Portugal. Math. (N.S.) Vol. 66, Fasc. 3, 2009, 321–327

Inequalities for Riemann's zeta function

Horst Alzer

(Communicated by Rui Loja Fernandes)

Abstract. Let ζ and Λ the the Riemann zeta function and the von Mangoldt function, respectively. Further, let c > 0. We prove that the double-inequality

$$\exp\Bigl(-c\sum_{n=1}^{\infty}\frac{\Lambda(n)}{n^{s+\alpha}}\Bigr) < \frac{\zeta(s+c)}{\zeta(s)} < \exp\Bigl(-c\sum_{n=1}^{\infty}\frac{\Lambda(n)}{n^{s+\beta}}\Bigr)$$

holds for all s > 1 with the best possible constants

$$\alpha = 0$$
 and $\beta = \frac{1}{\log 2} \log \left(\frac{c \log 2}{1 - 2^{-c}} \right).$

This extends and refines a recent result of Cerone and Dragomir.

Mathematics Subject Classification (2000). 11M06, 11M41, 26D15.

Keywords. Riemann zeta function, von Mangoldt function, Euler totient function, Dirichlet series, inequalities.

1. Introduction

In 2005, Cerone and Dragomir [4] presented remarkable inequalities for the ratio $\zeta(s+1)/\zeta(s)$, where ζ denotes the classical Riemann zeta function,

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s} \qquad (s > 1).$$

They proved that the double-inequality

$$\exp\left(-\sum_{n=1}^{\infty}\frac{\Lambda(n)}{n^s}\right) \le \frac{\zeta(s+1)}{\zeta(s)} \le \exp\left(-\sum_{n=1}^{\infty}\frac{\Lambda(n)}{n^{s+1}}\right)$$
(1.1)

holds for all s > 1. Here, Λ is the von Mangoldt function, defined by

$$\Lambda(n) = \begin{cases} \log p, & \text{if } n = p^m \text{ for some prime number } p \text{ and integer } m \ge 1, \\ 0, & \text{otherwise,} \end{cases}$$

which plays an important role in the distribution of prime numbers. Properties of this function are given, for instance, in [2], Sec. 2.8. The logarithmic derivative of ζ can be expressed as a Dirichlet series with coefficients $-\Lambda(n)$. We have

$$\frac{\zeta'(s)}{\zeta(s)} = -\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^s} \qquad (s>1);$$
(1.2)

see [2], p. 236. Many further facts on the ζ -function are collected in the monographs [5], [6], [7], [8]. Noteworthy historical remarks can be found in [3].

The aim of this note is to generalize (1.1). We are interested in sharp upper and lower bounds for the ratio $\zeta(s+c)/\zeta(s)$, where *c* is a (fixed) positive real number. More precisely, we ask for the largest number $\alpha = \alpha(c)$ and the smallest number $\beta = \beta(c)$ such that for all s > 1 we have

$$\exp\Bigl(-c\sum_{n=1}^{\infty}\frac{\Lambda(n)}{n^{s+\alpha}}\Bigr) < \frac{\zeta(s+c)}{\zeta(s)} < \exp\Bigl(-c\sum_{n=1}^{\infty}\frac{\Lambda(n)}{n^{s+\beta}}\Bigr).$$

In the next section, we give a complete answer to this question. It turns out that if c = 1, then the best possible constants are $\alpha = 0$ and $\beta = (\log \log 4)/\log 2 = 0.4712...$ This yields an improvement of the right-hand side of (1.1).

2. Main result

The following theorem extends and refines (1.1).

Theorem. Let c > 0 be a real number. For all real numbers s > 1 we have

$$\exp\left(-c\sum_{n=1}^{\infty}\frac{\Lambda(n)}{n^{s+\alpha}}\right) < \frac{\zeta(s+c)}{\zeta(s)} < \exp\left(-c\sum_{n=1}^{\infty}\frac{\Lambda(n)}{n^{s+\beta}}\right)$$
(2.1)

with the best possible constants

$$\alpha = 0 \quad and \quad \beta = \frac{1}{\log 2} \log \left(\frac{c \log 2}{1 - 2^{-c}} \right). \tag{2.2}$$

Proof. From (1.2) we get

$$\left[\log \zeta(s)\right]'' = \sum_{n=2}^{\infty} \frac{\Lambda(n) \log n}{n^s} \quad (s > 1).$$

This representation implies that ζ is strictly log-convex on $(1, \infty)$. Applying the mean value theorem we obtain

$$\log \zeta(s+c) - \log \zeta(s) > c \, \frac{\zeta'(s)}{\zeta(s)},$$

which is equivalent to the left-hand side of (2.1) with $\alpha = 0$.

To prove the right-hand side of (2.1) with β as given in (2.2) we define

$$F(s) = -c\sum_{n=1}^{\infty} \frac{\Lambda(n)}{n^{s+\beta}} - \log \zeta(s+c) + \log \zeta(s) \qquad (s>1).$$

Differentiation yields

$$F'(s) = c \sum_{n=1}^{\infty} \frac{\Lambda(n) \log n}{n^{s+\beta}} - \frac{\zeta'(s+c)}{\zeta(s+c)} + \frac{\zeta'(s)}{\zeta(s)} = \sum_{n=2}^{\infty} \frac{\Lambda(n) f(n)}{n^{s+\beta}},$$
 (2.3)

where

$$f(x) = c \log x + x^{\beta - c} - x^{\beta}.$$

Let $x \ge 2$ and

$$g(x) = xf'(x) = c + (\beta - c)x^{\beta - c} - \beta x^{\beta}.$$
 (2.4)

Then

$$x^{1+c-\beta}\beta^{-2}g'(x) = \left(\frac{c}{\beta}-1\right)^2 - x^c \le \left(\frac{c}{\beta}-1\right)^2 - 2^c.$$

We have $0 < \beta < c$. Therefore, in order to prove that g'(x) is negative, it suffices to show that

$$\frac{c}{\beta} - 1 < 2^{c/2}.$$
 (2.5)

We set $c = 2(\log t)/\log 2$ with t > 1. Then (2.5) is equivalent to

$$0 < \log 2 + \frac{2t}{t+1} \log t + \log \log t - \log(t-1) - \log(t+1) = h(t), \text{ say.} \quad (2.6)$$

Differentiation gives

$$t(t-1)(t+1)^{2}(\log t)h'(t) = t^{3} + t^{2} - t - 1 - (2t^{2} + 2t)\log t + (2t^{2} - 2t)(\log t)^{2}$$

= j(t), say.

Since j(1) = j'(1) = 0 and

$$tj''(t) = 6(t^2 - 1) + (8t - 4)\log t + 4t(\log t)^2 > 0,$$

we get j(t) > 0 for t > 1. This implies that *h* is strictly increasing on $(1, \infty)$. Since h(1) = 0, we conclude that (2.6) is valid. Thus, *g* is strictly decreasing on $[2, \infty)$, so that we obtain

$$g(x) \le g(2)$$
 for $x \ge 2$.

Next we prove that g(2) < 0. We set $c = (\log u)/\log 2$ with u > 1. Then we get

$$\frac{1}{c}g(2) = 1 + \left(\frac{\beta}{c} - 1\right)2^{\beta-c} - \frac{\beta}{c}2^{\beta} = 1 - \log\log u - \frac{u}{u-1}\log u + \log(u-1)$$
$$= k(u), \text{ say.}$$

We have

$$(\log u)k'(u) = \left(\frac{\log u}{u-1}\right)^2 - \frac{1}{u} < 0.$$

This leads to k(u) < k(1) = 0 for u > 1. Thus, g(x) < 0 for $x \ge 2$, so that (2.4) yields

$$f(x) < f(2) = 0$$
 for $x > 2$. (2.7)

From (2.3) and (2.7) we get F'(s) < 0 for s > 1. Applying the limit relations

$$\lim_{s \to \infty} \zeta(s) = 1$$
 and $\lim_{s \to \infty} \zeta'(s) = 0$

gives for s > 1 that

324

$$F(s) > \lim_{x \to \infty} F(x) = \lim_{x \to \infty} \left(c \frac{\zeta'(x+\beta)}{\zeta(x+\beta)} - \log \zeta(x+c) + \log \zeta(x) \right) = 0.$$

This proves the right-hand side of (2.1).

It remains to show that the constants given in (2.2) are best possible. First, we assume that there exists a number $\alpha > 0$ such that the first inequality in (2.1) holds for all s > 1. Then we have

$$\exp\frac{c\zeta'(s+\alpha)}{\zeta(s+\alpha)} < \frac{\zeta(s+c)}{\zeta(s)} \qquad (s>1).$$

We let s tend to 1 and obtain

$$\exp\frac{c\zeta'(1+\alpha)}{\zeta(1+\alpha)} \le 0,$$

a contradiction! This implies that the largest constant α in the left-hand inequality of (2.1) is given by $\alpha = 0$.

We suppose that the right-hand side of (2.1) is valid for all s > 1. Then we get

$$2^{\beta} \left[\frac{y(s+c)}{2^{c}} \frac{\log(1+z(s+c))}{z(s+c)} - y(s) \frac{\log(1+z(s))}{z(s)} \right] < \frac{c2^{s+\beta}\zeta'(s+\beta)}{\zeta(s+\beta)}, \quad (2.8)$$

where

$$y(s) = 2^{s}[\zeta(s) - 1]$$
 and $z(s) = \frac{y(s)}{2^{s}} = \zeta(s) - 1.$

In [1] it is proved that

$$\lim_{s \to \infty} y(s) = 1. \tag{2.9}$$

For v > 0 we have

$$0 < -2^{\nu+2}\zeta'(\nu+2) - \log 2 = \sum_{n=3}^{\infty} (\log n) \left(\frac{2}{n}\right)^{\nu+2} < \left(\frac{2}{3}\right)^{\nu} \sum_{n=3}^{\infty} (\log n) \left(\frac{2}{n}\right)^{2} = \left(\frac{2}{3}\right)^{\nu} [-\log 2 - 4\zeta'(2)].$$

H. Alzer

This leads to

$$\lim_{s \to \infty} 2^s \zeta'(s) = -\log 2. \tag{2.10}$$

Applying (2.9) and (2.10) we conclude from (2.8) that

$$2^{\beta} \left(\frac{1}{2^c} - 1 \right) \le -c \log 2$$

or, equivalently,

$$\beta \ge \frac{1}{\log 2} \log \left(\frac{c \log 2}{1 - 2^{-c}} \right).$$

Hence, the smallest constant β in the second inequality of (2.1) is given in (2.2).

Remark. Euler's totient function $\varphi(n)$ is defined to be the number of positive integers not exceeding *n*, which are relatively prime to *n*. The main properties of this function are collected in [2], Sec. 2.3–2.5. In view of

$$\frac{\zeta(s)}{\zeta(s+1)} = \sum_{n=1}^{\infty} \frac{\varphi(n)}{n^{s+1}} \qquad (s>1)$$

(see [2], p. 229), the theorem (with c = 1) provides the following double-inequality for Dirichlet series:

$$\exp\Bigl(\sum_{n=1}^{\infty}\frac{\Lambda(n)}{n^{s+a}}\Bigr) < \sum_{n=1}^{\infty}\frac{\varphi(n)}{n^{s+1}} < \exp\Bigl(\sum_{n=1}^{\infty}\frac{\Lambda(n)}{n^s}\Bigr) \qquad (s>1),$$

where $a = (\log \log 4) / \log 2$.

Acknowledgement. I thank the referee for helpful comments and Dr. R. Küstner for his support in writing the final Latex version.

References

- H. Alzer, Remark on a double-inequality for the Riemann zeta function. *Expo. Math.* 23 (2005), 349–352. Zbl 1114.11070 MR 2186739
- [2] T. M. Apostol, Analytic number theory. Springer-Verlag, New York 1976. Zbl 0335.10001 MR 0434929

326

- [3] R. Ayoub, Euler and the zeta function. Amer. Math. Monthly 81 (1974), 1067–1086.
 Zbl 0293.10001 MR 0360116
- [4] P. Cerone and S. S. Dragomir, Some convexity properties of Dirichlet series with positive terms. *RGMIA Research Report Collection* **8** (4) (2005), no 14.
- [5] H. M. Edwards, *Riemann's zeta function*. Pure Appl. Math. 58, Academic Press, New York 1974. Zbl 0315.10035 MR 0466039
- [6] A. Ivić, The Riemann zeta-function. John Wiley & Sons, New York 1985. Zbl 0556.10026 MR 0792089
- [7] A. A. Karatsuba and S. M. Voronin, *The Riemann zeta-function*. De Gruyter Exp. Math. 5, Walter de Gruyter & Co., Berlin 1992. Zbl 0756.11022 MR 1183467
- [8] E. C. Titchmarsh, *The theory of the Riemann zeta-function*. Clarendon Press, Oxford 1951. Zbl 0042.07901 MR 0046485

Received April 13, 2008; revised June 18, 2008

H. Alzer, Morsbacher Str. 10, 51545 Waldbröl, Germany E-mail: H.Alzer@gmx.de