Portugal. Math. (N.S.) Vol. 66, Fasc. 2, 2009, 147–158

A note on common range of a class of co-analytic Toeplitz operators

Romeo Meštrović and Žarko Pavićević

(Communicated by A. Ferreira dos Santos)

Abstract. We characterize the intersection of the ranges of a class of co-analytic Toeplitz operators by considering this set as the dual space of the Privalov space N^p , 1 , in a certain topology. For a fixed <math>p we define the class H_p consisting of those de Branges spaces $\mathscr{H}(b)$ such that the function b is not an extreme point of the unit ball of H^{∞} , and the associated measure μ_b for b satisfies an additional condition. It is proved that the function f analytic on **D** is a multiplier of every de Branges space from H_p if and only if f is in the intersection of the ranges of all Toeplitz operators belonging to the class H_p . We show that this is true if and only if the Taylor coefficients $\hat{f}(n)$ of f decay like $O(\exp(-cn^{1/(p+1)}))$ for a positive constant c.

Mathematics Subject Classification (2000). Primary 47B35, 46E22; Secondary 30D55, 30H05.

Keywords. Toeplitz operator, Privalov class N^p , Helson topology, weight, de Branges space, multipliers.

1. Introduction

Let **D** denote the open unit disk in the complex plane and let **T** denote the boundary of **D**. Let $L^q(\mathbf{T}) = L^q(d\theta/2\pi)$, $0 < q \le \infty$, be the familiar Lebesgue spaces on the unit circle **T**. For any fixed p > 1 the *Privalov class* N^p consists of all analytic functions f on **D** for which

$$\sup_{0< r<1} \int_0^{2\pi} \left(\log^+ |f(re^{i\theta})|\right)^p \frac{d\theta}{2\pi} < +\infty.$$

The classes N^p were introduced by I. I. Privalov [21] where N^p is denoted as A_q .

The above inequality with 1 instead of p defines the condition for an analytic function f on **D** to be in the *Nevanlinna class* N. The *Smirnov class* N^+ is the set of all functions $f \in N$ such that

$$\lim_{r \to 1} \int_0^{2\pi} \log^+ |f(re^{i\theta})| \frac{d\theta}{2\pi} = \int_0^{2\pi} \log^+ |f^*(e^{i\theta})| \frac{d\theta}{2\pi} < +\infty.$$

where f^* is the boundary function of f on **T**, i.e., $f^*(e^{i\theta}) = \lim_{r\uparrow 1^-} f(re^{i\theta})$ is the radial limit of f which exists for almost every $e^{i\theta} \in \mathbf{T}$. We denote by H^q , $0 < q < \infty$, the classical *Hardy space* on **D**, consisting of those analytic functions f on **D** for which

$$(\|f\|_q)^{\max\{1,q\}} := \sup_{0 < r < 1} \int_0^{2\pi} |f(re^{i\theta})|^q, \quad \frac{d\theta}{2\pi} < +\infty.$$

Recall that H^{∞} is the space of bounded analytic functions on **D** with the supremum norm $\|\cdot\|_{\infty}$ defined as

$$||f||_{\infty} = \sup_{z \in \mathbf{D}} |f(z)|, \quad f \in H^{\infty}.$$

It is known (see [18]) that

$$N^q \subset N^p \ (q > p), \qquad \bigcup_{q > 0} H^q \subset \bigcap_{p > 1} N^p, \quad \text{ and } \quad \bigcup_{p > 1} N^p \subset N^+,$$

where the above inclusion relations are proper.

Let P be the orthogonal projection from $L^2(\mathbf{T})$ onto H^2 . Then for any function m in $L^{\infty}(\mathbf{T})$ the *Toeplitz operator* T_m on H^2 with symbol m is given by $T_m(g) = P(mg)$. Since the multiplication operator with symbol m is bounded on H^2 , the Toeplitz operator T_m is a bounded linear operator on H^2 for each $m \in L^{\infty}(\mathbf{T})$. If m is the complex conjugate of a function in H^{∞} , T_m is called a *co-analytic* Toeplitz operator.

McCarthy proved [14], Theorem 2.2, that the function f with Taylor series $f(z) = \sum_{n=0}^{\infty} \hat{f}(n)z^n$ on **D** is in the range of every non-zero co-analytic Toeplitz operator if and only if there exists a constant c > 0 such that $\hat{f}(n) = O(\exp(-c\sqrt{n}))$. The proof of this result is obtained by using Yanagihara's characterization of the dual of the space N^+ [27], Theorem 3.

In Section 2 we introduce just those functional and topological properties of Privalov spaces N^p relevant for present purposes. A *weight* on the unit circle **T** is a positive function in $L^1(d\theta/2\pi)$. Let \mathscr{W} be the set of all weights w on **T** such that $\int_0^{2\pi} \log w(e^{i\theta}) d\theta > -\infty$ (cf. [15]). For p > 1, denote by \mathscr{W}^p the set of all weights w on **T** such that $\int_0^{2\pi} |\log w(e^{i\theta})|^p d\theta < \infty$. We establish the fact that the set $(N^p)^{-1}$ of all invertible elements in N^p coincides with the set of all outer functions h such that $\log |h^*| \in L^p(\mathbf{T})$. It follows that a weight w is in \mathscr{W}^p if and only if there is an outer function h in $H^2 \cap (N^p)^{-1}$ with $|h^*(e^{i\theta})|^2 = w(e^{i\theta})$ almost everywhere on **T**.

148

Motivated by this fact and a result of McCarthy mentioned above, in Section 3 we consider a class of co-analytic Toeplitz operators $T_{\bar{h}}$ with a function $h \in H^{\infty}$ such that the function $|h^*|^2$ is in \mathcal{W}^p . It is shown (Theorem 3) that the intersection of the ranges of all Toeplitz operators belonging to that class consists of all analytic functions f on **D** whose Taylor coefficients $\hat{f}(n)$ decay like $O(\exp(-cn^{1/(p+1)}))$ for a positive constant c.

Let b be a fixed function in the unit ball of H^{∞} , and let $D_b = (1 - T_b T_{\bar{b}})^{1/2}$, where $T_b: H^2 \to H^2$ is the Toeplitz operator with symbol b. Then the *de Branges* space $\mathscr{H}(b)$ is defined to be the range of the operator D_b , with the range norm, i.e., the norm that makes $(1 - T_b T_{\bar{b}})^{1/2}$ a coisometry of H^2 onto $\mathscr{H}(b)$. An important result which characterizes the multipliers of $\mathscr{H}(b)$ is obtained in [2] by B. M. Davis and J. E. McCarthy. Namely, by [2, Theorem 4.2] the H^{∞} function f is a multiplier of every $\mathscr{H}(b)$ space, when b is not an extreme point of the unit ball of H^{∞} , if and only if there is a constant c > 0 such that $\hat{f}(n) = O(\exp(-c\sqrt{n}))$.

In Section 4 we consider the class H_p , 1 , consisting of those de $Branges spaces <math>\mathscr{H}(b)$ for which a function b is not an extreme point of the unit ball of H^{∞} , and such that μ_b is the associated measure for b with the decomposition $\mu_b = |h^*(e^{i\theta})|^2 d\theta/2\pi + \mu_s$ for which $|h^*|^2$ is in \mathscr{W}^p (μ_s is a singular part of μ_b with respect to the measure $d\theta/2\pi$). We prove (the equivalences (iii) \Leftrightarrow (iv) \Leftrightarrow (v) of Theorem 4) that the function f analytic on **D** is a multiplier of every de Branges space from the class H_p if and only if this function is in the intersection of the ranges of all Toeplitz operators belonging to the class described above, i.e., if and only if $\hat{f}(n) = O(\exp(-cn^{1/(p+1)}))$ for a positive constant c.

Note that this result, Theorem 3 and Theorem C (Theorem 3 in [17]) are contained in our main result given by Theorem 4. This is in fact an extension of Theorem C which characterizes the universal multipliers of duals $H^2(w)$ with $w \in \mathcal{W}^p$.

2. Preliminaries

It is well known (see e.g., [6], p. 26) that a function $f \in N$ belongs to the Smirnov class N^+ if and only if f = IF, where I is an inner function on **D** and F is an outer function given by

$$F(z) = \exp\left(\int_0^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} \log|F^*(e^{i\theta})| \frac{d\theta}{2\pi}\right), \quad z \in \mathbf{D},$$

where $\log |F^*| \in L^1(\mathbf{T})$. Furthermore (see e.g., [6]), a function $f = IF \in N^+$ with described factorization belongs to the Hardy space H^q , $0 < q < \infty$, if and only if $|F^*| \in L^q(\mathbf{T})$.

Privalov [21], p. 98, showed that a function $f \in N$ belongs to the class N^p , 1 , if and only if <math>f = IF, where I is an inner function and F is an outer

function such that $\log^+ |F^*| \in L^p(\mathbf{T})$. It follows immediately from this factorization that the set $(N^p)^{-1}$ of all invertible elements in N^p consists of those outer functions F for which $\log |F^*| \in L^p(\mathbf{T})$. This result is used in [7] to prove that a function $f \in N$ is in N^p if and only if it can be expressed as the ratio g/h, where g and h are in H^2 and h is an outer function such that $\log |h^*| \in L^p(\mathbf{T})$. Therefore, such a function h is in $(N^p)^{-1}$. Using this fact and Beurling's theorem for the space H^2 , it is easy to show (see [7]) that

$$N^{p} = \bigcup_{h \in (N^{p})^{-1} \cap H^{2}} H^{2}(|h^{*}|^{2}), \qquad (2.1)$$

where $H^2(|h^*|^2)$ denotes the closure of the space of analytic polynomials in the space $L^2(|h^*|^2 d\theta/2\pi)$.

In the general case, for any positive measure μ on the circle T, $H^2(\mu)$ will denote the closure of the analytic polynomials in $L^2(\mu)$. Accordingly, $H^2(|h^*|^2)$ coincides with the space $H^2(|h^*|^2 d\theta/2\pi)$.

The analogous representation of (2.1) for the class N^+ is given by McCarthy [15], p. 230; also see [8], V.4.4. Observe that $(N^+)^{-1}$ is the set of all outer functions.

Remark 1. Following R. Mortini [19], a ring R satisfying $H^{\infty} \subset R \subset N$ is said to be of *Nevanlinna–Smirnov type* if every function $f \in R$ can be written in the form g/h, where g and h belong to H^{∞} and h is an invertible element in R. This is true for N itself and by an old theorem of the Nevanlinna brothers for the Smirnov class N^+ (see [20] or [6], Chapter 2); hence the name. By a result of Eoff [7] noticed previously (see also [16]), every space N^p , 1 , is a ring ofNevanlinna–Smirnov type.

Stoll [25], Theorem 4.2, showed that the Privalov space N^p (with the notation $(\log^+ H)^{\alpha}$ in [25]) with the topology given by the metric ρ_p defined by

$$\rho_p(f,g) = \left(\int_0^{2\pi} \left(\log\left(1 + |f^*(e^{i\theta}) - g^*(e^{i\theta})|\right)\right)^p \frac{d\theta}{2\pi}\right)^{1/p}, \quad f,g \in N^p, \quad (2.2)$$

becomes an F-algebra, that is, an F-space in which multiplication is continuous.

Recall that (2.2) with 1 instead of p defines a translation invariant metric $\rho_1 = \rho$ on N^+ that makes N^+ into an F-space (see [27], Theorem 3).

On the other hand, the representation (2.1) allows one to define two other topologies on N^p : the usual locally convex inductive limit topology, which we shall call the *Helson topology* and denote \mathscr{H}_p , in which a neighborhood base for 0 is given by those balanced convex sets whose intersection with each space $H^2(|h^*|^2)$ is a neighborhood of zero in $H^2(|h^*|^2)$; and a not locally convex topology, which we shall denote I_p , in which a neighborhood base for zero is given by all sets whose intersection with each space $H^2(|h^*|^2)$ is a neighborhood of zero. For basic facts about inductive limits see Köthe [12], [13] and Wilansky [26]. It was proved in [7] that the topology I_p coincides with the metric topology ρ_p given by (2.2), which is not locally convex. Hence, I_p is strictly stronger than \mathscr{H}_p . Furthermore, the topology \mathscr{H}_p is metrizable (see [17, Section 2]).

The analogous results for the space N^+ with the Helson topology \mathscr{H} introduced in [11] are proved in [14], Section 2, and [15], pp. 230–31. Hence, we use the same name for the topology \mathscr{H}_p .

Recall that \mathscr{W} is the set of all weights w on the circle **T** satisfying the condition $\int_0^{2\pi} \log w(e^{i\theta}) d\theta > -\infty$. For given p > 1, \mathscr{W}^p is defined as the set of all weights w on **T** such that $\int_0^{2\pi} |\log w(e^{i\theta})|^p d\theta < \infty$. For a weight $w \in \mathscr{W}^p$ consider the outer function h defined as

$$h(z) = \exp\left(\int_0^{2\pi} \frac{e^{i\theta} + z}{e^{i\theta} - z} \log\sqrt{w(e^{i\theta})} \frac{d\theta}{2\pi}\right), \quad z \in \mathbf{D}.$$

Then $w(e^{i\theta}) = |h^*(e^{i\theta})|^2$ almost everywhere on **T**, and hence the boundary function h^* is in $L^2(d\theta/2\pi)$. So the function h is in H^2 . As noticed previously, h also belongs to $(N^p)^{-1}$. Therefore, a weight w is in \mathcal{W}^p if and only if there is an outer function h in $H^2 \cap (N^p)^{-1}$ with $|h^*(e^{i\theta})|^2 = w(e^{i\theta})$ almost everywhere on **T**. This means that

$$\mathscr{W}^p = \{ |h^*(e^{i\theta})|^2 : h \in H^2 \text{ is outer and } \log|h^*| \in L^p(\mathbf{T}) \}.$$

Thus in view of (2.1), the topological dual of (N^p, \mathscr{H}_p) consists of those functionals belonging to the topological dual $H^2(|h^*|^2)^*$ of $H^2(|h^*|^2)$ for every weight $|h^*(e^{i\theta})|^2$ in \mathscr{W}^p .

In terms of the polynomials, the topological dual of (N^p, ρ_p) is given as follows.

Theorem A ([17], Theorem D). Let Γ be a linear functional defined on the set of polynomials by $\Gamma(\sum_{n=0}^{N} a_n z^n) = \sum_{n=0}^{N} a_n \gamma_n$. Then Γ extends to be continuous on N^p with respect to the metric ρ_p defined by (2.2) if and only if $\gamma_n = O(\exp(-cn^{1/(p+1)}))$ for some c > 0.

Theorem B ([17], Theorem E). The spaces (N^p, \mathscr{H}_p) and (N^p, ρ_p) have the same topological duals. Hence, the dual of (N^p, \mathscr{H}_p) is characterized by Theorem A.

According to Theorems A and B, in the sequel we shall frequently identify the topological dual of (N^p, \mathscr{H}_p) with the class of all analytic functions f whose Taylor coefficients $\hat{f}(n)$ satisfy $\hat{f}(n) = O(\exp(-cn^{1/(p+1)}))$ for some constant c > 0.

For given weight $w = |h^*|^2 \in \mathcal{W}$, we say that the function g is a *multiplier* of $H^2(|h^*|^2)^*$ if, for every f in $H^2(|h^*|^2)^*$, gf is also in $H^2(|h^*|^2)^*$. By [15, Theorem

3.2], the function g is a multiplier of $H^2(|h^*|^2)^*$ for every $w = |h^*|^2$ in \mathscr{W} if and only if g is in $(N^+, \mathscr{H})^*$. The following result describes the universal multipliers of the set $\{H^2(|h^*|^2)^* : |h^*|^2 \in \mathscr{W}^p\}$.

Theorem C ([17], Theorem 3). For any fixed p > 1, the following conditions about a function f analytic on **D** are equivalent:

- (i) f is a multiplier of $H^2(|h^*|^2)^*$ for every $|h^*|^2$ in \mathcal{W}^p .
- (ii) f is in the dual of N^p with respect to the topology \mathscr{H}_p .
- (iii) Taylor coefficients $\hat{f}(n)$ of f satisfy $\hat{f}(n) = O(\exp(-cn^{1/(p+1)}))$ for a positive constant c.

Remark 2. The N^+ analogues of Theorems A and B are given in [27], Theorem 3; see also [15], Theorems 1.7 and 2.1. Namely, Theorems A and B remain true if we replace N^p , ρ_p , \mathcal{H}_p , and p with N^+ , $\rho (= \rho_1)$, \mathcal{H} (the Helson topology defined on N^+ in [11]), and 1, respectively. Moreover, the N^+ analogue of Theorem C is given in [15], Theorem 3.2.

3. Common range of a class of co-analytic Toeplitz operators

Let \langle , \rangle denote the formal inner product of two Fourier series, i.e., if $f(z) \sim \sum_{n=-\infty}^{\infty} a_n z^n$, $g(z) \sim \sum_{n=-\infty}^{\infty} b_n z^n$, then $\langle f, g \rangle = \sum_{n=-\infty}^{\infty} a_n \overline{b}_n$. Let $\langle f, g \rangle = \int_0^{2\pi} f^*(e^{i\theta}) \overline{g^*(e^{i\theta})} \frac{d\theta}{2\pi}$ (note that, to avoid convergence problems, we think of this integral as $\lim_{r\uparrow 1-} \int_0^{2\pi} f(re^{i\theta}) \overline{g(re^{i\theta})} \frac{d\theta}{2\pi}$). In particular, for any polynomial $p = \sum_{k=0}^{n} a_k z^k$ the action $\langle p, f \rangle$ of $f = \sum_{k=0}^{\infty} \hat{f}(k) z^k$ on p is given by

$$\langle p, f \rangle = \int_0^{2\pi} p(e^{i\theta}) \overline{f^*(e^{i\theta})} \frac{d\theta}{2\pi} = \sum_{k=0}^n a_k \overline{\widehat{f}(k)}.$$

Let S be the unilateral shift, which we think of as multiplication by the independent variable. Observe that S is a Toeplitz operator whose symbol is the coordinate function. Then by (1.1) of [2], the action of $T_{\bar{f}}$ on a polynomial p of degree d is given by

$$(T_{\overline{f}}p)(z) = \langle p, f \rangle + \langle p, Sf \rangle z + \dots + \langle p, S^d f \rangle z^d.$$
(3.1)

A result of Helson in [11] given by the equivalence (i) \Leftrightarrow (iv) of Theorem 0.1 in [14] asserts that a function f in H^2 defines a continuous linear functional on (N^+, \mathscr{H}) if and only if f is in the range of each Toeplitz operator $T_{\bar{h}}$ with h in H^{∞} . McCarthy [14], Section 1, gives another proof of this result, by using the fact that the dual of (N^+, \mathscr{H}) is the same as the intersection of the duals of

the $H^2(w)$ spaces, where $w = |h^*|^2$ ranges over \mathcal{W} . Namely, it is proved in [14], Theorem 2.1, that the dual of N^+ is the same in both \mathcal{H} and ρ topologies.

Suppose that μ is a *Szegő measure*. Then it can be written as $|h^*(e^{i\theta})|^2 \frac{d\theta}{2\pi}$ for some outer function h in H^2 (see e.g., [9], p. 144). Moreover [2], Section 2, μ being Szegő means that the functional that assigns to a polynomial its zeroth coefficient is continuous on $H^2(\mu)$. So if $T_{\bar{f}}$ is bounded on $H^2(\mu)$, the functional $p \mapsto (T_{\bar{f}}p)(0)$ is bounded, which by (3.1) means that there is a constant C such that

$$|\langle p, f \rangle| \le C \sqrt{\int_0^{2\pi} |p(e^{i\theta})|^2 \, d\mu},\tag{3.2}$$

for any polynomial $p = \sum_{k=0}^{n} a_k z^k$. The set of all analytic functions f that satisfy (3.2) can be identified with the dual of $H^2(\mu)$, and we shall denote this set by $H^2(\mu)^*$.

For a measure μ on the circle **T** let

$$T(\mu) = \{ f \in H^{\infty} : T_{\overline{f}} \text{ is bounded on } H^2(\mu) \}_{\overline{f}}$$

and let $\mu = \mu_a + \mu_s$ be the decomposition of μ into absolutely continuous and singular parts (with respect to the Lebesgue measure $d\theta/2\pi$).

Proposition 1 ([2], Proposition 4.1). Let μ be a measure on the circle **T**. Then *f* is a multiplier of $H^2(\mu)^*$ if and only if *f* is in $T(\mu)$.

Proposition 2. A function f analytic on **D** is in the dual of N^p with respect to the topology \mathscr{H}_p if and only if for any weight $w = |h^*|^2 \in \mathscr{W}^p$ there is a constant C (depending on w) such that for all polynomials p

$$\left| \int_{0}^{2\pi} p(e^{i\theta}) \overline{f^{*}(e^{i\theta})} \frac{d\theta}{2\pi} \right|^{2} \le C \int_{0}^{2\pi} |p(e^{i\theta})|^{2} |h^{*}(e^{i\theta})|^{2} \frac{d\theta}{2\pi}.$$
 (3.3)

Proof. Let f be in the dual of (N^p, \mathscr{H}_p) . Then, by (ii) \Rightarrow (i) of Theorem C, f is a multiplier of $H^2(w)^*$ for every weight $w = |h^*|^2$ in \mathscr{W}^p . By Proposition 1, f is in $T(|h^*|^2)$, i.e., the Toeplitz operator $T_{\bar{h}}$ is continuous on $H^2(|h^*|^2)$ for each $|h^*|^2 \in \mathscr{W}^p$. It follows that (3.2) holds for $\mu = |h^*(e^{i\theta})|^2 d\theta/2\pi$, which is in fact (3.3).

Conversely, suppose that for any weight $w = |h^*|^2 \in \mathcal{W}^p$ there is a constant *C* such that (3.3) holds for all polynomials *p*. This means that a function *f* is in the dual of $H^2(|h^*|^2)$ for any $|h^*|^2 \in \mathcal{W}^p$. Since the dual of (N^p, \mathcal{H}_p) consists of those functionals belonging to the dual $H^2(w)^*$ for every *w* in \mathcal{W}^p , it follows that *f* is also in the dual of (N^p, \mathcal{H}_p) . This completes the proof.

We are now ready to state the following result.

Theorem 3. The function f with Taylor series $f(z) = \sum_{n=0}^{\infty} \hat{f}(n)z^n$ on **D** is in the range of every non-zero co-analytic Toeplitz operator $T_{\bar{h}}$ with $|h^*|^2 \in \mathcal{W}^p$ if and only if there exists a constant c > 0 such that $\hat{f}(n) = O(\exp(-cn^{1/(p+1)}))$.

Proof. We follow the proof of the equivavalence of (i) and (iv) from Theorem 0.1 in [14]. First observe that if a weight $w \in \mathcal{W}^p$ is decreased, the space $H^2(w)$ increases, and its dual decreases. So the dual of (N^p, \mathscr{H}_p) is the same as the intersection of the duals of the $H^2(w)$ spaces, where w ranges, not over all of \mathcal{W}^p but only over those weights $w \in \mathcal{W}^p$ that satisfy $||w||_{\infty} \leq 1$. Therefore, by Proposition 2, a function f belongs to the dual of (N^p, \mathscr{H}_p) if and only if for each weight $w = |h^*|^2 \in \mathcal{W}^p$ with $||w||_{\infty} \leq 1$, there exists a constant C > 0 such that for all polynomials p

$$\left|\int_0^{2\pi} p(e^{i\theta})\overline{f^*(e^{i\theta})}\frac{d\theta}{2\pi}\right|^2 \le C \int_0^{2\pi} |p(e^{i\theta})|^2 |h^*(e^{i\theta})|^2 \frac{d\theta}{2\pi}$$

This is true if and only if there exists a g in $H^2(|h^*|^2)$ of norm less or equal to \sqrt{C} for which

$$\int_{0}^{2\pi} p(e^{i\theta}) \overline{f^*(e^{i\theta})} \frac{d\theta}{2\pi} = \int_{0}^{2\pi} p(e^{i\theta}) \overline{g^*(e^{i\theta})} |h^*(e^{i\theta})|^2 \frac{d\theta}{2\pi}.$$
(3.4)

As noticed in [14], p. 795, the set $H^2(|h^*|^2)$ is the same as $H^2/h = \{f/h : f \in H^2\}$. Hence g can be written as k/h for some k in H^2 , which by putting in (3.4) yields

$$\int_{0}^{2\pi} p(e^{i\theta}) \overline{f^*(e^{i\theta})} \frac{d\theta}{2\pi} = \int_{0}^{2\pi} p(e^{i\theta}) \overline{k^*(e^{i\theta})} h^*(e^{i\theta}) \frac{d\theta}{2\pi}$$
(3.5)

for all polynomials p. Taking $p(z) = z^n$, n = 0, 1, 2, ... in (3.5), gives

$$\overline{\widehat{f}(n)} = \int_0^{2\pi} e^{in\theta} \overline{k^*(e^{i\theta})} h^*(e^{i\theta}) \frac{d\theta}{2\pi}, \quad n = 0, 1, 2, \dots$$

whence

$$\hat{f}(n) = \int_0^{2\pi} k^*(e^{i\theta}) \overline{h^*(e^{i\theta})e^{in\theta}} \frac{d\theta}{2\pi} = \langle k, S^n h \rangle.$$

Thus by (3.1) we obtain that

Common range of a class of co-analytic Toeplitz operators

$$f(z) = \sum_{n=0}^{\infty} \hat{f}(n) z^n = \sum_{n=0}^{\infty} \langle k, S^n h \rangle z^n = T_{\bar{h}} k,$$

i.e., $f = T_{\tilde{h}}k$. It follows that a function f is in the dual of (N^p, \mathscr{H}_p) if and only if it is in the range of all non-zero co-analytic Toeplitz operator $T_{\tilde{h}}$ with $|h^*|^2 \in \mathscr{W}^p$. By Theorems A and B, this is true if and only if $\hat{f}(n) = O(\exp(-cn^{1/(p+1)}))$ for some positive constant c. This completes the proof.

4. Multipliers of de Branges spaces

For a function b in the unit ball of H^{∞} , de Branges space $\mathscr{H}(b)$ is by definition the range of the operator $(1 - T_b T_{\bar{b}})^{1/2}$, with the range norm, i.e., the norm that makes $(1 - T_b T_{\bar{b}})^{1/2}$ a coisometry of H^2 onto $\mathscr{H}(b)$. $\mathscr{H}(b)$ is a (not necessarily closed) subspace of H^2 , on which the evaluation functionals at points in the disk are continuous. The spaces $\mathscr{H}(b)$ were originally introduced by de Branges and Rovnyak in [3] and [4], and have attracted much attention in the meantime. As noticed in [2], the spaces $\mathscr{H}(b)$ have been utilised in various contexts, ranging from model theory [1] and kernels of Toeplitz operators [10] to exposed points in H^1 [24] and complex function theory [23]. The structure of the spaces, however, is still not well understood; a natural question to ask is, given a specific b, what are the multipliers of $\mathscr{H}(b)$, i.e., what functions (necessarily in H^{∞}) multiply $\mathscr{H}(b)$ into itself? This question splits into two cases, depending on wheter b is an extreme point of the unit ball of H^{∞} (and no non-constant polynomial is a multiplier), or it is not (and every polynomial is a multiplier) [22].

Let b be a fixed non-constant function in the unit ball of H^{∞} . The function $z \mapsto \frac{1+b(z)}{1-b(z)}$ then has a positive real part, so it can be represented as a Herglotz integral

$$\frac{1+b(z)}{1-b(z)} = \int_0^{2\pi} \frac{e^{i\theta}+z}{e^{i\theta}-z} d\mu_b(e^{i\theta}) + ic, \qquad (4.1)$$

where c is a real constant and μ_b is a unique positive Borel measure.

For each function f in $H^2(\mu_b)$, define a function $V_b f$ on **D** by

$$(V_b f)(z) = \left(\int_0^{2\pi} \frac{f(e^{i\theta})}{1 - ze^{-i\theta}} d\mu_b(e^{i\theta})\right) \left(1 - b(z)\right).$$

Sarason proved in [24] that V_b is an isometry from $H^2(\mu_b)$ onto $\mathcal{H}(b)$. Considering the measure μ_b , notice that the absolutely continuous part of μ_b is

$$\frac{1-|b^*(e^{i\theta})|^2}{|1-b^*(e^{i\theta})|^2}\frac{d\theta}{2\pi}.$$

As noticed in [2], Section 1, the absolutely continuous part of a measure μ_b induced by (4.1) is a Szegő measure if and only if $\log(1 - |b^*(e^{i\theta})|^2)$ is integrable; this integrability in turn is equivalent to b not being an extreme point of the unit ball of H^{∞} ; see [5].

For any given p > 1 let H_p denote the class of those de Branges spaces $\mathscr{H}(b)$ for which a function b is not an extreme point of the unit ball of H^{∞} and the associated measure μ_b for b given by (4.1) has a decomposition $\mu_b = |h^*(e^{i\theta})|^2 d\theta/2\pi + \mu_s$ such that $|h^*|^2$ is in \mathscr{W}^p (μ_s is a singular part of μ_b with respect to the measure $d\theta/2\pi$).

We are now ready to extend Theorem C (Theorem 3 in [17]) in our main result as follows.

Theorem 4. For any fixed p > 1, the following conditions about a function f analytic on **D** are equivalent:

- (i) f is a multiplier of $H^2(|h^*|^2)^*$ for every $|h^*|^2$ in \mathcal{W}^p .
- (ii) f is in the dual of N^p with respect to the topology \mathscr{H}_p .
- (iii) Taylor coefficients $\hat{f}(n)$ of f satisfy $\hat{f}(n) = O(\exp(-cn^{1/(p+1)}))$ for a positive constant c.
- (iv) f is in the range of every non-zero co-analytic Toeplitz operator $T_{\bar{h}}$ with $|h^*|^2 \in \mathcal{W}^p$.
- (v) f is a multiplier of every de Branges space $\mathscr{H}(b)$ from the class H_p .
- (vi) f is in $T(|h^*(e^{i\theta})|^2 d\theta/2\pi)$ for every $|h^*|^2 \in \mathcal{W}^p$.

Proof. The equivalences (i) \Leftrightarrow (ii) \Leftrightarrow (iii) are contained in Theorem C.

(iii) \Leftrightarrow (v) may be proved analogously as Theorem 4.2. in [2].

(iii) \Leftrightarrow (iv) is in fact the assertion of Theorem 3.

(i) \Leftrightarrow (vi) follows immediately from Proposition 1.

This completes the proof.

Acknowledgements. The authors gratefully acknowledge valuable suggestions from the anonymous referee.

References

- J. A. Ball and T. L. Kriete, III, Operator-valued Nevanlinna-Pick kernels and the functional models for contraction operators. *Integral Equations Operator Theory* 10 (1987), 17–61. Zbl 0621.47012 MR 868573
- [2] B. M. Davis and J. E. McCarthy, Multipliers of de Branges spaces. *Michigan Math. J.* 38 (1991), 225–240. Zbl 0727.30040 MR 1098860

- [3] L. de Branges and J. Rovnyak, *Square summable power series*. Holt, Rinehart and Winston, New York 1966. Zbl 0153.39603 MR 0215065
- [4] L. de Branges and J. Rovnyak, Appendix on square summable power series. In Perturbation theory and its applications in quantum mechanics, Wiley, New York 1966, 347–392. Zbl 0203.45101 MR 0244795
- [5] K. de Leeuw and W. Rudin, Extreme points and extremum problems in H₁. Pacific J. Math. 8 (1958), 467–485. Zbl 0084.27503 MR 0098981
- [6] P. L. Duren, *Theory of H^p spaces*. Pure Appl. Math. 38, Academic Press, New York 1970. Zbl 0215.20203 MR 0268655
- [7] C. M. Eoff, A representation of N_x^+ as a union of weighted Hardy spaces. *Complex Variables Theory Appl.* **23** (1993), 189–199. Zbl 0739.46040 MR 1269634
- [8] T. W. Gamelin, Uniform algebras. Prentice-Hall Inc., Englewood Cliffs, N. J., 1969. Zbl 0213.40401 MR 410387
- [9] J. B. Garnett, *Bounded analytic functions*. Pure Appl. Math. 96, Academic Press, New York 1981. Zbl 0469.30024 MR 0628971
- [10] E. Hayashi, The kernel of a Toeplitz operator. Integral Equations Operator Theory 9 (1986), 588–591. Zbl 0636.47023 MR 853630
- [11] H. Helson, Large analytic functions. II. In Analysis and partial differential equations, Lecture Notes in Pure and Appl. Math. 122, Marcel Dekker, New York 1990, 217–220. Zbl 0741.30028 MR 1044789
- [12] G. Köthe, *Topological vector spaces I.* Grundlehren Math. Wiss. 159, Springer-Verlag, Berlin 1969. Zbl 0179.17001 MR 0248498
- [13] G. Köthe, *Topological vector spaces II*. Grundlehren Math. Wiss. 237, Springer-Verlag, New York 1979. Zbl 0417.46001 MR 0551623
- [14] J. E. McCarthy, Common range of co-analytic Toeplitz operators. J. Amer. Math. Soc. 3 (1990), 793–799. Zbl 0733.47028 MR 1065054
- [15] J. E. McCarthy, Topologies on the Smirnov class. J. Funct. Anal. 104 (1992), 229–241.
 Zbl 0762.46055 MR 1152465
- [16] R. Meštrović, Ideals in some rings of Nevanlinna-Smirnov type. Math. Montisnigri 8 (1997), 127–135. Zbl 1063.30047 MR 1623821
- [17] R. Meštrović and Ž. Pavićević, Topologies on some subclasses of the Smirnov class. Acta Sci. Math. (Szeged) 69 (2003), 99–108. Zbl 1027.30055 MR 1991658
- [18] N. Mochizuki, Algebras of holomorphic functions between H^p and N_* . Proc. Amer. Math. Soc. 105 (1989), 898–902. Zbl 0679.30040 MR 953744
- [19] R. Mortini, Zur Idealstruktur von Unterringen der Nevanlinna-Klasse N. In *Travaux mathématiques* I, Sém. Math. Luxembourg, Centre Universitaire de Luxembourg, Luxembourg 1989, 81–91. Zbl 0693.30027 MR 953744
- [20] F. Nevanlinna and R. Nevanlinna, Eigenschaften analytischer Funktionen in der Umgebung einer singulären Stelle oder Linie. Acta Soc. Sci. Fenn. 50, No. 5 (1922). JFM 48.0358.05

- [21] I. I. Privalov, Boundary properties of analytic functions. Moscow University Press, Moscow 1941 (Russian).
- [22] D. Sarason, Doubly shift-invariant spaces in H^2 . J. Operator Theory 16 (1986), 75–97. Zbl 0612.47029 MR 847333
- [23] D. Sarason, Angular derivatives via Hilbert space. Complex Variables Theory Appl. 10 (1988), 1-10. Zbl 0635.30024 MR 946094
- [24] D. Sarason, Exposed points in H^1 . I. In The Gohberg anniversary collection, Vol. II (Calgary, 1988), Oper. Theory Adv. Appl. 41, Birkhäuser, Basel 1989, 485-496. Zbl 0678.46019 MR 1038352
- [25] M. Stoll, Mean growth and Taylor coefficients of some topological algebras of analytic functions. Ann. Polon. Math. 35 (1977), 139-158. Zbl 0377.30036 MR 0463920
- [26] A. Wilansky, Modern methods in topological vector spaces. McGraw-Hill, New York 1978. Zbl 0395.46001 MR 0518316
- [27] N. Yanagihara, Multipliers and linear functionals for the class N^+ . Trans. Amer. Math. Soc. 180 (1973), 449-461. Zbl 0243.46036 MR 0338382

Received July 5, 2006; revised December 29, 2007

R. Meštrović, Department of Mathematics, Maritime Faculty Kotor, University of Montenegro, Dobrota 36, 85330 Kotor, Montenegro

E-mail: romeo@cg.ac.yu

Ž. Pavićević, Department of Mathematics, Faculty of Science, University of Montenegro, Cetinjski put bb, 81000 Podgorica, Montenegro

E-mail: zarkop@cg.ac.yu