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Inequalities for Riemann’s zeta function

Horst Alzer

(Communicated by Rui Loja Fernandes)

Abstract. Let { and A the the Riemann zeta function and the von Mangoldt function,
respectively. Further, let ¢ > 0. We prove that the double-inequality

exp<fc i /}:Y(fz > < C(Z(-:)C) < exp(fc i [}:Sflz )

n=1 n=1

holds for all s > 1 with the best possible constants

clog2 )

1
o=0 and ﬁ:@log&_zi(

This extends and refines a recent result of Cerone and Dragomir.
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1. Introduction

In 2005, Cerone and Dragomir [4] presented remarkable inequalities for the ratio
{(s+ 1)/{(s), where { denotes the classical Riemann zeta function,

(=3~ (>1).
n=1

They proved that the double-inequality

exp<— iAn(Zl)) < &(2(451) < exp(— Zx: ns(fl)) (1.1)

n=1 n=1

>
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holds for all s > 1. Here, A is the von Mangoldt function, defined by

Aln) = log p, if n = p™ for some prime number p and integer m > 1,
o0, otherwise,

which plays an important role in the distribution of prime numbers. Properties of
this function are given, for instance, in [2], Sec. 2.8. The logarithmic derivative of
{ can be expressed as a Dirichlet series with coefficients —A(n). We have

Y _ i’\(” (s> 1); (12)

S) n=1 n

see [2], p. 236. Many further facts on the {-function are collected in the mono-
graphs [5], [6], [7], [8]. Noteworthy historical remarks can be found in [3].

The aim of this note is to generalize (1.1). We are interested in sharp upper
and lower bounds for the ratio {(s+ ¢)/{(s), where ¢ is a (fixed) positive real
number. More precisely, we ask for the largest number « = o(c¢) and the smallest
number S = f(c) such that for all s > 1 we have

>

exp(~eX -5 < <em(-e -0

n=1

In the next section, we give a complete answer to this question. It turns out that
if ¢ =1, then the best possible constants are o =0 and f = (loglog4)/log2 =
0.4712.... This yields an improvement of the right-hand side of (1.1).

2. Main result
The following theorem extends and refines (1.1).

Theorem. Let ¢ > 0 be a real number. For all real numbers s > 1 we have

on(-e3 ) < St <en(-e i) e

n=1

with the best possible constants

o=0 and f= 10;2 10g< clog% ) (2.2)

-2
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Proof. From (1.2) we get

floge(s))” = 3 Alloen oy,

n S

n=2

This representation implies that ( is strictly log-convex on (1, 00). Applying the
mean value theorem we obtain

{'(s)
ON

log{(s+¢) —log{(s) > ¢

which is equivalent to the left-hand side of (2.1) with a = 0.
To prove the right-hand side of (2.1) with f as given in (2.2) we define

F(s) = —cf:/’:gﬁ) —logl(s+c)+logl(s) (s>1).

n=1

Differentiation yields

where
f(x) = clogx + xf~¢ — xF.
Let x > 2 and
g(x) = xf'(x) = ¢+ (B — c)xP< = pxP. (2.4)
Then
#“ﬁﬂ”d@)_(%—IY—mfs<%—lf—Qﬂ

We have 0 < f# < ¢. Therefore, in order to prove that g’(x) is negative, it suffices
to show that

%,1<2m_ (2.5)
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We set ¢ = 2(log?)/log?2 with ¢ > 1. Then (2.5) is equivalent to
2t
0 <log2+ 1 logt+ loglogt —log(r — 1) — log(t + 1) = h(¢), say. (2.6)

Differentiation gives
((t=1)(t+ 1) (log)h'(1) = 2 + > — 1t — 1 — (2% + 21) log t + (21> — 21)(log 1)*
= j(1), say.
Since j(1) = j'(1) = 0 and
4" (1) = 6(> — 1) + (81 — 4) log t + 41(log 1)* > 0,

we get j(¢) > 0 for ¢ > 1. This implies that / is strictly increasing on (1, c0). Since
h(1) = 0, we conclude that (2.6) is valid. Thus, g is strictly decreasing on [2, c0),
so that we obtain

g(x) <g(2) forxz=>2.
Next we prove that g(2) < 0. We set ¢ = (logu)/log2 with u > 1. Then we get

lg(Z) =1+ (E— I)Zﬁ_" —/—32/" =1—loglogu —
c c

4

u
u—1

logu + log(u — 1)
= k(u), say.

We have

(log )k’ (i) = (log“)z Lo

u—1 u

This leads to k(u) < k(1) =0 for u > 1. Thus, g(x) < 0 for x > 2, so that (2.4)
yields

f(x) < f(2)=0 forx>2. (2.7)
From (2.3) and (2.7) we get F'(s) < 0 for s > 1. Applying the limit relations

lim{(s)=1 and lim{'(s) =0

S— 00 §— 00

gives for s > 1 that
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F(s) > YILIEOF()C) = xh—>n;1c <c%— log{(x + ¢) +10gC(x)> =0.

This proves the right-hand side of (2.1).

It remains to show that the constants given in (2.2) are best possible. First, we
assume that there exists a number o > 0 such that the first inequality in (2.1) holds
for all s > 1. Then we have

'(s+a) s+
Pv ) ST

(s>1).

We let s tend to 1 and obtain

!
1
expw S O’

{1+ o)

a contradiction! This implies that the largest constant « in the left-hand inequality
of (2.1) is given by o = 0
We suppose that the right-hand side of (2.1) is valid for all s > 1. Then we get

S [Ys+0) log(1+z(s+¢)) log(1 +z(s)) _ 25 (s + B)

T D, EY
where
Y0 =20 1] and =() = AT = g9 -
In [1] it is proved that
lim y(s) = 1. (2.9)

§—00

For v > 0 we have

o0 2v+2
0<—=2""'(1+2)—log2=> (I =
< {(v+2) —log (ogn)(n>

n=3
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This leads to
lim 2°¢'(s) = —log 2. (2.10)

§— 00

Applying (2.9) and (2.10) we conclude from (2.8) that

2/’)(%— 1) < —clog2

or, equivalently,

1 clog?2
> 1 .
F= a2 °g<1 —2c>

Hence, the smallest constant f in the second inequality of (2.1) is given in (2.2).

OJ

Remark. Euler’s totient function ¢(n) is defined to be the number of positive
integers not exceeding 7, which are relatively prime to n. The main properties of
this function are collected in [2], Sec. 2.3-2.5. In view of

:<_’Zl) (s> 1)

) _ <
C(s—i—l)_; s

(see [2], p. 229), the theorem (with ¢ = 1) provides the following double-inequality
for Dirichlet series:

>

() < X8 <em(L52) >

n=1 n=1
where a = (loglog4)/log?2.
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