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Abstract. We study some properties of the exponents of the terms appearing in the splitting
perfect polynomials over [,», where p is a prime number. This generalizes the work of
Beard et al. over F,.
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1. Introduction

Let p be a prime number and let F, be a finite field of characteristic p with ¢
elements. Let 4 € [F,[x] be a monic polynomial. Let w(4) denote the number of
distinct monic irreducible factors of A4 over [, and let ¢(A4) denote the sum of all
monic divisors of A (¢ is a multiplicative function). If 4 divides o(4) (so that
a(A) = A), then we say that 4 is a perfect polynomial. E. F. Canaday, the first
doctoral student of Leonard Carlitz, began in 1941 the study of perfect polyno-
mials by working over the ground field F, [3]. Later, in the seventies, J. T. B.
Beard Jr. et al. extended this work in several directions (see, e.g., [1], [2]). Re-
cently, we became interested in this subject [6], [7], [8], [10]. In our two first papers
we considered the smallest nontrivial field extension of the ground field, namely
F4, while in the remaining papers we continued to work on the binary case by con-
sidering ““odd” and “‘even’ perfect polynomials. We began to study the special
case where the polynomial splits over F,. Our first results about splitting perfect
polynomials are in [9], where F, = [F,» is the Artin—Schreier extension of [F,. See
also [5] for another direction.

Beard et al. [2], Theorem 7, showed that if a perfect monic polynomial 4 splits
over [,, then the integer w(A4) is a multiple of p, and 4 may be written as a
product

A=Ay... A,
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YN e g0 =0, g € F, a; —a; ¢ F, for

where 4; = [[;c¢, (x —ai = j ;

i %1 Nylq—1, my = 0.

We say that a polynomial 4 € F,[x] is a splitting perfect polynomial if A4 has all
its roots in F, and A4 is a perfect polynomial. We say that 4 is trivially perfect if
for any 0 <i <r, A4; is perfect. In that case, 4 is perfect and for any 0 <i <r,

there exist N;,n; € N, such that
Nj=N;,ny=n; forall jelF, Ni|p—1.

The case when ¢ = p was considered by Beard [1] and Beard et al. [2]. They
showed that a polynomial

A= J-pror

vely
is perfect over [, if and only if the following condition holds:
There exist N, n e Nsuch that N|p—1, N(y) = N, n(y) =nforall y e F,. (x)
Thus, the only splitting perfect polynomials over [, are of the form
A= (xr —x)""

where N|p—1and n e N.

Their method consists of showing, in a first step, that n(y) = n(d) for any
7,0 € [, and, in a second step, that N(y) = N(6) for any y,6 € [F,.

If [, is a nontrivial extension field of [F,, then the condition (*) remains suffi-
cient (see again [1], [2]) but no more necessary (see [6], Theorem 3.4, in the case
pP=2,q9=4) o

IfA=T[(x=7) N@P"=1 is perfect, then two natural cases arise:

Case 1: There exists N € N such that N |¢ — 1, N(y) = N for all y € F,.

Case 2: There exists n € N such that n(y) = n for all y € F,.

We observe that case 2 does not imply case 1 (consider trivially perfect polyno-
mials).

Let us fix an algebraic closure of [,. In order to get some progress in the clas-
sification of splitting perfect polynomials over a nontrivial extension field of [, we
would like to know if case 1 implies case 2 when we work over the smallest non-
trivial extension field of [, namely the quadratic extension [ ..

In the rest of the paper, we put ¢ = p>. Our new idea is to consider suitable
(block) circulant matrices (see [4], Sec. 5.6 and 5.8). The object of this paper is to
prove the following result.
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Theorem 1.1. Let N € N be a divisor of ¢ — 1, and let

A= o™
yel,
be a splitting perfect polynomial over T,.
1) If N divides p — 1, then A is trivially perfect so that the integers n(y) may differ.

ii) If'N does not divide p — 1, then n(y) = n(6) := n, say, for any y,6 € F, so that
A= (x1—x)"",

2. Proof of Theorem 1.1

We need to introduce some notation. The integers 0, 1,..., p — 1 will be also con-
sidered as elements of [,.
We put

A= H (x— )" where N divides ¢ — 1,
yely

U={0,1,...,p—1} = N.
If N > 2, we denote by {,,...,{y € [, the N-th roots of 1, distinct from 1.

Finally, we denote by F, a fixed algebraic closure of F,.

2.1. Preliminary. We put F,=TF, = {jox+ ji: jo,/1 € F,} = F,[a], where
o € [, is a root of an irreducible polynomial of degree 2 over [,. Every element
in+ j € F, will be, if necessary, identified to the pair (i, j) € F, x F,. We define
the following two order relations:

eonflF,0<1<2<---<p-1,

e on [, (lexicographic order): (jo, i) < (l, 1) if either (jo <) or (jo = b,
1 <h).

For y € F,, we put
N ={6eF:0#70+1-0)" =1} ={p+1-0,...,7+1 =0}
Observe that
AN #Qif N>2and A" = {y+j:jeF,}if N|p—1.

For P, Q e F,[x], P || Q means that P divides Q and P"*! does not divide Q.
The following straightforward result is useful.
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Lemma 2.1 (Lemma 2 in [2]). The polynomial A is perfect if and only if for any
irreducible polynomial P € F,[x] and for any positive integers my, my, we have

(P"™ |4, P™ ||a(A)) = (m1 = my).
We obtain an immediate consequence:

Proposition 2.2. If N > 2, then the polynomial A is perfect if and only if

Np"0+1) ) + Z p" forallyeF,.
deAN’

Proof. For every y € F,, we may apply Lemma 2.1 to the polynomial P =
x —y — 1, where m; = Np"0+D) — 1 > 1 since N > 2.
By considering

N
n(d) _ 71 0) _ 71 (0)
o) = [T o(tc=0)""" ) = [T (=0 - """ [[x—=a-5)""),
oel, oel, j=2
we see that the exponent of P in g(A4) is exactly the integer
D14+ Z P,
deA’
Furthermore, m, > 1 since A’ is not empty. O

2.2. Circulant matrices. In this section we recall some results about circulant
matrices and block circulant matrices (see [4], Chap. 3 and 4) that will be useful
in the proof of our main result.

Definition 2.3. Let n be a positive integer. A circulant matrix of order n is a
square matrix C = (c/), <i j<n—1 Such that the entries ¢! satisfy

J_ I 0 __ .n-1 )
C; cll,c ¢, forl<ij<n-—1

Definition 2.4. Let n, m be positive integers. A block circulant matrix of type
(n,m) is a square matrix S = (S/); ;- of order nm such that

. P . . 1
each matrix S/ is a square matrix of order m, S SIJ L Sy =8

for 1 <i,j <n—1. Furthermore, if every Sf is a circulant matrix, then S is called
a block circulant with circulant blocks.
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Notation. If C is a circulant matrix of order n and if we denote for0 < j <n—1

¢j = ¢p,
then C may be written as
€o C] Cn—1
. Ch—1 Co -+ Cp=2
C =circ(co,...,Cn-1) =
Cq Co [P Co

Analogously, a block circulant matrix S may be written as

So St S
Sp—1 So 0 S
S = beire(Sy, ..., Sp—1) = ) . . . ,
AR So

where S; = S] for0 < j<n— 1.
We shall use several times the following crucial result when n = p.

Lemma 2.5 (see [4], Sec. 3.2). Let n be a positive integer. Any circulant matrix
C = circ(c, . . ., cp1) is diagonalizable on C, and admits the following eigenvalues:

n—1
o+ a0+ F e (@) =S g(0h) forke{0,...,n—1},
I

Il
o

where

w = cos(2n/n) + isin(2n/n) € C
is a n-th primitive root of unity.

Lemma 2.6 (sece [4], Theorem 5.8.1). Let n be a positive integer and let
S = beirce(So, ..., Su—1) be a block circulant of type (n,n), with circulant blocks,
then Sy, ..., S,_1 are simultaneously diagonalizable on C.

2.3. The proof. For yeF, we put x, = p"0). If we identify y =iz + j and
0 =ro.+ s with the pairs (i, j), (r,s) € [F]f, we may order the unknowns x; and
X5 A8

xif S Xrs <~ (17]) S (V,S),
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according to the order relation on [, defined in Section 2.1. We obtain from Prop-
osition 2.2 a linear system of ¢ equations in ¢ unknowns, the x,’s:

Nx, 1 =x, + ths, yeF,. (1)
deA’

We denote by S the matrix of the linear system (1). For i, j € F,, we denote by
S/ the square matrix of order p corresponding to the coefficients of unknowns
Xjoy Xjot1 - - -5 Xjug p—1, 0 the p equations

ny+1:xy+2x(;, where y € {io, i+ 1,... i+ p — 1}.
deA’

We have, by direct computations, the following results:

Lemma 2.7. The matrix S can be written as a block matrix.:

sy ngl

Lemma 2.8. If (¢))

. . j
wn IS the entry in row m and column n of S} for 0 <m,n <

p— 1, then:
(e]),, =1 if either (jo+n=ia+m) or (jou+ne A™),
(elj)mn:—N if jo+n=ix+m-+1,
(el), =0  otherwise.

By Lemma 2.8, and from the definition of A’, for y € F, we obtain:

Lemma 2.9. (¢/),, =1 if ((i— jut+m—n+1)" =1,

(e{) =-N if(i=jandn=m+1),
j

mn
(€)m =0,  otherwise.
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It follows that
Lemma 2.10. S/ =S/, S =" for 1 <i,j<p—1,
(@) = @t 15 (@)oo = @)1 poy Jor 1< jimn<p—1.
By putting Sg = S;, we deduce from Lemma 2.10 the following two lemmas:
Lemma 2.11. The matrix S is a block circulant matrix:
S = beire(So, ..., Sp-1).
Lemma 2.12. Every matrix S;, j € U, is a circulant matrix of order p:
Sy = circ((¢f)ggs - - -+ (€))p_1)-
In the following, for i, j € {0,..., p — 1}, we put
a;;=(¢}),; (the entry in row 0 and column i of S)).
Thus, the matrix S; becomes

S; = circ(aj 0, ..., a;,p-1)-

We immediately obtain:

Lemma 2.13. i) ap o =1, ap,1 = —N, a;; € {0,1} if (j,7) ¢ {(0,0),(0,1)}.

ii) Z(i,_/)em aj; = 0.

iii) N divides p — 1 if and only if S; = 0 for any j € U\{0}.

iv) If N =q — 1, then a; ; = 1 for any (j,i) # (0,1).
Proof. We consider the equation corresponding to y =0 = (0,0), in the linear
system (1).

Part i) follows from direct computations.

i) We obtain

> ai=apo+an+ Y 1=1-N+card(A’) =0,
(i.j)eU? seA’

since A7 contains exactly N — 1 elements, for any y € [F,.
iii) If N divides p — 1 and if j # 0, then, for any i € [F,:

aj;#—N,anda;; #1 since (0 — ja+0—i+1)" #1.

Thus, S; = 0.
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Conversely, if a;; = 0 for any i, j € F, such that j # 0, then g;; # 1 for any
such i, j. By the same arguments, we see also that N must divide p — 1.
iv) This follows from the fact that A® = F,\{0, 1} if N = ¢ — 1. O

Lemma 2.14. If N divides p — 1, then S is the block diagonal matrix:

S 0 -~ 0
0 Sy --- 0

S = diag(So, ..., Sy) =
0 0 - S

Proof. By Lemma 2.13iii), S; = 0 for all j € U\{0}, so that S = diag(So,...,S).

We put

w = cos(2n/p) + isin(27/p) € C,
p—1

Ak = Zaj,z(wk)[ for j,k e U,
1=0

A; =diag(40,...,4jp-1) forje U,
A = beirc(Ao, ..., Ap-1).

We obtain the
Proposition 2.15. The matrices S and A have the same rank.

Proof. By Lemma 2.5, for each je U, the matrix S; is diagonalizable and

2j,0,- -+, 4 p—1 are its eigenvalues. Furthermore, by Lemma 2.6, the matrices S,
j € U, are simultaneously diagonalizable. So, the matrices S and A are similar.
We are done. ]

Now if we put together the rows

Ly, Lyiiy Lopits- s Lip-1)pta

of the matrix A, for each integer / € {0,..., p — 1}, we obtain a matrix A’, with
the same rank.
By putting together, for each integer / € {0, ..., p — 1}, the columns

Cl Cost, Coprts -+ Clpmtypa
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of the matrix A’, we obtain a matrix A, which has also the same rank as A. The
matrix A is a block diagonal matrix:

A = diag(A,, . .. ,Ap,l),
where
Ak =circ(Ao ks - -5 Ap—1,k)
is a circulant matrix, for any k € U. Thus, we obtain
Proposition 2.16. The matrices S and A have the same rank.
To finish the proof of Theorem 1.1, we need the following results.

Lemma 2.17. Let j € U\{0} and uy,...,u,—1 € Q such that Y, _; u,(w’)" = 0.
Then

either (u, = 0 for all r € U) or (u, = 1 for all r € U).

Proof. Since {1,w/,..., (&))"} ={1,0,...,w" '}, we may assume that j = 1.
It suffices to observe that the cyclotomic polynomial ®,(x) =1 4o xPL
which is irreducible, is the minimal polynomial of w. O

Lemma 2.18. The matrix Sy has rank p — 1.

Proof. By Lemma 2.5, the eigenvalues of the matrix Sy are

Vo=doo+ - +daop-1 = E a;,; =0,
(J,i)eU?

v = Zaoyr(wl)r for I e U\{0}.

reU
If v; = 0 for some / € U\{0}, then by Lemma 2.17 we have
either (ap, =0 forallre U) or (ap, = 1forallr e U).

These two cases are impossible since ag o = 1 and ap ; = —N. Thus, Sy has exactly
p — 1 nonzero eigenvalues. We are done. O

If N does not divide p — 1, the following two lemmas give the rank of A for
keU.

Lemma 2.19. If N does not divide p — 1, then the matrix Aq has rank p — 1.
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Proof. We know, by Lemma 2.5, that Ay has the following eigenvalues:

o = Ao0+ -+ Ap10 = Z aj; =0,
(jieu?

=" Jro(@)" forle U\{0}.

reU
If 1y = 0 for some / € U\{0}, then by Lemma 2.17, we have
either (4,0 =0forallr e U) or (4,0 =1forallr e U).
In the first case, we obtain that
Za(),r =do=0= Z aj; = Zao,r + Z aj .
rel (i,j)eU? reU (j,r)eU?,j#0

It follows that a; , = 0 for any j,r € U such that j > 1. It is impossible since the
matrix S; is not the zero matrix by Lemma 2.13ii).
In the second case we obtain

Z Ay s = Zar,o ot Za'}P—I - Z)“r,o =p# Oa

(r,s)eU? relU relU relU
which is also impossible. O

Lemma 2.20. If N does not divide p — 1, then for any j € U\{0}, the matrix A;
has rank p.

Proof. By Lemma 2.5, the matrix Aj has the following eigenvalues:

ty = Z)»S,j(wl)s = Z as,0" e U.

seU (r,5)eU?

Forte U weput U, = {(r,s) € U? : sj +rl = t mod p}. The set U? is the disjoint
union Up U ---U U,—1. So we can write

= X @ =3 (Y a)o

(r,5)eU? teU (rs)el

If p1; = 0, then by Lemma 2.17, we have

either ( Z a.s=0forall e U) or < Z ars=1forall e U).

(r,s)eU (r,s)eU;
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In the first case we obtain that

Moreover, g, ; > 0 for any (r,s) € U since (0,1) ¢ Uy. Thus

0= Z ars>apo =1,
(r;5)ely

which is impossible.
The second case is also impossible since that would imply that

0= Z ar,szz Z ays = P- O

(r“\'>eU2 IEU(]’\S)EU,
We obtain our main results:
Corollary 2.21. If N divides p — 1, then n(y) = n(y + j) for any y € Fy, j € F,.

Proof. By Lemma 2.14, the matrix S is exactly the diagonal matrix
diag(Sy, - .., So), so the linear system (1) splits into p linear systems (each of which

is of matrix Sp) in p unknowns, x,, X,i1, ..., X p—1:
Nxypjp1 = Xppj + g xs fory=iu, i, jel,. (2)
deNT

Moreover, by Lemma 2.18, Sy has rank p — 1. It remains to observe that
(1,...,1) belongs to the kernel of .S, since

ap,0 + -+ +dop-1 = Z a;;i =0
(i,)eu?
by Lemma 2.131i). Ul
Corollary 2.22. If N does not divide p — 1, then n(y) = n(d) for any y,0 € F,.

Proof. In that case, the matrix A (and thus the matrix S) has rank

p—l+(p-lp=p"—-1=¢g-1
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Moreover, (1,...,1) belongs to the kernel of S, since
Y. 4i=0
(i.j)eU?
by Lemma 2.131ii). So we are done. n

Final remarks. 1) If ¢ = p™ for m > 3, then our method fails since we cannot
apply Lemma 2.6.

2) If p =2, then the splitting perfect polynomials over F4 are known (see [6],
Theorem 3.4).

3) By using a computer program, we obtain a complete list of perfect polyno-
mial over 9 of the form

H (x — y)N(V)_l, where N(y) |8, and n(y) = 0 for all y € Fo.
yelky
Except for trivially perfect polynomials and for perfect polynomials of the form

(x> =x)"' where N € {1,2,4,8},

we obtain two other families: A4;(x —a) and A4,(x —a), a € Fg, where o € [y
satisfy o> = —1 and, for 4;(x),

Z
=
i
2

(0) = NQ2a) = 4,
N(j)=N(a+j)=NQ2u+j) =2, je{l,2},
and, for A,(x),
N(1)=N(e+1)=NQu+1) =2,
N(j)=N(a+j)=NQu+j) =4, je{0,2}.
Then we can deduce (see [1]), for a fixed positive integer m, the list of all perfect
polynomials of the form [], g, (x — )N
The computer took some substantial time to do the job. So we may think that

the determination of all splitting perfect polynomials over a finite field is a non-
trivial problem.
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