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Abstract. In this article we are concerned with the space of tempered ultrahyperfunctions
corresponding to a proper open convex cone. A holomorphic extension theorem (the ver-
sion of the celebrated Edge-of-the-Wedge Theorem) will be given for this setting. As appli-
cation, a version is also given of the principle of determination of an analytic function by its
values on a non-empty open real set. The article finishes with the generalization of holo-
morphic extension theorem à la Martineau.
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1. Introduction

Sebastião e Silva [17], [18] and Hasumi [7] introduced the space of tempered ultra-

distributions, which has been studied by many authors, among others we refer the

reader to [23], [11], [12], [2], [3], [4], [19], [20], [1], [15], [6]. Here, as Morimoto [11]

and [12], we shall refer to the tempered ultradistributions as tempered ultrahyper-

functions in order to distinguish them from various other classes of ultradistribu-

tions which have been described as tempered (see, for example, Pathak [13] and

Pilipovic [14]). Tempered ultrahyperfunctions are the strong dual of the space of

test functions of rapidly decreasing entire functions in any horizontal strip. While

Sebastião e Silva [17] used extension procedures for the Fourier transform com-

bined with holomorphic representations and considered the 1-dimensional case,

Hasumi [7] used duality arguments in order to extend the notion of tempered ul-

trahyperfunctions for the case of n dimensions (see also [18], Section 11). In a

brief tour, Marimoto [11] gave some more precise informations concerning the
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work of Hasumi. More recently, the relation between the tempered ultrahyper-

functions and Schwartz distributions and some major results, as the kernel theo-

rem and the Fourier–Laplace transform have been established by Brüning–

Nagamachi in [1]. Earlier, some precisions on the Fourier–Laplace transform

theorem for tempered ultrahyperfunctions were given by Carmichael [2] (see also

[6]), by considering the theorem in its simplest form, i.e., the equivalence between

support properties of a distribution in a closed convex cone and the holomorphy

of its Fourier–Laplace transform in a suitable tube with conical basis. In this

more general setting, which includes the results of Sebastião e Silva and Hasumi

as special cases, Carmichael obtained new representations of tempered ultrahyper-

functions which were not considered in [17], [18], [7].

The purpose of this article is to prove the Edge-of-the-Wedge Theorem for the

setting of tempered ultrahyperfunctions corresponding to a proper open convex

cone. This classical theorem in complex analysis, discovered by theoretical phys-

icists in 1950s [22], deals with the question about the principle of holomorphic

continuation of functions of several complex variables, which arose in physics in

the study of the Wightman functions and Green functions, or in connection with

the dispersion relations in quantum field theory. It should be mentioned that

other versions of the theorem for tempered ultrahyperfunctions can be found in

[12], [20]. Our approach to this problem is di¤erent from that taken in [12], [20].

Our construction parallels that of Carmichael [2], [4], [3] and, in particular, the

proof of the Edge-of-the-Wedge Theorem is inspired by Carmichael’s work [3].

As an immediate application of the Edge-of-the-Wedge Theorem, we give also a

proof of the principle of determination of an analytic function by its values on a

non-empty open real set. We finish with a generalized version of holomorphic ex-

tension theorem à la Martineau.

We note that the results obtained here are of interest in the construction and

study of quasilocal quantum field theories (where the fields are localizable only in

regions greater than a certain scale of nonlocality), since Brüning–Nagamachi [1]

have recently shown the importance of tempered ultrahyperfunctions for quantum

field theories with a fundamental length. This is the case of a quantum field theory

in non-commutative spacetimes [5].

2. Notation and definitions

The following multi-index notation is used without further explanation. Let Rn

(resp. Cn ¼ Rn þ iRn) be the real (resp. complex) n-space whose generic points

are denoted by x ¼ ðx1; . . . ; xnÞ (resp. z ¼ ðz1; . . . ; znÞ) such that xþ y ¼
ðx1 þ y1; . . . ; xn þ ynÞ, lx ¼ ðlx1; . . . ; lxnÞ, xb 0 means that x1b 0; . . . ; xnb 0,

3x; y4 ¼ x1y1 þ � � � þ xnyn and jxj ¼ jx1j þ � � � þ jxnj. Moreover, we define a ¼
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ða1; . . . ; anÞ a Nn
o , where No is the set of non-negative integers, such that the

length of a is the corresponding l1-norm jaj ¼ a1 þ � � � þ an, aþ b denotes

ða1 þ b1; . . . ; an þ bnÞ, ab b means ða1b b1; . . . ; anb bnÞ, a! ¼ a1! . . . an!, xa ¼
xa1
1 . . . xan

n , and

DajðxÞ ¼ qjajjðx1; . . . ; xnÞ
qxa1

1 qxa1
2 . . . qxan

n
:

Let W be a set in Rn. Then we denote by W� the interior of W and by W the closure

of W. For r > 0, we denote by Bðxo; rÞ ¼ fx a Rn j jx� xoj < rg a open ball and

by B½xo; r� ¼ fx a Rn j jx� xoja rg a closed ball, with center at point xo and of

radius r, respectively.

We consider two n-dimensional spaces—x-space and x-space—with the Four-

ier transform defined

f̂f ðxÞ ¼ F½ f ðxÞ�ðxÞ ¼
ð
Rn

f ðxÞei3x;x4d nx;

while the Fourier inversion formula is

f ðxÞ ¼ F�1½ f̂f ðxÞ�ðxÞ ¼ 1

ð2pÞn
ð
Rn

f̂f ðxÞe�i3x;x4d nx:

The variable x will always be taken real while x will also be complexified—when it

is complex, it will be noted z ¼ xþ iy. The above formulas, in which we employ

the symbolic ‘‘function notation’’, are to be understood in the sense of distribution

theory.

3. Tempered ultrahyperfunctions

Since the theory of ultrahyperfunctions is not too well known, we shall introduce

briefly in this section some definitions and basic properties of the tempered ultra-

hyperfunction space of Sebastião e Silva [17], [18] and Hasumi [7] (we indicate the

References for more details) used throughout the article. To begin with, we shall

consider the function

hKðxÞ ¼ sup
x AK

3x; x4; x a Rn;

where K is a compact set in Rn. One calls hKðxÞ the supporting function of K . We

note that hKðxÞ < l for every x a Rn since K is bounded. For sets K ¼ ½�k; k�n,
0 < k < l, the supporting function hKðxÞ can be easily determined:
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hKðxÞ ¼ sup
x AK

3x; x4 ¼ kjxj; x a Rn; jxj ¼
Xn

i¼1

jxij:

Let K be a convex compact subset of Rn, then HbðRn;KÞ (b stands for bounded)

defines the space of all functions in ClðRnÞ such that ehK ðxÞDajðxÞ is bounded in

Rn for any multi-index a. One defines in HbðRn;KÞ seminorms

kjkK ;N ¼ sup
x ARn

aaN

fehK ðxÞjDajðxÞjg < l; N ¼ 0; 1; 2; . . . :

If K1 HK2 are two compact convex sets, then hK1
ðxÞa hK2

ðxÞ, and thus the

canonical injection HbðRn;K2Þ ,! HbðRn;K1Þ is continuous. Let O be a convex

open set of Rn. To define the topology of HðRn;OÞ it su‰ces to let K range

over an increasing sequence of convex compact subsets K1;K2; . . . contained in

O such that Ki HK�
iþ1 and O ¼ 6l

i¼1 Ki for each i ¼ 1; 2; . . . . Then the space

HðRn;OÞ is the projective limit of the spaces HbðRn;KÞ according to restriction

mappings above, i.e.,

HðRn;OÞ ¼ lim proj
KHO

HbðRn;KÞ;

where K runs through the convex compact sets contained in O.

Theorem 3.1 ([7], [11], [1]). The space DðRnÞ of all Cl-functions on Rn with

compact support is dense in HðRn;KÞ and HðRn;OÞ. The space HðRn;RnÞ is

dense in HðRn;OÞ and in HðRn;KÞ, and HðRm;RmÞnHðRn;RnÞ is dense in

HðRmþn;RmþnÞ.

From Theorem 3.1 we have the following injections [11]:

H 0ðRn;KÞ ,! H 0ðRn;RnÞ ,! D 0ðRnÞ;

and

H 0ðRn;OÞ ,! H 0ðRn;RnÞ ,! D 0ðRnÞ:

Definition 3.2. The dual space H 0ðRn;OÞ of HðRn;OÞ is the space of distribu-

tions of exponential growth, V , represented as a finite order derivative of con-

tinuous functions of exponential growth

V ¼ D
g
x½e

hK ðxÞgðxÞ�;

where gðxÞ is a bounded continuous function.
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In the space Cn of n complex variables zi ¼ xi þ iyi, 1a ia n, we denote by

TðWÞ ¼ Rn þ iWHCn the tubular set of all points z such that yi ¼ Im zi belongs

to the domain W, i.e., W is a connected open set in Rn called the basis of the tube

TðWÞ. Let K be a convex compact subset of Rn. Then Hb

�
TðKÞ

�
defines the

space of all continuous functions j on TðKÞ which are holomorphic in the interior

TðK�Þ of TðKÞ such that the estimate

jjðzÞjaMK ;NðjÞð1þ jzjÞ�N ð1Þ

is valid. The best possible constants in (1) are given by a family of seminorms in

Hb

�
TðKÞ

�

kjkK ;N ¼ inf
�
MK ;NðjÞ j sup

z ATðKÞ
fð1þ jzjÞN jjðzÞjg < l;N ¼ 0; 1; 2; . . .

�
: ð2Þ

If K1 HK2 are two convex compact sets, we have that the canonical injection

Hb

�
TðK2Þ

�
,! Hb

�
TðK1Þ

�
; ð3Þ

is continuous.

Given that the spaces Hb

�
TðKiÞ

�
are Fréchet spaces, with topology defined by

the seminorms (2), the space H
�
TðOÞ

�
is characterized as a projective limit of

Fréchet spaces:

H
�
TðOÞ

�
¼ lim proj

KHO

Hb

�
TðKÞ

�
;

where K runs through the convex compact sets contained in O and the projective

limit is taken following the restriction mappings above.

Let K be a convex compact set in Rn. Then the space H
�
TðKÞ

�
is character-

ized as a inductive limit

H
�
TðKÞ

�
¼ lim ind

K1IK
Hb

�
TðK1Þ

�
;

where K1 runs through the convex compact sets such that K is contained in the

interior of K1 and the inductive limit is taken following the restriction map-

pings (3).

For any element U a H 0, its Fourier transform is defined to be a distribution V

of exponential growth such that the Parseval-type relation

3V ; j4 ¼ 3U ;c4; j a H; c ¼ F½j� a H;

holds. In the same way, the inverse Fourier transform of a distribution V of ex-

ponential growth is defined by the relation
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3U ;c4 ¼ 3V ; j4; c a H; j ¼ F�1½c� a H:

It follows from the Fourier transform and Theorem 3.1 the

Theorem 3.3 ([11], [1]). H
�
TðRnÞ

�
is dense in H

�
TðOÞ

�
and in H

�
TðKÞ

�
, and

H
�
TðRmþnÞ

�
is dense in H

�
TðOÞ

�
.

Proposition 3.4 ([11]). If f a HðRn;OÞ, the Fourier transform of f belongs to the

space H
�
TðOÞ

�
, for any open convex non-empty set OHRn. By the dual Fourier

transform H 0ðRn;OÞ is topologically isomorphic with the space H 0�Tð�OÞ
�
.

Definition 3.5. A tempered ultrahyperfunction is a continuous linear functional

defined on the space of test functions H
�
TðRnÞ

�
of rapidly decreasing entire func-

tions in any horizontal strip.

The space of all tempered ultrahyperfunctions is denoted by UðRnÞ. As a mat-

ter of fact, these objects are equivalence classes of holomorphic functions defined

by a certain space of functions which are analytic in the 2n octants in Cn and

represent a natural generalization of the notion of hyperfunctions on Rn but are

non-localizable. The space UðRnÞ is characterized in the following way [7]:

Let Ho be the space of all functions f ðzÞ such that (i) f ðzÞ is analytic for

fz a Cn j jIm z1j > p; jIm z2j > p; . . . ; jIm znj > pg, (ii) f ðzÞ=zp is bounded contin-

uous in fz a Cn j jIm z1jf p; jIm z2jf p; . . . ; jIm znjf pg, where p ¼ 0; 1; 2; . . .

depends on f ðzÞ and (iii) f ðzÞ is bounded by a power of z, j f ðzÞjaCð1þ jzjÞN ,
where C and N depend on f ðzÞ. Define the kernel of the mapping f : H

�
TðRnÞ

�
! C by P, the set of all z-dependent pseudo-polynomials, z a Cn (a pseudo-

polynomial is a function of z of the form
P

s z
s
j Gðz1; . . . ; zj�1; zjþ1; . . . ; znÞ, such

that Gðz1; . . . ; zj�1; zjþ1; . . . ; znÞ a Ho). Then f ðzÞ a Ho belongs to the kernel P

if and only if 3 f ðzÞ;cðxÞ4 ¼ 0, with cðxÞ a H
�
TðRnÞ

�
and x ¼ Re z. The space

of tempered ultrahyperfunctions is the quotient space U ¼ Ho=P. Thus, we have

the

Theorem 3.6 (Hasumi [7], Proposition 5). The space of tempered ultrahyperfunc-

tions U is algebraically isomorphic to the space of generalized functions H 0.

4. The space of holomorphic functions Ho
c

We start by introducing some terminology and simple facts concerning cones. An

open set CHRn is called a cone if Rþ � CHC. A cone C is an open connected

cone if C is an open connected set. Moreover, C is called convex if C þ CHC

and proper if it contains no any straight line. A cone C 0 is called compact in

C—we write C 0 TC—if the projection prC 0 ¼def C 0BSn�1 H prC ¼def CBSn�1,
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where Sn�1 is the unit sphere in Rn. Being given a cone C in y-space, we associate

with C a closed convex cone C � in x-space which is the set C � ¼ fx a Rn j
3x; y4b 0 for all y a Cg. The cone C � is called the dual cone of C. In the sequel,

it will be su‰cient to assume for our purposes that the open connected cone C in

Rn is an open convex cone with vertex at the origin and proper. By TðCÞ we will
denote the set Rn þ iCHCn. If C is open and connected, TðCÞ is called the tu-

bular radial domain in Cn, while if C is only open TðCÞ is referred to as a tubular

cone. In the former case we say that f ðzÞ has a boundary value U ¼ BV
�
f ðzÞ

�
in

H 0 as y ! 0, y a C or y a C 0 TC, respectively, if for all c a H the limit

3U ;c4 ¼ lim
y!0

y AC or C 0

ð
Rn

f ðxþ iyÞcðxÞd nx

exists. An important example of tubular radial domain used in quantum field

theory is the tubular radial domain with the forward light-cone, Vþ, as its basis

Vþ ¼
n
z a Cn j Im z1 >

�Xn

i¼2

Im2 zi

�1=2
; Im z1 > 0

o
:

We will deal with tubes defined as the set of all points z a Cn such that

TðCÞ ¼ fxþ iy a Cn j x a Rn; y a C; jyj < dg;

where d > 0 is an arbitrary number.

Let C be a proper open convex cone, and let C 0 TC. Let B½0; r� denote a

closed ball of the origin in Rn of radius r, where r is an arbitrary positive real

number. Denote TðC 0; rÞ ¼ Rn þ i
�
C 0nðC 0BB½0; r�Þ

�
. We are going to introduce

a space of holomorphic functions which satisfy a certain estimate according to

Carmichael [2]. We want to consider the space consisting of holomorphic func-

tions f ðzÞ such that

j f ðzÞjaMðC 0Þð1þ jzjÞNehC � ðyÞ; z a TðC 0; rÞ; ð4Þ

where hC �ðyÞ ¼ supx AC �3x; y4 is the supporting function of C �, MðC 0Þ is a con-

stant that depends on an arbitrary compact cone C 0 and N is a non-negative real

number. The set of all functions f ðzÞ which are holomorphic in TðC 0; rÞ and sat-

isfy the estimate (4) will be denoted by Ho
c .

Remark 4.1. The space of functions Ho
c constitutes a generalization of the space

A i
o of Sebastião e Silva [17] and the space ao of Hasumi [7] to arbitrary tubular

radial domains in Cn.
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Lemma 4.2 ([2], [6]). Let C be an open convex cone, and let C 0 TC. Let

hðxÞ ¼ ekjxjgðxÞ, x a Rn, be a function with support in C �, where gðxÞ is a

bounded continuous function on Rn. Let y be an arbitrary but fixed point of�
C 0nðC 0BB½0; r�Þ

�
. Then e�3x;y4hðxÞ a L2, as a function of x a Rn.

Definition 4.3. We denote by H 0
C � ðRn;OÞ the subspace of H 0ðRn;OÞ of distribu-

tions of exponential growth with support in the cone C �:

H 0
C � ðRn;OÞ ¼ fV a H 0ðRn;OÞ j suppðVÞJC �g:

Lemma 4.4 ([2], [6]). Let C be an open convex cone, and let C 0 TC. Let

V ¼ D
g
x½ehK ðxÞgðxÞ�, where gðxÞ is a bounded continuous function on Rn and

hKðxÞ ¼ kjxj for a convex compact set K ¼ ½�k; k�n. Let V a H 0
C � ðRn;OÞ. Then

f ðzÞ ¼ ð2pÞ�n3V ; e�i3x; z44 is an element of Ho
c .

5. The space of holomorphic functions Hc*
o

We now shall introduce another space of holomorphic functions whose elements

are analytic in a domain TðC 0Þ which is larger than TðC 0; rÞ and has boundary

values in Rn. The boundary values so obtained are of importance in the represen-

tation of vacuum expectation values in the case of a quantum field theory in non-

commutatives spacetimes [5].

Let C be a proper open convex cone, and let C 0 TC. Let Bð0; rÞ denote an

open ball of the origin in Rn of radius r, where r is an arbitrary positive real

number. Denote TðC 0; rÞ ¼ Rn þ i
�
C 0n

�
C 0BBð0; rÞ

��
. Throughout this section,

we consider functions f ðzÞ which are holomorphic in TðC 0Þ ¼ Rn þ iC 0 and which

satisfy the estimate (4), with B½0; r� replaced by Bð0; rÞ. We denote this space by

H�o
c . We note that H�o

c � Ho
c for any open convex cone C. Put Uc ¼ H�o

c =P,

that is, Uc is the quotient space of H
�o
c by set of pseudo-polynomials P.

Definition 5.1. The set Uc is the subspace of the tempered ultrahyperfunctions

generated by H�o
c corresponding to a proper open convex cone CHRn.

The following theorems will be important to us in the proof of Edge-of-the-

Wedge Theorem.

Theorem 5.2. Let C be an open convex cone, and let C 0 TC. Let V ¼ D
g
xhðxÞ,

where hðxÞ ¼ ehK ðxÞgðxÞ with gðxÞ being a bounded continuous function on Rn and

hKðxÞ ¼ kjxj for a convex compact set K ¼ ½�k; k�n. Let V a H 0
C � ðRn;OÞ. Then:

(i) f ðzÞ ¼ ð2pÞ�n3V ; e�i3x; z44 is an element of H�o
c ,

(ii) f f ðzÞ j y ¼ Im z a C 0 TC; jyjaQg is a strongly bounded set in H 0�TðOÞ
�
,

where Q is an arbitrarily but fixed positive real number,
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(iii) f ðzÞ ! F�1½V � a H 0�TðOÞ
�
in the strong (and weak) topology of H 0�TðOÞ

�
as y ¼ Im z ! 0, y a C 0 TC.

Theorem 5.3. Let f ðzÞ a H�o
c where C is an open convex cone. Then the distribu-

tion V a H 0
C � ðRn;OÞ has a uniquely determined inverse Fourier–Laplace transform

f ðzÞ ¼ ð2pÞ�n3V ; e�i3x; z44, which is holomorphic in TðC 0Þ and satisfies the estimate

(4), with B½0; r� replaced by Bð0; rÞ.

The Theorem 5.2 shows that functions in H�o
c have distributional boundary

values in H 0�TðOÞ
�
. Further, it shows that functions in H�o

c satisfy a strong

boundedness property in H 0�TðOÞ
�
. On the other hand, the Theorem 5.3 shows

that the functions f ðzÞ a H�o
c can be recovered as the (inverse) Fourier–Laplace

transform of the constructed distribution V a H 0
C � ðRn;OÞ. This result is a version

of the Paley–Wiener–Schwartz theorem in the tempered ultrahyperfunction set-

up.

Remark 5.4. It is important to note that in Theorems 5.2 and 5.3 we are consid-

ering the inverse Fourier–Laplace transform f ðzÞ ¼ ð2pÞ�n3V ; e�i3x; z44, in con-

trast to the Fourier–Laplace transform used in [2], [4].

Sketch of Proof of Theorem 5.2. In order to prove (i), we can proceed as in the

proof of [6], Lemma 2, and obtain the equality

f ðzÞ ¼ ð2pÞ�n3V ; e�i3x; z44; z a TðC 0; rÞ; ð5Þ

with B½0; r� replaced by Bð0; rÞ in the estimate (4). The equality (5) holds pointwise

for arbitrary compact subcones C 0 of C and for arbitrary r > 0. Since C is open,

for any y a C there is a compact subcone C 0 of C and a r > 0 such that

y a
�
C 0n

�
C 0BBð0; rÞ

��
. Hence any z a TðC 0Þ is in TðC 0; rÞ for some C 0 HC

and some r > 0. Thus we can conclude that ðiÞ is obtained from (5). The proofs

of (ii) and (iii) are similar to the proofs of the eqs. (35) and (36) in [2], Theorem 3.

r

Proof of Theorem 5.3. Consider

hyðxÞ ¼
ð
Rn

f ðzÞ
PðizÞ e

i3x; z4d nx; z a TðC 0; rÞ; ð6Þ

with hyðxÞ ¼ ekjxjgyðxÞ, where gðxÞ is a bounded continuous function on Rn and

PðizÞ ¼ ð�iÞjgjzg. By hypothesis f ðzÞ a H�o
c and satisfies (4), with B½0; r� replaced

by Bð0; rÞ. For this reason, for an n-tuple g ¼ ðg1; . . . ; gnÞ of non-negative integers
conveniently chosen, we obtain that
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���� f ðzÞ
PðizÞ

����aMðC 0Þð1þ jzjÞ�n�e
ehc� ðyÞ; ð7Þ

where n is the dimension and e is any fixed positive real number. This implies that

the function hyðxÞ exists and is a continuous function of x. Further, by using argu-

ments paralleling the analysis in [21], p. 225, and the Cauchy–Poincaré Theorem

[21], p. 198, we can show that the function hyðxÞ is independent of y ¼ Im z.

Therefore, we denote the function hyðxÞ by hðxÞ.
From (7) we have that f ðzÞ=PðizÞ a L2 as a function of x ¼ Re z a Rn,

y a C 0n
�
C 0BBð0; rÞ

�
. Hence, from (6) and the Plancherel theorem we have that

e�3x;y4hðxÞ a L2 as a function of x a Rn, and

f ðzÞ
PðizÞ ¼ F�1½e�3x;y4hðxÞ�ðxÞ; z a TðC 0; rÞ; ð8Þ

where the inverse Fourier transform is in the L2 sense. Here, Parseval’s equation

holds:

ð2pÞ�n

ð
Rn

je�3x;y4hðxÞj2d nx ¼
ð
Rn

���� f ðzÞ
PðizÞ

����
2

d nx:

In this case for the eq. (8) to be true, x must belong to the open half-space

fx a C � j 3x; y4 < 0g for y a C 0n
�
C 0BBð0; rÞ

�
, since by hypothesis f ðzÞ a H�o

c .

Then there is dðC 0Þ such that for y a C 0n
�
C 0BBð0; rÞ

�
we have 3x; y4a

�dðC 0Þjxj jyj. This justifies the negative sign in (8) (see Remark 5.4).

Now, if hðxÞ a H 0
C � ðRn;OÞ, then V ¼ D

g
xhðxÞ a H 0

C � ðRn;OÞ. Since C � is a reg-

ular set [16], pp. 98–99, it follows that suppðhÞ ¼ suppðVÞ. By Theorem 5.2,

3V ; e�i3x; z44 exists as a holomorphic function of z a TðC 0Þ and satisfies the esti-

mate (4), with B½0; r� replaced by Bð0; rÞ. A simple calculation yields that

ð2pÞ�n3V ; e�i3x; z44 ¼ PðizÞF�1½e�3x;y4hðxÞ�ðxÞ; z a TðC 0; rÞ: ð9Þ

In view of Lemma 4.2, the inverse Fourier transform can be interpreted in

L2 sense. Combining (8) and (9), we have f ðzÞ ¼ ð2pÞ�n3V ; e�i3x; z44 for

z a TðC 0; rÞ. Since r > 0 is arbitrary, this equality holds for each z a TðC 0Þ.
The uniqueness follows from the isomorphism of the dual Fourier transform, ac-

cording to Proposition 3.4. This completes the proof of the theorem. r

6. Edge-of-the-Wedge Theorem

In what follows, we formulate a version of the Edge-of-the-Wedge Theorem for

the space of the tempered ultrahyperfunctions in its simplest form: the common
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analytic continuation of two functions f1ðzÞ and f2ðzÞ holomorphic respectively in

the two tubes Rn þ iCj, j ¼ 1; 2, where each Cj is an open convex cone.

Theorem 6.1 (Edge-of-the-Wedge Theorem). Let C be an open cone of the form

C ¼ C1AC2, where each Cj, j ¼ 1; 2, is a proper open convex cone. Denote by

chðCÞ the convex hull of the cone C. Assume that the distributional boundary

values of two holomorphic functions fjðzÞ a H�o
cj

ð j ¼ 1; 2Þ agree, that is, U ¼
BV

�
f1ðzÞ

�
¼ BV

�
f2ðzÞ

�
, where U a H 0�TðOÞ

�
in accordance with the Theorem

5.2. Then there exists FðzÞ a Ho
chðCÞ such that F ðzÞ ¼ fjðzÞ on the domain of defini-

tion of each fjðzÞ, j ¼ 1; 2.

Proof. By hypothesis BV
�
f1ðzÞ

�
¼ BV

�
f2ðzÞ

�
in H 0�TðOÞ

�
, and we call this

common value U . By Theorem 5.2, we have that BV
�
fjðzÞ

�
¼ F�1½Vj �, j ¼ 1; 2.

On the other hand, this implies that Vj ¼ F
�
BV

�
fjðzÞ

�	
. But, according to The-

orem 5.3 there exists a unique Vj a H 0
C �

j
ðRn;OÞ, j ¼ 1; 2, such that fjðzÞ ¼

ð2pÞ�n3Vj; e
�i3x; z44. Using these facts we have that V1 ¼ V2 in H 0

C � ðRn;OÞ. We

call this common value V and thus have U ¼ F�1½V �. By Theorem 2 in

[3], suppðVÞJ fx a Rn j 3x; y4b 0 for all y a chðCÞg, then by Definition 4.3

V a H 0
ðchðCÞÞ� ðR

n;OÞ.
We now put

F ðzÞ ¼ ð2pÞ�n3V ; e�i3x; z44; z a T
�
chðCÞ

�
¼ Rn þ i chðCÞ: ð10Þ

with V a H 0
ðchðCÞÞ� ðR

n;OÞ. Since chðCÞ is an open convex cone, we have by ex-

actly the proof of [6], Lemma 2, that FðzÞ a Ho
chðCÞ. Further, using the fact that

V1 ¼ V2 ¼ V , from Theorem 5.2 we have that

fjðzÞ ¼ ð2pÞ�n3Vj; e
�i3x; z44 ¼ ð2pÞ�n3V ; e�i3x; z44; z a TðC 0

j Þ: ð11Þ

Thus combining (10) and (11) we have that F ðzÞ coincides with fjðzÞ, j ¼ 1; 2, on

the domain of definition of each fjðzÞ. r

Corollary 6.2. Suppose that the hypotheses of Theorem 6.1 hold with C1 and C2

opposite to each other. Then FðzÞ is a polynomial in z a Cn.

Proof. Similar to the proof of [3], Corollary 1. r

The following theorem is an immediate consequence of the Edge-of-the-Wedge

Theorem and reflects a of the most important principle governing the behaviour of

analytic functions, that is, the determination of a function by its values on a non-

empty open real set.
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Theorem 6.3. Let C be some open convex cone. Let f ðzÞ a H�o
c . If the distribu-

tional boundary value BV
�
f ðzÞ

�
of f ðzÞ in the sense of tempered ultrahyperfunc-

tions vanishes, then the function f ðzÞ itself vanishes.

Proof. Define gðxþ iyÞ ¼ f ðx� iyÞ. The function gðzÞ is holomorphic in

TðC 0Þ ¼ Rn � iC 0, satisfies (4), with B½0; r� replaced by Bð0; rÞ, in TðC 0; rÞ ¼
Rn � i

�
C 0n

�
C 0BBð0; rÞ

��
, and approaches 0 as y ! 0. Thus we can apply the

Edge-of-the-Wedge Theorem to f and g. Since ch
�
CA ð�CÞ

�
¼ Rn, by Corollary

6.2, F ðzÞ, the common analytic continuation of f and g, is a polynomial in z a Cn.

But by hypothesis BV
�
F ðzÞ

�
vanishes as a distribution and therefore as a function

together with f ðzÞ identically. r

7. The Martineau Edge-of-the-Wedge Theorem for tempered
ultrahyperfunctions

The great advance in the theory of the Edge-of-the-Wedge Theorem came with the

realization due to Martineau [8], [9], [10], who was able to prove its version for the

case involving more than two functions holomorphic respectively in the tubes

Rn þ iCj, j ¼ 1; . . . ;m. In what follows, we formulate a version of the Marti-

neau’s Edge-of-the-Wedge Theorem for the space of the tempered ultrahyperfunc-

tions.

Theorem 7.1 (Generalized Edge of the Wedge Theorem). Let C1; . . . ;Cm be

proper open convex cones in Rn. Given any set of m open convex cones C 0
j such

that C 0
j TCj, j ¼ 1; . . . ;m, then the following two properties of a set of m functions

fjðzÞ a H�o
cj

ð j ¼ 1; . . . ;mÞ are equivalent:
P1: The distributional boundary value U ¼

Pm
j¼1 BV

�
fjðzÞ

�
a H 0�TðOÞ

�
vanishes

identically.

P2: Denote by chðCj ACkÞ the convex hull of Cj ACk. For each pair of indices

ð j; kÞ, 1a j; kam, there is a holomorphic function gjkðzÞ a Ho
chðCjACkÞ such

that gjkðzÞ þ gkjðzÞ ¼ 0 for all j; k ¼ 1; . . . ;m—thus gjjðzÞ ¼ 0 for all j; k ¼
1; . . . ;m—and such that fjðzÞ ¼

Pm
k¼1 gjkðzÞ on TðC 0

j Þ ¼ Rn þ iC 0
j for each

j ¼ 1; . . . ;m.

For our proof of Theorem 7.1 we prepare a lemma on the analytic decom-

posability of H 0�TðOÞ
�
. Let C be an open cone of the form C ¼ 6m

j¼1
Cj,

m < l, where each Cj is an proper open convex cone. If we write C 0 TC,

we mean C 0 ¼ 6m

j¼1
C 0

j with C 0
j TCj. Furthermore, we define by C �

j ¼
fx a Rn j 3x; x4b 0 for all x a Cjg the dual cones of Cj such that the dual cones

C �
j , j ¼ 1; . . . ;m, have the properties
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Rn



6
m

j¼1

C �
j ; ð12Þ

and

C �
j BC �

k ; jA k; j; k ¼ 1; . . . ;m; ð13Þ

are sets of Lebesgue measure zero. Assume that V a H 0
C � ðRn;OÞ can be written as

V ¼
Pm

j¼1 Vj, where we define

Vj ¼ D
g
x ½e

hK ðxÞljðxÞgðxÞ�;

with ljðxÞ denoting the characteristic function of C �
j , j ¼ 1; . . . ;m, gðxÞ being a

bounded continuous function on Rn, and hKðxÞ ¼ kjxj for a convex compact set

K ¼ ½�k; k�n.

Lemma 7.2. Let C be an open cone of the form C ¼ 6m

j¼1 Cj, m < l, where the

Cj are proper open convex cones such that (12) and (13) are satisfied. Let

U a H 0�TðOÞ
�
. Then U ¼

Pm
j¼1 BV

�
fjðzÞ

�
, where each BV

�
fjðzÞ

�
is the strong

boundary value in H 0�TðOÞ
�

of a function fjðzÞ a H�o
cj

and such that each

BV
�
fjðzÞ

�
¼ F�1½Vj�, with Vj a H 0

C �
j
ðRn;OÞ, j ¼ 1; . . . ;m.

Proof. This result follows using the same method adopted in the proof of [2], The-

orem 4, by replacing the reference to Theorems 2 and 3 with a reference to the

Theorem 5.2 of this article. r

Proof of Theorem 7.1. P2 ) P1. Assume that gjkðzÞ a Ho
chðCjACkÞ. By hypothesis,

we have

fjðzÞ ¼
Xm
k¼1

gjkðzÞ; z a TðC 0
j Þ:

Then

BV
�
fjðzÞ

�
¼ BV

�Xm
k¼1

gjkðzÞ
�

as C 0
j C y ! 0:

Hence,

Xm
j¼1

BV
�
fjðzÞ

�
¼

Xm
j¼1

�
BV

�Xm
k¼1

gjkðzÞ
��

¼ BV
�Xm

j¼1

Xm
k¼1

gjkðzÞ
�
C 0;

taking into account the anti-symmetry of the functions gjkðzÞ.
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Proof that P1 ) P2. If m ¼ 1, P1 ) f1C 0 by Theorem 6.3. Henceforth we

assume that mb 2. Let Uj ¼ BV
�
fjðzÞ

�
a H 0�TðOÞ

�
as C 0

j C y ! 0. Then there

exists Ujk a H 0�TðOÞ
�

such that Uj ¼
Pm

k¼1Ujk with the restriction that

Ujk þUkj ¼ 0. Thus
Pm

j¼1 Uj C 0. By Theorem 5.2, we have that Uj ¼ F�1½Vj�,
j ¼ 1; . . . ;m. On the other hand, this implies that Vj ¼ F½Uj � ¼ F½

Pm
k¼1 Ujk�

¼
Pm

k¼1 F½Ujk� ¼
Pm

k¼1 Vjk. Since
Pm

j¼1 Uj C 0, it follows that F½
Pm

j¼1 Uj � ¼Pm
j¼1 F½Uj� ¼

Pm
j¼1 Vj ¼

Pm
j¼1

Pm
k¼1 Vjk C 0. This yields that Vjk þ Vkj ¼ 0. Ac-

cording to Theorem 5.3 there exists a unique Vj a H 0
C �
j
ðRn;OÞ, j ¼ 1; . . . ;m, such

that

fjðzÞ ¼ ð2pÞ�n3Vj; e
�i3x; z44

¼ ð2pÞ�n
DXm

k¼1

Vjk; e
�i3x; z4

E
¼

Xm
k¼1

�
ð2pÞ�n3Vjk; e

�i3x; z44
�
:

We now put

gjkðzÞ ¼ ð2pÞ�n3Vjk; e
�i3x; z44; z a T

�
chðCj ACkÞ

�
; ð14Þ

with Vjk a H 0
ðchðCjACkÞÞ�ðR

n;OÞ and suppðVjkÞJ fx a Rn j 3x; y4b 0 for all y a

chðCj ACkÞg. Since chðCj ACkÞ is an open convex cone, we again have by exactly

the proof as of [6], Lemma 2, that gjkðzÞ a Ho
chðCjACkÞ. Further, from Theorem 5.2

it follows that

fjðzÞ ¼ ð2pÞ�n3Vj; e
�i3x; z44 ¼

Xm
k¼1

�
ð2pÞ�n3Vjk; e

�i3x; z44
�
; z a TðC 0

j Þ: ð15Þ

Thus combining (14) and (15) we have that fjðzÞ ¼
Pm

k¼1 gjkðzÞ on TðC 0
j Þ with the

restriction that gjk þ gkj ¼ 0. This completes the proof. r
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In Proc. Internat. Conf. on Functional Analysis and Related Topics (Tokyo, 1969),
Univ. of Tokyo Press, Tokyo 1970, 95–106. Zbl 0193.41503 MR 0267128

[11] M. Morimoto, Theory of tempered ultrahyperfunctions. I, II. Proc. Japan Acad. 51

(1975), 87–91; ibid. 51 (1975), 213–218. Zbl 0348.46029 0348.46030 MR 0380396

[12] M. Morimoto, Convolutors for ultrahyperfunctions. In Internat. Symp. Math. Probl.

Theoret. Phys. (Kyoto Univ., Kyoto, 1975), Lecture Notes in Phys. 39., Springer, Ber-
lin 1975, 49–54. Zbl 0323.46036 MR 0631540

[13] R. S. Pathak, Tempered ultradistributions as boundary values of analytic functions.
Trans. Amer. Math. Soc. 286 (1984), 537–556. Zbl 0529.46031 MR 760974
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