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1. Introduction

In the present article we study optimal solutions of infinite horizon variational

problems associated with the functional

I f ðD;wÞ ¼
ð
D

f
�
wðtÞ;w 0ðtÞ;w 00ðtÞ

�
dt for all w a W 2;1ðDÞ;

where D is a bounded interval on the real line and f a CðR3Þ belongs to a space of

functions M to be described in Section 2.

We consider the problems

inffI f ðD;wÞ jw a W 2;1ðDÞ; ðw;w 0ÞðT1Þ ¼ x; ðw;w 0ÞðT2Þ ¼ yg ðPx;y
D Þ

for D ¼ ðT1;T2Þ and x; y a R2 and also consider the following problem on the

half line:

inffJ f ðwÞ jw a W
2;1
loc ð0;lÞ; f ðw;w 0;w 00Þ a L1ð0;TÞ for all T > 0g; ðPlÞ

*The author thanks Moshe Marcus for useful discussions and the referee for helpful comments.



where

J f ðwÞ ¼ lim inf
T!l

T�1I f
�
ð0;TÞ;w

�
:

Variational problems of this type were introduced in [6] and investigated in [6],

[9], [11], [12], [13], [14]. Similar constrained problems (involving a mass con-

straint) studied in [4], [7], [8], [10] were conceived as models for determining the

thermodynamical equilibrium states of unidimensional bodies involving ‘second

order’ materials for which the free energy density is given by f . A discussion of

the physics underlying these models can be found in [2], [3] and in [4]. Properties

of minimizers of the mass constrained problem on bounded intervals, and their re-

lation to minimizers of the limiting problem on the full line were studied in [7], [8],

[10].

In the present article we study the unconstrained problem ðPlÞ and related

problems on bounded intervals. It should be mentioned that several notions of

minimizers to ðPlÞ were introduced and studied in [6], [9], [11]. In particular,

we consider the classes of periodic minimizers, c-optimal minimizers and perfect

minimizers denoted, respectively, by S f , T f and P f with the following relation:

S f HP f HT f :

A function w a W
2; g
loc ð0;lÞBW 1;lð0;lÞ is c-optimal [9], [11], if, for every

bounded interval D ¼ ½T1;T2�H ½0;lÞ, the restriction wjD is a minimizer of

ðPx;y
D Þ with x ¼ ðw;w 0ÞðT1Þ, y ¼ ðw;w 0ÞðT2Þ.
If a c-optimal function (minimizer) is periodic, we say that it is a periodic min-

imizer.

It is not di‰cult to show that for every x a R2 there exists a c-optimal function

w such that
�
wð0Þ;w 0ð0Þ

�
¼ x. This c-optimal function can be constructed as a

limit of solutions of the problems ðPx;0
ð0;TÞÞ where T ! l.

The existence of a periodic minimizer is a di‰cult problem which was solved in

[6], [12]. It turns out (see [9], [14]) that for a typical integrand f there exists a

unique (up to translations) periodic minimizer. More precisely, in [14] we consid-

ered certain complete metric spaces of integrands and showed that for most of

their elements (in the sense of Baire category) the corresponding variational prob-

lems possess unique (up to translations) periodic minimizers. Note that if a peri-

odic minimizer is unique, then solutions of the corresponding variational problems

possess remarkable properties. In particular, all c-optimal functions converge (in

some sense) to this periodic minimizer. Since a typical integrand possesses a

unique minimizer it is interesting to construct integrands with a given number of

periodic minimizers and even with an infinite number of periodic minimizers. This

is the first goal of our article.
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In [9], [11] we also studied a class of so-called perfect minimizers. Let f be an

integrand and mð f Þ be the infimum in ðPlÞ which is finite [6]. In [6], [9], [10], [11],

[12], [13], [14] we considered a continuous function p f associated with the inte-

grand f . For any v a W 2;1ðDÞ, where D ¼ ðT1;T2Þ, put

G f ðD; vÞ :¼ I f ðD; vÞ � jDjmð f Þ þ p f
�
ðv; v 0ÞðT2Þ

�
� p f

�
ðv; v 0ÞðT1Þ

�
:

The functional G f ð� ; �Þ is very useful in the study of the problem ðPlÞ. It is not

di‰cult to see that minimization problems with the functional I f are equivalent to

minimization problems with the functional G f . On the other hand it is more con-

venient to work with the functional G f because it is always nonnegative.

A c-optimal function w is called a perfect minimizer [11] if G f
�
ð0;TÞ;w

�
¼ 0

for any T > 0.

It turns out that for any x a R2 there exists a perfect minimizer w such that�
wð0Þ;w 0ð0Þ

�
¼ x. Usage of perfect minimizers plays an important role in the

theory developed in [9], [10], [11], [12], [13], [14]. The second goal of the article

is to construct an integrand such that there exists a c-optimal minimizer which is

not perfect.

2. Preliminaries

First we describe the space of integrands M that we are going to consider.

Let a ¼ ða1; a2; a3; a4Þ a R4, ai > 0, i ¼ 1; 2; 3; 4 and let a, b, g be real numbers

such that 1a b < a, ba g and g > 1. Denote by M ¼ Mða; b; g; aÞ the family of

continuous functions f f g such that

ðiÞ f a C2ðR3Þ; qf =qx2 a C2ðR3Þ; qf =qx3 a C3ðR3Þ;

ðiiÞ q2f =qx2
3 > 0;

ðiiiÞ f ðxÞb a1jx1ja � a2jx2jb þ a3jx3jg � a4;

ðivÞ ðj f j þ j‘f jÞðxÞaMf ðjx1j þ jx2jÞð1þ jx3jgÞ for all x a R3;

ð2:1Þ

where Mf : ½0;lÞ 7! ½0;lÞ is a continuous function depending on f .

In the sequel we assume that f a M ¼ Mða; b; g; aÞ where ða; b; g; aÞ is an

arbitrary but fixed set of parameters satisfying the above conditions. Conditions

(2.1) (iii), (iv) imply that

w a W 2;1
loc ðRþÞ and f ðw;w 0;w 00Þ a L1ð0;TÞ for all T > 0 , w a W

2; g
loc ðRþÞ;

where Rþ ¼ ½0;lÞ and
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W
2; g
loc ðRþÞ ¼ fw a W

2; g
loc ð0;lÞ jw a W 2; gð0;TÞ for all T > 0g:

For every f a M, the infimum in ðPlÞ is finite (see [6] or Lemma 2.2 of [9]).

Put

mð f Þ :¼ infðPlÞ:

Leizarowitz and Mizel [6] showed that if f satisfies the condition

mð f Þ < inf
ðw; sÞ AR2

f ðw; 0; sÞ;

then ðPlÞ possesses a periodic minimizer. Later, Zaslavski [12] proved that this

condition is not needed: the result holds for all f a M.

Let f a M and denote by S f the set of all periodic minimizers ðPlÞ.
For w a W 2; gðDÞ, D a bounded interval, put

E f ðD;wÞ :¼ I f ðD;wÞ � mð f ÞjDj; ð2:2Þ

where jDj is the Lebesgue measure of D.

By definition, w a W
2; g
loc ðRþÞ is a minimizer of ðPlÞ i¤

lim inf
T!l

1

T
E f

�
ð0;TÞ;w

�
¼ 0:

If, in addition,
�
E f

�
ð0;TÞ;w

�
jT > 0

�
is bounded we say that w is an ð f Þ-good

minimizer. This concept was first introduced by Leizarowitz [5] in a discrete

context. More generally, if v a W
2; g
loc ðUÞ for some unbounded interval U , and if

there exists a constant M ¼ MðU ; vÞ such that jE f ðD; vÞjaM for every bounded

interval DHU , we say that v is an ð f Þ-good function on U . The family of ð f Þ-
good functions on U is denoted by G f ðUÞ; the family of ð f Þ-good minimizers (i.e.,

G f ðRþÞ) is denoted briefly by G f .

The following result was obtained in [12]; a discrete version was previously es-

tablished in [5].

Lemma 2.1. For every w a W
2; g
loc ðRþÞ, either

���E f
�
ð0;TÞ;w

��� jT > 0
�
is bounded,

i.e., w a G f , or limT!l E f
�
ð0;TÞ;w

�
¼ l. If w a G f then w a W 1;lðRþÞ.

We have defined the class of ð f Þ-good functions G f which is rather ‘‘large’’

and the class of periodic minimizers S f which is a ‘‘small’’ subset of G f . As it

was shown in [9], [14] many integrands belonging to M possess a unique (up to

translation) periodic minimizer. Now we define an important notion of c-optimal

functions used in [9], [11].
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If w a W
2; g
loc ðUÞBW 1;lðUÞ, where U is an unbounded interval, we say that

v is c-optimal on U [9], [11], if, for every bounded interval D ¼ ðT1;T2ÞHU , the

restriction wjD is a minimizer of ðPx;y
D Þ with x ¼ ðw;w 0ÞðT1Þ, y ¼ ðw;w 0ÞðT2Þ. The

family of c-optimal functions on U is denoted by T f ðUÞ; the family of c-optimal

functions on Rþ is denoted briefly by T f .

Note that the definition of a c-optimal function does not assume that it is a

minimizer of ðPlÞ. However, by Proposition 2.3 of [9]:

Lemma 2.2. If w is c-optimal on Rþ then it is an ð f Þ-good minimizer.

The class of c-optimal minimizers T f is, in a sense, a ‘small’ subset of G f .

Obviously, a c-optimal minimizer cannot be modified on compact sets without los-

ing the property of c-optimality. On the other hand the property of ð f Þ-goodness
is stable with respect to such modifications. Indeed, if w0 a G f and if w1 is a func-

tion in W
2; g
loc ½0;lÞ such that fx a Rþ jw0ðxÞAw1ðxÞg is bounded, then w1 a G f .

Nevertheless the class of c-optimal minimizers on Rþ is a ‘large’ class in the

following sense:

Proposition 2.3 ([11], Proposition 1.1). For every point x ¼ ðx1; x2Þ a R2 there ex-

ists a c-optimal minimizer w on Rþ such that
�
wð0Þ;w 0ð0Þ

�
¼ x.

It is interesting to note that, in general, a c-optimal function on Rþ cannot

be extended to a c-optimal function on R. In fact, T f ðRÞ is a bounded set in

W 1;lðRÞ (see Lemma 3.7 of [11]) while, by our previous assertion, T f is un-

bounded in W 1;lðRþÞ. In a generic sense the contrast is even more striking:

T f ðRÞ is precisely the set of translates of a single periodic minimizer. Indeed,

there exists a dense subset of M such that, for each f in this subset, problem ðPlÞ
possesses a unique (up to translation) periodic minimizer and every c-optimal

function on R is a translate of the (unique) periodic minimizer [9].

Another class of minimizers that plays an important role in the theory devel-

oped in [9], [11] is the class of perfect minimizers, which is a subclass of T f . First

we define the concept of a perfect function on an arbitrary interval. The definition

requires some additional notation. For every w a G f , put

E f
lðwÞ :¼ lim inf

T!l
E f

�
ð0;TÞ;w

�
:

In a sense, E f
lðwÞ measures the distance between I f

�
ð0;TÞ;w

�
and the target

value Tmð f Þ as T ! l. For every x a R2, put

p f ðxÞ :¼ inf
�
E f
lðwÞ jw a G f ;

�
wð0Þ;w 0ð0Þ

�
¼ x

�
: ð2:3Þ

It is known that p f a CðR2Þ and p f ðxÞ ! l as jxj ! l [6], [11]. If v a W 2; gðDÞ,
D ¼ ðT1;T2Þ, put
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G f ðD; vÞ :¼ I f ðD; vÞ � jDjmð f Þ þ p f
�
ðv; v 0ÞðT2Þ

�
� p f

�
ðv; v 0ÞðT1Þ

�
: ð2:4Þ

Given x; y a R2 and T > 0, let U
f
T ðx; yÞ denote the infimum in problem

ðPx;y
ð0;TÞÞ. Then

G f
�
ð0;TÞ; v

�
bU

f
T ðx; yÞ � Tmð f Þ þ pðyÞ � pðxÞ ¼: Y f

Tðx; yÞ

for every v a W 2; gð0;TÞ such that
�
vð0Þ; v 0ð0Þ

�
¼ x and

�
vðTÞ; v 0ðTÞ

�
¼ y. The

following result, obtained by Leizarowitz and Mizel [6], adapts to the present

problem a general principle concerning cost functions in infinite horizon problems,

due to Leizarowitz ([5], Proposition 5.1).

Lemma 2.4. Y
f
T is non-negative and, for every T > 0 and every x a R2, there exists

y a R2 such that Y
f
T ðx; yÞ ¼ 0.

If D is a bounded interval and w a W 2; gðDÞ, then w is ð f Þ-perfect on D if

G f ðD;wÞ ¼ 0. If U is an unbounded interval, we say that w is ð f Þ-perfect on U

if w is ð f Þ-perfect on D for every bounded interval DHU . The family of ð f Þ-
perfect functions on U is denoted by P f ðUÞ; the family of ð f Þ-perfect functions
on Rþ is denoted briefly by P f .

If w is ð f Þ-perfect on D ¼ ðT1;T2Þ then: (a) w is a minimizer of problem ðPx;y
D Þ

where x ¼ ðw;w 0ÞðT1Þ, y ¼ ðw;w 0ÞðT2Þ, and (b) w is ð f Þ-perfect on every subin-

terval of D. These assertions follow immediately from the non-negativity of Y f
T

and the additivity of G f . Note also that the result of [6] quoted above implies

the following.

Proposition 2.5 ([11], Proposition 1.2). For every x a R2 there exists an ð f Þ-
perfect function v on Rþ such that

�
vð0Þ; v 0ð0Þ

�
¼ x.

The definition of a perfect function does not require boundedness. However

the following result holds.

Proposition 2.6. (i) If w is ð f Þ-perfect on Rþ, then w a W 1;lðRþÞ.
(ii) Every ð f Þ-perfect function on Rþ is a c-optimal minimizer of ðPlÞ.

Obviously, every periodic minimizer of ðPlÞ is ð f Þ-perfect. Moreover,

S f HP f HT f HG f :

Note that S f is a proper subset of P f . Indeed, by Proposition 2.3 of [9], S f is

bounded in W 1;lðRþÞ. On the other hand, by Proposition 2.5, P f is unbounded

in the norm of W 1;lðRþÞ. Obviously, T f is a proper subset of G f . An interest-
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ing question is whether there exist c-optimal minimizers which are not perfect. (It

was asked by the referee of the article [11].) The answer depends on the inte-

grand f . If f possesses the periodic uniqueness property, i.e., ðPlÞ has a unique

(up to translation) periodic minimizer, then P f ¼ T f [11]. However, there exists

a family of integrands f for which P f is a proper subset of T f . A construction

of such a family of integrands and other results pertaining to the non-uniqueness

case are presented in this article. In order to obtain our results we use the fol-

lowing theorem of [11] which establish the non-intersecting property of c-optimal

minimizers.

Theorem 2.7. (a) Let v be a c-optimal minimizer of ðPlÞ. If there exists T > 0

such that ðv; v 0Þð0Þ ¼ ðv; v 0ÞðTÞ then v is periodic with period T.

(b) Let v1, v2 be c-optimal minimizers of ðPlÞ such that ðv1; v 01Þð0Þ ¼ ðv2; v 02Þð0Þ:
If there exist t1; t2 a ½0;lÞ such that ðt1; t2ÞA ð0; 0Þ and ðv1; v 01Þðt1Þ ¼ ðv2; v 02Þðt2Þ,
then v1C v2.

Since in the present article we consider an arbitrary but fixed function f a M,

the superscript f will be omitted in notation such as I f , G f , etc.

For every T > 0 and x; y a R2 put

UT ðx; yÞ ¼ inffIð0;T ;wÞ jw a W 2; gð0;TÞ; ðw;w 0Þð0Þ ¼ x; ðw;w 0ÞðTÞ ¼ yg: ð2:5Þ

Denote by j � j the Euclidean norm. If v a W 2;1ðDÞ put,

XvðtÞ ¼
�
vðtÞ; v 0ðtÞ

�
; t a D:

The following result, derived in [6], is based on a general principle concerning

cost functions in infinite horizon problems, established by Proposition 5.1 of [5].

Proposition 2.8. Let p be defined as in (2.3) and UT as in (2.5). Then p a CðR2Þ
and ðT ; x; yÞ ! U

f
T ðx; yÞ is continuous in ð0;lÞ � R2 � R2. Furthermore, for

every T, x, y as above,

YT ðx; yÞ ¼ UTðx; yÞ � Tmð f Þ �
�
pðxÞ � pðyÞ

�
b 0; ð2:6Þ

and, for every T > 0 and every x a R2, there exists y a R2 such that YTðx; yÞ ¼ 0.

The following simple but useful result was established in [9].

Proposition 2.9. Let D ¼ ðT1;T2Þ be a bounded interval and suppose that w1, w2

are perfect functions in D. If there exists t a D such that ðw1;w
0
1ÞðtÞ ¼ ðw2;w

0
2ÞðtÞ

then w1 ¼ w2 everywhere in D.

165Examples of optimal solutions



3. Examples of periodic minimizers

We have already mentioned that every f a M possesses a periodic minimizer [6],

[12] and that many integrands f in M possess a unique (up to translation) periodic

minimizer [9], [14]. One can ask if for any given natural number n there exists

an integrand which possesses exactly (up to translation) n periodic minimizers

and, moreover, if there exists an integrand with continuum di¤erent periodic

minimizers. In this section we construct an example of an integrand which an-

swers these questions in a‰rmative.

We proceed the construction of an example with three simple lemmas.

Note that for each pair of real numbers d2 > d1 > 0 there is Cl-function

f : R1 ! ½0; 1� such that

fðxÞ ¼ 1 if jxja d1;

1 > fðxÞ > 0 if d1 < jxj < d2;

fðxÞ ¼ 0 if jxjb d2;

and if

cðxÞ ¼ 1� fðxÞ; x a R1;

then c a Cl and

cðxÞ ¼ 0; x a ½�d1; d1�;
0 < cðxÞ < 1 if jxj a ðd1; d2Þ;

cðxÞ ¼ 1 if jxjb d2:

Now it is not di‰cult to prove the following auxiliary result.

Lemma 3.1. Let 0a d1 < d2. Then there is a Cl-function f : R1 ! ½0; 1� such
that

fx a R1 j fðxÞ ¼ 0g ¼ ½d1; d2�;

fðxÞa 1 for all x a R1 and fðxÞ ¼ 1 if jxj is large enough.

Lemma 3.2. Let 0a d1 < d2. Then there is a Cl-function c : R1 ! ½0;lÞ such
that fx a R1 jcðxÞ ¼ 0g ¼ ½d1; d2� and cðxÞ=x2 ! l as jxj ! l.

Proof. Let f be as guaranteed in Lemma 3.1. In order to prove the lemma it is

su‰cient to define

cðxÞ ¼ fðxÞðx4 þ 1Þ; x a R1: r
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Lemma 3.3. Let kb1 be an integer and let li ¼ ½ci; di�, i ¼ 1; . . . ; k,
where 0a ciadi for all i ¼ 1; . . . ; k such that liB lj ¼ j for all integers
i; j a ½1; . . . ; k� satisfying iA j. Then there exists a Cl-function f : R1 !
½0;lÞ such that fðxÞ=x2 ! l as jxj ! l and fx a R1 j fðxÞ ¼ 0g ¼ 6k

i¼1
li.

Proof. Let i a f1; . . . ; kg. We define ci : R
1 ! ½0;lÞ as follows. If di > ci, then

by Lemma 3.2 there is ci : R
1 ! ½0;lÞ a Cl such that

fx a R1 jciðxÞ ¼ 0g ¼ li; ciðxÞ=x2 ! l as jxj ! l:

If ci ¼ di then set ciðxÞ ¼ ðx� ciÞ4 for all x a R1. Put

fðxÞ ¼
Yk
i¼1

fiðxÞ; x a R1:

It is not di‰cult to see that the lemma holds with the function f. r

Construction of an integrand. Let k be a natural number and, for all

i ¼ 1; . . . ; k, let li ¼ ½ci; di�, 0a ci a di, be such that li B lj ¼ j for all integers

i; j a f1; . . . ; kg with iA j.

We construct an integrand f with the following properties:

(i) for each s a 6k

i¼1 li the function vsðtÞ ¼ s1=2 sin t, t a R1 is a periodic mini-

mizer;

(ii) for each periodic minimizer v there exists s a 6k

i¼1
li such that v is a trans-

lation of vs.

By Lemma 3.3 there is a function f : R1 ! ½0;lÞ a Cl such that

fðxÞ=x2 ! l as jxj ! l

and

fx a R1 j fðxÞ ¼ 0g ¼ 6
k

i¼1

li: ð3:1Þ

Define

f ðw; p; rÞ ¼ fðw2 þ p2Þ þ ðwþ rÞ2; ðw; p; rÞ a R3: ð3:2Þ

Clearly there is c0 > 0 such that fðxÞb 16x2 � c0 for all x a R1. Then

167Examples of optimal solutions



f ðw; p; rÞb�c0 þ 16ðw2 þ p2Þ2 þ w2 þ r2 þ 2wr

b�c0 þ 16ðw2 þ p2Þ2 þ w2 þ r2 � ðr2=4þ 4w2Þ

b�c0 þ 3=4r2 � 3w2 þ 16w4 þ 16p4

b 3r2=4� c0 þ 10w4 � 3

for any ðw; p; rÞ a R3. This implies that f a Mða; b; g; aÞ where g ¼ 2,

a3 a ð0; 3=4Þ, 1 < aa 4,

minfa; gg > bb 1;

a2 > 0, a1 a ð0; 10Þ, a4 > 3þ c0. Clearly mð f Þb 0.

We show that the property (i) holds. Let i a f1; . . . ; kg and s a ½ci; di�. Con-

sider the function

vsðtÞ :¼ s1=2 sin t; t a R1: ð3:3Þ

Clearly, f
�
vsðtÞ; v 0sðtÞ; v 00s ðtÞ

�
¼ 0 for all t a R1 and thus vs is a periodic ð f Þ-

minimizer. This implies that

mð f Þ ¼ 0: ð3:4Þ

Let us show that the property (ii) hold. Assume that v a W
2;1
loc ðR1Þ is a peri-

odic ð f Þ-minimizer. Then, by (3.2) and (3.4),

f
�
vðtÞ; v 0ðtÞ; v 00ðtÞ

�
¼ 0

for almost all t a R. Fix a real number t0 such that

f
�
vðt0Þ; v 0ðt0Þ; v 00ðt0Þ

�
¼ 0:

Combined with (3.2) this implies that

f
�
vðt0Þ2 þ

�
v 0ðt0Þ

��2� ¼ 0:

It is clear that in view of (3.1) there exist i a f1; . . . ; kg and s a ½ci; di� such that

vðt0Þ2 þ
�
v 0ðt0Þ

�2 ¼ s:

Therefore there exists t a R1 (depending only on s and t0) such that Xvðt0Þ ¼
Xvsðt0 þ tÞ and, by Proposition 2.9, vðtÞ ¼ vsðtþ tÞ for every t. Hence the proper-

ties (i) and (ii) hold.
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It is easy to see that

pðxÞb 0 for all x a R2 ð3:5Þ

and that for each i a f1; . . . kg, each s a ½ci; di� and each z a fXvsðtÞ j t a R1g we

have

pðzÞ ¼ 0: ð3:6Þ

Proposition 3.4. Let v a W
2;1
loc ðR1Þ be an ð f Þ-perfect function such that

lim inf
t!�l

jXvðtÞj < l:

Then there is s a 6k

i¼1 li such that v is a translation of vs.

Proof. By Proposition 2.6 (i),

supfjXvðtÞj j t a R1g < l:

Together with (2.4), the assumption that v is ð f Þ-perfect, the continuity of p and

(3.4), this implies that

supfIð�T ;T ; vÞ jT a ð0;lÞg < l:

When combined with (3.2) the inequality above implies that for each e > 0 there

exist TðeÞ > 0 such that for each s2 > s1bTðeÞ and each s1 < s2 < �TðeÞ,

I
�
ðs1; s2Þ; v

�
a e; I

�
ðs1; s2Þ; v

�
a e:

Let z0; z1 a R2 be such that

z0 ¼ lim
i!l

XvðtiÞ; z1 ¼ lim
i!l

XvðsiÞ; ð3:7Þ

where ti ! l as i ! l, si ! �l as i ! l.

Then using the standard arguments of our theory and the lower semicontinuity

of integral functionals [1] (see, e.g., Proposition 2.3 of [11]) we obtain that there

exists u0; u1 a W
2;1
loc ðR1Þ such that

Xu0ð0Þ ¼ z0; Xu1ð0Þ ¼ z1;

f
�
uiðtÞ; u 0

i ðtÞ; u 00
i ðtÞ

�
¼ 0 for a:e: t a R1; i ¼ 1; 2:

Together with (3.1)–(3.3) and (3.6) this implies that
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f
�
uiðtÞ2 þ

�
u 0
i ðtÞ

�2� ¼ 0; t a R1; i ¼ 1; 2;

z0; z1 a 6
k

i¼1

6
s A ½ci ;di �

fXvsðtÞ j t a R1g;

and

pðz0Þ; pðz1Þ ¼ 0:

Together with (2.4), the assumptions of the proposition, (3.7) and (3.2) this implies

that

lim
i!l

I
�
ðsi; tiÞ; v

�
¼ lim

i!l
p
�
XvðsiÞ

�
� p

�
XvðtiÞ

�
¼ pðz0Þ � pðz1Þ ¼ 0

and

f
�
vðtÞ; v 0ðtÞ; v 00ðtÞ

�
¼ 0 for a:e: t a R1:

In view of (3.2),

f
�
vðtÞ2 þ

�
v 0ðtÞ

�2� ¼ 0

for all t a R1. Combined with (3.1) and (3.3) this implies that

fXvðtÞ j t a R1gH 6
k

i¼1

6
s A ½ci ;di �

fXvsðtÞ j t a R1g:

Together with Proposition 2.9 this implies the validity of the proposition. r

4. An example of a c-optimal function which is not perfect

For any v a W
2;1
loc ðR1Þ put

WðvÞ ¼ fXvðtÞ j t a R1g ¼
��

vðtÞ; v 0ðtÞ
�
j t a R

�
:

In this section we construct an example of an integrand f a Mða; b; g; aÞ,
where a ¼ ða1; a2; a3; a4Þ a R4, ai > 0, i ¼ 1; 2; 3; 4 and a, b, g are real numbers

such that 1a b < a; ba g and g > 1. This integrand f will have the following

properties:

(i) there exist two periodic minimizers v1 and v2 such that Wðv1ÞBWðv2Þ ¼ j;

(ii) every ð f Þ-perfect function w on R1 which satisfies lim inf t!�ljðw;w 0ÞðtÞj < l
is a translation of one of the periodic minimizers v1 and v2;
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(iii) there exists a c-optimal minimizer w on R1 such that

fðw;w 0ÞðtÞ j t a R1gn
�
Wðv1ÞAWðv2Þ

�
A j:

In view of (ii) and (iii) the integrand f possesses the c-optimal minimizer w

which is not perfect.

Fix two real numbers c1 and c2 such that 0a c1 < c2 and define

fðxÞ ¼ ðx� c1Þ4ðx� c2Þ4; x a R1;

f ðw; p; rÞ ¼ fðw2 þ p2Þ þ ðwþ rÞ2; ðw; p; rÞ a R3:

Note that the integrand f belongs to the family of integrands introduced in

Section 3 with k ¼ 2, di ¼ ci, i ¼ 1; 2.

Consider the functions

viðtÞ ¼ c
1=2
i sin t; t a R1;

where i ¼ 1; 2. As it was shown in Section 3, mð f Þ ¼ 0, vi is a periodic ð f Þ-
minimizer for i ¼ 1; 2, pðxÞb 0 for all x a R2 and pðzÞ ¼ 0 for each z a
Wðv1ÞAWðv2Þ.

It is clear that Proposition 3.4 holds with the integrand f .

Proposition 4.1. There exists a c-optimal minimizer v on R1 such that

fðv; v 0ÞðtÞ j t a R1gn
�
Wðv1ÞAWðv2Þ

�
A j:

Proof. Consider a sequence of positive numbers Ti ! l as i ! l. For each in-

teger ib 1 there exists wi a W 2;1ð�Ti;TiÞ such that

ðwi;w
0
i Þð�TiÞ ¼ ðc1=21 ; 0Þ; ðwi;w

0
i ÞðTiÞ ¼ ðc1=22 ; 0Þ ð4:1Þ

and

I
�
ð�Ti;TiÞ;wi

�
¼ U2Ti

�
ðc1=21 ; 0Þ; ðc1=22 ; 0Þ

�
: ð4:2Þ

By the mean value theorem for each integer ib 1 there exists si a ð�Ti;TiÞ
such that

jðwi;w
0
i ÞðsiÞj ¼ ðc1=21 þ c

1=2
2 Þ=2: ð4:3Þ

By (4.1), (4.3) and Proposition 2.2 of [9] there exists M0 > 0 such

supfjðwi;w
0
i ÞðtÞj j t a ½�Ti;Ti�g < M0; ib 1: ð4:4Þ
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We will show that si þ Ti ! l. Let us assume the converse. Then, extracting a

subsequence if necessary, we can assume without loss of generality that there exists

limi!l si þ Ti < l. For each integer ib 1 define ~wwi a W 2;1ð0;TiÞ by

~wwiðtÞ ¼ wiðt� TiÞ; t a ½0; 2Ti�: ð4:5Þ

Clearly

ð~wwi; ~ww
0
i Þðsi þ TiÞ ¼ ðwi;w

0
i ÞðsiÞ;

jð~wwi; ~ww
0
i Þðsi þ TiÞj ¼ ðc1=22 þ c

1=2
1 Þ=2; ib 1:

ð4:6Þ

Using the standard arguments of our theory based on (4.1), (4.2), (4.4), continuity

of the function Utð� ; �Þ and Lemma 2.2 of [9] we can show that there exist a sub-

sequence f~wwikg
l
k¼1 and w a W

2;1
loc ½0;lÞ such that for each integer nb 1,

~wwik ! w as k ! l weakly in W 2; gð0; nÞ; ð4:7Þ
ð~wwik ; ~ww

0
ik
Þ ! ðw;w 0Þ uniformly on ½0; n�: ð4:8Þ

Relations (4.8), (4.4), (4.5), (4.1) and (4.6) imply that

jðw;w 0ÞðtÞjaM0; t a ½0;lÞ;
�
wð0Þ;w 0ð0Þ

�
¼ ðc1=21 ; 0Þ; ð4:9Þ��ðw;w 0Þ

�
lim
i!l

ðsi þ TiÞ
��� ¼ ðc1=21 þ c

1=2
2 Þ=2: ð4:10Þ

By (4.1), (4.2), (4.7), (4.8), continuity of the function Utð� ; �Þ and lower semiconti-

nuity of the integral functional [1], w is a c-optimal minimizer. By (4.9),

ðw;w 0Þð0Þ ¼ ðv1; v 01Þðp=2Þ ¼ ðv1; v 01Þðp=2þ 2pÞ:

By of Theorem 2.7 (b), wðtÞ ¼ v1ðtþ p=2Þ for all t a R1. This contradicts to

(4.10). Therefore si þ Ti ! l as i ! l.

Using the fact that f ðw; p; rÞ ¼ f ðw;�p; rÞ for all ðw; p; rÞ a R3 and using the

same arguments for the functions wiðtÞ ¼ wið�tÞ, t a ½�Ti;Ti�, ib 1, we obtain

that Ti � si ! l as i ! l. Thus we have shown that

lim
i!l

ðsi þ TiÞ ¼ l and lim
i!l

ðTi � siÞ ¼ l: ð4:11Þ

For each integer ib 1 define ui a W 2;1ð�Ti � si;Ti � siÞ by

uiðtÞ ¼ wiðtþ siÞ; t a ½�Ti � si;Ti � si�: ð4:12Þ

Using again the standard arguments of our theory based on (4.1), (4.2), (4.5), con-

tinuity of the function Utð� ; �Þ and Lemma 2.2 of [9] we can show that there exists

a subsequence fuikg
l
k¼1 and u a W

2;1
loc ðR

1Þ such that for each integer nb 1,
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uik ! u as k ! l weakly in W 2; gð�n; nÞ; ð4:13Þ
ðuik ; u 0

ik
Þ ! ðu; u 0Þ uniformly on ½�n; n�: ð4:14Þ

Relations (4.14), (4.4), (4.3) and (4.12) imply that

jðu; u 0ÞðtÞjaM0; t a R1; jðu; u 0Þð0Þj ¼ ðc1=21 þ c
1=2
2 Þ=2: ð4:15Þ

By (4.1), (4.2), (4.13), (4.14), continuity of the function Utð� ; �Þ and and lower

semicontinuity of the integral functional, u is a c-optimal minimizer. By (4.15),

ðu; u 0Þð0Þ B Wðv1ÞAWðv2Þ. Proposition 4.1 is proved. r
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