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Abstract. In this article we construct several important examples of optimal solutions of in-
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1. Introduction

In the present article we study optimal solutions of infinite horizon variational
problems associated with the functional

I (D;w) = J £ (w(e),w'(t),w"(?))dt  forall we W>'(D),
D

where D is a bounded interval on the real line and f € C([R{3) belongs to a space of
functions .# to be described in Section 2.
We consider the problems

inf {1/ (D;w) [w e WD), (w,w)(T1) = x, (w,w')(T2) =} (Py”)

for D= (T,,T,) and x,y € R? and also consider the following problem on the
half line:

inf {J7/(w) | w e W21 (0,00), f(w,w',w") € L'(0,T) for all T > 0}, (P,,)

*The author thanks Moshe Marcus for useful discussions and the referee for helpful comments.
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where

J/(w) = liminf T7'17((0, T); w).
T—owo

Variational problems of this type were introduced in [6] and investigated in [6],
[9], [11], [12], [13], [14]. Similar constrained problems (involving a mass con-
straint) studied in [4], [7], [8], [10] were conceived as models for determining the
thermodynamical equilibrium states of unidimensional bodies involving ‘second
order’ materials for which the free energy density is given by f. A discussion of
the physics underlying these models can be found in [2], [3] and in [4]. Properties
of minimizers of the mass constrained problem on bounded intervals, and their re-
lation to minimizers of the limiting problem on the full line were studied in [7], [8],
[10].

In the present article we study the unconstrained problem (P, ) and related
problems on bounded intervals. It should be mentioned that several notions of
minimizers to (P, ) were introduced and studied in [6], [9], [11]. In particular,
we consider the classes of periodic minimizers, c-optimal minimizers and perfect
minimizers denoted, respectively, by %/, 7/ and 2/ with the following relation:

gl cpl <77,

A function w € Wlf;g(o, )N Wh®(0,00) is c-optimal [9], [11], if, for every
bounded interval D = [Ty, T>] < [0, o0), the restriction w|, is a minimizer of
(Pp”) with x = (w,w')(T1), y = (w,w')(T7).

If a c-optimal function (minimizer) is periodic, we say that it is a periodic min-
imizer.

It is not difficult to show that for every x € R? there exists a c-optimal function
w such that (w(0),w’(0)) = x. This c-optimal function can be constructed as a
limit of solutions of the problems (PE‘O:OT)) where T — 0.

The existence of a periodic minimizer is a difficult problem which was solved in
[6], [12]. It turns out (see [9], [14]) that for a typical integrand f there exists a
unique (up to translations) periodic minimizer. More precisely, in [14] we consid-
ered certain complete metric spaces of integrands and showed that for most of
their elements (in the sense of Baire category) the corresponding variational prob-
lems possess unique (up to translations) periodic minimizers. Note that if a peri-
odic minimizer is unique, then solutions of the corresponding variational problems
possess remarkable properties. In particular, all c-optimal functions converge (in
some sense) to this periodic minimizer. Since a typical integrand possesses a
unique minimizer it is interesting to construct integrands with a given number of
periodic minimizers and even with an infinite number of periodic minimizers. This
is the first goal of our article.
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In [9], [11] we also studied a class of so-called perfect minimizers. Let /" be an
integrand and x(f) be the infimum in (P, ) which is finite [6]. In [6], [9], [10], [11],
[12], [13], [14] we considered a continuous function 7/ associated with the inte-
grand f. For any v e W>!(D), where D = (T, T»), put

I/ (D) = I (D;0) — |Dlu(f) + 2 ((0,0)(T2)) — 2 ((0,0')(T1)).

The functional T'/ (-, -) is very useful in the study of the problem (P..). It is not
difficult to see that minimization problems with the functional I/ are equivalent to
minimization problems with the functional I'/. On the other hand it is more con-
venient to work with the functional I'/ because it is always nonnegative.

A c-optimal function w is called a perfect minimizer [11] if T/ ((0,7),w) =0
for any 7" > 0.

It turns out that for any x € R? there exists a perfect minimizer w such that
(w(0),w’(0)) = x. Usage of perfect minimizers plays an important role in the
theory developed in [9], [10], [11], [12], [13], [14]. The second goal of the article
is to construct an integrand such that there exists a c-optimal minimizer which is
not perfect.

2. Preliminaries

First we describe the space of integrands .# that we are going to consider.

Let a = (a1,a,a3,a4) € R*, a; > 0,i=1,2,3,4 and let , 8, y be real numbers
such that | < ff <o, f <yandy > 1. Denote by .# = 4 (o, p,y,a) the family of
continuous functions { f'} such that

(i) feCHR?Y), of/ox,e CHR?), of/ox3 e C}(R?),

(ii) 8%f/ox3 > 0, 21)
(iii) f(x) = ai]x]” - Cl2|x2|ﬂ + as|xs|” — ag,
@) (/14 VD) < My(lxa] + [x)(1+ |x3]7) - forall x e R,

where My : [0, c0) — [0, 00) is a continuous function depending on f.

In the sequel we assume that f e .# = /4 (a,f,y,a) where (a,f,7,a) is an
arbitrary but fixed set of parameters satisfying the above conditions. Conditions
(2.1) (iii), (iv) imply that

we WENRy) and f(w,w',w") e L'(0,T) forall T >0 < we W2/ (R,),

loc

where R, = [0, c0) and
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W2 (Ry) = {we W2 (0,00)|we W*7(0,T) for all T > 0}.
For every f € ./, the infimum in (P.,) is finite (see [6] or Lemma 2.2 of [9]).
Put

u(f) = inf(P.o).

Leizarowitz and Mizel [6] showed that if f satisfies the condition

u(f) < inf  f(w,0,5),

(w,5)eR?

then (P,) possesses a periodic minimizer. Later, Zaslavski [12] proved that this
condition is not needed: the result holds for all f € .Z.

Let f € . and denote by %/ the set of all periodic minimizers (P.,).

For w e W>7(D), D a bounded interval, put

E'(D,w) := I'(D,w) — u(f)ID|, (2.2)

where |D| is the Lebesgue measure of D.
By definition, w e W2/ (R, ) is a minimizer of (P..) iff

1,
ll;n_g)lfTE ((0,T),w) =0.

If, in addition, {E£/((0,T),w)|T > 0} is bounded we say that w is an (f)-good
minimizer. This concept was first introduced by Leizarowitz [5] in a discrete
context. More generally, if v € Wlf)’cy(U ) for some unbounded interval U, and if
there exists a constant M = M (U, v) such that |E/(D,v)| < M for every bounded
interval D < U, we say that v is an (f)-good function on U. The family of (f)-
good functions on U is denoted by ¥/ (U); the family of (f)-good minimizers (i.e.,
%/(R,)) is denoted briefly by %/ .

The following result was obtained in [12]; a discrete version was previously es-
tablished in [5].

Lemma 2.1. For every w € W2 (R,), either {|E7((0,T),w)|| T > 0} is bounded,
ie,we %!, orlimr_, E/((0,T),w) = 0. Ifwe %! thenwe W!*(Ry).

We have defined the class of (f)-good functions %/ which is rather “large”
and the class of periodic minimizers %/ which is a “small” subset of ¥/. As it
was shown in [9], [14] many integrands belonging to .# possess a unique (up to
translation) periodic minimizer. Now we define an important notion of c-optimal
functions used in [9], [11].
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Ifwe Wli’cy(U )N WL (U), where U is an unbounded interval, we say that
v 18 c-optimal on U [9], [11], if, for every bounded interval D = (T}, T>) < U, the
restriction w|,, is a minimizer of (Py”) with x = (w,w')(T}), y = (w,w’)(T2). The
family of c-optimal functions on U is denoted by .7/ (U); the family of c-optimal
functions on R, is denoted briefly by 7/ .

Note that the definition of a c-optimal function does not assume that it is a
minimizer of (P,,). However, by Proposition 2.3 of [9]:

Lemma 2.2. If'w is c-optimal on R, then it is an (f)-good minimizer.

The class of c-optimal minimizers 7/ is, in a sense, a ‘small’ subset of %/ .
Obviously, a c-optimal minimizer cannot be modified on compact sets without los-
ing the property of c-optimality. On the other hand the property of (f')-goodness
is stable with respect to such modifications. Indeed, if wy € 4/ and if wy is a func-
tion in Wlig’ [0, c0) such that {x € R, | wo(x) # wy(x)} is bounded, then w; € %/.

Nevertheless the class of c-optimal minimizers on R, is a ‘large’ class in the
following sense:

Proposition 2.3 ([11], Proposition 1.1). For every point x = (x1,x,) € R? there ex-
ists a c-optimal minimizer w on Ry such that (w(0),w’(0)) = x.

It is interesting to note that, in general, a c-optimal function on R, cannot
be extended to a c-optimal function on R. In fact, 7/(R) is a bounded set in
W' (R) (see Lemma 3.7 of [11]) while, by our previous assertion, 7/ is un-
bounded in W *(R,). In a generic sense the contrast is even more striking:
T/ (R) is precisely the set of translates of a single periodic minimizer. Indeed,
there exists a dense subset of .# such that, for each f in this subset, problem (P,)
possesses a unique (up to translation) periodic minimizer and every c-optimal
function on R is a translate of the (unique) periodic minimizer [9].

Another class of minimizers that plays an important role in the theory devel-
oped in [9], [11] is the class of perfect minimizers, which is a subclass of .7 /. First
we define the concept of a perfect function on an arbitrary interval. The definition
requires some additional notation. For every w € ¥/, put

/ — lim i A
E/ (w):= ll%nJgf E7((0,T),w).

In a sense, Efc(w) measures the distance between 1/ ((0, 7),w) and the target
value Tu(f) as T — oo. For every x € R?, put
n/ (x) == inf {EL (w) |w € 97, (w(0),w'(0)) = x}. (2.3)

It is known that 7/ € C(R?) and 7/ (x) — o0 as |x| — oo [6], [11]. If v € W>7(D),
D= (T17T2)> put
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T/(D,v) := I (D;v) = |Dlu(f) + 7/ ((0,0')(T2)) — 7/ ((v,0")(T1)).  (2.4)

Given x,y e R? and T >0, let U%(x, ») denote the infimum in problem
(Py)- Then
I/ ((0,7),0) = Uf(x, ») = Tu(f) +n(y) = n(x) = OF(x, )

for every v e W*7(0,T) such that (v(0),v(0)) = x and (o(T),v'(T)) = y. The
following result, obtained by Leizarowitz and Mizel [6], adapts to the present
problem a general principle concerning cost functions in infinite horizon problems,
due to Leizarowitz (|5], Proposition 5.1).

Lemma 2.4. G)’; is non-negative and, for every T > 0 and every x € R2, there exists
y € R? such that G)’}(x, y)=0.

If D is a bounded interval and w e W>7(D), then w is (f)-perfect on D if
[/(D,w)=0. If U is an unbounded interval, we say that w is (f)-perfect on U
if wis (f)-perfect on D for every bounded interval D = U. The family of (f)-
perfect functions on U is denoted by 2/ (U); the family of (f)-perfect functions
on R, is denoted briefly by 2/ .

If wis (f)-perfect on D = (T4, T>) then: (a) w is a minimizer of problem (Py”)
where x = (w,w')(T}), y = (w,w")(T3), and (b) w is (f)-perfect on every subin-
terval of D. These assertions follow immediately from the non-negativity of G)’;
and the additivity of I'/. Note also that the result of [6] quoted above implies
the following.

Proposition 2.5 ([11], Proposition 1.2). For every x € R* there exists an (f)-
perfect function v on R such that (v(O), v’(O)) =X

The definition of a perfect function does not require boundedness. However
the following result holds.

Proposition 2.6. (i) If w is (f)-perfect on R, then w e W1 (R,).
(ii) Every (f)-perfect function on R, is a c-optimal minimizer of (P.,).

Obviously, every periodic minimizer of (P,) is (f)-perfect. Moreover,
Pl epf =g/ @l

Note that %/ is a proper subset of #/. Indeed, by Proposition 2.3 of [9], %/ is
bounded in W' *(R,). On the other hand, by Proposition 2.5, P! ' is unbounded
in the norm of W *(R,). Obviously, 7 7/ is a proper subset of %/. An interest-
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ing question is whether there exist c-optimal minimizers which are not perfect. (It
was asked by the referee of the article [11].) The answer depends on the inte-
grand f. If f possesses the periodic uniqueness property, i.e., (P.,) has a unique
(up to translation) periodic minimizer, then 2/ = 7/ [11]. However, there exists
a family of integrands f for which 2/ is a proper subset of 7/. A construction
of such a family of integrands and other results pertaining to the non-uniqueness
case are presented in this article. In order to obtain our results we use the fol-
lowing theorem of [11] which establish the non-intersecting property of c-optimal
minimizers.

Theorem 2.7. (a) Let v be a c-optimal minimizer of (Py,). If there exists T >0
such that (v,v")(0) = (v,v")(T) then v is periodic with period T.

(b) Let v, vy be c-optimal minimizers of (P.) such that (vi,v])(0) = (v2,v5)(0).
If there exist ty,t; € [0, 00) such that (t;,t2) # (0,0) and (vi,v])(t1) = (v2,05)(t2),
then vy = v,.

Since in the present article we consider an arbitrary but fixed function f € .,
the superscript f will be omitted in notation such as I/, '/ etc.
For every T > 0 and x, y € R? put

Ur(x, y) = inf{1(0, T, w) [w e W*7(0,T), (w,w)(0) = x, (w,w')(T) = y}. (2.5)
Denote by | - | the Euclidean norm. If v € W2 !(D) put,
X,(1) = (v(2),0'(1)), teD.

The following result, derived in [6], is based on a general principle concerning
cost functions in infinite horizon problems, established by Proposition 5.1 of [5].

Proposition 2.8. Let 1 be defined as in (2.3) and Ur as in (2.5). Then n e C(R?)
and (T,x,y) — U%(x, y) is continuous in (0,0) x R* x R%.  Furthermore, for
every T, x, y as above,

Or(x,y) = Ur(x,y) = Tu(f) — (n(x) — n(»)) = 0, (2.6)

and, for every T > 0 and every x € R?, there exists y € R? such that Or(x,y)=0.
The following simple but useful result was established in [9].

Proposition 2.9. Let D = (T, T>) be a bounded interval and suppose that wy, wy

are perfect functions in D. If there exists © € D such that (wy,w})(t) = (w2, w})(7)
then wy = wy everywhere in D.
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3. Examples of periodic minimizers

We have already mentioned that every f € .# possesses a periodic minimizer [6],
[12] and that many integrands f in .# possess a unique (up to translation) periodic
minimizer [9], [14]. One can ask if for any given natural number # there exists
an integrand which possesses exactly (up to translation) n periodic minimizers
and, moreover, if there exists an integrand with continuum different periodic
minimizers. In this section we construct an example of an integrand which an-
swers these questions in affirmative.

We proceed the construction of an example with three simple lemmas.

Note that for each pair of real numbers d» > d; > 0 there is C*-function
¢ : R! — [0, 1] such that

px)=1 if |x| <d,
1>¢(x)>0 ifd <|x|<d,
d(x)=0 if |x| > d,

and if
Y(x)=1-¢(x), xeR
then € C* and
lﬁ(x) = 07 X € [*dl,dl],
0<y(x)<1 if |x] € (di,dr),
Y(x) =1

Now it is not difficult to prove the following auxiliary result.

if |x\ > d.

Lemma 3.1. Let 0 <d, < d>. Then there is a C*-function ¢ : R' — [0,1] such
that

{xe R |4(x) = 0} = [d1, ],
¢(x) < 1 for all x € R" and ¢(x) = 1 if |x| is large enough.

Lemma 3.2. Let 0 < d < dy. Then there is a C*-function  : R' — [0, c0) such
that {x € R' | Y(x) = 0} = [dy, d>] and y(x) /x> — o0 as |x| — 0.

Proof. Let ¢ be as guaranteed in Lemma 3.1. In order to prove the lemma it is
sufficient to define

Yx) =) +1),  xeR O
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Lemma 3.3. Let k>1 be an integer and let ;= |c;,dj], i=1,...,k,
where 0 < ¢; <d; for all i=1,...,k such that l;nl; =0 for all integers
i,jell,... k] satisfying i # j. Then there exists a C*-function ¢ : R' —
[0, 00) such that ¢(x)/x> — oo as |x| — oo and {x € R' | §(x) =0} = U,k:1 .

Proof. Letie {1,... k}. We define y, : R! — [0, o) as follows. If d; > ¢;, then
by Lemma 3.2 there is /, : R! — [0, 0) € C* such that

{xeR'|y,(x) =0} =1, Y,(x)/x* = 0 as|x| = co.

1

If ¢; = d; then set ;(x) = (x — ¢;)* for all x e R'. Put

o) = [[0),  xem’

It is not difficult to see that the lemma holds with the function ¢. |

Construction of an integrand. Let k be a natural number and, for all
i=1,...,k, let [, =[c;,dj], 0 <¢; <d;, be such that ; n[; =0 for all integers
i,je{l,... k} withi # j.

We construct an integrand f with the following properties:

(i) for each s € Ulk:l I; the function v,(¢) = s'/?sint, t € R! is a periodic mini-
mizer;

(i) for each periodic minimizer v there exists s € U,k: , li such that v is a trans-
lation of vy.

By Lemma 3.3 there is a function ¢ : R' — [0, c0) € C* such that

$(x)/x* = 0 as|x| — o

and
{xeR'|p(x) =0} = Ul,-. (3.1)

Define
fw,p,r) = ¢(W2 + pz) +(w+ r)z7 (w,p,r) € R3. (3.2)

Clearly there is ¢y > 0 such that ¢(x) > 16x> — ¢y for all x € R'. Then
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Fw, p,r) = —co+ 16(w? 4+ p>)> +w? + 1 + 2wr
> —co+ 16w + p2)? + w2 + % — (2 /4 + 4w?)
> —co + 3/4r7 = 3w? + 16w* + 16p*

3r? /4 —co + 10w* — 3

v

for any (w,p,r) e R>.  This implies that f e .#(a,f,7,a) where y=2,
as € (0,3/4), 1 <o <4,

min{a, y} > > 1,

a >0, a; € (0,10), as > 3+ ¢p. Clearly u(f) = 0.
We show that the property (i) holds. Letie {1,...,k} and s € [¢;,d;]. Con-
sider the function

v (1) == s"?sins,  re R (3.3)

Clearly, f(vs(t),v.(1), 0" (1)) =0 for all te R' and thus v, is a periodic (f)-

’ s
minimizer. This implies that

u(f) =0. (3-4)

Let us show that the property (ii) hold. Assume that v € Wli’cl (R') is a peri-
odic (f)-minimizer. Then, by (3.2) and (3.4),

S ((0),0'(1),0"(2)) =0
for almost all # € R. Fix a real number #, such that

f(l)(l()), U/(IO)v l)//(l())) =0.
Combined with (3.2) this implies that

#(v(10)> + (v'(10)))?) = 0.

It is clear that in view of (3.1) there exist i € {1,...,k} and s € [¢;, d;] such that

o(10)> + ('(00))” = s.

Therefore there exists 7 € R' (depending only on s and #y) such that X,(z) =
X, (t + 7) and, by Proposition 2.9, v(¢) = v(¢ + 7) for every 7. Hence the proper-
ties (i) and (ii) hold.
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It is easy to see that

n(x) >0 forall x e R? (3.5)

and that for each i € {1,...k}, each s € [¢;,d;] and each z € {X, (¢)|t e R'} we
have

n(z) = 0. (3.6)
Proposition 3.4. Let v e Wli’cl (RY) be an (f)-perfect function such that

liminf | X, (7)| < o0.

t——00
Then there is s € Uf:1 l; such that v is a translation of vy.
Proof. By Proposition 2.6 (i),
sup{| X, (1) |t € R'} < o0.

Together with (2.4), the assumption that v is (f)-perfect, the continuity of = and
(3.4), this implies that

sup{I(—T,T,v)|T € (0,0)} < o0.

When combined with (3.2) the inequality above implies that for each ¢ > 0 there
exist 7'(e) > 0 such that for each s, > 51 > T'(¢) and each g1 < 0, < —T'(¢),

I((Sl,SQ);U) <g, I((O‘l,O'z);U) <e
Let zg,z; € R? be such that

zo = lim X,(#;), z; = lim X,(s;), (3.7)
11— 0 I— 0
where t; — o0 asi — o0, §5; — —00 asi — o0.
Then using the standard arguments of our theory and the lower semicontinuity
of integral functionals [1] (see, e.g., Proposition 2.3 of [11]) we obtain that there
exists ug, u; € W2 (R") such that

loc

XMO(O) = Zp, Xul (O) =z,
f(wi(0),u(t),u(1)) =0 forae teR' i=1,2.

1

Together with (3.1)—(3.3) and (3.6) this implies that
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$ui(0) + (u(1)*) =0, 1eR'i=1.2,

20,21 € 6 U {X.(0)|reR'},

i=1selc;,d]
and
7(z0),7(z1) = 0.

Together with (2.4), the assumptions of the proposition, (3.7) and (3.2) this implies
that

lim 7((s;,2,);0) = lim 7(X,(s;)) — n(X,(t)) = n(z0) — n(z1) = 0

and
f(o(2),0'(1),0"(1)) =0 forae.te R
In view of (3.2),
$o(0) + (V'(1)*) =0
for all # € R!. Combined with (3.1) and (3.3) this implies that
xolrer = U U (X0lrer).
i=1 se e, d]

Together with Proposition 2.9 this implies the validity of the proposition. O

4. An example of a c-optimal function which is not perfect
For any v e Wli’cl (R!) put

Q(v) = {X,(1) |t e R'} = {(v(2),v'(¢)) |t € R}.

In this section we construct an example of an integrand f € .#(o,f,y,a),
where a = (ay,a,a3,a4) € R*, a; >0, i=1,2,3,4 and o, f5, y are real numbers
such that 1 < f <o, <y and y > 1. This integrand f will have the following
properties:

(i) there exist two periodic minimizers v; and v, such that Q(v;) N Q(v,) = 0;

(i) every (f)-perfect function w on R! which satisfies liminf,_, . |(w, w')(¢)| < o0
is a translation of one of the periodic minimizers v; and vy;
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(iii) there exists a c-optimal minimizer w on R! such that
{w, W) (0)| 1 € R'I\(Q(v1) U Q(12)) # 0.

In view of (ii) and (iii) the integrand f possesses the c-optimal minimizer w
which is not perfect.
Fix two real numbers ¢; and ¢, such that 0 < ¢; < ¢, and define

Pp(x) = (x—cl)4(x—cz)4, xeR!,
S, pr) =0 +p7) + (w41 (w,p,r) e R,

Note that the integrand f belongs to the family of integrands introduced in
Section 3with k=2, d;=¢;, i =1,2.
Consider the functions

vi(t) = o

. 1
/T sin g, teR,

where i =1,2. As it was shown in Section 3, u(f) =0, v; is a periodic (f)-
minimizer for i=1,2, n(x) >0 for all x e R*> and n(z) =0 for each ze
Q(Ul) U Q(Uz).

It is clear that Proposition 3.4 holds with the integrand f.
Proposition 4.1. There exists a c-optimal minimizer v on R' such that

{0.0)(0) |1 € RN\ (Q(n) L Q1)) #0.

Proof. Consider a sequence of positive numbers 7; — oo as i — oo. For each in-
teger i > 1 there exists w; € W>!(—T;, T;) such that

(Wi, w)(=T7) = (¢/2,0),  (wi,w))(T7) = (¢)/*,0) (4.1)
and
I((=T3, Ty); wi) = U, ((¢}%,0), (2, 0)). (4.2)

By the mean value theorem for each integer i > 1 there exists s; € (=T}, T;)
such that

(Ovw)) ()] = (e + 62 /2. (43)
By (4.1), (4.3) and Proposition 2.2 of [9] there exists M > 0 such

sup{|(wi, w)) ()| |t € [-T;, T} < Mo, i>1. (4.4)
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We will show that s; + 7; — oo. Let us assume the converse. Then, extracting a
subsequence if necessary, we can assume without loss of generality that there exists
lim; ... s; + T; < oo. For each integer i > 1 define w; € W>1(0, T;) by
W,‘(l) = W,‘([ — T[), e [0,2T,] (45)
Clearly
(Wi, i) (si + i) = (wi, wi)(s1),

(4.6)

0w+ T = (0 + )2, izl
Using the standard arguments of our theory based on (4.1), (4.2), (4.4), continuity
of the function U,(-,-) and Lemma 2.2 of [9] we can show that there exist a sub-
sequence {w;, };—, and w € Wli’cl [0, o0) such that for each integer n > 1,

Ww;, — was k — oo weakly in W27(0,n),

(Wi, w; ) — (w,w’) uniformly on [0, n].

Relations (4.8), (4.4), (4.5), (4.1) and (4.6) imply that

|(w, W) (1) < My, 1€][0,0), (w(0),w'(0)) = (¢;/%,0),  (4.9)
[Ovw') (lim (s, + 7)) | = (ei? + b )2, (4.10)

By (4.1), (4.2), (4.7), (4.8), continuity of the function U,(-,-) and lower semiconti-
nuity of the integral functional [1], w is a c-optimal minimizer. By (4.9),

(w, w")(0) = (v1,v)(n/2) = (v1,v]) (/2 + 27).

By of Theorem 2.7(b), w(t) = v1(¢+ r/2) for all r € R'. This contradicts to
(4.10). Therefore s; + T; — 00 as i — o0.

Using the fact that f(w, p,r) = f(w,—p,r) for all (w, p,r) € R® and using the
same arguments for the functions w;(¢t) = w;(—1t), t € [-T;, T3], i > 1, we obtain
that 7; — s; — oo as i — oo. Thus we have shown that

lim(s;+ 7;) =00 and  lim(7; —s;) = o0. (4.11)

i— 0 =0
For each integer i > 1 define u; € W>!'(=T; — s;, T; — s;) by
ui(t) = Wl‘(l‘ + Sl'), te [—Ti — s, T — Si]. (412)

Using again the standard arguments of our theory based on (4.1), (4.2), (4.5), con-
tinuity of the function Uy(-,-) and Lemma 2.2 of [9] we can show that there exists

a subsequence {u; },~, and u € szfcl (R') such that for each integer n > 1,
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u;, — uas k — oo weakly in Wz*y(fn,n), (4.13)

(i, uj ) — (u,u") uniformly on [—n, n]. (4.14)
Relations (4.14), (4.4), (4.3) and (4.12) imply that
)l < Mo, 1R | u)0)] = (@ + )2 (419)

By (4.1), (4.2), (4.13), (4.14), continuity of the function U(-,-) and and lower
semicontinuity of the integral functional, u is a c-optimal minimizer. By (4.15),
(u,u’)(0) ¢ Q(v)) U Q(vy). Proposition 4.1 is proved. O
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