a circulant matrix of order p:

Sj ¼ circ
�
ðe j

0Þ00; . . . ; ðe
j
0Þ0p�1

�
:

In the following, for i; j a f0; . . . ; p� 1g, we put

aj; i ¼ ðe j
0Þ0i ðthe entry in row 0 and column i of SjÞ:

Thus, the matrix Sj becomes

Sj ¼ circðaj;0; . . . ; aj;p�1Þ:
We immediately obtain:

Lemma 2.13. i) a0;0 ¼ 1, a0;1 ¼ �N, aj; i a f0; 1g if ð j; iÞ B fð0; 0Þ; ð0; 1Þg.
ii)

P
ði; jÞaU 2 aj; i ¼ 0.

iii) N divides p� 1 if and only if Sj ¼ 0 for any j a Unf0g.
iv) If N ¼ q� 1, then aj; i ¼ 1 for any ð j; iÞA ð0; 1Þ.

Proof. We consider the equation corresponding to g ¼ 0 ¼ ð0; 0Þ, in the linear

system (1).

Part i) follows from direct computations.

ii) We obtain

X
ði; jÞaU 2

aj; i ¼ a0;0 þ a0;1 þ
X
d AL0

1 ¼ 1�N þ cardðL0Þ ¼ 0;

since Lg contains exactly N � 1 elements, for any g a Fq.

iii) If N divides p� 1 and if jA 0, then, for any i a Fp:

aj; i A�N; and aj; i A 1 since
�
ð0� jÞaþ 0� i þ 1

�N
A 1:

Thus, Sj ¼ 0.
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Conversely, if aj; i ¼ 0 for any i; j a Fp such that jA 0, then aj; i A 1 for any

such i, j. By the same arguments, we see also that N must divide p� 1.

iv) This follows from the fact that L0 ¼ Fqnf0; 1g if N ¼ q� 1. r

Lemma 2.14. If N divides p� 1, then S is the block diagonal matrix:

S ¼ diagðS0; . . . ;S0Þ ¼

S0 0 � � � 0

0 S0 � � � 0

..

. ..
. ..

. ..
.

0 0 � � � S0

0
BBBB@

1
CCCCA
:

Proof. By Lemma 2.13 iii), Sj ¼ 0 for all j a Unf0g, so that S ¼ diagðS0; . . . ;S0Þ.
r

We put

o ¼ cosð2p=pÞ þ i sinð2p=pÞ a C;

lj;k ¼
Xp�1

l¼0

aj; lðokÞ l for j; k a U ;

Dj ¼ diagðlj;0; . . . ; lj;p�1Þ for j a U ;

D ¼ bcircðD0; . . . ;Dp�1Þ:

We obtain the

Proposition 2.15. The matrices S and D have the same rank.

Proof. By Lemma 2.5, for each j a U , the matrix Sj is diagonalizable and

lj;0; . . . ; lj;p�1 are its eigenvalues. Furthermore, by Lemma 2.6, the matrices Sj ,

j a U , are simultaneously diagonalizable. So, the matrices S and D are similar.

We are done. r

Now if we put together the rows

Ll ;Lpþl ;L2pþl ; . . . ;Lðp�1Þpþl

of the matrix D, for each integer l a f0; . . . ; p� 1g, we obtain a matrix D 0, with
the same rank.

By putting together, for each integer l a f0; . . . ; p� 1g, the columns

Cl ;Cpþl ;C2pþl ; . . . ;Cðp�1Þpþl
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of the matrix D 0, we obtain a matrix ~DD, which has also the same rank as D. The

matrix ~DD is a block diagonal matrix:

~DD ¼ diagð~DD0; . . . ; ~DDp�1Þ;

where

~DDk ¼ circðl0;k; . . . ; lp�1;kÞ

is a circulant matrix, for any k a U . Thus, we obtain

Proposition 2.16. The matrices S and ~DD have the same rank.

To finish the proof of Theorem 1.1, we need the following results.

Lemma 2.17. Let j a Unf0g and u0; . . . ; up�1 a Q such that
P

r AU urðo jÞr ¼ 0.

Then

either ður ¼ 0 for all r a UÞ or ður ¼ 1 for all r a UÞ:

Proof. Since f1;o j; . . . ; ðo jÞp�1g ¼ f1;o; . . . ;op�1g, we may assume that j ¼ 1.

It su‰ces to observe that the cyclotomic polynomial FpðxÞ ¼ 1þ � � � þ xp�1,

which is irreducible, is the minimal polynomial of o. r

Lemma 2.18. The matrix S0 has rank p� 1.

Proof. By Lemma 2.5, the eigenvalues of the matrix S0 are

n0 ¼ a0;0 þ � � � þ a0;p�1 ¼
X

ð j; iÞaU 2

aj; i ¼ 0;

nl ¼
X
r AU

a0; rðo lÞr for l a Unf0g:

If nl ¼ 0 for some l a Unf0g, then by Lemma 2.17 we have

either ða0; r ¼ 0 for all r a UÞ or ða0; r ¼ 1 for all r a UÞ:

These two cases are impossible since a0;0 ¼ 1 and a0;1 ¼ �N. Thus, S0 has exactly

p� 1 nonzero eigenvalues. We are done. r

If N does not divide p� 1, the following two lemmas give the rank of ~DDk for

k a U .

Lemma 2.19. If N does not divide p� 1, then the matrix ~DD0 has rank p� 1.
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Proof. We know, by Lemma 2.5, that ~DD0 has the following eigenvalues:

m0 ¼ l0;0 þ � � � þ lp�1;0 ¼
X

ð j; iÞaU 2

aj; i ¼ 0;

ml ¼
X
r AU

lr;0ðo lÞr for l a Unf0g:

If ml ¼ 0 for some l a Unf0g, then by Lemma 2.17, we have

either ðlr;0 ¼ 0 for all r a UÞ or ðlr;0 ¼ 1 for all r a UÞ:

In the first case, we obtain that

X
r AU

a0; r ¼ l0;0 ¼ 0 ¼
X

ði; jÞaU 2

aj; i ¼
X
r AU

a0; r þ
X

ð j; rÞaU 2; jA0

aj; r:

It follows that aj; r ¼ 0 for any j; r a U such that jb 1. It is impossible since the

matrix Sj is not the zero matrix by Lemma 2.13 ii).

In the second case we obtain

X
ðr; sÞaU 2

ar; s ¼
X
r AU

ar;0 þ � � � þ
X
r AU

ar;p�1 ¼
X
r AU

lr;0 ¼ pA 0;

which is also impossible. r

Lemma 2.20. If N does not divide p� 1, then for any j a Unf0g, the matrix ~DDj

has rank p.

Proof. By Lemma 2.5, the matrix ~DDj has the following eigenvalues:

mjl ¼
X
s AU

ls; jðo lÞs ¼
X

ðr; sÞaU 2

as; ro
rjþsl ; l a U :

For t a U we put Ut ¼ fðr; sÞ a U 2 : sj þ rlC t mod pg. The set U 2 is the disjoint

union U0 t � � � tUp�1. So we can write

mjl ¼
X

ðr; sÞaU 2

ar; so
sjþrl ¼

X
t AU

� X
ðr; sÞaUt

ar; s

�
o t:

If mjl ¼ 0, then by Lemma 2.17, we have

either
� X

ðr; sÞaUt

ar; s ¼ 0 for all t a U
�
or

� X
ðr; sÞaUt

ar; s ¼ 1 for all t a U
�
:
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In the first case we obtain that

X
ðr; sÞaU0

ar; s ¼ 0:

Moreover, ar; sb 0 for any ðr; sÞ a U0 since ð0; 1Þ B U0. Thus

0 ¼
X

ðr; sÞaU0

ar; sb a0;0 ¼ 1;

which is impossible.

The second case is also impossible since that would imply that

0 ¼
X

ðr; sÞaU 2

ar; s ¼
X
t AU

X
ðr; sÞaUt

ar; s ¼ p: r

We obtain our main results:

Corollary 2.21. If N divides p� 1, then nðgÞ ¼ nðgþ jÞ for any g a Fq, j a Fp.

Proof. By Lemma 2.14, the matrix S is exactly the diagonal matrix

diagðS0; . . . ;S0Þ, so the linear system (1) splits into p linear systems (each of which

is of matrix S0) in p unknowns, xg; xgþ1; . . . ; xgþp�1:

Nxgþjþ1 ¼ xgþj þ
X

d AL gþ j

xd for g ¼ ia; i; j a Fp: ð2Þ

Moreover, by Lemma 2.18, S0 has rank p� 1. It remains to observe that

ð1; . . . ; 1Þ belongs to the kernel of S0, since

a0;0 þ � � � þ a0;p�1 ¼
X

ði; jÞaU 2

aj; i ¼ 0

by Lemma 2.13 ii). r

Corollary 2.22. If N does not divide p� 1, then nðgÞ ¼ nðdÞ for any g; d a Fq.

Proof. In that case, the matrix ~DD (and thus the matrix S) has rank

p� 1þ ðp� 1Þp ¼ p2 � 1 ¼ q� 1:
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Moreover, ð1; . . . ; 1Þ belongs to the kernel of S, since

X
ði; jÞaU 2

aj; i ¼ 0

by Lemma 2.13 ii). So we are done. r

Final remarks. 1) If q ¼ pm for mb 3, then our method fails since we cannot

apply Lemma 2.6.

2) If p ¼ 2, then the splitting perfect polynomials over F4 are known (see [6],

Theorem 3.4).

3) By using a computer program, we obtain a complete list of perfect polyno-

mial over F9 of the form

Y
g A F9

ðx� gÞNðgÞ�1; where NðgÞ j 8; and nðgÞ ¼ 0 for all g a F9:

Except for trivially perfect polynomials and for perfect polynomials of the form

ðx9 � xÞN�1; where N a f1; 2; 4; 8g;

we obtain two other families: A1ðx� aÞ and A2ðx� aÞ, a a F9, where a a F9
satisfy a2 ¼ �1 and, for A1ðxÞ,

Nð0Þ ¼ NðaÞ ¼ Nð2aÞ ¼ 4;

Nð jÞ ¼ Nðaþ jÞ ¼ Nð2aþ jÞ ¼ 2; j a f1; 2g;

and, for A2ðxÞ,

Nð1Þ ¼ Nðaþ 1Þ ¼ Nð2aþ 1Þ ¼ 2;

Nð jÞ ¼ Nðaþ jÞ ¼ Nð2aþ jÞ ¼ 4; j a f0; 2g:

Then we can deduce (see [1]), for a fixed positive integer m, the list of all perfect

polynomials of the form
Q

g A F9
ðx� gÞNðgÞpm�1.

The computer took some substantial time to do the job. So we may think that

the determination of all splitting perfect polynomials over a finite field is a non-

trivial problem.
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