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Existence of solutions to a one-dimensional model
of bounded piezoelectric material
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Abstract. We study the dynamic of piezoelectric bodies with switchable domains, described
by a coupling of an hyperbolic equation and a parabolic one. We consider the one dimen-
sional case and prove local existence of solutions.
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1. Introduction

We consider a piezoelectric material in one space dimension occupying the region
® = (0,1). Following Davi [2], the switching domain phenomena is described by
the effective number of aligned dipoles f(z, x) which satisfies the equation

Of — OLf = —dsu. (1)
u(t, x) is the electric displacement field related to f by the equation
ofu—0,((1+ f)owu) =0 (2)

where ¢ > 0 is the time variable and x € w is the space variable. The indices de-
note partial derivatives and in order to simplify the presentation, all physical con-
stants had been taken equal to one. The coupling (1)—(2) is completed by the
boundary conditions

S(6,0)=f(t1) =a, 2>0,

dxu(t,0) = dyu(t,1) =0 (3)

for t > 0, and the initial conditions
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B _ (4)
u(0,x) = up(x),  u(0,x) = u(x)

for x € w. In the case of free space, this problem was studied in [4]. The main
difficulty in dealing with this system is associated with the structure of the velocity
of the wave equation which is time dependent and depends of the solution to the
heat equation. As it will became clear in Section 2, this fact prevents a global
existence result.

In order to state our main result, let us introduce some notations. For 7" > 0,
we set wr = (0,7) x . We denote by |-|, |-|; and | - ||, the norms in the
Lebesgue spaces L?(w), L*(w7) and L* (0, T; L*(w)) respectively. # and % will
denote the spaces

7 =C(0,T]; H*(w)) nH' (0, T; H' (),

u =H"0,T; H () n C' ([0, T]; L*(w)). )

For a function g depending only in the space variable x, the prime in g’ will denote
the usual derivative and finally, the problem given by (1)—(2) and (3)—(4) will be
shortly referred to as (£). Our main result is the following:

Theorem 1.1. Suppose that the following assumptions hold:

upe H'(w), w e L*(w), foe H*(w),
fo(0)=fo(l)=0a, fo(x)>a inw

with

3v20 > max(Ey, 1),  Eo = |f) — u)]* + |’ +J (1+ fo(x) |up(x))> dx. (7)

Then problem (2) admits a weak solution (f,u) defined on a time interval (0,T)
depending on the data, such that f > 0 in wr and

feH(0,T;H (w)) nC([0, T); H*(w)),
ue H (or) n C([0, T); H () n C'([0, T]; L*(w)).

Let us explain briefly why these assumptions are required. The solution f of
the heat equation needs to be nonnegative. As the sign of the source term J,u is
variable, if the initial data fj is positive and big enough, the positivity of f is con-
served for a while. For a non trivial example of data satisfying the above assump-
tions, one can take fo(x) = o+ — (x — %)2, up(x) = —2x and u;(x) = a, (a € R).
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The idea of the proof is to obtain a solution to our problem as limit of approxi-
mated solutions, as was done in [4] for the case w = R. However, in the case w is
a bounded domain this is more difficult and the arguments used [4] do not quite
work here. Indeed the existence proof given in [4] is essentially based on an esti-
mate in L*, in time and space, for the time derivative ¢, f, together with its nega-
tivity (0, < 0 almost everywhere) obtained by using the estimate in L* (0, T; L?)
of du and the regularity of the heat kernel in the free space. This leads to an
energy estimate of the solution u of the wave equation alone, which permits to
construct a sequence of approximated solutions (using linearization and decou-
pling procedure) satisfying uniform estimates, allowing to get at the limit a solu-
tion to the coupled system. Unfortunately, such estimate on J;f can not be ob-
tained in the case of bounded domain (only an energy estimate on the pair (f, u)
can be obtained making the dissociation of the two equations of the problem
inoperative). This is the reason why we use here a fixed point theorem to solve
the problem stated in a bounded domain.

This paper is organized as follows. In Section 2 we give some formal estimates
satisfied by solutions of (2). Their local nature also constitute an obstacle to es-
tablish global existence. In Section 3, we define the approximated problems (%)
using a regularization of the wave velocity and introducing an artificial viscosity
via small parameters v and e. We then establish Theorem 3.1 which gives exis-
tence and uniqueness of a global solution (f,?,u%), and which is proved using the
Leray—Schauder fixed point theorem. An intermediary study of the solutions of
the heat and the wave equations, leads us to some uniform estimates on (f’, u{).
We apply them in Section 4, to pass to the limit when v — 0 and ¢ — 0, which
leads to a solution of our problem.

2. Formal estimates

We consider a regular solution (f', u) of problem (2) defined on (0, 7). The time
derivative 0, f satisfies

0/(0,f) — 0X(0,f) = —0%u  inwr,

0, f(,0)=0,f(t,1) =0 in (0,7), (8)
6/ (0,%) = 7/(x) — uj(x) ino.

Multiplying this equation by d,f and integrating over w, we get

Ld

> dt|a,f|2+|a,2xf|2 = —J afxua,fdx:J oud> f dx,

SO
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t t
QS OP + | 10276 ds < 1A =4 + | 1o s
0
Now, the solution u of the wave equation (2) satisfies

|o.u(1)]? +J (1+ £(2,x))|0xu(t, x)|* dx

w

- |u1|2+J (1 —|—f0(x))|u(’)(x)|2dx+J J 0.f (s, x)|0u(s, x)|* dx ds.

t
0Jo
Adding (9) and (10) leads to

l0.f (D)) + J; |02 £ (s)|* ds + |,u(0)|* +J (14 £(2,x))|0xu(t, x)|* dx

(&)

t
£E0+J |§,u(s)\2ds+J J 10,1 (5, )| |0u(s, x)|? dx ds.
0 %)

t
0

(11)

Since 0,/(1,0) =0, we can write |0,/ (¢, x)|> = fo 20,/ (1, ¥)d2 f(t, y)dy for all

(1,x) € or so

100f (D72 0y < 210f (D] 071 (1)].

Using Young’s inequality, the last term of (11) can be bounded by
HVCIPPIN 3(" 14 rrnp2/3 8/3
| 102 r@ as 3 [ e @R e as
therefore, (11) becomes

2 (1) +J (14 £(t,3)) | ste(t, ) > dx + |(r)

w

t 3 ¢
< Bt [ 0t ds 5 [ 10 )P 0] .
0 0

Assume that f(7,x) > 0 in w7 and let
p(1) = max (|0(0)|*, [0xu(0), 2./ (1)), 1).

The last inequality leads to ¢(¢) < Ei + [, ¢(s) ds + 3 [; 9°/(s) ds, and so

t
o(t) < E; +£J (p5/3(s) ds
0

(12)
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where E; = max(Ey, 1). Then consider the o.d.e
P =320, H0)=E (16)
which admits a local solution given by
Mey= (B2 =172 refo,8E 7 (17)
It follows by comparison between (15) and (16) that
p(t) <A(t) forallze [O,min(T,gEfz/S) [,

that is, for the values of ¢

|0u()|, 10su(0) >, 10.f (DI < A1) (18)

As we see it, the key fact is to obtain an L* estimate of the time derivative J, f of
the wave velocity but this can not be obtained directly and the best we get is (12).
This leads to an exponent greater than unity in (15) and provides only a finite time
existence.

Let us now make precise the approximating procedure used to prove
Theorem 1.1

3. The approximated problem

Let 7 > 0 be fixed and let ¢ > 0, v > 0 be small parameters. We introduce the fol-
lowing regularization (#) of the problem (2):

of —02f = —du inor,

J(,0) = f(t,1) =« in (0,T),

f(0,x) = fo(x) inw,

Ou— 0u[(1+ py* fH)osu] — edi[(1+ (p, % f1))0Ru] =0 in wr,
0,u(1,0) = 0,u(t,1) =0 in (0,7),

u(0,x) = up(x), 6,u(0,x) =u;(x) in w,

where x is the convolution product, /* = max(f,0) is the positive part of /" and
fT is its extension by 0 outside wr. Moreover, p, = p,(¢,x) is a regularizing se-
quence supported in the ball B(0,v) of radius v centered at the origin with

p, € 7(R?), J p,(t,x)dxdt =1.
RZ

We have the following result.
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Theorem 3.1. Under the assumptions of Theorem 1.1, problem (#}) admits a
unique weak solution (fF,ul) in the space (F ,%U) defined by (5).

v

The proof is based on a fixed point argument. Let f € L?(w7r) be fixed, con-
sider the solution u of the regularized wave equation

O2u— 0y[(1 + py* fH)oxu) — ed [(1 4 (p, % fF)?)02u] =0 in wr,
ou(t,0) = dyu(t,1) =0 in (0, 7), (20)
u(0,x) = up(x), d,u(0,x) =u;(x) in o,

and define the operator . on L*(wr) by

u=9(f). (21)
Then we define the operator 7 on % by setting

T (u) =g (22)
where ¢ is the solution to the heat equation

019 — 6§g = —0u 1nwr,
9(1,0) =g(1,1) =0 in(0,7), (23)
g(0,x) = fo(x) in w.

We want to show using Leray—Schauder Theorem that the operator
H =io T oS (24)

possesses a fixed point in L*(wr), i: H'(wr) — L*(wr) being the canonical
injection. First we have to verify that " is well defined, so we begin in the two
following subsections by making a full study of the regularized wave equation (20)
and the heat equation (23).

3.1. The regularized wave equation. Let /' be a nonnegative function defined
on R?, v > 0 and ¢ > 0 be fixed. We consider the hyperbolic problem

02u — 0,[(1 + p, % f)osu] — &0 [(1+ (p, * £)?)02u] =0 in wr,
Oxu(t,0) = dyu(t,1) =0 in (0,7, (25)
u(0, x) = up(x), du(0,x) =u;(x) inow,

and prove the following result.
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Proposition 3.2. Let ug, u; as in Theorem 1.1 and let f € L*(R?) be such that
f>0ae in R%. Then for every T >0, v>0, & > 0, problem (25) has a unique
solution u € U, éfu eL? (0, T: H’l(w)).

Proof. To prove the existence of a solution, we apply the variational method using
the Theorem of Lions (see [6], [7]).

We set du = v, (U, V) = e ¥ (u,v) where k > 0 is a constant, so (25) may be
written as

GU+kU—-V =0,

OV +kV =0 (1 4 p, % £) U] — e [(1 + (p, * f)?)0:V] = 0,
0-U(1,0) = 0, U(t,1) = 0,V (1,0) = 0,V (1,1) =0,

U(0,x) = up(x), V(0,x) = uj(x).

(26)

We introduce the Hilbert space # and its subspace 7
A =L*0,T;H (w)) x L*(0,T; H' (»)), 7 =D([0,T[x @) x D([0, T[ x @),

equipped with the norms

T
(vt )l = jo (1) 210 + 1920021 0)
1
[, w2) - = [0, w2) 3+ 5 (01 (0) By + hoa(0)P),

so that the injection ¥~ < J is continuous. Thus we define a bilinear form B on
A x 4" and a linear form L on ¥~ by

B((U, V), (p.1)) = j (=0 Ud%g + 0u(kU — V)oup — kUdyp

+ (k*U — kV)p) dxdt + J (=Voy +kVy

T

+ (14 p,* )0 UNY + e[l + (p, % £)7)0x Vo) dx dt,

Lip.y) = j (uy(3)2(0, 3) + tto (x)p(0, x) + 1 (x) (0, x)) d.

w

Clearly B(-, (p,)) is continuous on #, for any fixed (¢, %) € ¥~ and
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B((p.9). (0.9)) = 3 (100(0) + Klp(O)F* + W(O)) + Kol + Ky

FHOwpl 4| (1 (o 1) 0l

T

+ J (—koW + (p, % ) Oxpdsth) dx dt.

Using Young’s inequality, we get

‘ L (=kgys + (p, * f)0xpop) dx dt‘

NS iR

1 &
< 5ol + 115) + 5 i +5 | (e )20l avat

wr

SO
1 2 2 2 SR
B(p0). (0.9)) = & (20O + Ko@) + WO)P) + (2 -5 ol3
R (AT

+§J (1+ (p, * /) |0 dx . (27)

Choosing k > max (},4), we get the coerciveness inequality

2e
B((p,¥). (9,%)) = Bll(@. )~ forall (p,9) € 7~ (28)

with f = min(1,k* — &,k — 5 ,%) > 0. Then, since L is continuous on 7", apply-
ing the Theorem of Lions, we conclude that there exists a solution (U, V) in # to
the variational equation

B((Ua V)a (¢» lﬁ)) = L(gp, W) for all (% lﬁ) ev. (29)

Therefore
~02(0,U+kU V) +k(0,U+kU—-V)=0 (30)
and
OV +kV — (14 p, % £)0:U] — ed [(1 + (p, % £)7)0:V] =0

in the sense of distributions. In particular o,V € L*(0, T; H™'(w)) so the traces
V(0,.) and V(T,.) are well defined in L?(w). Moreover &,(—d>U + kU) =
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XkU - V) — k(kU V) so & ( OXU +kU) e L*(0,T; H ' (w)) then —02U +
kUeH'(0,T; H ' (w)) = C([0,T); H~ 1(cu)) and the traces (—02U + kU)(0,.)

and (—02U + kU)(T,.) are well deﬁned in H'(w). Now, we multiply the equa-
tion (30) by ¢ € D([O, T[ x @) and integrate over wr to get

J (—0.Ub% g+ 0,(kU — V)ovp — kUd,p + (K2 U — kV)p) dx dt
= L(p,0) = {(=0;U + kU)(0,.),9(0,.)>

+ JT(ax(kU — V)1, Dg(t,1) = 05 (kU — V)(1,0)9(1,0)) d.
0

Thus, taking first ¢ € D(]0, T[ x @), we get
T
|| (@t = P)ta.1ypte. 1) = 2.0k~ V)(00)p(2.0)) de = 0
0

and since ¢ is arbitrary, we conclude that

Ox(kU = V)(1,0) = 0,(kU — V)(1,1) =0 (31)
then for ¢ € D([0, T[ x w) we see that {(—=02U + kU)(0,.),¢(0,.)> = L(p,0) but
((=0:U +kU)(0,.),0(0,.)> = [ (8:U(0,x)0x0(0, x) + kU(0,x)p(0, x)) dx which
leads to U(0,x) = uy(x) and 6,U(0, x) up(x). Similarly, we get V(0,x) =
ui(x) and

(1+p, % £(£,0))0:U(£,0) + (1 + (p, % £)(£,0)) 0V (,0) = 0, 32)
(1+p, % £(,1))0U(1,1) + (1 + (p, % £)(1,1)) 0V (1, 1) = 0.

Comparing (31) and (32), we obtain
0,U(1,0) =0, U(t,1) = 0,V (1,0) = 0,V (t,1) = 0.
Therefore, using again (30), we see that

—03(0,U) + k(0,U) = 03 (kU — V) — k(kU — V) € L*(0, T; H (),
0,(0,U)(1,0) = 0,(0,U)(1,1) = 0,

s0 0,U € L*(0,T; H'(w)) and so is 3,U + kU — V, and since it is the solution to

~03(0,U +kU = V) + k(0,U +kU — V) =0,
0x(0,U + kU = V)(1,0) = 0:(0,U + kU = V)(£,1) = 0
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we conclude that 0,U + kU — V = 0. Hence (U, V) is a solution to (26) and leads
to a solution u to our problem.

For the uniqueness, since (25) is linear, it is enough to check that if uy =
u; = 0, then u = 0. We multiply this equation by d,u and integrate on w to get

d

G0 o) o | (14 (o )Rl d = = | (9, P00

w w

N —

since |[ (p, * [)0sudZudx| < &[ (14 (p,* £)7)|0Au|* dx + L |o,u|*, we get

d X 1
G0l (o) e | (14 (o, 1)) B v < - fosal?

@
therefore, using Gronwall’s inequality, we get d,u =0, u=0andsou=0. []
3.2. The heat equation. We consider the heat equation

of — 0 f = —dw inor,
f(2,0)=f(t,1) =a in(0,7), (33)
f(0,x) = fo(x) inow.

where v is a fixed function. The following result holds

Proposition 3.3. Let ve L™ (0,T; H'(w)) such that d,v e L*(0,T; H' (w)) and
v(0,.) = ug. Under assumptions of Theorem 1.1, there exists a unique solution
f € F to problem (33) satisfying the following estimates in (0, T):

(1) — +j 0 f ()2 ds < |fo — o +j o(s) | ds, (34)
0 0
2 () + jo af () ds < |2 + jo 10c0(s) ds, (35)
B O] + L G2 f(s) s < | — g+ jo 2u0(s)] ds, (36)
as well as
fltx) > a —? lowlly  inwr, (37)

V2 .
(60l < ol o) + == lloxvllyin or. (38)
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Proof. We multiply the equation (33) by (f — o) and integrate to get

3t oo == [ s —a)dx=| woufdv< (o + o)

w

which leads to (34). Multiplying (33) by 0,/ permits to get (35) whereas (36) is
obtained as (9). Note that from the equation, we can deduce a bound of [|02f]| .
Now, let us write /' = h + k where 4 and k are the solutions of the problems

dh—0*h=0 inor,
h(t,0) = h(t,1) = o in (0, T), (39)
h(0,x) = fo(x) in o,

and
0k — 0%k = —dw  in or,
k(t,0) = k(t,1) =0 in (0,7), (40)
k(0,x) =0 in w,

and let v, = v2sin(nnx), n € N*. (v,),-, is an orthogonal basis of H{ (w) which
is orthonormal in L?(w). Then the solution to (40) is given by

= "k, x)

n>1

@@m:wwj

0

(41)

t

0x0(s,.),0n) ,», . exp(—n’n®(t —s)) ds
L2 (w)

where (.,.);(,) denotes the scalar product in L*(w). Since |v,(x)| < V2 then
using Cauchy Schwartz inequality, we easily deduce that

|kn(t, )] < ZAWNT (42)
which leads to
V2
Ik(t, )| < = ll0xvll7- (43)

Finally, we easily verify, see [1], [3], [8] that the solution to (39) satisfies a <
h(t, x) < sup,, fo a.e. in wr so (37) and (38) follow. O

3.3. Solving the approximated problem. We will check that the operator 4" de-
fined by (24) is continuous. First, we have
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Lemma 3.4. .7 defined by (21) is continuous from L*>(wr) to U.

Proof. Let fi, f» € L*(wr), uy=(f;), i=1,2 and set f = fi — fo, u = uy — us.
We have

P —0.[(1+p, % fi7) Yu—ﬁay[( pv*f1 *)o2ul

= ol x (= ) 0un] + 0 ((pox 1) = (% 7)) 0] ineor, L gy
Oxu(1,0) = O u(t, 1) =0 in(0,7),
u(0,x) =0, 0u(0,x) =0 in w.

Multiplying this equation by d,u and integrating over w, we get
1d o 2 2 2
3 i (000F + | (e ote 0P dx) +2 | 102te 0 ax
= o [ (w0 5 [ @ FNOlr )
_J pyx (fi = 1) 0wurd*udx
—ejw((pv*ﬂ+)2 —(py* 1)) 02 urdud.

We have

t t
||, || @ FNouts, O x| < ool | 12suo) s

0Jow

Since |fi" — | < |fi — /2|y, we get using Young’s inequality

t
[ [ e = rosedtuasas| < ol ol ([ 102 @)

0

!
¢ 2 2 20 412
< 5| 1Rl s L p ol
0 &
In the same manner, we obtain

aJIL((pV*fﬁ)z (py* /1)) Oprd2u dx ds

0

j Ol ds oo 4+ folFI%al
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Gathering all these inequalities, we get
2, A A S 2 2 ! 2
ail) + () + 5 | 102 ds < Alfl} 2 | o as 49
0 0
where A;, A, are positive constants depending on ¢, v, f;, f2, up. Using
Gronwall’s inequality this yields
[0u(0)* < Ai (1 + Aztexp(Aat)) | /17

So when |f|§ — 0, we get first that ||0cu||; — 0, then, coming back to (45),
|0:ull — 0 and |07ul; — 0. O

Now, we turn our attention to the operator 7. We have
Lemma 3.5. 7 defined by (22) is continuous from U to H'(wr).

Proof. Letuj,uy € U, gi =7 (u;),i =1,2and set u = u; —up, g = g1 — g». Then
¢ is the solution to the problem

dg — 09 = —dwu inwr,

g(2,0) =g(z,1) =0 1in (0, 7), (46)
g(0,x) =0 in o,

and satisfies the following estimate:

9 + 2]0 2g(s) 2 ds < jo(|g<s>|2 T [o.u(s))?) ds.

Making use of Gronwall’s inequality we easily deduce that when u — 0 in
H'(wr), g — 0in L* (0, T; L*(w)) and dcg — 0 in L*(w7). Moreover, multiply-
ing the equation (46) by 0,9, we see that the following estimate holds:

t t
j 29(5)|2 ds + 10xg (1) < J 10yu(s)|? ds.
0 0

So 0yg — 0 in L* (0, T; L*(w)) and d,g — 0 in L*(w7) when u — 0 in H'(w7).
U

We continue to verify the properties of the operator #. For A e [0, 1], we
define

7, ={f € LX(or); f =24 (f)}.
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Lemma 3.6. There exists C > 0 independent of J. such that
|flp <C  forall feZ,.

Proof. Since #, = {0}, consider A € ]0, 1] then f € %, is such that f € H'(wr)
and satisfies

Of —02f = =20 inor,
£(6,0) = f(t,1) = Au in (0,T), (47)
f(0,x) = fo(x) inw,

where u = () is the solution to (20). Multiplying this equation by J,u and
integrating over w, we get

1d

3 g (PO + |ou()]) +ejw(1 + (pyx [1)7) |00l dx

. - 1
= | (o 100k < 5| or VIR o [ o

@ &
Hence,

t

()| + (1) “J

J (1+ (pv*fﬂz)wtzxu(s, x)|? dx ds
0Jw

<l |* + [uf)? +%J; |0cu(s)|* ds.
Therefore, using Gronwall’s inequality we get for 7 € (0, T')
ou(n|]* < C (48)
where C > 0 depends on uy, u;, ¢, T but not on v nor on 4, then
0xull s |0ctall 7, [l 7, |5l < C. (49)

Moreover, following the proof of Proposition 3.3, we get that f satisfies
13 t
10 =20 + | o () ds < 1206 =) + | (o) ds

and we conclude using (49) that

lflr < Ci

where C; > 0 depends upon uy, u;, fy, , ¢ and 7 but not on v nor on A. O
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Proof of Theorem 3.1. Since H'(w7) is compactly imbedded in L?(w7), using
Leray—Schauder fixed point theorem [5], we deduce from the previous lemmas,
that operator #" admits a fixed point f;* € L*(w7r), and denoting u® = & (f¢), we
conclude that (f,%,u’) € (#,%) is a solution to (#)).

In order to show the uniqueness, we consider two solutions (fi,u;), (f3,us) of
(#)) and set g = fi — fo, u = u; — ur. As u satisfies (44), following the proof of

Lemma 3.4, we get
t t t
|6,u(t)|2+|6xu(t)|2+8j |afxu(s)\2dsgA1J |g(s)|2ds+AZJ 0xul*ds  (50)
0 0 0

where A, A, are positive constants depending on ¢, v, fi, f2, u. Now, since ¢ is
the solution to (46), it satisfies

t t t
|g<z>|2+zj0|axg<s>|2dss j |g<s>12ds+jo|axu|2ds (51)

and adding (50) and (51) leads to
t
lg(0)|* + 0wu(r)]” < 4 JO(Ig(S)I2 + |0xu(s)|?) ds
with 4 > 0. Then, by Gronwall’s inequality, we obtain first |g(¢)| = |0u(t)| =0

and coming back to (50), we deduce that |0,u(¢)| = 0 and therefore g =0, u =0
a.c. O

4. Passing to the limit: End of proof of Theorem 1.1

Let T > 0 and ¢ > 0 be fixed. We want to pass to the limit as v — 0 in the prob-
lem (#7). We have

Lemma 4.1. The solutions (f},u}) of problem (%) are bounded in (¥ ,%U) uni-

v oy
formly with respect to v. More precisely the following estimates are satisfied

il + lloxullly + 0l 7 + 07| < C, (52)
1507 + 0xf g + 10ufE 7 + 13477 + 107l < € (53)
with C > 0 depending on uy, uy, fo, «, € and T but not on v.

Proof. The estimates (52) result from (49) because ui = &(f) and f? € 7. We
deduce (53) using (34), (35) and (36). O
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As a consequence of Lemma 4.1, we can extract subsequences, still denoted
(ff,uf), for which we have at least the following weak convergences as v — 0

fi—f%  uf—u*  weakly in H' (wr),
ut — 02u®  weakly in L2 (wr),
and the strong convergences
fi— % u’—ut strongly in L*(cwr)

with (f* u®) € (#,%). Therefore
*(f)" — (}TS;+ strongly in L?(R?)

and passing to the limit in the problem (2), we easily get that (f*, ) is a solu-
tion to the problem (£¢) below

0f° — 0f*“:—“xu8 in or,

JH0) = f*(1,1) = in (0,7),

J0,x) = folx) ino,

Out — ay[(1+ £o )0’ — ed [(1+ (f*)*)0ru’] =0 inwr,
0,u®(1,0) = 0,u®(1,1) =0 in (0,7),

u?(0,x) = up(x), 6,u®(0,x) = u;(x) in w.

(54)

Moreover, we have

Lemma 4.2. Let assumptions of Theorem 1.1 hold. Then, there exists T* > 0, de-
pending only on the data uy, uy, fo, such that for all ¢ > 0 and T €0, T*[, the prob-
lem (2%) admits a weak solution defined on (0, T), (f*,u®) € (F,%) satisfying

[l + [10xu[l 7 + (|0l < € (55)
117+ 10xf Nl + 102, *ll 7 + 100 I+ 0:f Il < € (56)

with C > 0 independent of .

Proof. Indeed, proceeding as in Section 2 we get
13 t
0./ (1)) + J on S ()P ds < | fy —ugl® + J |0, ()| dis, (57)
0 0
!
(1) + J (1t £o) o) d + sJ J (14 (%)) |02t dv ds
%) 0Jw

:|u1|2+J (1+J%(x))u(g(x)|2dx+n 0o f " dut|? dx ds. (58)
) 0Jow
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Therefore as well as for (59) we get

10,150 + |0 (1)]? +J (14 £57 (8, x))|0xu (2, x)|* dx

w

s&+£am<>m+ JWfUW%w%W“M (59)
Now, we set
T = %El_m where E; = max(E, 1), (60)
and
At) = (B =107 (61)

Hence, (59) leads for ¢ € (0, T') to

0 (1), [0 (1), [0 (1) < A(1) (62)

for all T € ]0, T*[ then ||u®||; < C with C > 0 independent of &. Coming back to
(34), (35) and (36), we deduce that

1%l 7o 105/l 105l < € (63)
and since 021 = 0,f¢ + d,u®, we have also ||02/%|; < C. O

Now, let T € ]0, T*[. The estimates of Lemma 4.2 allow to pass to the limit
as ¢— 0 in the problem (#°) and we get easily (f,u) e Z x (H'(wr)n
C([0, T); H' (w)) n C'([0, T]; L*(w)) solution to

of —02f = —dwu inor,
£(6,0)= f(t,1) =a in (0,7T),
£(0,x) = fo(x) inw,

64
Su— a1+ o =0 inor. o
0xu(t,0) = dyu(z,1) =0 1in (0, 7),
u(0,x) = up(x), d,u(0,x) = u;(x) in w.
Then, it follows from (37) that f(z,x) > « ——||(')Vu||T, a.e. in wp. So, since u

satisfies (62) and A is increasing, we deduce that f(z,x) > a ,\/_—,1( T), ae. in
wr. Therefore, if o is such that E; < 3v/2a then, choosing T < T* satisfying

‘/_/1( T) =0, that is T,6( B (3v20)” 2/3) we get f(¢,x) >0 a.e. in wr
and we conclude that (f,u) is a solution to problem (£) on the time interval
0,7).
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