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Introduction

In the dictionary between the language of (algebraic integrable) connections and

that of (algebraic) D-modules, the operations of direct and inverse images for a

smooth morphism are very important. To compare the definitions of inverse im-

ages for connections and D-modules is easy. But the comparison between direct

images for connections (the classical construction of the Gauss–Manin connection

for smooth morphisms, see [8], [7]) and for D-modules, although known to special-

ists, has been explicitly proved only recently in a paper of Dimca, Maaref, Sabbah

and Saito in 2000 (see [5]), where the authors’ main technical tool was M. Saito’s

equivalence between the derived category of D-modules and a localized category

of di¤erential complexes.

The aim of this short paper is to give a simplified summary of the argument in

[5], and to propose an alternative proof of this comparison which is simpler, in the

sense that it does not use Saito equivalence. Moreover, our alternative strategy of

comparison works in a context which is a precursor to the Gauss–Manin connec-

tion (at the level of f �1ðDY Þ-modules, for a morphism f : X ! Y ), and may be of

some intrinsic interest. In particular we prove that the usual left f �1ðDY Þ-module

structure of the transfer module DY X (used in the definition of derived direct im-

age for D-modules) coincides with the structure induced via a quasi-isomorphism

from the relative de Rham complex of DX (this structure is just the morphism, in



the derived category, which induces the Gauss–Manin connection after applying

Rf�). We will then deduce the comparison theorem.

In Section 1 we recall some generalities on connections and D-modules ([1], [3],

[10]). In Section 2 we compare the operations of ‘‘inverse image’’ for connections

and D-modules. Section 3 is devoted to the comparison of the Gauss–Manin con-

nection (in the case of smooth morphisms) with the notion of direct image for

D-modules: we supply a simplified summary of the argument in [5]. Finally, in

the last section we propose our alternative proof of this comparison which does

not use Saito equivalence.

We thank Yves André and Francesco Baldassarri for having suggested the

question. We are also indebted with the anonymous referees for very valuable

suggestions.

1. Generalities on connections and D-modules

Let X be a smooth K-variety of pure dimension dX ¼ dimX , where K is a field of

characteristic 0. Following the terminology of [6], IV, §16, we denote by W1
X the

OX -module of di¤erentials, by P1
X the OX -algebra of principal parts of order one

(1-jets): its two structures as OX -algebra (induced by the projections p1, p2 on

X � X ) will be referred to as the ‘‘left’’ and ‘‘right’’ structures, and tensor products

will be specified by the position of the P1
X factor. Let us recall that the di¤erence

of the inclusions i1, i2 of OX in P1
X induced by p1, p2 gives the di¤erential

d ¼ i2 � i1 : OX ! W1
X (i.e., dðxÞ ¼ 1n x� xn 1).

We also use DerX or YX to denote the OX -module of derivations (OX -dual of

W1
X , endowed with the usual structure of Lie-algebra), and DX to indicate the

graded (left) OX -algebra of di¤erential operators. On DX we consider the increas-

ing filtration F defined by the order of di¤erential operators. Then the associated

graded OX -algebra, denoted by GrDX , is commutative and it is generated (as

OX -algebra) by DerX JF 1DX .

For any OX -module E we will use the standard notation P1
X ðEÞ for P1

X nOX
E,

where the tensor product involves the right OX -module structure of P1
X , while the

OX -module structure is given by the left OX -module structure on P1
X .

1.1. Connections and D-modules. Let E be an OX -module. The following sup-

plementary structures on E are equivalent:

(i) a connection, that is, a morphism of abelian sheaves ‘ : E! W1
X nOX

E

which satisfies the Leibniz rule with respect to sections of OX , plus the integra-

bility condition, that is, ‘2 ¼ 0 for the natural extension of ‘ to the de Rham

sequence;
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(ii) an OX -linear section d : E! P1
X nOX

E of the canonical morphism

p : P1
X nOX

E! E extending to a stratification in the sense of [2], 2.10;

(iii) an OX -linear Lie-algebra homomorphism D : DerX ! Di¤X ðEÞ (for the usual
Lie-algebra structures), where Di¤X ðEÞ is the sheaf of di¤erential operators

of E;

(iv) a structure of left DX -module on E.

The dictionary between these equivalent structures is well explained in [2], 2.9,

2.11, 2.15; let us give a sketch.

If c ¼ cX ðEÞ : E! P1
X nOX

E denotes the inclusion induced by i2 (1-jets), then

d ¼ c� ‘ and ‘ ¼ c� d.

For any q section of DerX the morphism D is defined by Dq ¼ ðqn idÞ � ‘, i.e.,
DqðeÞ ¼ 3q;‘ðeÞ4. On the other hand, the reconstruction of ‘ from D involves a

description using local coordinates xi on X (dxi and qi are the dual bases of di¤er-

entials and derivations): if e is a section of E, then ‘ðeÞ ¼
P

i dxi nDqiðeÞ.
The morphism D is equivalent to the data of a left DX -module structure on E

since it extends to a left action of DX on E (see [3], VI, 1.6).

In fact the datum of a connection (without the integrability condition) is equiv-

alent to the datum of a section of p (without further conditions), as explained in

[4], I, 2.3, and in that correspondence, since K is of characteristic 0, integrable con-

nections correspond to sections extending to stratifications (see [2], 2.15).

From now on, the word connection means integrable connection, that is, con-

nection satisfying the integrability condition.

1.2. Morphisms. A morphism of connections on X is an OX -linear morphism

h : E! E 0 compatible with the data, that is, such that ‘ 0 � h ¼ ðidn hÞ � ‘, or
d 0 � h ¼ ðidn hÞ � d, or equivalently D 0q � h ¼ h � Dq for any section q of DerX , or

finally which is DX -linear.

2. Inverse image for connections and D-modules

Let f : X ! Y be a finite type morphism of smooth K-varieties. For any

OY -module E, let f �ðEÞ ¼ OX nf �1ðOY Þ f
�1ðEÞ be its inverse image by f .

2.1. Inverse image for connections. The easiest definition for the inverse image

by f of a connection E on Y is given in terms of OY -linear maps. If d : E!
P1

Y nOY
E is the OY -linear section defining the connection, let f �d be the composi-

tion of the inverse image of d with the canonical morphism f �ðP1
Y Þ ! P1

X (which

is left OX -linear and right f �1ðOY Þ-linear). Then we have a morphism
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f �d : f �E! P1
X nOX

f �EGP1
X nf �1ðOY Þ f

�1ðEÞ;

which is clearly an OX -linear section of the canonical map p : P1
X nOX

f �E! f �E.
An explicit description of the connection f �‘ on f �E can be given in the

following way:

ð f �‘Þðan eÞ ¼ ðcX � f �dÞðan eÞ

¼ cX ðan eÞ � af �dð1n eÞ

¼ In ðan eÞ � af �
�
ðcY � ‘ÞðeÞ

�
¼ In ðan eÞ � aðIn eÞ þ af �1

�
‘ðeÞ

�
¼ 1n an e� an 1n eþ a‘ðeÞ

¼ dðaÞn eþ a‘ðeÞ

(as usual, a is a section of OX and e is a section of E, or f �1ðEÞ).

2.2. Inverse image for D-modules. Let M be a left DY -module. The inverse

image as O-modules f �M ¼ OX nf �1ðOY Þ f
�1ðMÞ locally admits an action of DX

defined by

a 0ðanmÞ ¼ ða 0aÞnm and qðanmÞ ¼ qðaÞnmþ a
�X

i

qðyiÞn hiðmÞ
�

where q is a section of DerX , m a section of M (or f �1ðMÞ), a, a 0 sections of OX

(yi local coordinates on Y and hi the dual basis of dyi). These local definitions

globalize to a DX -module structure on f �M (see [3], VI.4).

In this way the OX -module f �DY ¼ OX nf �1ðOY Þ f
�1ðDY Þ is endowed with a

structure of left DX -module, compatible with the obvious structure of f �1ðDY Þ-
module (by right multiplication). With this structure, f �DY is usually denoted

by DX!Y . Now, the inverse image of a left DY -module M can be defined as

f �M ¼ DX!Y nf �1ðDY Þ f
�1ðMÞ; taking account also of the DX -module structure.

We remark for future reference that the canonical morphism Df : DX !
f �DY ¼ DX!Y (induced by restriction to OX of the action on DX!Y ) is left

DX -linear and right f �1ðOY Þ-linear (the first one by definition, the second one by

compatibility of the two actions).

2.3. Comparison. Let M be a DY -module. We regard it as a connection on

Y and consider its inverse image as a connection. The action of derivations is

described in terms of local coordinates yi on Y by
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ð f �DÞqðanmÞ ¼ 3q; ð f �‘ÞðanmÞ4

¼ 3q; a‘ðmÞ þ dðaÞnm4

¼
D
q; a

�X
i

dyi nDhiðmÞ
�
þ dðaÞnm

E

¼ a
�X

i

qðyiÞnDhiðmÞ
�
þ qðaÞnm;

where q is a section of DerX , m is a section of M (or f �1ðMÞ), a is a section of OX

(and hi is the dual basis of dyi). Therefore the local descriptions make clear that

for a connection E on Y , its inverse image as a connection induces the structure

of DX -module given by the inverse image of the corresponding DY -module.

Notice moreover that, since f is smooth, the functor f � is exact in the category

of DY -modules (see [3], VI.4.8), so that for any left DY -module M we have

f �ðMÞ ¼ Lf �ðMÞ (and the comparison can be proved avoiding the derived

categories).

3. Direct image for connections and D-modules (and comparison following
[5])

Let f : X ! Y be a smooth morphism of smooth K-varieties. In order to com-

pare the notions of (derived) direct images in the category of connections (the

Gauss–Manin connections) and in the category of D-modules, we need some

preliminary materials, most concerning right D-modules, de Rham functors, dif-

ferential complexes (and the M. Saito equivalence).

3.1. Right and left D-modules. We denote by D-Mod the category of left D-

modules and by Mod-D the category of right D-modules. It is well known that

oX ¼ WdimX
X has a canonical structure of right DX -module (action of vector fields

through Lie derivative, see [3], VI.3.2). Let us define oX ðDX Þ ¼ oX nOX
DX . It is

endowed with two di¤erent structures of right DX -module (which commute): the

first comes from the right multiplication on DX and the other is induced by the

tensor product over OX of a right and a left DX -module (given for any vector field

q by the rule mn n 7! ðmqÞn n�mn ðqnÞ). There exists a unique involution

i : oX ðDX Þ ! oX ðDX Þ which is the identity on oX and exchanges these two right

DX -module structures (see [11], 1.7, using local coordinates xi on X , the involution

sends onP to onP�, where o ¼ dx1b� � �bdxdX , and P� is the transposition

of P, defined by a� ¼ a for sections of OX , q
�
i ¼ �qi, and ðPQÞ

� ¼ Q�P�). In the

same way, we define o�1X ðDX Þ ¼ DX nOX
o�1X ¼HomDX

�
oX ðDX Þ;DX

�
and we

notice that o�1X ðDX Þ has two compatible and ‘‘interchangeable’’ structures of left

DX -module.
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We have an equivalence of categories between DX -Mod and Mod-DX given by

the quasi-inverse functors:

DX -Mod$Mod-DX

M 7! oX ðMÞGoX ðDX ÞnDX
M

NnDX
o�1X ðDX ÞGo�1X ðNÞ

7!

N:

Notice that the first functor does not depend on the right DX -module structure of

oX ðDX Þ used in the tensor product (the other one inducing the right DX -module

structure of oX ðMÞ), and similarly for its quasi-inverse functor.

3.2. De Rham functor for right and left D-modules. Let ðE;‘Þ be a connec-

tion on X . By definition its De Rham complex is W�X ðEÞ ¼ W�X nOX
E where

the di¤erentials are induced by the connection ‘ as usual: ‘ðon eÞ ¼ dðoÞn
eþ ð�Þdegoob‘ðeÞ.

The de Rham functor for left D-modules is defined to be compatible with the

notion of de Rham complex for connections, up to a shift. Let us consider DX

as a left DX -module, then its de Rham complex as a connection is W�X ðDX Þ ¼
W�X nOX

DX (usual di¤erentials). It is a resolution of oX ½�dimX � in Mod-DX .

For this reason, it is usual to define DRX ðDX Þ ¼ W�X ðDX Þ½dimX �, so that

DRX ðDX Þ is a resolution of oX in Mod-DX .

Now, if M is a left DX -module we define DRX ðMÞ ¼ DRX ðDX ÞnDX
M which

is a complex of KX -vector spaces. This functor extends to complexes and gives in

the derived categories the functor DRX : DðDX -ModÞ ! DðKX Þ (where DðKX Þ is
the derived category of sheaves of KX -vector spaces). Let us observe that for any

M a DðDX -ModÞ we have DRX ðMÞGoX nL
DX

M.

The de Rham functor for right D-modules is defined to be compatible with the

left/right equivalence. Let us consider DX as a right DX -module, then its Spencer

complex is Y�X ðDX Þ ¼ DX nOX
Y�X (where Y�X ¼5��DerX and the di¤erentials

are locally defined by a Koszul complex). It is a resolution of OX in DX -Mod.

Now, if N is a right DX -module, then DRX ðNÞ ¼NnDX
Y�X ðDX Þ as a functor

Mod-DX ! CðKX Þ. This definition naturally extends to the category of com-

plexes of Mod-DX , and to its derived category as before.

The compatibility between de Rham functors is expressed by the relations

DRX ðMÞ ¼ DRX

�
oX ðMÞ

�
and DRX ðNÞ ¼ DRX

�
o�1X ðNÞ

�
.

3.2.1. Relative de Rham functor. Let f : X ! Y be a smooth morphism be-

tween smooth K-varieties. The morphism f �ðW1
Y Þ ! W1

X induces a canonical

short exact sequence

0! f �ðW1
Y Þ ! W1

X ! W1
X=Y ! 0 ð3:2:2Þ
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where W1
X=Y is the sheaf of relative di¤erential forms of degree one. Moreover any

OX -module in (3.2.2) is locally free of finite type so (3.2.2) locally splits. Let

YX=Y ¼HomOX
ðW1

X=Y ;OX Þ be the OX -dual of W1
X=Y and let DX=Y denote the

OX -algebra generated by OX and YX=Y . As in 1.1 for any OX -module E the

following supplementary structures on E are equivalent:

(1) an integrable relative connection, that is, a morphism of f �1ðOY Þ-modules

‘X=Y : E! W1
X=Y nOX

E which satisfies the Leibniz rule with respect to sec-

tions of OX and such that ‘2
X=Y ¼ 0 for the natural extension of ‘X=Y ;

(2) a structure of left DX=Y -module on E.

For any OX -module E endowed with a relative integrable connection ‘X=Y let us

define its relative de Rham complex as W�X=Y ðEÞ ¼ W�X=Y nOX
E where the di¤er-

entials are induced by ‘X=Y .

The relative de Rham functor for left DX=Y -modules is defined to be com-

patible with the de Rham functor for connections up to a shift (as in the case of

DX -modules), and it induces a functor of derived categories:

DRX=Y : DðDX=Y Þ ! D
�
f �1ðOY Þ

�
; E 7! DRX=Y ðEÞ ¼ W�X=Y ðEÞ½dX=Y �;

where dX=Y is the relative dimension dX � dY . Let us recall that, in the case of a

projection f : X ¼ Y � Z ! Y , the relative de Rham complex is f �1ðDY Þ-linear.

3.3. Direct images for connections (the Gauss–Manin connections). The

Leray filtration Ler on W�X is defined (see [7], [8]) by

Lerp W�X ¼ Imð f �Wp
Y nOX

W
��p
X ! W�X Þ

and, since f is a smooth morphism, the associated graded complex of OX -modules

has Gr pLer W
�
X G f �Wp

Y nOX
W
��p
X=Y .

If E is a connection, we define the Leray filtration on its de Rham com-

plex W�X ðEÞ by the tensor product: Lerp W�X ðEÞ ¼ Lerp W�X nOX
E. Therefore the

graded pieces are Gr pLer W
�
X ðEÞ ¼ f �Wp

Y nOX
W
��p
X=Y ðEÞ.

The Leray filtration induces the Leray spectral sequence for the direct image

functor by f ,

E
p;q
1 ¼ W

p
Y

�
Rpþqf�W

��p
X=Y ðEÞ

�
) Rnf�W

�
X ðEÞ; ð3:3:1Þ

in the category of OY -modules with di¤erential operators (the complexes appear-

ing in the spectral sequences are di¤erential complexes on Y , see 3.5 below). For

p ¼ 0 the di¤erentials d p;q
1

E
p;q
1 ¼ W

p
Y

�
Rpþqf�W

��p
X=Y ðEÞ

�
! E

pþ1;q
1 ¼ W

pþ1
Y

�
Rpþqþ1f�W

��p�1
X=Y ðEÞ

�
ð3:3:2Þ
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define the Gauss–Manin connections on the OY -modules Rqf�W
�
X=Y ðEÞ (it is ex-

plicitly given by the connecting homomorphism for the direct image functor of

the short exact sequence of complexes

0! Gr pþ1Ler W�X ðEÞ ! Lerp W�X ðEÞ=Lerpþ2 W�X ðEÞ ! Gr pLer W
�
X ðEÞ ! 0; ð3:3:3Þ

which gives a piece of E1). Additional details and computations will be given in

Section 4.1.

3.4. Direct images for D-modules. The direct image for D-modules is defined

using the following transfer modules:

(3.4.1) DX!Y ¼ OX nf �1ðOY Þ f
�1ðDY Þ, which is in DX -Mod-f �1ðDY Þ (the left

DX -module structure is induced by (the tensor with) that of OX , the right

f �1ðDY Þ-module structure is induced by that of f �1ðDY Þ, and the compat-

ibility is obvious);

(3.4.2) DY X ¼ oX ðDX ÞnDX
DX!Y nf �1ðDY Þ f

�1o�1Y ðDY Þ which is an object of

f �1ðDY Þ-Mod-DX since it is obtained from DX!Y by a double left/right

exchange.

For a right DX -module N, the direct image by f is defined by fþN ¼
Rf�ðNnL

DX
DX!Y Þ as a right DY -module. For a left DX -module M, the direct

image by f is defined by fþM ¼ Rf�ðDY X nL
DX

MÞ as a left DY -module. The

compatibility of the two definitions is expressed by the relations

o�1Y

�
fþðNÞ

�
G fþ

�
o�1X ðNÞ

�
and oY

�
fþðMÞ

�
G fþ

�
oX ðMÞ

�
:

3.5. Di¤erential complexes and M. Saito equivalence. Following M. Saito

let OX -Di¤ be the category of OX -modules with di¤erential operators as mor-

phisms and let CðOX -Di¤Þ be its category of complexes (see [5]). Objects in

CðOX -Di¤Þ are called di¤erential complexes on X . Any object in CðOX -Di¤Þ
could be regarded as a complex of KX -vector spaces so that there is a functor

F : CðOX -Di¤Þ ! CðKX Þ.
In [11], 1.3.2, M. Saito defined the linearization functor gDRDR�1X : CðOX -Di¤Þ !

CðMod-DX Þ acting on the di¤erential complex L by LnOX
DX (the di¤erentials

being extended to DX -linear maps). By localization with respect to the multi-

plicative system of quasi-isomorphisms on the right-hand side and with respect

to their pull-back on the left-hand side (that is, the multiplicative system of DX -

quasi-isomorphisms: morphisms of di¤erential complexes whose linearization is

a quasi-isomorphism in the category of right DX -modules) one obtains the functorgDRDR�1X : DðOX -Di¤Þ ! DðMod-DX Þ.
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It is clear that for any right (resp. left) DX -module N (resp. M), its de Rham

complex is an object in CðOX -Di¤Þ. In particular the functor DRX factors

through CðOX -Di¤Þ and we denote this factorization by gDRDRX : CðMod-DX Þ !
CðOX -Di¤Þ. We have the following commutative diagram of functors

CðMod-DX Þ ���!DRfX
CðOX -Di¤Þ

DRX

???yF

CðKX Þ:

��������!

M. Saito also proved that gDRDRX localizes with respect to quasi-isomorphisms on

the left-hand side and with respect to DX -quasi-isomorphisms on the right-hand

side, so it induces a functor gDRDRX : DðMod-DX Þ ! DðOX -Di¤Þ.

Proposition 3.5.1 (M. Saito’s equivalence). The functor gDRDR�1X is an equivalence

of categories whose quasi-inverse is gDRDRX . In particular we have canonical quasi-

isomorphisms

gDRDR�1X
gDRDRX ðNÞGN and gDRDR�1X

gDRDRX ðMÞGoX ðMÞ;

both in CðMod-DX Þ (see [11], 1.8).

Remark 3.5.2. In the case of right DX -modules, there is also a compatibility with

the direct image of di¤erential complexes (which is induced by the usual direct

image for abelian sheaves), via the linearization functor:

gDRDR�1Y Rf�ðLÞ ¼ fþgDRDR�1X ðLÞ

(see [5], 1.3.2).

3.6. Comparison for direct images, following [5].

Theorem. Let f : X ! Y be a smooth morphism of smooth K-varieties. For any

left DX -module M (identified with a connection on X ) and for any q we have natural

isomorphisms Rqf�DRX=Y ðMÞGHqð fþMÞ in the category of left DY -modules,

where the left-hand side has the structure of the Gauss–Manin connection.

Proof. Let consider the Leray spectral sequence E of M with respect to f . Since

DY is a flat OY -module, we may apply the linearization functor gDRDR�1Y to obtain

the spectral sequence

gDRDR�1Y E
p;q
1 ¼gDRDR�1Y W

p
Y

�
Rpþqf�W

��p
X=Y ðMÞ

�
)gDRDR�1Y Rnf�W

�
X ðMÞ
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in the category of right DY -modules. Now (by 3.5.1) the complex

gDRDR�1Y E
�;q
1 ¼gDRDR�1Y

gDRDRY ½�dimY �
�
Rqf�DRX=Y ½�dX=Y �ðMÞ

�

is quasi-isomorphic to

oY

�
Rqf�DRX=Y ðMÞ

�
½�dimY � dX=Y �

(where dX=Y ¼ dimX � dimY is the relative dimension) so that the spectral se-

quence degenerates at E2; while the limit is quasi-isomorphic (by 3.5.2, 3.5.1 and

3.4) to

gDRDR�1Y Rf�gDRDRX ½�dimX �ðMÞG fþ
�gDRDR�1X

gDRDRX ½�dimX �ðMÞ
�

G fþ
�
oX ðMÞ½�dimX �

�
GoY

�
fþðMÞ½�dimX �

�
:

So we have the isomorphisms Rqf�DRX=Y ðMÞGHq
�
fþðMÞ

�
in the category of

left DY -modules. r

4. Alternative proof of the comparison between direct images

We present here an alternative proof of the comparison theorem for direct images,

which is in some sense more elementary, since Saito’s equivalence is not used. The

strategy we discuss here also has the advantage of clarifying the structure of the

Gauss–Manin connection, taking account of one of its avatars before the appli-

cation of the derived direct image functor. In fact we construct a distinguished

triangle, involving the relative de Rham complex, whose connecting morphism

induces the Gauss–Manin connection (after applying the derived direct image)

on one side, and the connection associated to the usual left f �1ðDY Þ-module struc-

ture of the transfer module on the other side. From this fact, we will deduce the

comparison theorem. The main technical tool is the commutativity of a diagram

in the derived category of right DX -modules (see Proposition 4.3.2), for which the

homotopy lemma 4.3.1 is used.

4.1. The distinguished triangle for the Gauss–Manin connection. Let us con-

sider the exact sequence of complexes of right DX -modules (3.3.3) for p ¼ 0 and

E ¼ DX :

0! f �ðW1
Y ÞnOX

W��1X=Y ðDX Þ !
i
Ler0 W�X ðDX Þ=Ler2 W�X ðDX Þ !

p
W�X=Y ðDX Þ ! 0

ð4:1:0Þ
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(recall that Gr1Ler
�
W�X ðDX Þ

�
G f �ðW1

Y ÞnOX
W��1X=Y ðDX Þ and Gr0Ler

�
W�X ðDX Þ

�
G

W�X=Y ðDX Þ), which gives the distinguished triangle

f �ðW1
Y ÞnOX

W��1X=Y ðDX Þ ���!i Ler0 W�X ðDX Þ=Ler2 W�X ðDX Þ???yp

W�X=Y ðDX Þ

ð4:1:1Þ

���
���

��!

dðDX Þ

½þ1�

in DbðMod-DX Þ (derived category of right DX -modules). Since W�X=Y ðDX Þ is

quasi-isomorphic to the mapping cone MCðiÞ of i, the connecting morphism

dðDX Þ is represented in the derived category by the following diagram:

MCðiÞ ¼
�
f �ðW1

Y ÞnOX
W�X=Y ðDX Þ

�
aLer0 W�X ðDX Þ=Ler2 W�X ðDX Þ

qis

???yð0;pÞ �p1¼ð�1;0Þ

W�X=Y ðDX Þ � � !
dðDX Þ

f �ðW1
Y ÞnOX

W��X=Y ðDX Þ:
ð4:1:2Þ

�������������!

Notice moreover that for any left DX -module E we can apply the derived func-

tor �nL
DX

E to the distinguished triangle (4.1.1). So we obtain the distinguished

triangle

f �ðW1
Y ÞnOX

W��1X=Y ðEÞ ���! Ler0 W�X ðEÞ=Ler2 W�X ðEÞ???y
W�X=Y ðEÞ

���
���

��!

dðEÞ

½þ1�

(in fact, we do not need to take the derived functor �nL
DX

E but simply �nDX
E

because any complex in (4.1.1) is acyclic for �nDX
E). This is the distinguished

triangle induced by the short exact sequence (3.3.3) for p ¼ 0.

The fundamental fact here is that, by applying the derived functor Rf� to the

connecting morphism

dðEÞ : W�X=Y ðEÞd f �ðW1
Y ÞnOX

W�X=Y ðEÞ

and the projection formula (the isomorphism h : Rf�
�
f �ðW1

Y ÞnOX
W�X=Y ðEÞ

�
G

W1
Y nOY

Rf�W
�
X=Y ðEÞ), one obtains a morphism in the derived category of

KY -modules

GMðEÞ ¼ h � Rf�
�
dðEÞ

�
: Rf�W

�
X=Y ðEÞd W1

Y nOY
Rf�W

�
X=Y ðEÞ;
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which for any degree pb 0 gives an actual K-linear morphism

Rpf�W
�
X=Y ðEÞ ! W1

Y nOY
Rpf�W

�
X=Y ðEÞ;

which is the classical Gauss–Manin connection.

4.2. The Gauss–Manin morphism of DY/X . We prove now that the con-

necting morphism dðDX Þ induces an actual KX -linear morphism d : DY X !
f �ðW1

Y ÞnOX
DY X , called the Gauss–Manin morphism of DY X . Next, we will

prove that this morphism coincides with the connection induced by the left

f �1ðDY Þ-module structure of the transfer module.

Lemma 4.2.1 ([9], 5.2.3.4). Let f : X ! Y be a smooth morphism of smooth

K-varieties. There exists a canonical morphism of complexes of right DX -

modules l : DRX=Y ðDX Þ ! DY X which is a quasi-isomorphism. In particular,

DRX=Y ðDX Þ is a left resolution of DY X in the category f �1ðOY Þ-Mod-DX , with

locally free right DX -modules.

Proof. The canonical morphism l is defined by the composition

oX=Y nOX
DX !

i
DY X nOX

DX !
�
DY X ;

where the first map comes from the canonical inclusion of oX=Y into DY X ¼
oX=Y nOX

f �DY , and the second one uses the canonical structure of right

DX -module of DY X . This composition is clearly right DX -linear, and it is also

left f �1ðOY Þ-linear since it is obtained by a double left/right exchange of struc-

tures starting from the morphism Df of 2.2.

A local computation using the canonical filtrations by the order of di¤erential

operators shows that the graded pieces are Koszul complexes, so that the assertion

follows (see [9], 5.2.3.4 for details). r

Corollary 4.2.2. Let f : X ! Y be a smooth morphism of smooth K-varieties. For

any left DX -module M there is a canonical quasi-isomorphism

lðMÞ : DRX=Y ðMÞ ! DY X nL
DX

M

in the derived category of f �1ðOY Þ-modules.

Applying the derived direct image functor to the above morphism, one obtains a

canonical quasi-isomorphism Rf�DRX=Y ðMÞ ! fþðMÞ in the derived category of

OY -modules.

Notice that the connecting morphism dðDX Þ and the quasi-isomorphism l de-

fine a commutative square in the derived category of KX -modules:
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DRX=Y ðDX Þ ��!
dðDX Þ

f �1W1
Y nf �1OY

DRX=Y ðDX Þ

qis

???yl qis

???y1nl

DY X ���!d f �1W1
Y nf �1OY

DY X ;

ð4:2:3Þ

where d is an actual KX -linear morphism (the last row contains complexes con-

centred in one degree, and the canonical inclusion of a category in its derived cat-

egory is fully faithful). We call d the Gauss–Manin morphism of DY X .

We want to compare d with ‘Y X , where

‘Y X : DY X ! f �1W1
Y nf �1OY

DY X

is the connection (Leibniz with respect to sections of f �1ðOY Þ) induced by the

f �1ðDY Þ-module structure of DY X .

4.3. Comparison for DY/X . The following two results are the kernel of our

comparison argument; we have to prove that the Gauss–Manin morphism of

DY X coincides with the connection ‘Y X , that is, that ‘Y X make commutative

the diagram (4.2.3). To do that, we re-write the projection p1 of (4.1.2) up to

homotopy.

Lemma 4.3.1 (Homotopy lemma). Let

i : f �ðW1
Y ÞnOX

W��1X=Y ðDX Þ ! Ler0 W�X ðDX Þ=Ler2 W�X ðDX Þ

be the canonical inclusion.

(i) The identity morphism of the mapping cone of i is homotopic to the morphism

C� defined by CdX=Y ¼
�
0 �f�1d
0 1

�
and Cq ¼

�
1 0
0 1

�
for qA dX=Y .

(ii) The connecting morphism �p1 ¼ ð�1; 0Þ:

�
f �ðW1

Y ÞnOX
W�X=Y ðDX Þ

�
aLer0 W�X ðDX Þ=Ler2W�X ðDX Þ

!
�
f �ðW1

Y ÞnOX
W�X=Y ðDX Þ

�

of the distinguished triangle generated by i is homotopic to the morphism

c� ¼ �p1 �C�, that is, cdX=Y ¼ ð0; f�1dÞ and cq ¼ ð�1; 0Þ for qA dX=Y , where f

is the canonical isomorphism f �W1
Y nOX

oX=Y ðDX Þ ! Ler0

Ler2

�
W

dX=Yþ1
X ðDX Þ

�
induced

by i.

Proof. Let us consider the exact sequence of complexes (4.1.0) in degrees

dX=Y � 1, dX=Y , dX=Y þ 1:
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0 ! f �W1
Y nOX

W
dX=Y�2
X=Y ðDX Þ !

i Ler0

Ler2
�
W

dX=Y�1
X ðDX Þ

�
!p W

dX=Y�1
X=Y ðDX Þ ! 0???yd

???yd

???yd

0 ! f �W1
Y nOX

W
dX=Y�1
X=Y ðDX Þ !

i Ler0

Ler2
�
W

dX=Y

X ðDX Þ
�
!p oX=Y ðDX Þ ! 0???yd

???yd

???y
0 ! f �W1

Y nOX
oX=Y ðDX Þ !

f

G

Ler0

Ler2
�
W

dX=Yþ1
X ðDX Þ

� ���! 0 ���! 0

From the third line one deduces that f is an isomorphism.

(i) Using the homotopy map of the mapping cone of i which is zero for degrees

di¤erent from dX=Y þ 1, and
��f�1

0

�
in degree dX=Y þ 1, we have that the identity

map of the mapping cone is homotopic to the morphism having the following

expression in degree dX=Y :
�
1 0
0 1

�
þ
��f�1

0

�
ðf; dÞ ¼

�
1 0
0 1

�
þ
��1 �f�1d

0 0

�
¼

�
0 �f�1d
0 1

�
and unchanged otherwise, as stated.

(ii) This follows from the previous point, since idPC� implies p1P p1 �
C� ¼ c�. Explicitly, we may use the homotopy map of the connecting morphism,

which is zero for degrees di¤erent from dX=Y þ 1, and f�1 in degree dX=Y þ 1.

Then we have that �p1 is homotopic to the morphism having the following

expression in degree dX=Y : ð�1; 0Þ þ ðf�1Þðf; dÞ ¼ ð0; f�1dÞ and unchanged other-

wise, as stated. r

Proposition 4.3.2. The diagram

�
f �ðW1

Y ÞnOX
DRX=Y ðDX Þ

�
a Ler0 DRX ðDX Þ=Ler2 DRX ðDX Þ½�dY �

qis

???yð0;pÞ �p1¼ð�1;0Þ

DRX=Y ðDX Þ ��!
dðDX Þ

f �ðW1
Y ÞnOX

DRX=Y ðDX Þ

qis

???yl qis

???y1nl

DY X �������!‘Y X
f �ðW1

Y ÞnOX
DY X

�����������!

commutes in the derived category of right DX -modules.

Since this diagram is just the definition of d, the commutativity proves that

d ¼ ‘Y X .

Proof. By the homotopy lemma, we may use c instead of �p1, and since any

object of the last row is a complex concentrated in degree zero, we need only to

prove the commutativity of the diagram
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Ler0

Ler2
�
W

dX=Y

X ðDX Þ
�

???yp
f�1d

oX=Y ðDX Þ f �ðW1
Y ÞnOX

oX=Y ðDX Þ???yl
a

???y1nl

DY X ��������!‘Y X
f �ðW1

Y ÞnOX
DY X

�������������!
�������� !

(the first object of the mapping cone does not appear, because it is sent to zero

using both morphisms).

Notice, first of all, that there exists a unique morphism a : oX=Y ðDX Þ !
f �W1

Y nOX
DY X making the upper part (‘‘parallelogram’’) of the diagram com-

mutative, since (with reference to the diagram in 4.3.1) we have that ð1n lÞf�1di
¼ ð1n lÞd ¼ 0, so that ð1n lÞf�1d factors as ap (unicity of a follows because p is

an epimorphism). As a consequence, it is enough to prove that ‘Y Xl ¼ a. One

has two di¤erent possibilities for the proof. The first one is a local computation.

Using local coordinates xi ði ¼ 1; . . . ; dX Þ on X such that dx1; . . . ; dxdX=Y
are gen-

erators of the relative di¤erentials, and o ¼ dx1b� � �bdxdX=Y
, for the morphism a

we have the expression

aðon qÞ ¼ ð1n lÞf�1dð½on q�Þ

¼ ð1n lÞf�1
hX

i

dyibon hiq
i

¼ ð1n lÞ
�X

i

dyi non hiq
�

¼
X
i

dyi non ðhiqÞ
�;

where local coordinates yi on Y are used (dyi and hi are dual bases for W1
Y and

YY ) and q is a local section of DX . Therefore, the action of the derivative hi
(dual bases of dyi) is given by on ðhiqÞ

�. On the other hand, the structure of

f �1ðDY Þ-module of DY X is given by the twist of the right structure (by multipli-

cation) of f �DY with the right structure of f �1oY (by the action of �Lieh, which
is trivial on o), and has therefore the local expression hiðon qÞ ¼ �on qhi; com-

posing with l, the action of hi sends on q to on q�h�i and coincides with that

given above.

The second possibility is more abstract and relies on the compatibility of de

Rham functors. Since the morphism a is induced by the di¤erential of the abso-

lute de Rham complex of DX , and it factors uniquely through l (see again the
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diagram in 4.3.1, since ðpÞ da ¼ 0, p being an epimorphism, and l gives a cokernel

for d in the last column), it is su‰cient to prove that the morphism ‘Y X is

compatible with that complex. We observe that oX ð f �DY Þ has two compatible

structures, as a right DX -module and as a right f �1ðDY Þ-module. We define

DRY

�
oX ð f �DY Þ

�
:¼ oX ð f �DY ÞnOX

5�� f �Y1
Y (the de Rham complex as right

f �1ðDY Þ-module) which is isomorphic (by left/right exchange on the f �1ðDY Þ-
module structure) to DRY

�
oX=Y ð f �DY Þ

�
:¼ f �1W�Y nf �1ðOY Þ oX=Y ð f �DY Þ½dY �.

Now we have the canonical morphisms of de Rham complexes

DRX ðDX ÞGDRX

�
oX ðDX Þ

�
!i
P

DRX

�
oX ðDX Þ

�
! DRY

�
oX ð f �DY Þ

�
GDRY

�
oX=Y ð f �DY Þ

�
;

where the isomorphismsG are given by left/right exchanges, the first morphism

comes from the involution i, the second comes from Df : DX ! f �DY . In degrees

�dY and �dY þ 1 we can read the following compatibilities:

W
dX=Y

X ðDX Þ !
P

oX ðDX Þn5
dY

Y1
X ! oX ð f �DY Þn5

dY

f �Y1
Y GoX=Y ð f �DY Þ???y

???y
???y

???y‘Y X

W
dX=Yþ1
X ðDX Þ !

P
oX ðDX Þn 5

dY�1
Y1

X ! oX ð f �DY Þn 5
dY�1

f �Y1
Y G f �W1

Y noX=Y ð f �DY Þ

from which the result follows. r

4.4. The comparison.

Theorem. For any left DX -module M, the canonical quasi-isomorphism

Rf�
�
lðMÞ

�
: Rf�DRX=Y ðMÞ ! Rf�ðDY X nL

DX
MÞ ¼ fþðMÞ

makes the diagram

Rf�DRX=Y ðMÞ ��!
GMðMÞ

W1
Y nOY

Rf�DRX=Y ðMÞ

Rf�lðMÞ

???yqis qis

???y1nRf�lðMÞ

fþðMÞ ����������!‘fþðMÞ
W1

Y nOY
fþðMÞ

commutative in the derived category of KX -modules, where ‘fþðMÞ is the connection
induced by the left DY -module structure of fþðMÞ (and GMðMÞ ¼ h � Rf�dðMÞ,
as in 4.1, induces the Gauss–Manin connection in cohomology). As a consequence,

for any q we have natural isomorphisms

Rqf�DRX=Y ðMÞGHqð fþMÞ
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in the category of left DY -modules, where the left-hand side has the structure of the

Gauss–Manin connection.

Proof. Notice that fþðMÞ ¼ Rf�ðDY X nL
DX

MÞ is a complex of left DY -modules,

so that the associated connections induce a morphism of complexes ‘fþðMÞ :
fþðMÞ ! W1

Y nOY
fþðMÞ used in the diagram. Moreover it is clear that ‘fþðMÞ

is obtained by starting with ‘Y X (connection associated to the transfer module),

taking the derived tensor product with M, then applying the functor Rf� and the

projection formula, that is, ‘fþðMÞ ¼ h � Rf�ð‘Y X nL
DX

MÞ (this follows directly

from the definition of the DY -module structure of the derived direct image).

Now, from the commutative diagram (4.2.3), using that d ¼ ‘Y X , and applying

the derived tensor product (over DX ) with M and the functor Rf�, we obtain the

following commutative diagram

Rf�DRX=Y ðMÞ ������!Rf�dðMÞ
Rf�

�
f �1W1

Y nf �1OY
DRX=Y ðMÞ

�
Rf�lðMÞ

???yqis qis

???yRf�ð1nlðMÞÞ

Rf�ðDY X nL
DX

MÞ ���������!Rf�ð‘Y XnLMÞ
Rf�ð f �1W1

Y nf �1OY
DY X nL

DX
MÞ:

Using the projection formula on the right side, we obtain the diagram of the

theorem. r
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