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1. Introduction and statement of results

In recent years there has been an enormous success in the study of symplectic
manifolds using approximately holomorphic methods. These methods—introduced
by S. Donaldson in 1996 [11]—amount to treating symplectic manifolds as
generalizations of Kdhler manifolds. To this end it is convenient to think of a
symplectic manifold, once a compatible almost complex structure J has been
fixed, as a Kdhler manifold (P,J,Q) for which the integrability condition for J
has been dropped.

Let M be any hypersurface of the Kdhler manifold (P,J,Q). M inherits on
the one hand a codimension 1 distribution D := JTM n TM endowed with an in-
tegrable almost complex structure J : D — D (i.e., a CR structure of hypersurface
type), and on the other hand a closed 2-form w := Q;; which is nowhere degener-
ate when restricted to D. A 2-calibrated structure on M, together with a compat-
ible almost complex structure, is the structure obtained when the integrability as-
sumption on J : D — D is dropped.

Let us assume that the CR distribution of the (2n + 1)-dimensional CR mani-
fold (of hypersurface type) (M, D,J) is co-oriented (i.e., the real line bundle
TM /D is trivial and a positive side has been chosen). The Levi form is the sym-
metric tensor

Z:DxD—TM/D, (uv)—[UJV]/~,

where U, V are local sections of D extending u,v € T,,M, and we consider the
class of the above Lie bracket at x in the quotient real line bundle TM /D, where
we can make sense of positive and negative values. We can distinguish several in-
teresting geometries according to the behavior of the Levi form:

(1) If &% is strictly positive (resp. negative) we get a strictly pseudo-convex (resp.
pseudo-concave) CR structure. If we drop J what remains is a co-oriented
contact structure (they always carry almost complex structures along the con-
tact distribution).

(2) If & = 0 then D integrates into a codimension 1 foliation whose leaves inherit
a Kéhler structure. If J is dropped what we obtain is a class of regular Poisson
manifolds that include mapping tori associated to symplectomorphisms and
more generally cosymplectic structures (defined by a closed 1-form « and a
closed 2-form w such that « A " is a volume form). When n = 1 the latter
are nothing but smooth taut foliations.

(3) If n=1and ¥ > 0, by dropping J we obtain a class of structures that include
all taut confoliations (see Section 3.5 in [15]).
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Definition 1.1. A 2-calibrated structure on M?>"*! is a pair (D, w), where D is a
codimension 1 distribution and w a closed 2-form nowhere degenerate on D.

We call the triple (M, D,w) a 2-calibrated manifold. We also say that o is
positive on D. If D is integrable we speak of 2-calibrated foliations.

(M, D,®) is said to be integral if [w] € H*(M;R) is in the image of the in-
teger cohomology, in which case we choose a lift 41 € H*(M;Z) of [w] that we
fix once and for all. The pre-quantum line bundle (L,V) is the unique—up to
isomorphism—Hermitian line bundle with compatible connection with Chern
class i and curvature —2mio.

As we saw 2-calibrated structures do contain contact structures, cosymplectic
structures and 3-dimensional taut confoliations.

A 2-calibrated manifold (M, D, w) always admits compatible almost complex
structures J : D — D. The purpose of this article is to explore how to adapt ap-
proximately holomorphic geometry to the tuple (M, D,w,J), and to see how we
can apply this theory to know more about (M, D, w).

In what follows all our manifolds will be closed and smooth, and all tensors
and maps smooth unless otherwise stated.

The first application we will obtain is an analog of the existence of transverse
cycles through any point of a 3-dimensional taut foliation.

The appropriate generalization of a transverse cycle is as follows.

Definition 1.2. 77 is a 2-calibrated submanifold of (M, D,w) if TW n D has co-
dimension 1 inside TW and w is positive when restricted to it. In other words, W
must intersect D transversely and in a symplectic sub-distribution of (D, w).

The existence of submanifolds—which extends the main result for contact
manifolds in [24]—is the content of the following result:

Proposition 1.1. Let (M*"*', D, w) be an integral 2-calibrated manifold and L®*
the sequence of powers of its pre-quantum line bundle (Definition 1.1). For any fixed
point y € M, any m=1,... n, and any rank m complex vector bundle E — M, if
k € N is large enough it is possible to find 2-calibrated submanifolds Wy, of M of
codimension 2m through y with the following properties:

e The inclusion | : Wi — M induces maps . : nj(Wy) — m;(M) which are iso-
morphisms for j =0,....n—m — 1, and an epimorphism for j =n —m. The
same result holds for the homology groups.

e The Poincaré dual of [Wy] is ¢,,(E @ L®F).

The submanifolds in Proposition 1.1 are obtained by pulling back the 0 section
of a vector bundle. Something similar can be done with the determinantal loci of
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a homomorphism of complex vector bundles (see Theorem 1.6 in [32] and Corol-
lary 5.2 in [4]).

Proposition 1.2. Let (M, D, ) be an integral 2-calibrated manifold and L®* the
sequence of powers of its pre-quantum line bundle. Let E, F be Hermitian vector
bundles with connections and consider the sequence of bundles I = E* ® F ® L®k
= Hom(E,F ® L®%). Then for all k € N large enough there exist sections i of
I for which the determinantal loci £'(ti) = {x € M |rank(tx(x)) = i} are integral
2-calibrated submanifolds stratifying M.

The Poincaré dual of the closure of X'(7;) is given by the Porteous formula
[34]):

Cpn—i Cn—it1
Cpn—i—1 Cpn—i
AE,F®L®",1' = . )

Cn—m+1 o Cp—i

where rank E = m, rank F = n, and ¢; is the j-th Chern class ¢;(F @ L®* — E) de-
fined by the equality

1+ c(FRL® —E)+ o(FRL®* —E) + -
=(1+a(FRL®) +c2(FRL®) + ) /(1 + c1(E) + c2(E) + -+ ).

If the rank of E and F, and i are chosen so that 2" !(z;) is empty, then X'(7;) is a
closed 2-calibrated submanifold.

Corollary 1.1. Let (M, o), a € QY (M), be an exact contact manifold of dimension
2n+ 1. Let E, F be complex vector bundles and let i be a positive integer such that

e the codimension in Hom(E, F) of the strata of homomorphisms of rank i is not
bigger than 2n + 1,

e the codimension in Hom(E, F) of the strata of homomorphisms of rank i — 1 is
bigger than 2n + 1.

Then there exist contact submanifolds whose Poincaré dual is Ag ;. In particular,
for any even cohomology class which is a Chern class of some complex vector bundle
over M, there exist a contact submanifold Poincaré dual to it.

Remark 1.1. One is expecting that the determinantal submanifolds coming Prop-
osition 1.2 will be more general than the zeroes of vector bundles coming from
Proposition 1.1. A more detailed discussion of this issue appears in Appendix B.
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The next application is an analog for 2-calibrated manifolds of the embedding
theorem for symplectic manifolds of [32] (Theorem 1.2), extending results of [31]
for contact manifolds.

Corollary 1.2. Let (M**!, D, w) be an integral 2-calibrated manifold. Then it is
possible to find maps ¢, : M — CP*" so that for all k € N large enough one has:

® djyp is injective (¢ is an immersion along D).

* [pjwps| = [ko), where wrs is the Fubini—Study 2-form of CP*".

In particular if (M3, D) is a 3-manifold with a (smooth) taut confoliation, it is
possible to find immersions along D in CP.

The previous corollary can be improved in two directions.

Corollary 1.3 (see [32], Corollary 2.6). Let (M**'. % ) be a manifold with
an integral 2-calibrated foliation. Then the maps of Corollary 1.2 can be composed
from the right with diffeomorphisms of M, so that for all k € N large enough
the equality [p;wps] = [kw] holds also at the level of foliated 2-forms, i.e.,
¢Za)pglg = kwg.

The second improvement is that the immersion along D can be perturbed to be
transverse to any finite collection of complex submanifolds of projective space.

Another application is the existence of Lefschetz pencil structures, introduced
in [23].

Definition 1.3 (see Section 1 in [13]). Let (M, D,w) be a 2-calibrated manifold
and x e M. A chart ¢: (C" x R,0) — (M, x) is compatible with (D, w) (at x) if
at the origin it sends the foliation of C" x R by complex hyperplanes into D, and
¢*w(0) restricted to the subspace C" x {0} is of type (1, 1).

Definition 1.4 (see [35]). A Lefschetz pencil structure for (M, D,w) is a triple
(f,B,A), where B< M is a codimension four 2-calibrated submanifold, and
f: M\B — CP' is a smooth map such that:

(1) f is a submersion along D away from A, a 1-dimensional manifold transverse
to D where the restriction of the differential of f to D vanishes.

(2) For any x € A there exist a chart ¢ compatible with (D, w) at x and a complex
coordinate { of CP! defined about f'(x) such that

2 2

Lofop(zs)= (") + -+ (2") +1(s), ()

where t € C*(R, C).
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(3) For any x € B there exist a chart ¢ compatible with (D, ) at x and a com-
plex coordinate { of CP! defined about f(x) such that B=z! =z> =0 and

(o fogp(z,s) =z"/z2

(4) f(A) is an immersed curve with generic self intersections.

Theorem 1.1. Let (M, D, ) be an integral 2-calibrated manifold and let h be an
integer lift of [w]. Then for all k € N large enough there exist Lefschetz pencils
(fie» Bre, Ax) such that

(1) the regular fibers are Poincaré dual to kh,

(2) the inclusion [: Wy — M induces maps I, : (W) — mj(M) (resp.
I, : H(Wy; Z) — H;j(M; Z)) which are isomorphisms for j <n — 2, and an epi-
morphism for j =n— 1.

All the results stated follow mostly from a general principle of (estimated)
transversality along D (Theorems 7.1 and 7.2).

In a problem Z of transversality along D we have three ingredients: (i) the
bundle £ — (M, D,w), (ii) the submanifold or more generally the stratification
& < E, and (iii) the section 7: M — E to be perturbed to become transverse
along D to 7.

In Section 2 we will define the class of sections and bundles we will work with,
the so-called sequences of very ample bundles and approximately holomorphic
sections.

As in the approximately holomorphic theory for symplectic manifolds (see
[11], [4]), transversality problems will be solved by patching local solutions. The
right strategy to solve the corresponding local problems for sections is to turn
them into local problems for approximately holomorphic functions. This will be
done through the use of reference sections, which can be thought of as the bump
functions of the theory. The necessary local analysis needed to construct such sec-
tions is developed in Section 3.

There is a second strategy to solve 2. It is not only true that the natural
example of a 2-calibrated structure is a hypersurface inside a symplectic mani-
fold, but every 2-calibrated manifold (D co-oriented) admits a symplectization
(M x [—¢,¢],Q) (Lemma 3.4). We will introduce a new transversality problem
# for a stratification .% of a bundle E — (M x [—¢,¢],Q) so that a solution
T: M x [—¢,¢] — E to 2 restricts to 7)), a solution to #. The advantage of this
point of view is that since we are in a symplectic manifold, as long as the extension
2 falls in the right class of problems we can use the existing approximately holo-
morphic theory for symplectic manifolds to solve it. Still, the existing approxi-
mately holomorphic theory turns out not to be enough for our purposes, so we
need to develop further the relative approximately holomorphic theory introduced
by J. P. Mohsen [30]. We will make an exposition of both the intrinsic and the
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relative approximately holomorphic theories, and we will prove the main transver-
sality theorem using the latter.

In Section 4 we give an account of the notion of estimated transversality of
a section along a distribution. For the intrinsic theory (problem Z) the distri-
bution will be D, whereas for the relative theory the problem Z will amount
to achieving transversality over M < (M x [—¢,¢],Q). We will also introduce
the right class of stratifications % (already defined in the symplectic setting
in [4]), the so-called approximately holomorphic finite Whitney stratifications,
whose strata roughly behave as the zero section of a vector bundle in the sense
that locally they will be given by approximately holomorphic functions and they
will be transverse enough to the fibers. The fundamental technical result (Lemma
4.5) is that locally estimated transversality along D (resp. over M) of an approxi-
mately holomorphic section to . (resp. ) is equivalent to estimated transversal-
ity along D (resp. over M) to 0 of a related C’-valued approximately holomorphic
function.

Section 5 is devoted to the study of bundles of pseudo-holomorphic jets needed
to obtain what we call generic approximately holomorphic maps to projective
spaces, constructed by projectivizing (m + 1)-tuples of approximately holomorphic
sections of powers of the pre-quantum line bundle L®* (i.e., analogs of generic lin-
ear systems in complex geometry); genericity will be defined as the solution of a
uniform strong transversality problem to a stratification .% in these bundles of
pseudo-holomorphic jets. Several difficulties have to be overcome. Firstly, since
we want to obtain a strong transversality result the jet of the section to be per-
turbed has to be itself an approximately holomorphic section, so that the transver-
sality problem falls in the right class, something which fails to hold due to the uni-
form positivity along D of the sequence L®*. This is solved by introducing a new
connection in the bundles of pseudo-holomorphic jets. Secondly, we need to de-
fine a stratification % of the right kind. This is done in Section 6 by introducing
the bundles of pseudo-holomorphic jets for maps to projective spaces, and defining
there P.¥—a “linear” analog of the Thom-Boardman stratification; .% is then
constructed by pulling back P.¥ by the corresponding jet extension of the projec-
tivization map z : C" "'\ {0} — CP". The properties of both the map and of P’
are used to conclude that . is indeed of the right kind, and thus the transversality
problem falls in the right class. The necessary modifications for the relative theory
are also described.

In Section 7 we give the main strong transversality result.

The proofs of the theorems stated in this introduction are given in Section 8§.

Our results are based on the existence of plenty of approximately holomorphic
sections of very ample line bundles. In the integrable setting the existence of
enough meromorphic functions/holomorphic sections has been used to prove re-
sults of similar nature to ours:
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(i) In [16] E. Ghys gave conditions on a compact space laminated by Riemann
surfaces for the existence of plenty of meromorphic functions. More generally, B.
Deroin has extended those results to laminations by complex leaves without van-
ishing cycle, and endowed with positive Hermitian line bundles [10]. The work of
Ghys and Deroin proves the existence of leafwise holomorphic embeddings into
projective spaces of the aforementioned laminated spaces (compare with Corollary
1.2), although the maps—even in the case of smooth foliations—are in general
only continuous in the transverse directions. The strategy they follow is working
in the universal cover of the leaves of the lamination. Interestingly enough,
Deroin’s results are obtained by extending some techniques of approximately holo-
morphic geometry to the leaves, which are open Kéhler manifolds with bounded
geometry.

(ii) In [33] Ohsawa and Sibony gave a solution to the tangential Cauchy—
Riemann equation with L2-estimates for sections of a positive CR line bundle
over a Levi-flat compact manifold. As a consequence they were able to produce
CR embeddings into projective space of any prescribed order of regularity (though
in general non-smooth).

Part of the results of the present article were announced in [22], [23] (Proposi-
tion 1.1, Corollary 1.2, Corollary 1.3, Theorem 1.1 and Theorem 7.1), where an
account of the results available through an intrinsic approximately holomorphic
theory was presented.

While a more detailed study of 2-calibrated structures is feasible, we do not
think the results that could be obtained would be relevant enough to justify its un-
dertaking.

There are two main reasons to develop an approximately holomorphic theory
for 2-calibrated structures. The first one is because they contain contact structures
and 2-calibrated foliations. Approximately holomorphic geometry has already
been introduced in the contact setting [24], [35], [30], [31]. Its most important ap-
plication has been the construction of compatible open book decompositions for
contact manifolds of arbitrary dimension [17]. Our contribution in this article to
contact geometry is the construction of a large class of contact submanifolds and
the determination of their homology class (Corollary 1.1). We want to propose
2-calibrated foliations as an interesting higher-dimensional generalization of 3-
dimensional taut foliations. In [26]—and building on the results of this article—
it is shown that any such foliation (M, 2, ®) contains a 3-dimensional taut folia-
tion (W3, Zy) — (M, %) so that the inclusion descends to a homeomorphism
between leaf spaces. This is done by showing that W3 can be chosen to intersect
each leaf of (M, Z) in a unique connected component, which is somehow surpris-
ing since often the leaves are immersed submanifolds dense in M.

The second reason to develop an approximately holomorphic theory for 2-
calibrated structures is that sometimes they appear as auxiliary structures. If M
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is an odd-dimensional manifold and w a maximally non-degenerate closed 2-form,
any distribution D complementary to the kernel of w endows M with a
2-calibrated structure. In [27] this idea was applied to almost contact manifolds
to construct (via approximately holomorphic theory) open book decomposition
with control on the topology of the leaves (see also [36]).

If (M,D,J) — (CP", wps) is a CR manifold of hypersurface type which has a
CR embedding in projective space, then in [25] we show that the constructions of
this article can be performed in the CR category. In particular CR Lefschetz pen-
cils are constructed, yielding CR Morse functions defined away from a CR sub-
manifold of base points.

All the applications outlined so far for contact manifolds, 2-calibrated folia-
tions, and projective CR manifolds use at most pseudo-holomorphic 1-jets. If
the CR manifold is Levi-flat then it makes sense to speak about r-generic CR
functions. These are defined to be leafwise r-generic holomorphic functions, i.e.,
functions whose leafwise holomorphic r-jet is transverse to the Thom—-Boardman
stratification of the bundle of holomorphic r-jets over each leaf. In [25] we show
that Levi-flat CR manifolds embedded in projective space admit for all £ > 1 r-
generic linear systems. These are (holomorphic) linear systems of (k) — CPY
of rank m(r) whose restriction to M define r-generic CR functions away from
base points (Definition 5.1). Briefly, such functions are easily seen to be CR func-
tions whose CR r-jet prolongation solve %, a transversality problem over the
leaves of the foliation & in the bundle of CR r-jets of CR maps from M to
CP”"). One has to show that it can be “linearized” to a transversality problem
Py (the bundle, the stratification, and the notion of CR r-jet all have to be re-
placed by “linear” analogs) that fits into the ones solved in Theorem 7.2; solutions
are shown to exist among restrictions of holomorphic sections ((k). Finally, it
has to be checked that the CR solution to 2}, is also a solution of 2.

We think that the existence of r-generic linear systems for projective Levi-flat
CR manifolds is a relevant result by itself and justifies the extension of the approx-
imately holomorphic theory to higher order jet bundles, which is technically
awkward. We expect it to be useful to analyze such manifolds. For example,
one can use it to define r-generic functions f : (M**! % J) — CP" (with no
base points) for which the regular level sets are unions of circles (with variable
number of components), and using the analysis of the singularities one can define
a dynamical system transverse to & (at least for low values of n > 2); by iterating
the Lefschetz pencil construction (the dimensional induction of [6], Section 5) one
can also define maps to CP"~! whose fibers (by [26]) are 3-manifolds intersecting
each leaf of Z in a connected Riemann surface.

We point out that the results in [25] do not include those of Ghys and Deroin
[16], [10] and those of Ohsawa and Sibony [33]. Our results require starting with a
CR embedding into projective space ([33] gives sufficient conditions to produce it).
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2. Ample bundles and approximately holomorphic sections

Let (M, D,w) be an integral 2-calibrated manifold. Let us fix once and for all
a compatible almost complex structure J: D — D, and a metric g so that
gip = (-, J). The kernel of w is required to be g-orthogonal to D, so as to make
some of the computations in the local theory simpler. Notice that for any such
metric the closed 2n-form ” is a calibration for D [21].

If we forget about the 2-form what remains is the following structure.

Definition 2.1. An almost CR structure is a tuple (M,D,J,g) where D is a
codimension 1 distribution, J: D — D an almost complex structure, and ¢ a
metric whose restriction to D is compatible with J (J is g-orthogonal and g-
antisymmetric).

Let (L,V) — M be any Hermitian line bundle—or more generally vector
bundle—with compatible connection. Let D denote the pullback to L of D; let J
and g be the almost complex structure and metric on L, which extend the Hermi-
tian structure on the fibers and are defined on the horizontal distribution associ-
ated to V by pulling back J and g, respectively. Then (L,D,J, ) is an almost
CR manifold.

Our goal is to be able to construct sections 7: M — L which (i) are close
enough to satisfying .J = Jz, (for which we use the adjective almost holomorphic
instead of almost CR to be consistent with the terminology of [24] and [35]), and
(i) transverse to suitable submanifolds of the total space of L. In the almost com-
plex setting we know that what ensures their existence is roughly speaking asking
the curvature of the connection to be of type (1, 1) and positive.

Definition 2.2 (see [4], Definition 2.1). Given ¢ >0, d >0, a Hermitian line
bundle with compatible connection (L,V)— (M,D,J,g) is (c,0)-ample (or
just ample) if its curvature F satisfies iF(v,Jv) > cg(v,v) for all ve D, and
|Fip — F‘})’l|g < 0, where we use the supremum norm.

A sequence (L, Vi) of Hermitian line bundles with compatible connections
is asymptotically very ample (or just very ample) if fixed constants ¢ > 0, 9,
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(Cj);=0 = 0 exist so that for all k > 1 the following inequalities for the curvatures
F;. hold:

(1) iFi(v,Jv) > ckg(v,v) for all v € D.
(2) |Fp — Frp |, < 0k'/2.
(3) [V/Fyl, < Cik.

Another motivation for the previous definition is the case of Levi-flat CR
manifolds, where according to the results of Ohsawa and Sibony [33] leafwise pos-
itivity grants the existence of plenty of CR sections (with an appropriate twisting
by a line bundle).

The fundamental example of an ample bundle is the pre-quantum line bundle
L of an integral 2-calibrated manifold (M, D, w) (with ¢ = 27, 6 = 0). Its tensor
powers L®* define a very ample sequence of line bundles.

From now on we will only consider almost CR structures on 2-calibrated
manifolds defined by compatible almost complex structures and metrics. Simi-
larly, we will only consider the very ample sequence L®*.

For any 7, € T'(L®*) we use J to split the restriction of Vz; to D:

Vptx = 0t + 01, Ot € D(D0 @ LO), 61 e T(DO! @ LOF).

We can see i as a section of 7*M ® L®* by declaring it to vanish on
D+, and then use the Levi-Civita connection on T*M to define V'~ 'd7; €
[(T*M®" ® L®).

Let us denote the rescaled metric kg by gx.

Definition 2.3. A sequence of sections 7 of L®* is approximately J-holomorphic
(or approximately holomorphic or simply A.H.) if positive constants (C;) =0 CXist
such that '

Vi, <G, |V o, < Gk
If we want to make the bounds explicit speak of an A.H.(C;) sequence.

Remark 2.1. The original notion of A.H. sequence introduced in [24], [35] is a bit
more general than Definition 2.3. The difference—as well as the fact that only a
finite number of derivatives were taken into account—is that the direction orthog-
onal to D had a different treatment. The main theorem of [24] produced appro-
priate A.H. sequences of sections with good control on any finite number of deriv-
atives along D but little along D*. Using the relative theory one can obtain
solutions with control in all directions, so we can avoid using the technically
more complicated definition of [24], [35].
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3. The local approximately holomorphic theory

Perhaps the most important idea in Donaldson’s work [11] was the construction of
localized A.H. sections (inspired by the work of Tian [38]) by adopting a unitary
point of view instead of a holomorphic one. The use of a unitary connection in a
Darboux chart allowed him to find a model for the coupled Cauchy—Riemann
equation invariant under rescaling—provided that one works in the appropriate
tensor power of the pre-quantum line bundle—and to explicitly write down con-
centrated solutions giving rise to the so-called reference sections.

The local approximately holomorphic theory, using an intrinsic construction
or the symplectization to be introduced in Section 3.1, is based on the choice of
appropriate families of charts. In the intrinsic local theory we need as well a local
model for the coupled Cauchy—Riemann equations and a good choice of explicit
solution.

For 2-calibrated manifolds the local model for the intrinsic approximately
holomorphic theory (that can only be achieved asymptotically when k — o0) is
the following:

® The domain is C" x R, with coordinates z!,...,z", s (sometimes we write

them as x!,... x?* or x! ... x? ).

e The distribution Dy, is the tangent space to the level hyperplanes of the verti-
cal or real coordinate s.

e The identification of each leaf with C” means that we have fixed the leafwise
standard almost complex structure Jy.

e The metric is the Euclidean one gy with Levi-Civita connection d (usual par-
tial derivatives), and the distance is the Euclidean norm | - |.

e The 2-form in the fixed coordinates is required to be
i~
Wgd = igdzl Adz. (2)

e We ask for a choice of unitary trivialization of the line bundle whose connec-
tion form is

1< . S
A=GY e = 3)
In RV with coordinates x!,...,x" let R” denote the distribution by p-planes
{o/ox™,...,8/dx"y, 1 <ij <---<i, <N; its Euclidean orthogonal is denoted

by RY~7. If we have a distribution D’ of dimension p in R which is transverse
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to RY7, we can measure its distance to R” to order j with respect to the flat con-
nection d as follows: D’ can be identified with an element of Hom(R?, RV 7). We
let v, I =1,..., p, be the vector field in RY~” such that d/dx" + v € D’. Then
we define

|d/(R” — D")|, = max{|d/v"| ..., |d-7vip|g0},

go go’ *

which by definition is coordinate dependent.

In the previous local model let us denote the line field spanned by é/ds by D,.
According to the previous paragraph we can measure the distance in C" x R to D,
(resp. D,) of any codimension 1 (resp. dimension 1) distribution transverse to D,
(resp. Dy,).

Definition 3.1. Let ¢, . : (C" x R,0) — (Uy,x,x), for all x € M and all k > 1, be
a family of charts with coordinates z,i, ..., 2, Sk. We call them a family of ap-
proximately holomorphic coordinates if there exist constants independent of k,
x (uniform) so that the following estimates hold for all k> 1 at the points of
B(0,pk'/?), p > 0:

(1) The Euclidean and the induced metric are comparable to any order, i.e.,
1 A
;go <gr <yg0, 7y>0, and IV"fﬂ/;Ugo < O(k™'?)  forall j > 2,

where V denotes the Levi-Civita connection with respect to g.

(2) The kernel of e, which is D*, is sent to a line field p; D" transverse to D; and
such that

< |z, s)|O(k™'/?),
|d’(pf D' — D), < Ok~ forall j> 1.

Jgo —

|¢Z,XDL - Dv|g”
The pullback of D is transverse to D, and
|97 D = Dil,, < [(z1,5) | O(k™'?),
/(g D — Dy)l,, < O(k™"?)  forall j>1.
(3) Regarding the antiholomorphic components,

1005 (20, 5)lg, < (20, 50| O(K™2),
|Vj5(p;’1“x(zk’sk)|go <O(k™'?)  forall j>1,

where g, is the antiholomorphic component of Vp(mp, o ¢.l), with
nip, : C" x R — C" the projection onto the first factor.
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We speak of Darboux coordinates when the additional condition ¢ ko = wy
holds. '

Remark 3.1. According to condition (2) (resp. (3)) we have ¢; D = Dy,
oi D+ = D, (resp. ¢ J = Jo) at the origin. For most of our constructions it is
enough to require the equality up to a summand of size O(k~'/?) at most, but
since these equalities are needed to prove results concerning pseudo-holomorphic
jets (in particular the identities concerning local representations and subsets of
transverse holonomy of Lemma 6.2) we decided to ask for them from the very
beginning.

Remark 3.2. If we are in an almost complex manifold, then conditions (1) and
(3) ((2) makes no sense) recover the notion of approximately holomorphic charts
(resp. Darboux charts if we add the Darboux condition on the 2-form).

A chart centred at a point for which the Darboux condition holds can always
be obtained: (M, D, w) is a coisotropic submanifold of its symplectization, as de-
fined in Lemma 3.4. The local normal form theorem for coisotropic submanifolds
([39], Theorem 3.4.10) provides such a chart. Families of Darboux charts can be
constructed using the same local normal form. Since this would fall into the rela-
tive theory we prefer to give a different proof.

Lemma 3.1. Let (M, D, w) be a (compact) 2-calibrated manifold (with J, g already
fixed). Then a family of Darboux charts can always be constructed.

Proof. Let us fix a family of charts ¥ : R*"*! — U, depending smoothly on x,
where x € M, a small enough subset of M, so that Y D = D, YD+ = D, at the
origin. Denote by x!,..., x>, s the coordinates on R*"*!. We compose , with
the diffeomorphism @, : R***! — R?"*! which is the identity on R* x {0}, pre-
serves setwise the horizontal foliation D), and sends Kery w to D,. The diffeo-
morphisms ®, depend smoothly on x.

Now we fix Jj to identify R*"*! with C" x R and compose with an element of
GL(2n,R) = GL(2n + 1,R) (again depending smoothly on x € M), so that we
obtain charts ¢, for which the pullback of J at the origin equals Jj.

By compactness M can be covered with a finite number of subsets My, ..., M,
in which the above charts can be constructed. In this way we obtain charts cen-
tred at every x € M (we might have more than one chart for each x € M, but that
is not relevant) so that the bounds on tensors pulled back from M to a ball of fixed
radius in the domain of the charts will not depend on x.

We define ¢, . to be the composition ¢, o y,-12, where p-12: C" xR —
C" x R is the homothety by factor k~'/2. The equalities at the origin together
with the smooth dependence on x of the constructions previous to the rescaling,
imply that we have obtained approximately holomorphic coordinates.
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To obtain Darboux charts we need to modify ¢, . as follows: we apply Dar-
boux’s lemma with estimates (Lemma 2.2 in [4]) to the almost complex manifolds
(C" x {0}, ¢ \Jic"x (0} 9% <9ic"x{0y) and the 2-forms ¢; w|cr.q0y. We get diffeo-
morphisms ¥y . on this leaf that are extended to C" x R independently of the
vertical coordinate 5. The bounds on Wy , and their derivatives coming from
Lemma 2.2 in [4] imply that the compositions ¢, o ¥ :(C" x R,0) —
(Uk,x, x) still define approximately holomorphic coordinates. Moreover, we can
assume (¢, , o ¥x,,)"J = Jo at the origin.

Since 0/0s; generates the kernel of

(Prx o Phox) 0= Z w; dx} Adx) + Z w; dx|. A dsy

1<i<l<2n 1<i<2n

all w; vanish. Closedness implies that each function w; is independent of s.
Therefore (¢ , o Wi, ) @ is determined by its restriction to C" x {0}, which by
construction is wgd|cnxoy- Thus, @ is sent to wyq. O

Darboux charts are useful because there local computations become simpler.

Let d;. denote the distance defined by the metric g.

Recall that in the domain of a Darboux chart we can always fix ¢ , a unitary
trivialization of L®* whose connection form is 4 (equation (3)).

Lemma 3.2. Let g : (C" x R,0) — (Uk,x, x) be a family of Darboux charts with
coordinates x,l, e ,x,%”, x,%”“. Let F be a bundle associated to either TM or D and
let Fix — B(0,pk!'/?) = C" x R denote the pullback of F by ¢, . Associated to
the Darboux coordinates there is a canonical trivialization . . ; of Fy . Let Ty be
a sequence of sections of F ® L®* and use the frames Chox,j ® S x to write g Ty
locally as a function T} .. Let P; be a polynomial such that for any multi-index o of
length j =0,...,r, at the points ofB(O,pkl/z) and for all k > 1 we have

0
—T/é,x

T < PllGes) Ok ).
Xk

9o

Then |V'Ti(p),, < Or(di(x, p)) O(k™"/2), where the polynomial Q, depends only
on Py,...,P.. Conversely, from bounds using the global metric elements gy, dy, V
we obtain similar bounds for the local Euclidean elements.

Proof. This is a simple calculation based on items (1) and (2), and in the Darboux
condition of Definition 3.1. Also notice that the presence of the connection form
and its derivatives is absorbed by the polynomial, since |A| < O(|(zx, sx)|) and its
derivatives are of order O(1). O
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Remark 3.3. Lemma 3.2 admits different modifications. It holds in a similar
fashion for bounds of order O(1) instead of order O(k~'/?), and also for sections
Ty of F instead of F ® L®* (with Fy , locally trivialized by Ck.x,j)- Itis also pos-
sible to consider the inequalities in the ball of (uniform) radius p > 0 rather than
pk'/2. There is also a version for symplectic manifolds.

Let dy denote the (0, 1)-component with respect to Jo : C" x R — C" x R of
the leafwise derivation operator dp,.

Lemma 3.3. Let ¢ . : (C" x R,0) — (Ug,x, x) be a family of Darboux charts with
coordinates x|, . .. ,x,%”, sk. Let Ly . — B(0,pk'/?) = C" x R denote the pullback
of L®* by ¢ - Let 1 be a sequence of sections of L®* such that O Tk =
Jixlk.x- Let Pj, Py be polynomials such that for any multi-indices o, f of length
j=0,....r—1,and j'=0,...,r, respectively, at the points of B(0, pk'/?) and for
all k > 1 the following inequalities hold.:

aiffk = PlG0s)o0) o)
6; (G0 + A" fiex| < P2k, s1)) OK1). (5)
k 9o
Then we have
V't (9)lg, < Or(di(x, »)) O(1), (6)
Vot (p)],, < Ot (di(x, ) O(K™'72), (7)

where the polynomial Q,_; (resp. Q)) depends only on Py, ..., P,_y, P{,..., P/ (resp.
P{,...,P)). Conversely, from bounds using gy, dy, V, J we obtain similar bounds for
go, | . ‘: d+AJ JO-

Proof. The equivalence between equations (4) and (6) is the content of Lemma
3.2, but for bounds of order O(1) (see Remark 3.3). The equivalence of equations
(4), (5) and equations (6), (7) follows again easily from the properties of Darboux
charts. We sketch the case r = 1.

From now on ¢; . J, ¢; D, ¢; g and all the tensors and sections pulled back
to the domain of the charts will be denoted by J, D, g, ... whenever there is no
risk of confusion.

Let ¢; be any of the local vector fields associated to the first 21 coordinates. By
condition (2) in Definition 3.1 there exists #; a local vector field such that e; + u; is
tangent to D and

|ui|g0£|(zk,sk)\0(k’1/2), |dju,»|9030(k*1/2), j>1. (8)
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The endomorphism J is defined on D. We can use the orthogonal projection w.r.t
go onto D, to induce out of J another almost complex structure Jp, : D — Dj,.
Condition (3) in Definition 3.1 implies that

o = Iy Ly, <1(zi,s0)|OG™2),1d/(Jo = Ip)ly, < OK'2), =1 (9)

By definition ge,--&-u,-fk = 1/2Vei+uiTk + i/2VJ(ei+u[)Tk.
Equation (8) combined with Lemma 3.2 implies that

VTl < P{(di(x, ) O(k™'7).

Again equations (8) and (6), condition (3) in Definition 3.1, and Lemma 3.2 imply
that

|VJ(ei+ll,)Tk - VJheiTk|gk < Pi/(dk(x, y))O(k—l/Z)

Therefore the bounds in equation (7) we want for geiﬂ,,.rk are equivalent to the
same kind of bounds for

1/2Ve,ti +0/2V g0, Tk
and by equation (9) for
1/2Veti +0/2V gy, Tk
and by definition
1/2Vetic 4 i/2V e tie = (@0 + A%, fex) ke v
Bounds for higher order derivatives are proven similarly. O

Definition 3.2 (see [4], Definition 2.2). A sequence of sections of L®* has Gaus-
sian decay with respect to x if there exist polynomials (P;);., and a constant 4 > 0
so that *

|Vj7,'k(y)|gk < Pj(dk(x, y))e—idk(x:y)z.
for all y € M and for all j > 0.

The main purpose of the use of Darboux charts is the construction of reference
ref

sections 7;°...

Corollary 3.1. Let (M,D,w) be a compact 2-calibrated manifold. Then for all
xeM AH. sections t/" with Gaussian decay with respect to x can be
constructed. The bounds are uniform on k, x and these sections have norm greater
than some constant x in By, (x, p), where i, p > 0 are uniform on k, x.
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Proof. We follow Donaldson’s ideas in [11], Section 2. Let us fix Darboux charts
and &, trivializations of L®* for which the connection form is 4. Let § be a
standard cut-off function of a single variable, with () =1 when |¢f| < 1/2 and
B(t) = 0 when |7] > 1.

Define . (zk, sc) = Bk™"/°| (21, 51)])-

In the points where the derivatives of 5, do not vanish we have |(zx,sx)| >
Ck'/®, with C uniform (on k, x). Using this inequality we deduce that

1dByly, < |(zico )P Ok,
B,y < |(zrss6)[Ok™'12), (10)
(B, < O, j=3,
Consider the function f(zx,sx) = e 1G04 We have
dof +A%'f =o0. (11)
The reference sections are
T = P e (12)

Equation (10) implies that for any multi-index o of length j < r,

C bt

'8)( < Pi(|(zie, se) DIS1O(1).

9o

Therefore, Lemma 3.2 for bounds of type e‘)~/|(x*y>‘20(1), A >0, gives the Gaus-
sian decay with respect to x:

VTl (), < Or(di(x, p))e ™" 0(1), 4> 0,

where 1 appears when relating the distance induced by ¢ and go. The Gaussian
decay also implies

[vieel | < o).

ke, x gy

The bound for |V"71511£’?,fY %

(10) and (11) it follows that

is obtained using the same ideas: from equations

0
0x®

(@0 +A°DBef| < Pill(zse)DIf1OGK?)

9o

for any multi-index o of length j <r — 1.
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Lemma 3.3 for bounds of type e”VK"")’)‘ZO(l), e”v/‘<x’)’)|20(k’1/2), "> 0 (in
equations (4) and (5) resp.) gives
VB, < O (di(x, )e O O ) < Ok )
for some 4 > 0.

The existence of constants «, p > 0 such that |t/ | > « in By, (x, p), can be eas-
ily checked. |

We observe that many of the inequalities we are using (for global tensors) have
the same pattern. We will introduce a definition that will avoid the excessive ap-
pearance in the notation of such inequalities.

Let E be a Hermitian bundle with connection, F a bundle associated either to
TM or to D, and let Ej. denote the sequence F ® E ® LO®k,

Definition 3.3. Let 7 , x € M, be a family of sequences of sections of E;. We
say that T , is C"-approximately vanishing (or that the sequence vanishes in the
C’-approximate sense), and denote it by T} =, 0, if positive constants Cy, ..., C,
exist so that

VT, < Gk j=0,....r (13)

There is an analogous definition for sequences 7 of sections of Ej (i.e., with-
out extra dependence on the point x € M).

Using the above language one of the conditions for a sequence 7 of L®F to
be A.H. (Definition 2.3) is that dr; € I'(D*"! ® L®*) has to be approximately
vanishing.

Remark 3.4. Given 7, an approximately holomorphic sequence of sections of
L® we have defined V!0t € T*M®" ® L® by taking covariant deriva-
tives of 0, thought of as a section of T*M ® L®*. We might have equally
defined V"~'0z; as the image of V'z; by the projection p, : T*M® @ L®F —
T*M® ' ® D! ® L® for using Darboux charts and Lemmas 3.2 and 3.3
(with the inequalities |V/ | g < O(1), j = 0) one checks that 0t & 0 if and only
if | p,(V/i),, < O(™17?2), j> 1.

3.1. Relative approximately holomorphic theory and symplectizations

Definition 3.4. Let (P, Q) be a symplectic manifold and (M, D, w) a 2-calibrated
manifold. We say that/: M — P embeds M as a 2-calibrated submanifold of P if
I"Q = w.
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Lemma 3.4. Let (M, D,w) be a compact co-oriented 2-calibrated manifold. Then
it is possible to define a symplectization so that (M, D, ) embeds as a 2-calibrated
submanifold. Any fixed compatible almost complex structure and metric can be ex-
tended to a compatible almost complex structure and metric in the symplectization.

Proof. Let J and g be fixed compatible almost complex structure and metric. The
symplectization (M X [—¢,¢],J,g,Q) is constructed as follows: let ¢ be the co-
ordinate of the interval. Let o be the unique 1-form of pointwise norm 1 (and
positively oriented) whose kernel is D. The closed 2-form Q is defined to be
w + d(to), where o and w represent the pullback of the corresponding forms to
M x [—e¢,¢]. If ¢ is chosen small enough then Q is symplectic.

In the points of M the almost complex structure is extended by sending the
positively oriented g-unitary vector in D to 9/0¢; in those points 0/t is also de-
fined to have norm 1 and to be orthogonal to 7M. It is routine to further extend J
to a compatible almost complex structure on the symplectization. The metric de-
fined by Q and the almost complex structure also extends g. We will not use dif-
ferent notation for the extension of the almost complex structure and metric if
there is no risk of confusion.

We also fix G a J-complex distribution on the symplectization restricting to D
at the points of M. To do that we choose any line field that at the points of M
contains 0/0t; this line field spans a complex line field. Its orthogonal with respect
to g is by construction J-complex and extends D. O

Remark 3.5. We want to work out a relative theory for embeddings in arbitrary
symplectic manifolds—not just in symplectizations—because of our applications
to CR manifolds, where we need an ambient complex manifold with plenty of
holomorphic sections.

Let (M, D, ) be a 2-calibrated submanifold of (P, Q). Let us fix J a compat-
ible almost complex structure on (P, Q) so that D is J-invariant, and let us define
g =Q(-,J-). The restriction of (J,g) to (M, D) induces an almost CR structure.
We also choose G a J complex distribution that coincides with D at the points
of M. The main example to have in mind is the symplectization of (M, D, ) with
an almost complex structure as defined in Lemma 3.4.

We have at our disposal the approximately holomorphic theory for symplectic
manifolds [4]. At this point we pause to warn the reader that throughout this sec-
tion and the rest of the article we will be using A.H. sequences of sections defined
in both 2-calibrated (Definition 2.3) and symplectic manifolds (see definitions in
[4] or Definition 2.3 for an almost complex base space). Whenever there is no
risk of confusion about the base space we will just speak about A.H. sequences
of sections.
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Let (Lg,V) — (P,Q) be the pre-quantum line bundle. Its powers (Lg)k, Vi)
define a very ample sequence of line bundles (in the sense of [4]), which restricts
to a very ample sequence of line bundles (L®* V,) — (M,D,J,gi) (Definition
2.2).

One expects that if 74 € F(Lgk) is a (symplectic) A.H. sequence of sections,
then iy M — L®k is also an A.H. sequence of sections (Definition 2.3). Even
more, we will see that it is possible to construct reference sections by restricting
(symplectic) reference sections centred at points of M. The key point to prove
these results is the choice of appropriate charts.

Recall that in C” = R* we denote the foliation whose leaves are associated to
g distinguished complex coordinates (resp. d distinguished real coordinates) by CY
(resp. RY); its Euclidean orthogonal is denoted by C”~ (resp. R¥~%). From now
on if we compare the distance of C? to any distribution of the same dimension, we
will assume the latter to be transverse to C/ 7.

Definition 3.5. Let (P, Q) be a compact symplectic manifold and G a J-complex
distribution of complex dimension g. A family of (symplectic) approximately
holomorphic coordinates (resp. Darboux charts) ¢, . : (C?,0) — (Ug y, x) is said
to be adapted to G if '

(k=12
(k=172

€Y — Gl,, < |(zk,50)|0(K™/2), d’(C? - @), <

0]
€70 — G|, < [(zs0)|OKY2),  [d(CP 0 - GH)|, < 0

IA

for all j > 1.

The existence of approximately holomorphic (resp. Darboux) charts adapted
to G is straightforward: once we have approximately holomorphic (resp. Dar-
boux) charts, we compose with a unitary transformation sending G to C? at the
origin.

Given a 2-calibrated submanifold (M, D) — (P,Q), in order to select coordi-
nate charts adapted to M we fix a distribution 71 M defined in a tubular neighbor-
hood of M as follows: the neighborhood is defined by flowing a little bit the geo-
desics normal to M. For each point y in the neighborhood, let x € M be the
starting point of the unique geodesic normal to M through y. Then T}”M is the
result of parallel transport of 7, M along that geodesic.

Definition 3.6. Let (M,D) — (P,Q) be a 2-calibrated submanifold, G a J-
complex distribution which extends D (perhaps defined in a tubular neighborhood
of M), and Tl M a distribution constructed as above. A family of (symplectic)
A.H. coordinates ¢y , : (C”,0) — (U, x, x) (centred at every point of P) is adapted
to (M, G) if it is adapted to G and for the charts centred at points of M the fol-
lowing conditions hold:
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(1) M sits in each chart as a fixed linear subspace R*"*! x {0} = C” and at the
origin D = R?" x {0} = R*"*! x {0}, D* = {0} x R = R"*! x {0}.

Q) IR —TIM|, < |(zk,s0)|O('72), |/ (R — TIM)|, < O(k='/?) for all
j>1

We speak of A.H. charts adapted to (M, G) and Darboux over M if
go;xw‘M = wy. (14)

Lemma 3.5. Let (M, D) — (P,Q) be a 2-calibrated submanifold. Then approxi-
mately holomorphic charts adapted to (M, G) and Darboux over M can always be
constructed.

Proof. We start by fixing approximately holomorphic coordinates adapted to G.
Then we forget about the ones centred at points of M, that are going to be substi-
tuted by new ones. For every x € M we fix initial charts ¢, depending smoothly
on the center—at least in a small neighborhood about each point—with
(pJ*, 059) = (Jo,9o) at the origin. Then we compose with maps O, : (C”,0) —
(C”,0) that are tangent to the identity map at the origin and send M to a vector
space in C”. The image of the distribution D is Jy-complex at the origin. By com-
posing with a unitary transformation (D, T, M) can be assumed to be sent to
(C" x {0}, R*"*! x {0}) = R*.

Next we essentially apply Lemma 3.1 on the leaf R*"*! x {0} = R¥ to get
Darboux charts for M: let E, : R — R?"*! be the map which is the identity
on C" x {0}, preserves the foliation by complex hyperplanes, and sends the kernel
of w to the “vertical” or real line field in R*"*! x {0}. We extend it to a diffeo-
morphism of R¥ independently of the coordinates x¥**2, ..., x%. Since the map
is by construction tangent to the identity at the origin, we keep the properties at
the origin described in the previous paragraph.

We now apply Darboux’ lemma on R x {0} for each x. The result is a
diffeomorphism on R?" that can be assumed to preserve Jj at the origin. We ex-
tend it independently of x?'*1 ... x* to a diffeomorphism of C”. Notice that
(D, TxM) goes to (R* x {0}, R x {0}), J, to Jo, G, ® G to C"@® C™",
and Kerw|p, to the Euclidean orthogonal of R x {0} = R**! x {0}. Hence if
we apply the homothety 7,1 : R¥? — R* we obtain a family of charts with the
desired properties. O

Lemma 3.6. A family of A.H. charts ¢y . : (C”,0) — (Uy x, x) adapted to (M, G)
and Darboux over M constructed as in Lemma 3.5 restricts to M to Darboux
charts.
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Proof. 1t follows because the charts in Lemma 3.5 are obtained by applying a con-
struction depending smoothly on the center of the chart to obtain a number of
equalities for tensors and distributions at the origin, and then rescaling. Therefore
when we restrict the charts to M condition (1) in Definition 3.1 holds. Conditions
(2) and (3) follow because before rescaling D, @ D> is sent to R* @ R and J,
to Jo. The Darboux condition (equation (14)) holds by construction. O

Lemma 3.7. Let ¢ . : (C?,0) — (P, x) be charts coming from Lemma 3.5. Then
in B(0, pk'/?) = C? it is possible to fix a family of unitary trivializations ofgoznygk

with connection forms Ay y such that for all k > 1:

(1) [ xlg, < O(zk]), [d 4k oy, < ( ), |7 Ape ]y, < OG'2), j = 2.
(2) Akxppr = 3 (O Adxp — Xt adxp ).

Proof. By construction |p; ko|, < O(1), |d/p; kol|, <O(k™'?), j>1, on
B(0, pk'/?). Hence, we deduce the existence unitary trivializations with connec-
tion forms A4, | satisfying the bounds of condition (1).

When we restrict the connection forms to M they coincide with 4 up to a exact
1-form dF; , defined on R*"™! x {0}; its bounds are as in item (1) above, but on
R>*1 x {0} instead of on C”. We extend it to C” independently of the remaining
coordinates and still denote it by Fj . It is always possible to find a unitary triv-
ialization & , of Pk YLg whose connection form is 4, fx T dFy . These trivializa-
tions give the desired result. For simplicity we will denote the family by 4 when
there is no risk of confusion. O

Let G be the J-complex distribution on P that extends D. Given t; € F(Lg)k),
the restriction of the covariant derivative of 7; to G will be denoted by
Vet e T(G* ® Lgk). Since G is J-complex we can write

VGTk = 5(;‘[]( + aGTk; 5(;‘[]( € F(G*O’l @Lgk), a(;‘[k € F(G*l‘o ® Lgk).

Lemma 3.8. (1) If 7 : P — Lgk is an A.H. sequence then typ : M — L% is also
an A.H. sequence.

(2) Moreover, the restriction of a family of reference sections of (LS) K Vi) —
(P, Q) centred at the points of M (as defined in [4]) is a family of reference sections
of (L®* V) — (M, D, w).

B)Ift:P— Lgk is an A.H. sequence then gty = 0.

Proof. We fix a family of A.H. charts adapted to (M, G) and Darboux over M,
and trivialize the bundles Lgk asin Lemma 3.7. Letx/,... 7x,§p be the coordinates
and write 7« = fi vk x-
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We first observe that Lemmas 3.2 and 3.3 for symplectic manifolds also hold
for the connection forms Ay  provided by Lemma 3.7. By Lemma 3.6 the restric-
tion of the coordinates to M are Darboux charts. We can apply Lemma 3.2 for
almost complex manifolds, bounds of order O(1), and the connection forms pro-
vided by Lemma 3.7, to conclude that the partial derivatives of fi . are bounded
by O(1) in the ball B(0,p) = R%. In particular we get the same bounds if we only
take into account the partial derivatives with respect to the variables x}, ... pc,%”“
and restrict our attention to B(0,p) = R*!. Now if we apply Lemma 3.2
(this time for almost CR manifolds) we conclude that |V’ (tkpa)ly, < O(1) in
B(0,p) < R*"*! for all j > 0 and for all x € M, the constants being independent
of x. Therefore |Vj(rk‘M)\gk < O(1), for all j > 0, in all points of M.

Lemma 3.3 for symplectic manifolds and the connections of Lemma 3.7 gives

O o+ A S| < 0 (15)

Ay O
0xy i

in B(0,p)  R¥. Let us consider the splitting C" x C”~". The operator dy + A,?j IY
and its derivatives can be split into two pieces using it. We consider the part in-

volving dz},...,dz}, for which the above inequalities also hold, but now in
B(0,p) = R+ §ince the restriction of Ay , to C" x R is A4, the rest{iction to M
of the piece of dy+ A'. involving dz},...,dz! is the operator dy+ A% of

Lemma 3.3. Thus we can apply this lemma (we already have the required bounds
for the partial derivatives of f; ) to conclude E(T/q u) & 0, and this proves item
(1).

It is also easy to check that reference sections for Lgk centred at the points of
M restrict to reference sections for L®*, and hence item (2) also holds.

To prove dgtx & 0 we use the previous ideas: equation (11) and Lemma 3.3
give, for all j > 0,

V/dentil,, < O(k™'7?)
in B(0,p) = R?, where Oc» is the part of dy + Ay, involving dz,i, ...,dz}l. The
choice of A.H. charts adapted to G and the bounds |Vka|go < 0(1), for all
j =0, easily imply that
\V/(derti — o), < O(k™1/?)
for all j > 0 and therefore g7 X 0. O

Remark 3.6. Notice that item (3) in Lemma 3.8 is an assertion about a section
defined on P, and not on M unlike in item (1).
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3.2. Higher rank ample bundles. So far we have only considered approximately
holomorphic theory for the sequence of line bundles (L®*,V,) — (M, D, ), but
there are obvious extensions for sequences of the form E ® L®*, where E is any
Hermitian bundle of rank m with compatible connection. Regarding the local
theory the role of the reference sections is played by the reference frames
T s Ty Where each ¢f - is an AH. sequence with Gaussian decay with
respect to x and they are a frame of E comparable to a unitary one in B, (x, p),
p > 0. Reference frames are constructed by tensoring reference sections for L&

with local unitary frames of E.

4. Estimated transversality and finite, Whitney (A), approximate
holomorphic stratifications

Let 74 be an A.H. sequence of sections of L& — (M, D, ). Proposition 1.1 for
codimension 2 submanifolds is proved by pulling back the 0 section of L&, To
obtain that W is a 2-calibrated submanifold, 74 has to be transverse along D so
that TW; n D defines a codimension 1 distribution on W). Next, to make sure
that Wy n D is a symplectic distribution, the ratio |0tx(x)|/|07x(x)| has to be
smaller than 1; since Vp = 0 + 0, Vp1i(x) is required not only surjective but also
to have norm greater than O(k~'/?) (estimated transversality).

For each point x we can use the reference sections to turn the local estimated
transversality problem along D on By, (x, p) into an estimated transversality prob-
lem along D, for an A.H. sequence of functions

Frx:B(0,p") cC"xR— C,

where 7 0 ¢ = Fy - (r,ieff o ¢ ) (more generally C"-valued functions for bun-
dles of rank m). Equivalently, we have to solve an estimated transversality prob-
lem for a 1 real parameter family of A.H. functions

Fk7x(-’sk) :B(Oapl) cC"—C.

This problem is known to have a solution [5], [24]. The solution of the local trans-
versality problem along Dj, will produce a new function Fj , — u y, and therefore
a perturbation
— -1 ref
Xkﬁx T (_ukw‘c © gok,x) : Tk,x
so that we obtain estimated transversality along D for 7, + y, . over the ball
B,,(x,p). But the reference section is supported in By, (x,p"k'/®), being the con-
sequence that there will be interference among different local solutions. However,
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unlike transversality, estimated transversality does behave well under addition,
and in the presence of “‘enough” local estimated transversality, Donaldson’s glob-
alization procedure gives global estimated transversality (see the proof of Theorem
7.2).

Definition 4.1. Let (P,g) be a Riemannian manifold, (E,V) a Hermitian bundle
over it, and Q. a subspace of T,P. We say that 7 : P — E is p-transverse to 0 at x
along Q. if either |7(x)| > # or Vp, 7(x) has a right inverse with norm bounded by

no.
If Q is a distribution we say that 7 is #-transverse along Q to 0 if the above

condition holds at all the points where Q is defined. When Q is the tangent bundle
of a submanifold we also say that 7 is #-transverse over the submanifold to 0.

Let (M, D, w) be a 2-calibrated manifold, E; := E ® L®*, and 7 : (M, g) —
(Ey, Vi) a sequence of sections. We say that the sequence 7 is uniformly trans-
verse along D to 0 if # > 0 exist such that 74 is #-transverse along D to 0 for all
k> 1.

For a symplectic manifold the definition of uniform transversality along a dis-
tribution Q (possibly the tangent bundle to a 2-calibrated submanifold) is analo-
gous.

It is possible to attain estimated transversality along D using both the intrinsic
and the relative point of view. Using the former what we do is (locally) solving
transversality problems for 1-parameter families of A.H. functions from C”" to
C™. Regarding the latter we follow the ideas of J.-P. Mohsen developed for con-
tact manifolds, working in the symplectization (M x [—¢,¢], Q) and solving the es-
timated transversality problem for A.H. sections, but this time over M. Then we
can use the following

Lemma 4.1 ([30], second lemma in Section 6.1). Let (M, D,w) be a 2-calibrated
manifold. If in the symplectization (M x [—¢, ¢],Q) we are able to find an A.H. se-
quence ty, n-transverse over M to 0, then for any constant C, 0 < C < ﬁ/ 2, there
exists ko(C) such that for any k > ko the section ty |y is Cn-transverse along D to 0.

The proof is just an estimated version of the following elementary fact: if a
Jo-complex linear function /: C" x R — C™ is surjective, then it has a surjective
restriction to each complex hyperplane. Otherwise the kernel of the restriction,
being complex, would have real dimension bigger than 2(n — m) + 2, and / could
not be surjective.

4.1. Geometric reformulation of estimated transversality. We recall that in
this section we deal with estimated transversality along D in a 2-calibrated mani-
fold (intrinsic theory), or with estimated transversality over a 2-calibrated sub-
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manifold M inside a symplectic manifold P (relative theory). Sometimes we might
refer to both situations as transversality along a distribution Q in the Riemannian
manifold P.

As remarked in the previous subsection, for sequences of 1-parameter families
of A.H. functions Fy (-, sx) : B(0,p) < C" — C" one can achieve estimated trans-
versality, and thus the use of reference frames allows us to get local estimated
transversality along D to the 0 section of very ample vector bundles E;. More
generally, one expects to be able to attain estimated transversality along D to
sequences of submanifolds Sy < Ej of very ample vector bundles, where the S
locally look like the zero section of a trivial vector bundle: more precisely, the se-
quence of submanifolds should be locally defined by functions f; : Uy = Ex — C/,
Sk N U = £;71(0), which are approximately holomorphic with respect to the al-
most CR structure in the total space of the bundles (Ex, Vi) — (M, D,J,gx) in-
duced by the one on M, the connection, and the Hermitian metric on Ej, so that

Jiotkop  : B(0,p) = C"xR—C"

is an A.H. sequence of functions (or a weaker property that ensures this last
condition). That should allow us to find an A.H. perturbation

Xk,x * BGk(xvp”kl/6) — Ej
so that the A.H. sequence

fk © (Tk J’_Xk,x) : B(lk(xvp) - Cc"

is uniformly transverse along D to 0. Finally, we should make sure that this im-
plies enough estimated transversality along D to Sj for the sequence of sections

Tk + S x ¢ By (X, p) — Ej

to make Donaldson’s globalization procedure work.

In the relative context 7 : P — Ej the estimated transversality problem over
M < P to the 0 section has the same difficulty as the usual estimated transversality
problem to the 0 section (this is the work of J.-P. Mohsen [30], Section 5). Thus,
one expects this principle to be valid in the case of relative estimated transversality
to more complicated strata Sj.

To give a global definition of what transversality to a submanifold S < FE is,
we need to recall a more geometric definition of estimated transversality along a
distribution Q, together with the following concepts.

Definition 4.2. Let W be a vector space with non-degenerate inner product so
that for any u,v € W we can compute the (unoriented) angle / (u,v). Given
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UeGr(p,W) and V € Gr(q, W), p,q >0, the maximal angle of U and V,
[m(U, V), is defined as follows:

(m(U,V):= max min /(u,v).
ue U\{0} ve V\{0}

In general the maximal angle is not symmetric, but when p = ¢ it has symme-
try and defines a distance in the corresponding Grassmannian (see [32]).

The minimum angle between transverse complementary subspaces is defined as
the minimum angle between two non-zero vectors, one on each subspace. An ex-
tension of this notion for transverse subspaces with non-trivial intersection is:

Definition 4.3 (Definition 3.3 in [32]). Using the notation of Definition 4.2,
Lm(U, V), the minimum angle between U and ¥ non-void subspaces of W, is de-
fined as follows:
e Ifdim U + dim V' < dim W, then /., (U, V) := 0.
e If the intersection is non-transverse, then / (U, V') := 0.
e If the intersection is transverse, we consider the orthogonal to the intersec-
tion and its intersections U, and V, with U and V, respectively. We define
Lm(U, V) = minyc y,\ (o} Minye p,\ oy L (1, 0).

The minimum angle is symmetric.
The most important property relating maximal and minimal angle is:

Proposition 4.1 (Proposition 3.5 in [32]). For non-void subspaces U, V, W of R"
the following inequality holds:

LU V)< (U, W)+ Ln(W, V).
We will also be using the following

Lemma 4.2 (Lemma 3.8 in [32]). Let U, V be non-zero subspaces of R" and let
h:U — V* be the projection from U with respect to the decomposition R" =
V@ VL If h has a right inverse 0 satisfying |0] < n~" then [ (U, V) > n.

Let 7: P — E be a section of a Hermitian bundle with connection and Q a dis-
tribution on P. Let us denote the pullback of Q to E by Q. Let # be the hori-
zontal distribution associated to the linear connection and let #) denote its inter-
section with Q. Finally let T, o7 denote the intersection of the tangent bundle of the
graph of 7 with Q.
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Lemma 4.3. There exists a constant C >0 determined by upper bounds on
|Vot(x)|, [t(x)| such that:

(1) 1f Vot(x) has a right inverse with norm bounded by nt then [w(Hy, Tot) >
C~'y (the angle measured in O:x))-

2 If Lm(%’Ql, Tot) > n then Vot(x) has a right inverse with norm bounded by
(Csing) ™.

Proof. Let us assume that Q = TP. The vector space Tr(E = #;,) @ T"Ey is
endowed with the direct sum metric. We compose with an isometry preserving
the direct sum structure so that #7 ) @ T"E, becomes R“ ® R” with the Eucli-
dean metric. Let /: Tt(x) — R® be the orthogonal projection. By Lemma 4.2
applied to U = Tt(x) and V = R“ x {0} = #,(y), if 1 has a right inverse 0 with
0] <! then £y (#(x), TT(x)) > 1.

By definition Vz(x) : TxP — TVE, = E, is the composition / o dz(x), with the
differential dz(x) : TP — Tt(x), which is an isomorphism. Now if 0’ is a right
inverse for Vz(x), |0'| <#»~!, then drt(x)o 6" is a right inverse for 4 with norm
bounded by |dz(x)|y~!. Thus, by Lemma 4.2 £y (#;(y), Tt(x)) = |de(x)| 7.

Conversely, the projection 4 has always a right inverse 6 of minimum norm.
Let us define W := T't(x) N #yy) and U, := Tt(x) n Wt If we compose 0 with
the orthogonal projection 7'z(x) — U, we obtain a right inverse 0 for /)y, such
that |0 = |0]. If now £y (#;(v), T7(x)) > 7 then the equation involving inequal-
ities of Lemma 3.8 in [32] implies that

0] < (siny)~", (16)

and therefore dr(x)f1 o@ is a right inverse for Vz(x) with norm bounded by
|dr(x)| " (siny) "

In the case Q # TP we fix an isometry sending (#p, #) at t(x) to
([R“/ x {0}, R*) with the Euclidean metric, and apply the above arguments to
RY @ R.

Note that we have C = |dpt(x)|, with dp7(x) the restriction of dz(x) to Q..
Observe that a bound for |dpz(x)| can be obtained from upper bounds for |z(x)|
and |Vot(x)|. O

Remark 4.1. In the definition of minimum angle /,,(U, V'), when U, V are not
complementary we work with the intersections in (U N V)L where we can apply
the usual notion of minimum angle for complementary subspaces. Instead of
(U~ V)" one might choose any other subspace W complementary to U N V' to
give a different notion of minimum angle. In certain situations this is a good strat-
egy because there are natural complementary subspaces available. It is easy to see
that the new notion of minimum angle is comparable to the one of Definition 4.3,
and the comparison is given by multiplying by a constant depending only on
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Lm(UNV, W) (there is no ambiguity since these are complementary subspaces).
Actually, those new notions depending on the complementary coincide with the
one given in 4.3, but for a new metric which is comparable to the Euclidean one
in terms of /(U V, W) (very much as it happened with the isomorphism
dpt(x) in the previous lemma).

We need a second result relating angles and intersections.

Lemma 4.4. Let U, V, W be linear subspaces of R" such that /.o (V, W) >y > 0.
Let / (U, V) <0. Then there exists C(y,dim V,n) > 0 such that

/MU W, VAW) < Cs.

Proof. For each u e U\{0}, we have / (u, V) = £ (u,h(u)), where h: R" — V is
the orthogonal projection. We consider a complementary space to V" possibly dif-
ferent from V+: because /n(V, W) >y >0 the dimension of W is greater or
equal than the codimension of V/, and the intersection of ¥ and W is transverse.
As a consequence any subspace (of W) complementary to V' n W in W is also
complementary to V' in R". We let V' be the orthogonal to VW in W,
and we define Ay : R" — V to be the projection along ¥y (whose restriction to
W is the orthogonal projection onto ¥ n W). It follows that / (u,hy(u)) <
C/(u,h(u)) = CL(u, V), and by construction if u € U W then £ (u,hy(u)) =
L(u, VW), O

Let S < E be a submanifold in the total space of the vector bundle £ over
either a 2-calibrated or a symplectic manifold, transverse to the fibers. Let § be
the metric in E induced by the connection, the bundle metric, and the metric g in
the base. The submanifold might not have a tubular neighborhood of positive
radius. If we assume S to be in a compact region—as it will be the case in our
applications—then the problem comes from the behavior near its boundary
0S = S\S. Thus a reasonable extension of Definition 4.1 to our non-linear setting
must deal separately with points close to dS and with the other points of S.

Definition 4.4. Given 7 > 0 the points of S 7j-far from (resp. 7-close to) the
boundary are those points in S at g-distance of 0S greater or equal (resp. smaller)
than 77 > 0. For any # > 0—typically much smaller than 7—we define 45 (#,7) to
be those points that can be joined to a point 7-far from the boundary by a geodesic
arc normal to S and of length smaller or equal than #.

We now define the distribution 7''S at the points of .45(x, 77) by parallel trans-
port of T'S along the geodesics normal to S, starting at the points 7-far from the
boundary of S.

TlS plays the role of #. We use the notation TQS =TIsn Q0.
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Definition 4.5. 7 is (5, 7)-transverse along Q to S at x if either (i) 7(x) misses the
union of S with ¥s(y,7), or (ii) 7(x) enters in As(,7) so that / (T, TgS) >7
at 7(x), or (iii) t(x) intersects S at the points 7-close to the boundary with
Lm(Tot,TpS) > 77 at (x).

Uniform transversality of 7, along Q to Sy is defined as (1, 77)-transversality for
some 7,7 > 0 and for all £k > 1.

Conditions on a sequence of submanifolds S; of complex codimension / (or
more generally on stratifications) can be imposed, so that local estimated transver-
sality along O of 7x . at the points of By, (x,p) to the points of Sy far from 05y is
equivalent to estimated transversality along Q of a related C’-valued function to 0
(Lemma 4.5).

We will consider stratifications . = (S{), a € A,, which are (i) finite in the
sense that #(A4;) must be bounded independently of &, and (ii) the boundary of
each strata 4S = SP\S} will be the union of the strata of smaller dimension

asp =1 sp.

a<b

Definition 4.6. Let E; = E® L®* — (M,D,J,g) and let (S),., be finite
stratifications of Ej; whose strata are transverse to the fibers. Let r e N, r > 2.
The sequence of strata is Whitney C’-approximately holomorphic (C"-A.H.) if
for any bounded open set U of the total space of Ej; and any ¢ > 0, constants
C,, p, > 0 only depending on ¢ and on the size of Uy, but not on k, can be found,
so that for any point y € Uy in a strata S for which dj (y,0S}) > &, there exist
complex valued functions fi,..., f; such that By (y,p,) N S{ is given f; =--- =
f1 =0, and the following properties hold:

(1) (Uniform transversality to the fibers 4 transverse comparison) The restriction
of dfi A -+ Adf; to TYEj is bounded from below by p,.

(2) (Approximate holomorphicity along the fibers) The restriction of the function
f=(fi,..., f1) toeach fiber is C"-A.H.(C,).

(3) (Horizontal approximate holomorphicity + holomorphic variation of the re-
striction to the fiber + estimated variation of the restriction to the fiber) For
any A, k and 7 C"-A.H.(A) local section of E; with image cutting By, (v, p,),
fiot is C"™-A.H.(AC,;). Moreover, if 0 is a local C"-A.H.(4) section of
T*TVEy, then df;(0) is C"-A.-H.(AC,).

(4) (Estimated Whitney condition (A)) For each # > 0 small enough, there exists
d(n) > 0 such that for all y e S} at distance smaller than 6 of S <3S},
[ m(TISE, TSP) at p is bounded by 7.
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Remark 4.2. If we give the corresponding definition using as base space an al-
most complex manifold instead of an almost CR manifold, we almost recover
the Definition 3.2 in [4] (our condition (4) is a bit weaker).

Condition (1) is equivalent to the strata have minimum angle with the fibers
bounded from below. We just try to mimic the picture of the 0 section with re-
spect to the fibers of a vector bundle, in which case we even have orthogonality.

Conditions (2) and (3) guarantee that if 7, : M — Ej is A.H., then the corre-
sponding C’-valued function to be made transverse to 0 is A.H.

Recall that for a stratification . of some R, a stratum S* satisfies Whitney’s
condition (A) if for every converging sequence x, — x, x, € S, x € §¢ = 0S?, so
that T, S? is converging, the limit contains 7,.S¢. Condition (4) is an estimated
Whitney condition (A).

Definition 4.7. Let . be as in Definition 4.6 (over either a 2-calibrated or a sym-
plectic manifold). Then 7 is uniformly transverse along Q to . if there exists
strictly positive numbers (7,,7,) for all @ € 4 such that:

(1) For all a € Ay and for all k > 1 7 is (n,,7,)-transverse along Q to SY.

(2) Foreachb, | J,_, Nsa(n4,7,) contains the points of S} 7j,-close to 0Sp.

Now that we have the notion of uniform transversality of a sequence of sec-
tions to an appropriate stratification, we need tools to relate it with local uniform
transversality for sequences of (related) functions.

Lemma 4.5. Let S{ be a sequence of strata as those in the stratifications of Defini-
tion 4.6 for the base space P either an almost CR manifold (intrinsic theory) or an
almost complex manifold (relative theory). Let ¢ >0 and 0 < n < e Let y € Ey be
a point in the stratum e-far from the boundary, and let f = (fi,..., fi) be the corre-
sponding local C'-valued function defining the stratum in B; (y,p,). Let 1y be a sec-
tion of Eyx whose graph enters in B; (y,p,). Then there exist constants p'(e,n,|tx]),
C(E, |VQ‘L'k|, |‘L'k|), C/(S, |VQ‘L'k|, |‘L’k|) > 0 such that:

1) If Lm(Tort, 7! S%) > n in B; (y,p,), then do(f o71) has a right inverse with
0 ] 3 & 0
norm
bounded by (CSiI‘l(ﬂ/2))71 in By, (y,p').

(2) If do(f ot) has a right inverse with norm bounded by n=' in By (y,p,), then
Lm(Tor, TgS“) > "'y in B, (y,p').

Proof. By simplicity we omit the subindices for the sections 74, the bundles, and
the strata.
Let us assume that / ,(7pr, Tgsa) > 7.
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Step 1: Show the existence of p’(e,#, |t|) > 0 such that £ ,(Tor, Kerdf n Q) >

1/2 in By, (y.p').
According to Proposition 4.1 (Proposition 3.5 in [32])

Ln(TpS, Tor) < Lm(TpS® Kerdf n Q) + Lm(Kerdf N Q, Tor),
and therefore we need to prove the existence of p’ > 0 so that in By, (, p’)
Lm(TyS, Kerdf 0 Q) < 1/2. (17)

Condition (1) in Definition 4.6 implies that /,(Kerdf, Q) > y(¢). If we find
p' > 0 such that in By, (y,p’)

Lm(TIS Kerdf) < C(3(e) 'n/2, (18)

we can apply Lemma 4.4, where U = TS V = Kerdf, W = Q to conclude that
equation (17) holds.

Equation (18) is proven using appropriate charts. The situation we are trying
to mimic is that of a locally trivialized vector bundle and we measure the maximal
angle between the parallel copies of the 0 section (here the leaves of ker df’) and #
(here T!S9).

Due to the bounds in Definition 4.6 we can find a chart @, : R* — B, (y,p,)
such that in B(0,p") = R“ (i) the metrics go and @ g, (we write gy if it is clear that
we work in the chart) are comparable, and the Christoffel symbols of g, are
bounded by O(1) (the bounds being uniform on k, y), and (ii) the foliation
Kerdf is sent to the foliation R, In B(0,p”) = R* the stratum S becomes
R x {0} and tubular neighborhoods for g, and gy are comparable. At any
point ¢ in the neighborhood, a vector in u € TI'S is the result of parallel trans-
lating (with g;) a vector v in R* % x {0} over y’ € R x {0} along the cor-
responding g,-geodesic. Since the Christoffel symbols are bounded, /(u,v) is
bounded by e — 1, T' > 0. So by decreasing 7, the distance of ¢ to S, we bound
the maximal angle by C(y) '5/2. Therefore the final radius p’ depends on 7, on ¢
(because C(y) depends on ¢), and on how gy and g, are related (to order one).
This final relation depends on f (and hence on ¢) and on the metric g, (and hence
on |z|).

Step 2: Show that / (Tt Kerdf n Q) > /2 implies that do(f o) has a
right inverse with norm bounded by (C(e, |Vo1], |7]) sin(17/2))_l.

The proof of item (%) in Lemma 4.3 implies that the orthogonal projection
h:Tot — (Kerdf n Q) has a right inverse with norm bounded by (sin(77/22)_1
(equation (16)). Let Vg denote the orthogonal in the fiber TVE of (Kerdf n Q) n
T'E. Due to condition (1) in Definition 4.6, this is a subspace complementary to
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Kerdf n Q and such that / ,,(Vg, Kerdf n Q) is bounded from below in terms of
p,> and hence in terms of ¢.

Let /ig : Tot — Vi be the projection along Kerdf n Q It follows that there
is a constant C(¢)”' >0 and a right inverse for Az with norm bounded by
Ci(e) '(siny/2)"". We now define

B =df ohgodgr: Q— C.

By construction, 41" = dy(f o 7). Condition (1) about the restriction of df to the
fiber implies the existence of a right inverse for 4” with norm bounded by
|er|71C2(e)71C1 () '(siny/2)~"'. Therefore, do(f ot) has a right inverse with
norm bounded by C(e, |dgt|)sin(7/2)"" in By, (»,p'(¢,1,]7])), which proves item
(D).

Conversely, if dp(f o 7) has a right inverse By, (,p,) with norm bounded by
n~!, Step 2 above implies that /5 o dpt has a right inverse with norm bounded by

, -1
(Ci(e)2n) .

Item (1) in Lemma 4.3 gives

Ln(Tot,kerdf 0 Q) = C'(e,|Vorl, |t])2n,
and combined with Step 1 we conclude that
Lm(Tot, TpS") = C'(e, |dotl)y  in By, (v, p(e,n, ).

Observe that the constants C, C’ grow very large as ¢ and # tend to zero. [

Remark 4.3. The previous lemma does not involve almost complex structures at
all. Hence it also holds for arbitrary Hermitian bundles, sections, and strata
which fulfill condition (1) in Definition 4.6.

Using appropriate choices of complementary subspaces to get a bound from
below for certain minimal angles, as noticed in Remark 4.1, we can prove the fol-
lowing

Lemma 4.6. Let S = (S}),. 4 be a sequence of approximately holomorphic strat-
ifications as in Definition 4.6. Assume that the sequence Ty is uniformly transverse
to & along a distribution Q whose dimension is greater of equal than the codimen-
sion of the strata, and that the uniform bounds |ty|, |Vtk|, < O(1) hold. Then
(87 is a subvariety of M uniformly transverse to Q for each a € A.

Proof. We must prove that for a sequence of points x(k) in ;' (S{) we have
Lm(Tor ' (S9),0) =7 >0 (19)

for all k£ > 1 independently of the points.
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Denote 74 (x) = g. We claim that equation (19) will follow from
Lo (T Toti (S8), 71 Q) = 7' > 0, (20)

where the angle is measured in 77x(x) with the induced metric. The reason is that
the bound on |7x| implies that the metric in E} is comparable to the product metric
given by any trivialization by reference frames (and using on each factor the Her-
mitian metric in the fiber and g; coming from the base). Then we use the bound
on |Vzi| to conclude that in this product metric /m(7ti(x), T"Ex(q)) > d; > 0,
where TVE} is the tangent space to the fiber. Hence, our claim follows.

We can rewrite equation (20) as

Lm(Toti(x), Tt n TS (q)) = 9" > 0. (21)
Our second claim is that
Lw(TS{(q), T"Ex(q)) =52 > 0. (22)

Indeed, this follows from condition (1) in Definition 4.6 if we are in a point 7-far
from the boundary of Sf. For points 7-close, we use the estimated Whitney con-
dition (A) together with Proposition 4.1 to prove equation (22). Since T"E; < O,
we also conclude that

L (TS{(q),0) =5 > 0. (23)

We will reinterpret equation (23) by choosing a suitable complementary space
to IS¢ n O(q) which is not its orthogonal W (see remark 4.1). Let W, = O (resp.
W, < Q) be the intersection of Tz (x) (resp. TS{(q)) with the orthogonal of
TSN Tt n 0(q) inside O, and let W5 be the intersection of T (x) with the or-
thogonal of Q. From /(T tx(x), T'Ex(q)) = 1 we obtain that £y (Ttx(x), Q) >
d1, and by hypothesis £ (ToTi(x), ToS{(q)) > d4 > 0. Both inequalities imply
that W' := W; @ W3 can be used instead of W. By construction W' n Q = Wy,
so from equation (23) we conclude that

La(W' aTS{(q), W1) =5 > 0. (24)

Notice as well that to compute equation (21) we have to intersect the cor-
responding vector subspaces with the orthogonal of T'S{ N Tt N O(q) inside
Tt (x). From what we have seen, we can rather choose as complementary space
W'. Since W' Toti(x) =Wy and W' (Tt 0 TS{(q)) = W' TS(x), we
have to compute the left-hand side of equation (23), so the result follows. O

In particular the following corollary is deduced:
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Corollary 4.1. Let & = (S{),c 4 be a sequence of A.H. stratifications over the 2-
calibrated manifold (M, D, ) as in Definition 4.6. Assume that the A. H. sequence
Ty Is uniformly transverse to & along D. Then for each a € Ay, T,:I(S/?) is either
empty if the codimension of S} is bigger than the dimension of D (or M), or a sub-
variety uniformly transverse to D.

For a symplectic manifold, transversality along the directions of a (compact) sub-
variety N implies that either (i) t,' (Sf') is at gi-distance of N bounded from below
or (ii) it is a subvariety (at least defined in a gi-neighborhood of N) uniformly trans-
verse to N.

If we analyze the proof of Lemma 4.6, Corollary 4.1 for 2-calibrated manifolds
is equivalent to saying that uniform transversality along D implies uniform trans-
versality over M (along TM). The converse is also true, extending therefore Moh-
sen’s relative transversality result to appropriate sequences of stratifications.

Corollary 4.2. Let S = (S{!), 4, be a sequence of A.H. stratifications over the 2-
calibrated manifold (M, D, ) as in Definition 4.6. Assume that the A.H. sequence
Tk is uniformly transverse to ¥ (over M) for suitable constants (n,,7,), a € Ay.
Then 1. is also uniformly transverse along D to & .

Proof. By induction we can assume that 7; is uniformly transverse along D to S}

for every a < b. Let g € S, with 7.(x) = ¢, if'-close to 0S?. We want to show
that

L(Tote(x), TnSE(q),) = 7'
and will do it by applying for some index a € A the inequality
L (Tote(x), THSE(@)) < La(THSE (@), ToSE(9)) + Lm(Toti(x), ToS{(g)). (25)
If 7’ is small enough, condition (2) in Definition 4.7 implies the existence of an in-

dex a € Ay such that g € Nsa(n,,7,). If we apply induction we conclude
Lm(Tpi(x), Ti‘)S,f(q)) >17,, so we only need to make

L (T)SE ), ToSE(q)) < 7

This is done using Lemma 4.4 with U = TS%(¢), V = TS*(q), W = D. We need
to check that

L (T'SE(q), TSP (q)) < 7, (26)
Lw(TS{(q), D) = 7. (27)
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Equation (26) follows by the estimated Whitney condition by taking 7’ small
enough; equation (27) uses again the inequality of Proposition 4.1,

Lw(D, TIS{(q)) < Lm (TS (q), TSL(q)) + Lm (D, TSP (),

together with /£, (D, T1Sf(g)) > 2y (by condition (1) in Definition 4.6) and equa-
tion (26).

So far we deduced some 7’-transversality only at the points 7’-close to the
boundary of S?. Now let us assume that for some 7 > 0, /. (Tti(x), TSk (¢))
> 7 in the tubular neighborhood s (n,7') (here comes the requirement on the
constants controlling the transversality, i.e., in those points 7'-far from the bound-
ary we need to make sure that /(77 (x), T1S?(¢)) is uniformly bounded from
below). If 74(x) € ,/Vskh (n,7"), then, by Lemma 4.5, n-transversality implies #’-
transversality to 0 of the function f o 7 : By, (x,p’) — C!. From the approximate
holomorphicity of the composition f o1, for all £ > 1 a result analogous to
Lemma 4.1 yields @n’ -transversality along D, which again by Lemma 4.5 gives
n"-transversality along D to S? (we suppose that 7" < 7).

Therefore, it follows that . is (", 7')-transverse along D to S}. O

5. Pseudo-holomorphic jets

The main applications of the theory of approximately holomorphic geometry for
2-calibrated manifolds are deduced from the existence of generic rank m linear sys-
tems.

Let us assume that (M, Z,J) is a Levi-flat CR manifold and L — M a positive
CR line bundle. Let C" — M denote the trivial (and trivialized) bundle of rank m
endowed with the trivial connection.

Definition 5.1. A CR section 7: M — C""!' ® L (or a rank m linear system of L)
is r-generic if its zero set B is a CR submanifold of the expected dimension, and
the projectivization ¢ : M\B — CP" is a leafwise r-generic holomorphic map,
1.e., when restricted to each leaf it is transverse to the Thom—-Boardman stratifica-
tion of the bundle of holomorphic r-jets of holomorphic maps from the leaf to
cpP™.

The proof of the existence of r-generic linear systems (possibly of large enough
powers of L) is the main subject of [25].

The strong transversality property for a CR function ¢ : M — CP™ to be r-
generic is as follows: we consider #/z(M,CP"™) the bundle of CR r-jets (of foli-
ated holomorphic r-jets) of CR maps from M to CP". This bundle admits a CR
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Thom-Boardman stratification PX, which restricts to each leaf to the correspond-
ing holomorphic Thom-Boardman stratification. A CR function ¢ is r-generic if
and only if its CR r-jet jipp : M — J/ n(M,CP™) (which by definition is the foli-
ated holomorphic r-jet) is transverse along & to PX.

Assume that our CR submanifold embeds holomorphically in some complex
manifold P and that & extends to a holomorphic foliation integrating the complex
distribution G. There is a canonical submersion pg : #"(P,CP") — #5(P,CP™)
from holomorphic r-jets to foliated ones. The foliated Thom—Boardman stratifi-
cation PX < #/(P,CP™) restricts over M to the CR Thom—Boardman stratifica-
tion PX of #/x(M,CP™). Let us denote the pullback ps~'(PE) by PXC.

For any holomorphic function ¢: P — CP™ it is an elementary fact that
je¢ € T(F5(P,CP™))—the holomorphic r-jet along G—is transverse along G to
PX at the points of M, if and only if j"¢ € I'(#"(P,CP™)) is transverse along G
to PX Y at the points of M. By the results of the previous section, this is equivalent
to being transverse over M to PxC.

To obtain an r-generic linear system there is an additional complication com-
ing from the base locus. We first need to make sure that t: P — Q”’“ ® L is
transverse over M to the zero section, and then solve the r-genericity problem for
the projectivization (in a compact region of P\z~!(0)). Instead of working first
with the section 7 and then with the projectivization, following ideas of D.
Auroux [4] we restate the whole issue as a unique transversality problem over
M for the pseudo-holomorphic r-jet extension of 7, a section of a vector bundle
J"(C™' ® L). The advantage is that we work with vector bundles and we can
use the module structure of sections.

5.1. The integrable case. Let £ — P be a Hermitian bundle over a complex
manifold with compatible connection V, whose curvature satisfies Fg’z =0. The
total space of the bundle is a complex manifold (Theorem 2.1.53 in [14]) and there
is a notion of holomorphic section and hence of holomorphic r-jet. The space of
r-jets has natural charts obtained out of holomorphic coordinates in the base and a
holomorphic trivialization of the bundle. They provide a local identification of
the holomorphic r-jets with 7, the usual r-jets for holomorphic maps from C”
to C™.

Let dy be the Cauchy—Riemann operator defined (locally) using the canonical
structure Jj in the base (the chart) and the trivial connection d in C™. The con-
nection on the fiber bundle can be used to give a different notion of local holomor-
phic r-jet (in principle chart dependent) by just considering the operator dy: if the
connection matrix in the trivialization is A4, = A%, then the coupled 1-jet of a
holomorphic section 7 is defined to be (7,dpt + A,7)). Higher order coupled
jets are constructed by induction using the connection induced by the flat metric
and V.
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Observe that locally for the above choice of coordinates and trivialization of
the bundle, both the usual r-jets and coupled r-jets fill the bundle

r

(S rteno)ecm = 4,

J=0

where © stands for the symmetric part of the tensor product and (7' *LOC”)OO ®
C™ for C™. This is due to the existence through any point of E of holomorphic
frames tangent to the horizontal distribution of the connection, together with the
vanishing sz,o (the latter implying that d4 and its derivatives are symmetric ten-
sors when evaluated on (1,0)-vectors).

For Levi-flat CR manifolds the local model for the pseudo-holomorphic jets to
be introduced is the following: the base space is (C" x R, Jy, go) (or rather a ball of
Euclidean radius p > 0), the bundle is assumed to be trivialized by a CR frame
and the curvature is of type (1,1). The bundle of CR r-jets is denoted by #p, ,
(foliated holomorphic r-jets along Dj); its fiber over each point is that of 7.
There is an obvious notion of CR coupled r-jet. The hypothesis on the trivializa-
tion and on the curvature imply that they are also symmetric, so they fill the bun-
dle /Dr/,,n,m = n):m X R

Using Darboux charts and suitable trivializations this model will be achieved
in an approximate way in the theory for 2-calibrated manifolds.

There is a final local model we wish to introduce that would appear in Kéahler
manifolds P with a holomorphic foliation integrating a complex distribution G.
Locally, we have holomorphic coordinates CY x C”¢ with G sent to C? (which
integrates into the foliation with leaves CY x {-}), and we work with foliated
coupled jets along the leaves of CY. The corresponding bundle of coupled foliated
r-jets is denoted by f@q . It coincides with 7], " x CP7Y. Transversality prob-
lems for this bundle W111 be transferred to transversahty problems in 7, so we
need no further analysis of its properties, though we will be 1nterested at some
point in studying the natural submersion ¢, — #¢ ,,. This local model is
achieved in an approximate way in a symplectic manifold (with compatible almost
complex structure and metric) with a J-complex distribution G—not necessarily
integrable—, by using approximate holomorphic charts adapted to G.

5.2. Pseudo-holomorphic jets. Denote sequence £ ® L®* — (M, D, ) by Ej.
We define the bundles

s5Ec= (L 0 @

Jj=0

where © stands for the symmetric part of the tensor product of complex vector
bundles. They carry Hermitian vector bundle metrics induced by gx|p, the one
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on Ej, and the symmetrization map
sym, : (D*1’0)®j - (D*I,O)Gj. (28)

The Levi-Civita connection induces a connection on D* (using the metric to see
D* — T*M and then projecting 7*M — D*) and therefore in D*1'* (using the
splitting D*1:% 4 D*:1); combined with the connection on Ej and the symmetriza-
tion map they define connections Vj ,. The total spaces #}Ej also carry metrics
constructed in the usual fashion out of the metric in the base, the connection, and
the vector bundle Hermitian metric.

The definition of pseudo-holomorphic r-jets along D (or just pseudo-
holomorphic r-jets) for a sequence Ej; of Hermitian vector bundles is given by in-
duction (see [4]). Let 7; be a sequence of A.H. sections of E;. By definition
70tk = . Let ji 't € #57 Ey be the (r — 1)-jet of 74. It has homogeneous com-

ponents of degrees 0,1,...,r— 1. We will denote the homogeneous component
of degree je{0,...,r—1} by o}, m € T((D*" 09 ® Ey). The connection

Vi, r—1 is actually a direct sum of connections defined on the direct summands
(DY @ Ey, j=0,...,r—1. For simplicity and if there is no risk of confu-
sion we will use the same notation for the restriction of Vi ,_; to each of the
summands. The restriction of Vy ,_ 165ymfk to D defines a section Vi ,_1. Dasym
el(D*® (D" 0yor-t ® Ej). For each x € M it is a form on D with values in
the complex vector space (D*9)°""! ® Ej. Therefore we can consider its (1,0)-
component 00,17 € I'(D*10 @ (D*1:9)©"~ ' ® Ey). By applying the symmetriza-
tion map sym, of equation (28) we obtain 0}, 7 € T'((D*"*)®" ® Ex).
Definition 5.2. Let 7, be a section of (Ej,Vy). The pseudo-holomorphic r-jet
Jptk is a section of the bundle #5E; = (3/=°(D*19)%/) ® Ej defined out of the
(r — 1)-jet by the formula jpti == (jp 'k, Oy Th)-

Remark 5.1. The previous definition incorporates the fact that the degree r and
(r — 1) homogeneous components of the r-jet are symmetrization of the pseudo-
holomorphic 1-jet of 6Symrk, then we have to add the homogeneous components
of lower degree. Actually, we could have equally deﬁned JpTk by taking the sym-
metrization of the pseudo-holomorphic 1-jet of ji 'z, (because this gives the ho-
mogeneous components of degree 1, ..., r) and then adding 7, the degree zero ho-
mogeneous component.

Remark 5.2. The pseudo-holomorphic r-jets are useless for our purposes for low
values of k. We are interested in having a notion of r-jet of an A.H. sequence
which in approximately holomorphic coordinates and for suitable local trivializa-
tions of Ey, is as close as possible to the local coupled holomorphic r-jet defined in
C" x R using Jj and the flat metric (introduced in Section 5.1). As k grows large
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and due to the proximity between gi, J and Jy, go in B(0,p) = C" x R we will see
that the norm of the difference at any order between the two notions of r-jet is
bounded by O(k~'/?).

For a symplectic manifold (P, Q) with a J-complex distribution G the bundle
of pseudo-holomorphic r-jets along G will be defined to be

SEE = (i(G*le)@) ® Ey.

=0

We have a canonical projection pg : #"Ep — JiEr. We also use the splitting
TP = G @ G* to see JLE) as a subbundle of #"Ey; hence every section of #Ej
can be seen as a section of #"Ey. To define the pseudo-holomorphic r-jet along G
we use the same induction procedure as in the definition of pseudo-holomorphic
r-jets along D, but either before or after symmetrizing we project 7P — G*1.°
(or even before taking the (1,0)-component we project 7*Pc — G¢); the result of
either choice is the same.

Once approximately holomorphic coordinates have been fixed we have a ca-
nonical pointwise (Jy — J)-complex linear identification

T'Cn—>l)7 ,\a.H a.—i—aii, a’—>](6+ali> (29)
0x;, 0x;, Osy, 0V 0x;, Osk

The inverse of its dual is a (Jy — J)-complex bundle map
@ T0C" — D10, (30)
It should be stressed that this identification is only important in the ball of some gy

radius p > 0, the region where our computations have to be more accurate (in or-
der to obtain local estimated transversality). There, for some constant y > 0,

[@hxly, <70 @l <7 and  [dwi ], < O(k™1/?) (31)

for all j > 1. The Gaussian decay of the reference sections will take care of what
happens out of these balls. We also notice that by writing dz; we will mean
@, (dz]).

Let us assume that we have also fixed a family of reference sections of
7l e T(L®*). Using any local unitary basis of £ (with bounds uniform on x) to-
gether with the reference sections, we have a family of trivializations leefv i
Jj=1,...,m, of Ej in the balls By, (x, p) for all x and for all k large enough. The
A.H. coordinates and the associated bundle maps wy, . provide a local basis
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dz},...,dz! of D*1:°. We obtain a family of trivializations of 7} E) about any

point as follows: for I = (i, i1, ...,0,) with 1 <ip <m, 0 < i) +---+1i, <rwe set
Oi i

Mg = @ o QAR @ T (32)

Definition 5.3. A family of sequences 74 . ; : M — Ej is called a family of holo-
nomic frames if

(1) they are A.H. sections with Gaussian decay w.r.t to x,

(2) there exist p,y > 0 such that in the balls By, (x,p) and for all points and all k
large enough the sequences jjti .7 : M — #)E) define a frame which is y-
comparable to g , ; in the following sense: if we write j,7x v s in the basis
U . 1> for the corresponding matrix M, we have

|Mk,x| =7 ‘Mk_l\|qo =7

90

One checks that the notion of holonomic reference frame does not depend ei-
ther on the fixed approximately holomorphic coordinates, or in the chosen refer-
ence sections of Ej to define g , ;. Only the constants involved in the definition
change.

In this situation there is still a weak point. The main goal is to construct sec-
tions whose pseudo-holomorphic r-jets are transverse to certain stratifications.
For that we need the pseudo-holomorphic r-jets to be A.H. sections of the bundles
IHEy (resp. #"Ej for symplectic manifolds with J-complex distribution G), so
that we can apply the transversality results from approximately holomorphic
theory (to be proved in section 7). We intend to use holonomic reference frames
defined as follows: if 7 is one of the (n + 1)-tuples introduced before we set

Vix 1 = j’bflfi.l’ where r,ﬂeil = (z,i)ll ...(z,’j)”r,fiﬁio e ['(Ey). (33)

In the Kéhler case and due to the presence of curvature (see [5]), the coupled jets
are not anymore holomorphic sections of %, with respect to the complex struc-
ture induced by the connection. Similarly, the frames Vi x,1 fail to be families of
holonomic frames because the sections are not approximately holomorphic if
r > 1. This difficulty is overcome by introducing a new almost complex structure
(a new connection) in #)Ej (resp. #"Ej). This is the content of the following
proposition whose proof is given in Appendix A.

Proposition 5.1. The sequence ¢S E. — (M, D,J, gx), which is very ample for the

connections Vy, , previously described, admits new connections Vy . such that:

(1) Vi, —Vim, € DVl ® (FpEr). Hence, if in order to compute the pseudo-
holomorphic jets (Definition 5.2) we use the connections Vi py, instead of Vi,
then the result is the same.
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(2) Let us denote the curvatures of Vi g, and Vi . by Fi g, and Fy ,, respectively.
Then Fy p, ® Fy.,, and hence ( f)Ey, Vi, u,) is a very ample sequence.

3) Iftpy : M — Ejisa C™h-A.H. sequence of sections, then Jptk : M — JgiEiisa
C"-A.H. sequence of sections for the connections Vy. .

In the integrable model (E,V) — (C" x R, Dy, Jy,g0), with E=L @ --- ®
Ly, we can introduce new connections Vy, (here there is no dependence in k, since
distribution, (almost) complex structure, and metric are the standard ones). If the
curvature F; of each line bundle L;, i = 1,... m, restricted to the leaves is of type
(1,1) and has constant components with respect to the coordinates zi, ..., z,, then
the restrictions to each leaf of the curvatures Fy, and F, (item (2) above) coincide.
As a consequence the new almost CR structure in the total space of fp, . ,, induced
by Vy, is also integrable (the foliation does not vary, just the leafwise complex
structure). Also if © is a CR section (C"-valued function), then the coupled CR jet
is a CR section of (Jp, , > V,)-

In the case of (P,Q) symplectic with a J-complex distribution G, analogous re-
sults hold for ¢"Ey and for the integrable model.

As we said we postpone the proof until Appendix A, but we introduce the for-
mula for the connection.
Let o) = (0k,0,0k,1) be a section (maybe local) of jL;Ek. We define

Vi, (0x,0,01.1) = (Vor.0, Vor.1) + (0, —Fpy ' 0),
where F)'a;0 € D' @ D*1:0 ® Ej (see [3)).

Remark 5.3. The approximate equality Fy, & F; has useful consequences. As-
sume for simplicity that £, = L®*. Fix approximately holomorphic coordinates
and trivialize the line bundle so that the connection form is A4 (equation (3)).
Then in the local frame (1,0) ® %, (0,dz}) ® 1, ..., (0,dz}) ® 7 JpLi and
over B(0,p) = C" x R the connection matrix of V. g, is up to summands bounded
(at any order) by O(k~!/?)

A4 —ldz —3dz}
0 4 0
0 0 A

In particular we have a uniform control on the new metric of the total space of the
bundles fl;Lk (resp. #'Ly). In a similar manner this uniform control also holds
for the bundles #]E) (resp. #"Ej). A useful outcome is that if we have a sequence
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of stratifications % such that for a choice of approximate holomorphic coordi-
nates and reference frames, in the associated local basis g , ; of equation (32)
the strata Sy are given by equations (functions) that do not depend neither on k
nor on x, then the different bounds associated to the strata (basically those of the
local functions defining them) will not depend on & and x (because we can com-
pute them for the corresponding model with the Euclidean metric elements).

6. The linearized Thom—Boardman stratification

For the very ample sequences Ej there is an easy sufficient condition for a se-
quence of stratifications to be finite, Whitney (A), and approximately holomor-
phic.

Let us denote by T the group of translations of C" x R (resp. C? in the relative
case).

Lemma 6.1. Let (S{),. 4 be a sequence of stratifications of Ex — (M, D,w) such
that for a choice of approximately holomorphic coordinates and approximately holo-
morphic trivialization it is sent to (S“),. 4, a fixed CR finite, Whitney (A) stratifica-
tion of C" — C" x R transverse to the fibers. Then the sequence (S{),. , is as in
Definition 4.6.

Conversely, from a Whitney (A) CR stratification of C" — C" x R transverse to
the fibers and invariant under the action of T x GL(m,C) (or T x C*), using the
local identifications of Ej with C™ furnished by A.H. coordinates and A.H. trivial-
izations, it is possible to induce an approximately holomorphic sequence of finite,
Whitney (A) stratifications of Ej.

Proof. Recall that we are interested in constructing A.H. sequences of sections
transverse to (S{),.,; in particular this sections will be uniformly bounded.
Therefore, for each k, x we can work in the subset B(0,p) x B(0,R) = (C" x R)
x C™ =C"™", for some R > 0. Let f be a function defining locally a stratum S,
which by hypothesis can be chosen to be CR. Condition (1) in Definition 4.6
holds trivially for the model S and therefore for (SY),. ,, because when we com-
pare the Euclidean metric and g, we get the same inequalities as in condition (1) in
Definition 3.1.

Since the model stratification is Whitney (A) and we work in a compact region,
Whitney’s condition (A) implies the estimated Whitney condition (A) for the Eu-
clidean metric and hence for g,.

Let Jy be the leafwise holomorphic structure associated to the canonical CR
structure of C™ = (C" x R) x C™ and let D, denote the foliation by complex
hyperplanes. Since the local function f defining S“ is CR, it is in particular fiber-
wise holomorphic, and this proves condition (2) in Definition 4.6.
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Let (D, J,§,) be the almost CR structure on B(0, p) x B(0, R) induced by the
one on E;. In order to prove condition (3) it suffices to check that 1 is A.H. with
respect to that almost CR structure. We are gomg to slightly modify the induced
almost CR structure: instead of D we select D,. By using the Euclidean or-
thogonal prOJectlon we can push J: D — D into an almost complex structure
J': Dy — Dy,

Since |d’(D Dy)l,, < O(k~'/?) for all j > 0, it follows that / is A.H. with re-
spect to (D, J, g,) if and only if it is A.H. with respect to (Dy,J’, go) (this appears
in the proof of Lemma 3.3).

In C”"=(C"xR)xC"™ we have canonical coordinates z,... VIR Sks
ul,...,uf". These are CR coordinates with respect to (Dy,Jo). By hypothesis

Sg_d_d_ Y _

-1 T azn T a-1 T amm
0z ozy Oy oy
If we show that z}, ...z}, s, ul, ..., u}" are A.H. coordinates for (Dj,J’, go) then

we are done (this is again Lemma 3.3 in the absence of connection form). But this
follows from the fact that the trivialization of C” is given by an A.H. frame and
therefore the induced distribution (by the connection form) # on Dy, is such that
/(A — JoA)|,, < O(k™"/?) for all j > 0.

To prove the result in the other direction we fix A.H. coordinates and A.H.
frames for E;. The T x GL(m, C)-invariance of (S%),., = C" means that the lo-
cal identifications define a sequence of global stratifications, and that these do not
depend either on the A.H. coordinates or on the A.H. trivializations. It is an ap-
proximately holomorphic sequence of finite, Whitney (A) stratifications by the first

part of the proof. O

In contrast to what happens for O-jets, it is not easy to find non-trivial approx-
imately holomorphic stratifications for higher order jets. The difficulty comes
from the fact that the modification of the connection of Proposition 5.1 that
makes the r-jets of A.H. sequences of sections of Ej into A.H. sequences of sec-
tions of 7 Ey, makes it very complicated to guarantee that the strata are given
by functions whose composition with an A.H. section is an A.H. function.

Example 6.1. Let Lg)k be the sequence of powers of the pre-quantum line bundle
of a symplectic manifold of dimension 2p. Let us consider the following sequence
of strata in ¢ ng)k :

% p = {(00,01) |01 = 0}.

The second subindex in our notation indicates the complex dimension of the ker-
nel of the degree one homogeneous component of the 1-jet (see equation (54)).
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Using the local sections g , ; of equation (32), where / =1,..., p, and taking
reference sections in Darboux charts, we get coordinates z},...,z7, v vl ... v/
for the total space. X, is then defined by the zeros of the function f =
(v),...,v7) : C¥*! — C”, which is not holomorphic (or A.H.) with respect to the
modified almost complex structure of the total space. Otherwise, the composition
S o (z}7f") would be A.H., but that composition is (1 +z}z}, 222, ...,z ZF).

Actually, we cannot find A.H. functions f defining % p: let us work in Dar-
boux coordinates with the canonical complex structure Jy in the base. Assume
that g . ; is built out of the reference section eI’/ 4¢, where ¢ is a unitary trivial-
ization of Lo whose connection form is A in equation (3). Then ¢ ngk becomes
locally C” +1 with diagonal connection matrix Al,,1,,+1. Proposition 5.1 for com-
plex manifolds implies that the modified almost complex structure on C”*! is
integrable. The submanifold z} = -+ =z = v} = --- = v} = 0 is complex with
respect to the modified almost complex structure. Therefore, we can restrict our
attention to the case p = 1. The sections jl e #7/4¢, jl zie~l5"/4¢ are by Prop-
osition 5.1 holomorphic. If we use them to trivialize ¢ ILgk in a neighborhood of
the origin, then we obtain a new identification with C* with its canonical complex
structure. Let zx, #, s; be the new complex coordinates. A short computation
shows that

1)2 = Iy + ZkSk, U;l = ffk/2lk + (1 — Zkfk/Z)Sk.
Hence away from the origin X , admits the parametrization

(zk,8%) = (2is k> k(2 2k — 2k)) -

Therefore, X , is not holomorphic with respect to the modified almost com-
plex structure, and it follows that we cannot find /* A.H. defining %, , locally.

6.1. Quasi-stratifications. For the applications we have in mind the notion of
stratification has to be weakened. We start doing it for the local model (endowed
with the trivial connection).

Let o € S, S a submanifold of #}") . We say that o e ['( 7} ) is a local

Dy,n,m*
representation for ¢ if (i) 2(0) ==/"o, and (i) o = j}, 2(0) € #5") ., where
rHl L g+l r : et i ;
N I wm — p,.nm 18 the natural projection and jj, o denotes the CR 1-jet

of a. The equality in (ii) should be understood in the following sense: the degree
1 component of the 1-jet should give an element of /,5:}1‘," (with vanishing de-

gree 0 homogeneous component) and whose homogeneous components of degree
1,...,r+ 1 coincide with those of a.

Definition 6.1 (see [5]). Let S be a submanifold of 7, , , (resp. £ , ). We de-
fine @g to be the set of points g € S for which there exists an (r+ 1)-jet & (resp.
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(r + 1)-jet along G) such that 7' "G = o and with a local representation « intersect-
ing S at o transversely along D), (resp. along CY). We refer to ®g as the holo-
nomic transverse subset of S.

It can be checked that if S is invariant under the action of T X
(GL(n,C) x GL(m, C)), the second factor GL(n,C) x GL(m, C) acting fiberwise,
(resp. T x (GL(g,C) x GL(m, C))), then ©g has the same invariance property.

When an (r + 1)-jet o is represented by a local section of #p ., in order to
check whether 7/*!o € S belongs to ®g the local representation is essentially
unique: regarding transversality, it is enough to consider the degree 1 part of the
Taylor expansion in the coordinates z},z},...,z, Z¢ (we turn the section into a
function using the basis y;). The degree 0 part is determined by the r-jet, the hy-
pothesis implies that the antiholomorphic part is vanishing and the holomorphic
part is determined by the (r + 1)-jet. That means in particular that we can restrict
our attention to CR representations if necessary.

The importance of @y is twofold: on the one hand it will be used to define the
stratifications we are interested in. On the other hand it is a very relevant subset
when we study transversality to the strata: indeed, if 7 is a CR section of C"”" and
o := jp,7 is such that «(0) = o and o ¢ Oy, then « cannot be transverse along D,
to S at ¢ (notice that 6 := (z(0), dp,x(0)) = j;'7(0) € #5') , and therefore x is a
local representation of &). The consequence is that if S\@g = 4S’, transversality
of 7 to S implies that 7 misses a neighborhood of S\®g in S’.

Definition 6.1 extends to strata Sy < #jE; (resp. 7;Ex): we have a notion of
pseudo-holomorphic 1-jet of a section of 7} E) (resp. pseudo-holomorphic 1-jet
along G of a section of #}E;)—because we have a connection Vg p (resp. a con-
nection on 7 E) defined out of Vy and the projection pg : #"Er — #;Er)—and
hence the notion of local representation. Then ®g, are those points ¢ with lifts &
having a local representation transverse along D (resp. G) to S at a.

Recall that once a family of A.H. charts has been fixed we have identifications
@i TOC" — D10, If we also fix a family of A.H. trivializations of Ej over
the charts there is an induced identification

Hl\',.\‘ : fL;Ek - j]_;,,,n,nT (34)

Lemma 6.2. Let Si be a sequence of strata of J)Ey, where either r =0 and

E, =E®L® or E, =C" and r € N.

(1) If Ex=C" assume that for a choice of A.H. charts Iy (Sk) = S, where
S < Ip, n.m is invariant under the action T x GL(n,C), then Iy «(®s,) = Os.

(2) The same result holds for E ® L® and r = 0; we need to fix A.H. trivializations
of Ex (so I x is defined) and require invariance of S < C"™ under the action of
T x GL(m, C).
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For jets along G we have analogous results, but we need A.H. charts adapted to
G and we ask for T x GL(g, C)-invariance of S instead of T x GL(n, C)-invariance.

Proof. Since S is GL(n, C)-invariant, so is ®s. We have the local identifications
My o IpEx — I, pm Let y € M belong to B(0,p) in the domain of the charts
centred at x; and x;, for some k. Then there is a fiber bundle isomorphism

q)k,xl,xz : fL’)‘/,,n,m - fDr/,.,n,m (35)

defined as follows: for each point y in the intersection of the domains of the charts,
the restriction of the differential to D is a complex J-linear map L,. Consider the
linear map wy y, o Ly 0w : T*H0C" — T*1.°C", which belongs to GL(n,C).
D\, v, In the fiber over y (or over the origin in both charts due to the T-
invariance) is the vector space isomorphism induced by wy v, o L; o W;,lxz (and
the identity acting on the C™ factor of the tensor product). Since S is invariant
under the T x GL(n, C)-action, it follows that @y , ,(@s,S) = (Og, S). In par-
ticular the pair (®g,.S) does not depend on the chosen family of A.H. charts. We
construct an appropriate family of A.H. charts (there is no Darboux condition in-
volved here) by the usual rescaling procedure, but starting from normal coordi-
nates composed with a linear transformation so that (D,J) = (Dy,Jy) at the
origin. Recall that since E; = C", the connection Vi, on #)E is just induced
by the Levi-Civita connection (in the C” factor we use the trivial connection d).
Hence the pushforward of Vy , by Ik  to 7p, , ,, has vanishing connection form
at the origin. Since we also have (D @ D*,J) = (D, & D,,Jy) at the origin, for
any section o of ¢, , ,, we have Jjpa(0) = jp, a(0). Therefore, the local represen-
tations at the origin for the canonical CR structure and the induced one coincide.
From that and D = D), at the origin, we conclude that IT; (Qg,) = Og.

Item (2) is proven in the same fashion. The GL(m, C)-invariance implies that
we can choose any arbitrary family of A.H. trivializations. What we do is select-
ing trivializations such that the connection form over the origin is vanishing (here
we deal with the connection V. on Ej).

Notice that we cannot state item (2) for higher order jets because the action of
GL(n,C) x GL(m, C) does not allow us to kill at the origin of each chart the con-
nection form of the modified connection Vi g,.

For the relative results we start by modifying a bit the vector bundle isomor-
phism @y, : T*°C? — T*1.0P; the original (Jy,J)-complex map 7C” — TP can
be easily arranged to be compatible with the splittings 7CY @ TC” ¢ and G ® G*.
Due to the T x (GL(g, C))-invariance we are free to pick any family of A.H.
charts adapted to G. The ones we need come from rescaling normal coordinates
composed with a linear transformation sending (G @ G*,J) to (CY @ C?¥, Jy) at
the origin. In these coordinates the connection form on 7*:°CY is vanishing, be-
cause we project the Levi-Civita connection which is already vanishing at the
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origin. Hence the 1-jets along G and CY at the origin coincide (also because
(G® G, J) = (CY @ CPY, Jy) at the origin), which proves the result. O

The only relevant strata S, < #)E) for which we have to consider the subsets
g, are the zero sections Z;. In that case (see [3]) the subsets @, are those r-jets
whose degree 1 component is onto.

Definition 6.2. An approximately holomorphic quasi-stratification of #}Ej is an
approximately holomorphic stratification in which the partial order condition is
relaxed in the following way: Z; are strata of the quasi-stratification, and for any
other strata Sy # Z; when we approach Zy, it accumulates into points of Z;\@,
(so in particular Zj is not in the closure of Sk).

6.2. The Thom-Boardman—Auroux stratification for maps to projective
spaces. Let E = C""' @ L@k Let Z°,..., Z" be the complex coordinates asso-
ciated to the trivialization of C"*! (at any fiber) and let 7 : C"*'\{0} — CP™ be
the canonical projection. Consider the canonical affine coordinates

B . ZO Zifl Zi+1 zm
QiIZU[HCn, [ZOZm]H<7,,777,77>
For each chart ¢; we consider the bundle
r .
zm,em), = (S (o)) e, (36)

J=0

We now return to the discussion at the beginning of Section 5. Assume for the
moment that M is a Levi-flat CR manifold and fix a family of CR charts. Over
each of the balls By, (x,p) we have the bundles ¢, , , of CR r-jets. Notice that if
we use the frames gy, ; of equation (32) they are vector bundles.

The local bundles #p ,, glue into the non-linear bundle #7z(M,C™);: let
y e M be a point belonging to two different charts centred at xy and xi,
respectively. If we send y in both charts to the origin via a translation, then the
change of coordinates restricts to the leaf through the origin to a holomorphic
map fixing the origin. The fibers over y are related by the action of the holomor-
phic r-jet of the bi-holomorphism. If we only take the linear part of the action,
which is the vector bundle map @y ., ., of equation (35), we are equally defining
a bundle, for the cocycle condition still holds. Moreover, it is a vector bundle.
Besides, since we only use the linear part we do not need either D or J to be
integrable. This bundle is #;(M,C™); as defined in equation (36) (what we de-
fined there is rather a sequence in which the metric in the D*1:* factors is induced
from gi). Thus for Levi-flat manifolds the vector bundles (M, C™), are “linear
approximations” of the non-linear bundles 7/, (M,C"),.
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Proposition 6.1. (1) The vector bundles #;(M,C™); can be glued to define the al-
most complex fiber bundles #;,(M,CP™) of pseudo-holomorphic r-jets of maps from
M to CP™, so that their fibers inherit a canonical holomorphic structure.

(2) Given ¢y : M — CP™ there is a notion of pseudo-holomorphic r-jet exten-
sion jhd : M — F5(M,CP™) which is compatible with the notion of pseudo-
holomorphic r-jet for the sections ¢7'o ¢, : M — C" of Definition 5.2. If
¢ : M — CP"™ is an A.H. sequence then jp¢, : M — J)(M,CP™) is also A.H.

Analogous results hold in the relative setting for the bundles ¢'(P,CP™) and
JE(P,CP™). Also there is an approximately holomorphic sequence of canonical
submersions pg : ¢"(P,CP") — #&(P,CP™). These submersions are left inverses
of the natural inclusions lg : J5(P,CP™) — #"(P,CP"™) so that for ¢, : P — CP"
an A.H. sequence, ji¢, : P — J5(P,CP™) — #"(P,CP™) is A.H.

Proof. Let us denote the change of coordinates goj‘l op; by ¥;. Forany ye M
the points in {y} x (U;nU;) < #5(M,C™), are identified with points in
{»} x (UinUj) = 7p(M,C™); using the same transformation j"¥; in 7, in-
duced by the fiberwise holomorphic change of coordinates ¥'j;. In other words, if
we take an approximately holomorphic chart centred at x say and containing y,
we get as in equation (34) a vector bundle isomorphism Iy . ;: #Z5(M,C"), —
Ipynm- LThus for o e #p(M,C"); there exists F : C" — C" a CR function such
that Iy x i(o) = jp, F(x).
The bundle map we define is
JYi: fp(M,C™),

1

= Sp(M.C"); o= T (i, (B0 F)(x)). (37)

This map does not depend on the charts either: if we have a point y in two
different charts centred at x; and x;, then we saw in the proof of Lemma 6.2
that the vector space isomorphism @y v, v, : Zp, . — Fp,.n.m Was induced by
T € GL(n,C). The bundle map of equation (37) is equivariant with respect to
this action, because in the CR setting it is equivariant with respect to the action
in the base of CR transformations. Hence, the result follows by considering the
affine CR transformation sending y in the first chart to its image in the second
and whose linear partis 7* xI: C" x R — C" x R.

Equivalently, the r-jet of ¥; o F' admits a coordinate free expression only in
terms of the r-jet of F.

Therefore the identifications j"Wj; give rise to a well defined locally trivial fiber
bundle #;(M,CP™).

Remark 6.1. If our manifold is CR and we have x belonging to two different CR
charts, then there is a natural induced identification 7y, , ,, — Jp, , » Over the
points belonging to both charts. This identification is just the action of the CR r-
jet of the change of coordinates. We observe that this is not the action of @y y, .,
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which is just the action induced by the 1-jet of the change of coordinates (the only
one available for all almost CR structures!).

The fibers of #;(M,CP™) admit a canonical holomorphic structure because
using the local identifications Il . ; the fiber is some C" and the change of coor-
dinates is a fiberwise holomorphic map (because it is the holomorphic r-jet of ‘¥};),
and this proves item (1).

Let ¢ : (M,J,D) — CP™. Its pseudo-holomorphic r-jet j},¢ is defined as fol-
lows: the affine charts of projective space induce maps ¢, := (pfl ogp: M — C".
Using the trivial connection d in this trivial vector bundle and the induced connec-
tion on D*1:% we can define the corresponding pseudo-holomorphic r-jet jh¢;
(Definition 5.2). We must check that

In¢; = J"Yji(ip#:)- (38)

More generally let H : C™ — C" be any holomorphic map. Then use the lo-
cal identifications Iy ,: #5(M,C™) — fl;h,n,my s=1,2, to induce the map
JH: J)(M,C™) — #5(M,C"™). We claim that for any function ¢ : M — C™
we have

Jp(H o ¢) = j"H(jpg). (39)

Equation (38) follows from the claim by taking H = ¥;;.

The proof of the claim take the next two and a half pages, and it is by induc-
tion on r. Firstly we notice that from the proof of the claim for n, = 1, the proof
for any m; follows immediately. Therefore we assume m, = 1. Secondly we ob-
serve that it is enough to check the equality in (39) for the degree r homogeneous
component of the r-jet.

We shall denote the degree r homogeneous component of j"H by d"H; recall
that d"H (j},¢(x)) depends on the components of every order of jhf(x). Let
F=(F',...,F™):C" x R— C"™ be a CR function such that

Jp#(x) = Jjp,F(x).

Also the degree r homogeneous component of jj, F' is denoted by yF. By defini-
tion
(X)) = 8F (x),  j=0,....r (40)
We start the proof of the claim for 1-jets. Once we use the identification
0¢(x) = 0pF(x), we have

A (29(3) = 1 (@) = 3 TP (s (41)
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and using the identification of equation (40) above we get the following formula
for the right-hand side of equation (39) for 1-jets:

<~ OoH
602”

H(04(x)) = dH (0oF (x)) =

09 (x), (42)

a=1

where the partial derivatives of H are evaluated on ¢(x) = F(x), but we omit it in
the notation.

Regarding the left-hand side of equation (39), the computation of d(H o ¢)(x)
is done by firstly taking in V(H o ¢)(x) its projection over D* (or restricting the
differential to D). Since

o~ O0H
= Z aoza

a=1

(43)

is the sum of partial derivatives of H multiplied by the components V¢,(x) of
V¢(x), taking Vp(H o ¢)(x) amounts to substituting in equation (43) the factors
V4 (x) by Vo (x).

Next the holomorphic component is singled out; since H is holomorphic
0(H o ¢)(x) is computed by taking the component d¢“(x) of Vpg?(x) in equa-
tion (43). Thus we obtain the same result as in equation (42), and this proves the
claim for 1-jets.

We need to prove the claim for 2-jets before going to the induction step. The
reason is that for 1-jets the symmetrization step is not present, unlike the case of
higher order jets.

By definition

nmi . a H
CH (R F Zaoz“aozbaoF( ) ® doF"(x) o ), (44)

so using equation (40) we get for the right-hand side of equation (39)

- OoH
b 0 2 c
JD¢ Z 602”60217 x) ® 0¢”(x Z ~c Sym (x). (45)

To compute 6Sym(H o ¢)(x) we first differentiate 6(H o ¢) at x:

ny '\ ny '\

2
H a
Vo( Z aozaa T ea VI x) ® ¢’ (x +Za (46)
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Taking the component along D and then the holomorphic part amounts to substi-
tuting in equation (46) V¢ (x) by d¢“(x), and Vog*(x) by 0%¢°(x):

2 50 H
2 0
Z 602“6 Zb x) ® 0¢° (x (47)

We need to show that symmetrizing equation (47) amounts to writing asqub “(x)
instead of 0%¢°(x).

In equation (47) we have terms of “type” 2—those containing a second deriv-
ative of ¢—and terms of “type” (1,1) which contain the tensor product of two
derivatives of ¢. Terms of “type” (1,1) are already symmetric (just exchange
the indices «,b); the symmetrization, being a linear projection, does not alter
them. Now one checks that the symmetrization of each summand %ézqﬁ"(x) is
exactly ‘OoH “Szquﬁc(x), which proves the claim for 2-jets.

We now move onto the induction step. We assume d"H(j,d(x)) =
Jgym(H © ¢)(x) and we want to prove the claim for (r + 1)-jets. By a partition of
r of degree s we understand any (ordered) s-tuple (r1,...,r,), 1 <s<r, 1 <r; <r,
ri+---+r,=r. In the computation of d"H (jjh(x)) := d5(H o F)(x) we get an
algebraic expression whose summands are of the form

o H A _

r 1 i
0z ... oz 0g F"' (%) @ -+ ® 0pF"(x), (48)
each belonging to a partition (ry,...,rs). Notice that to some partitions corre-

spond summands that are originated from different partitions of » — 1. For exam-
ple, in degree 3 we have (1,2)-terms coming from the derivation of the terms of
“type” 2 and others obtained from the derivation of the (1, 1)-terms. We do not
add summands of the same “type’’ but keep them distinguished. By induction we
assume that g, (H o ¢)(x) is computed by the same algebraic expression as
d"H (jp, F(x)), but writing in the summands of equation (48) 074" in place of
0y F(x), and then evaluating at x.

To compute E)S’;’nll (H o ¢)(x) we have to firstly differentiate the algebraic ex-
pression that computes g, (H o ¢)(x). From the previous assumption a one-
to-one correspondence compatible with the partitions between the summands of
d" H(jp F(x)) and of Vo, (H o ¢)(x) can be established. It is clear that re-
stricting to D and taking the (1,0)-component does not affect the identification.

In each summand of aa;ym(H o ¢)(x) all the factors but possibly one in the
tensor product are of the form dy,,4" and hence already symmetric; the different
one is of the form 665ym¢/ Observe that the symmetrlzatlon of each summand in
004y (H o ¢)(x) amounts to putting instead of 665ym¢ its symmetrization 6Sym ¢
and then symmetrizing the resulting expression (this is an elementary result con-
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cerning symmetric products which is proved by suitably re-grouping the permuta-
tions). Thus we have proven that

Dy (H 0 §)(x) = sym,.., (" H (5™ $(x))),
but d"'H ( Jjpi'F(x)) is already symmetric. Therefore we conclude that

gy (H 0 9)(x) = d" H (jp (),
where the equality also holds for each summand in the algebraic expression com-
puting both quantities.

Therefore we conclude that the pseudo-holomorphic r-jet of a map to CP™ is
well defined.

To be able to say when a sequence of functions of #;(M,CP"™) is A.-H. we
need to introduce an almost CR structure in the total space of the r-jets. This
can be done using a connection (for example out of the Levi-Civita connection
associated to the Fubini—Study metric in the projective space and of the con-
nection on D*). In our case we choose to do something different but equiva-
lent: we use the identifications with #)(M,C™),. Each of these trivial vector bun-
dles with trivial connection has a natural almost CR structure. Let K; = U; be
compact sets whose interiors cover CP™. We have the corresponding subsets
Ip(M, o7 (K))) = Jp(M,C")..

We say that o : M — #p(M,CP™) is A.-H. if there exist constants (Cj);.,
such that

j( s, —1
o Ve )y, < G
max (V307 o or) ()], < Gk

ie{0,...,m

forall x e M, j > 1, and k € N, where for each x we only take into account those
indices for which o (x) belongs to the interior of #)(M, K;).

Notice that in the local models the identifications j"¥'; are holomorphic, there-
fore when restricted to subsets associated to compact regions of C;" and C/" the
sequence of maps j ¥ : #p(M,C"), — 7p(M,C"); is AH. In particular the
notion of a sequence gy : M — #)(M,CP™) being A.H. does not depend on
the covering K;. It is also clear that if a sequence of functions ¢, is A.H. then
Jh¢i 1s also A.H. This proves item (2) of the proposition.

If (P, Q) is symplectic the definition of #"(P, CP™) is the same (we just do not
need to project the full derivative into the subspace D*). When we have a J-
complex distribution G there is an analogous definition of the bundle of pseudo-
holomorphic r-jets along G. Using the previous affine coordinates of projective
space we consider the sub-bundles
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sip.ey = (36 o e

=0

where #%(P,C"), = #7(P,C™), via the splitting G ® G- = TP.

It is easily checked using the local identification between ¢, and #(P,C")
coming from approximately holomorphic coordinates adapted to G that the dif-
feomorphisms ;¥ : #"(P,C");, — #"(P,C"); preserve these sub-bundles.

The proof that shows that the j"¢ is well defined is exactly the same we gave
for 2-calibrated manifolds; a small modification shows that j;¢ is well defined
(instead of keeping the component Vp of the odd-dimensional case, we project
over G*).

Going to the models furnished by approximately holomorphic coordinates
adapted to G, the submersion pg : %, ,, — #la , , i8 just a projection on some of
the holomorphic coordinates, and therefore it is an approximately holomorphic
sequence of maps.

Using approximately holomorphic coordinates adapted to G it is straightfor-
ward to check that if ¢, : P — CP™ is A.H., then both jj¢;, and j"¢, are A.H.
sequences of #"(P,CP™). O

We recall that Z; denotes the sequence of strata of #)Ey (resp. #"Ey, #5Ek)
of r-jets whose degree 0-component vanishes. We define #)E; := #}E;\Z; (resp.
JE; = ' E\Zk, JLE; = JLEN\Zy).

Proposition 6.2. (1) There exists a bundle map j'n : JLE; — #5(M,CP™) which
is a fiberwise holomorphic submersion.

(2) Let ti be a section of Ey, and let ¢, = mo 1y : M\Z(tx) — CP™ be its pro-
Jectivization defined away from the zero subset of ti. Then the following equation
holds:

J'n(iptk) = JpP- (49)

In the almost complex case we have an analogous map j"rn, and for v : P — Ej
and its projectivization ¢, the equality

J'7(j" ) = Jj i (50)
holds where defined.
Given G a J-complex distribution we have the following commutative square of

submersions:

PG

SE —— JGE

lfﬂ J.i’n (51)

J'(P,CP™) — gL(P,CP™).
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If jik is a section of JGE) the equality

J'n(jeTh) = johi (52)
holds where defined.

Proof- We define "z to have the same expression as in the integrable case. This
means that we fix approximately holomorphic coordinates and a section trivializ-
ing L®* and a local frame of E = C"*!, so that the r-jet & in question is identified
with the usual CR r-jet at a point x of a CR function F. Then j"z(o) is defined to
be the CR r-jet of mo F. Notice that for an appropriate chart ¢; ! of projective
space,

(o) =1\ (jp, (0 o mo F)(x)) € J5(M,C"),. (53)

The arguments in Proposition 6.1 that showed that the bundles #)(M,CP™)
are well defined, also prove that j'z(o) is well defined independently of the ap-
proximately holomorphic coordinates and of the chart of CP"” we used; it is as
well independent of the local frame of Ej, because the map is equivariant with re-
spect to the action of GL(m + 1, C) on the fibers of Ej; and on CP"™.

It is clear that j"z is a submersion, and it is fiberwise holomorphic because in
each fiber we have a map from some C™ to some C" (after composing with a
chart ¢;), whose formula is that of the integrable case which is holomorphic, so
item (1) holds.

We now prove the equality ;i (mo ) = j'n(j5tx): let ¢; ! be any chart whose
domain contains 7 o 74 (x). Then by the definition given in Proposition 6.1,

1

Jp(mot)(x) := jp(p; " o mo 1) (x).

We just defined in equation (53)

Jm(jpte(x)) =T ;(jp, (07 ' o mo F)(x)).

By Proposition 6.1 the right-hand side of the two previous equalities coincides, i.e.,

MeL (7, (07 o 7o F)() = (g o o i) (x).

Here the holomorphic function ¢;! oz : C"'\{0} — C™ plays the role of H in
Proposition 6.1. Also observe that the proposition is in principle only valid when
C"*! has the trivial connection. In the current situation C"”*! is endowed with a
diagonal connection coming from the one in L&X. The key point is that the com-
position ;' oo ¢, is a section of C”" ® L ® L~®F and hence a C"-valued
function independently of the trivialization of L&X. Therefore the flat connection
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d on € is induced from d ® I + I ® Vi in C""! ® L®*, where Vj is any Hermi-
tian connection on L®*. In other words, the equations of Proposition 6.1 involv-
ing the connection V, @ I+ 1® d on (T*I*OC”@') ® C"*! are also valid in this
setting for the connection V,® I+1® (d®I+1® V), and this finishes the
proof of item (2).

The previous ideas work word by word to show that for symplectic manifolds
jn: J'E; — #"(P,CP™) is a well defined submersion and that equation (50)
holds.

If we have a distribution G, once we use the local identification coming from
approximately holomorphic coordinates adapted to G, the commutativity of the
diagram (51) follows from the commutativity in the holomorphic case. It is also
clear that j'n: ¢iE; — #5(P,CP™) is a submersion and that equation (52)
holds. |

In order to describe the linearized Thom—Boardman stratification we need to
define, at least for certain kinds of strata PSS of #;(M,CP™), the corresponding
subsets of transverse holonomy ®pg;.

Definition 6.3. Let PS; be a sequence of strata of #;(M, CP™) so that in canon-
ical affine charts of CP™ and approximately holomorphic coordinates it is identi-
fied with a stratum P'S of 7 , ,, invariant under the action of T x GL(n, C). We
let PSy ; := PSk n #5(M,C™),; and then define

@psk = U ®pSk.['
ie{0,...,m}

For Si := j'n ' (PSk), with j'n : ZYE; — #5(M,CP™) the submersion of Prop-
osition 6.2, we define C:)Sk = j'n! (Ops, )-

In the relative theory we assume that for a choice of approximately holomor-
phic coordinates adapted to G and canonical affine charts of projective space, the
sequence PSy ; = J¢(P,C") is identified with a stratum PS of s ,,, = 4/,
C?79 invariant under the action of T x GL(g,C). Then we define

®PSI{ = U ®PSI(.1"
ie{0,...m}

For Sy := j'n Y(PSk) = JLE;, SE=pc ' (Sk) = #'E}, we define the subset
@Sk(; = SC by pulling back Ops, to #"E; using either of the sides of the commu-
tative diagram (51).

Notice that by item (1) of Lemma 6.2 the subsets Opg, , are well defined, so
Definition 6.3 makes sense. It is also satisfactory because of the following result:
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Lemma 6.3. We have
Ops, N Ip(M,Cl") = Ops, ,
Ops, N J¢(P,Cl") = Ops, ;.

Proof. Fix approximately holomorphic coordinates and canonical affine charts of
CP™, so that Iy  ;(PSk ;) = PS, for all k, x, i. We need to show is that

J"¥Vi(Ops) = Opg

in the domain of definition of ;j"¥;, where ¥} is a change of canonical affine co-
ordinates.

Let i be an r-jet in ©ps. Then we have a lift i to /[’,':’_yfq_ym and a local represen-
tation o of the lift cutting PS transversally along Dy, at . As we mentioned re-
garding transversality the local representation is essentially unique. That means in
particular that any other representation o’ will also share the transversality
property. By definition V is the (r+1)-jet of a local CR function F. Then
J5,F(0) =y and (F(0),dp, jp, F(0)) = (F(0),00jp,F(0)) = jp'F(0) = . Thus,
Jp, I 1s a local representation of y which is transverse to PS along D, at .

Since j"T'W;(jj F) = jp (W0 F), we deduce that j™'Wj(y) is a lift of
J"™¥ji(¥) with local representation jj, (W; o F), which is obviously transverse
along Dy, to j"¥;(PS) = PS because j"¥;; is a diffeomorphism that preserves the
pullback of Dy, to #p, .. We just checked one inclusion, but that suffices because
Wj; is a diffeomorphism, thus the result for jets along D follows.

An analogous proof shows the desired result for jets along G. |

The linearized Thom-Boardman stratification is the pullback to #Z)E; by j'n
of the analog of the Thom—Boardman stratification of #;(M,CP") (see for ex-
ample [8]), together with the strata Z,. The definition is the natural extension of
the one given for symplectic manifolds by D. Auroux in [4].

A first rough definition of the stratification of (M, CP™) is the following:
we fix approximately holomorphic coordinates and canonical affine charts of pro-
jective space, so we have charts H,;&,’i C Ipynm — Sp(M,C™),. In each 7p
there is a CR Thom-Boardman stratification which is T x (#, x J#,))-invariant,
where ;" is the group of r-jets of germs of bi-holomorphic transformations from
C’ to C; in particular it is T x GL(n, C)-invariant, so it defines a stratification
on each #;5(M,C™),. The #,-invariance implies that the identifications that
define #;(M,CP™) are compatible with the aforementioned stratifications on
SH(M, T,

Once we pullback the stratification to #,E; the behavior of the strata when
they approach Z; needs to be clarified. To do that we re-define the stratification
as follows (see [4]):
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Given ¢ € #)E; let us denote its image in #5(M,CP"™) by ¢ = (¢,...,9,).
Let us define

i ={o e #AE; | dimc ker ¢ = i}. (54)

If max(0,n — m) < i < n, the strata X; ; are smooth submanifolds whose boundary
is the union | J,_, Xy, ; together with a subset of Z;\@z,.

Each X ; is the pullback of a stratum PX; ; — #/(M,CP™), and the given de-
scription of their closure is easy to check.

For r > 2, define ®Zk,i as the subset of r-jets ¢ = (oo, ..., 0,) € X ; so that

Eriio = {u € D|(iu,0) € TP ;} (55)

has the expected (complex) codimension in D, which is the (complex) codimension
of X ; in #;E), which equals the codimension of PX; ; in #;(M,CP™).

The subset O, | is also the one coming from Definition 6.3: observe that @py, |
are exactly those points of PX;; which have a lift with a transverse local
representation. Since the term that we add to the r-jet to define the lift is of order
r+ 1 > 2, the transversality of the local representation does not depend on the lift
that can be chosen to have vanishing component of order r + 1.

Fix as in the proof of Lemma 6.2 A.H. coordinates so that at the origin
(D@ D*,J) = (D ® Dy, Jo) and the induced connection form (on 7 ) is van-
ishing; fix also the canonical affine charts of CP”. Then the strata P ; are sent
to the Thom-Boardmman stratum PX; of 7 , . The local representation of
(4,0) can be taken to be a CR section o of 7, , .. The stratum PZ; is CR, there-
fore

Tp,jb,%(0) A (TPE; A Dy)

is a complex subspace of TC". Undoing the identifications the previous subspace
goes to the subspace in equation (55). By definition of transversality along D,
Opy,, are exactly those ¢ for which Zj ;, has the codimension of PZ;; in
Jh(M,CP™). By construction (equation (55))

®Z/<,i = jrn_l (®lec,i>'

Hence @s, | is the same subset introduced in Definition 6.3.
If p+ 1 <r, we define inductively

it iy = 10 € Og,,  |dime(ker gy N By, ii0) = i1}

with

Ek’I;J = {u € D| (iu¢,0) € T¢sz,[}.
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As in the previous case we define @2,{7 , either as the points such that the complex
codimension of Zy j., in D is the same as the codimension of % ; in #}Ey, or as
the pullback of Ops, ,.

sure in ¥y ..., is the union of the Xy . dps J > Ipt1, and a
subset of Xy, ., \®s,, , [8]. The problem is that for large values of r, n, m,
the closure of the strata in ¢ ,, is hard to understand, and what we have
defined, once Z; has been added, might very well not be a Whitney (A) quasi-
stratification. More precisely, let X1,y =2 |16, < Ipynm b @ so-called
Morin stratum. Then in [40] it is shown that '

2m+l;q N z:m+2,0 # Q),

but for ¢ large enough dimX,,, 1., < dimX,,;» o, thus Whitney’s condition (A) can
never hold. It is known that 7 , , admits a Whitney (A) stratification contain-
ing the Morin strata. If the dimensions satisfy n < 4 or 2n > 3m — 4, then a ge-
neric function will avoid X,,;2 ¢ and Z,,; > and therefore will only intersect the
Morin strata, so the aforementioned previous stratification suffices (also because
the strata X ; do not accumulate in points of @, ). In general one must refine
the Thom—-Boardman stratification.

Recall that using the local identifications the stratification we have defined (mi-
nus Z) is the union running over the affine charts of the pullback by j"(p; ! o 7) :
Ipynmii \Z = Ip, u.m of the CR Thom-Boardman stratification PX of 7 ..
The latter is CR and T x (GL(n,C) x #,,)-invariant.

On the domain of each chart 7, ,,, we can use the results of Mather [28] to
refine PX into a CR finite, Whitney (A) stratification transverse to the fibers and
invariant under the action of T x (GL(n,C) x #,,), and such that the submani-
folds PX; are unions of strata of the refinement. Due to the required invariance
properties for the refinements, they can be glued to give a refinement of the strat-
ification PX; < #;(M,CP"™), which is independent of the choice of approxi-
mately holomorphic coordinates. Thus, its pullback is a finite, Whitney (A) strat-
ification of 7, E; and such that the X ; are union of strata. It is by construction
invariant by the action of GL(m + 1, C) on the fiber.

It is important to notice that since all the strata are contained in the closure of
2k max(0,n—m)+1, they accumulate near Z; in points of Z;\@z,. Therefore, by add-
ing Z; we obtain a quasi-stratification of #]Ej.

If we have a distribution G we use exactly the same definitions but in the sub-
bundles #;E and #;(P,CP™). That is, we have the strata

P = {¢ € Z5(P,CP")|dimc ker ¢, = i}

and for r > 2, @py, , = PX; ; is the subset of r-jets along G, ¢ = (4, .. ., #,) so that
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Ek.i;rf = {” € G| (ill¢7 0) € T¢sz,i} (56)

has the expected (complex) codimension in G, which is the (complex) codimension
of P, in #i(P,CP™).

The subsets PX; ; are defined similarly. The result is a stratification P of
Jo(P,CP™). In charts adapted to G as in the proof of Lemma 6.2 and affine
charts—for which ¢, , , = 7, x C""?—, the induced stratification PX is seen
to be the leafwise Thom—Boardman stratlﬁcatlon, 1.e., the Thom-Boardman strat-
ification of 7, multiplied by C”.

Us1ng the lower part of the commutative dlagram (51), we pull back PX; to
PEf < #'(P,CP™). Let£f be the pullback of PL{ to #"E}. To refine it we first
locally refine PZ; as follows: we go the leafwise Thom—Boardman stratification
furnished by the previous A.H. coordinates and affine charts and construct a holo-
morphic T x (GL(g, C) x #,)-invariant refinement in one of the leaves of #/s, pom
(which is identified with 7). Next we extend it independently of the remaining
p — g complex coordmates 25’*1, ...,z4. The local refinements of the leafwise
Thom-Boardman stratification glue well and thus define a sequence of Whitney
(A) stratifications #/(P, CP™), which does not depend either on the A.H. coordi-
nates adapted to G or in the chosen affine charts of CP™. Its pullback to #"E}

refines X7 to a sequence of Whitney (A) stratifications.

Definition 6.4 (see [4]). (1) Given (M,D,J,g;) and E, = C""' ® L®*, the
Thom-Boardman—Auroux stratification of #;(M,CP"™), denoted by PXy, is the
stratification (or rather its refinement) built out of the pieces of the Thom—
Boardman stratifications of #p ,,. The Thom-Boardman-Auroux quasi-
stratification of #}Ey is the pullback of the Thom-Boardman-Auroux stratifica-
tion of #/(M,CP™) together with the zero section. We denote it by X.

(2) Given (P,J, G, gx) and E, = C""! ® L®*, the Thom-Boardman—Auroux
stratification of #"(M,CP™) along G, denoted by PXS, is the stratification (or
rather its refinement) built out of the pieces of the Thom-Boardman stratifications
of 7 p.m- The Thom-Boardman—Auroux quasi-stratification of J"E}). along G,
that we denote by Ek , is the pullback of the Thom-Boardman—Auroux stratifica-
tion of #"(M,CP™) along G together with Zj.

Lemma 6.4. The Thom—Boardman—Auroux quasi-stratification of J,Ei and the
Thom—Boardman—Auroux quasi-stratification of ¢ Ej along G are finite, Whitney
(A), and approximately holomorphic.

Proof. We start with jets along D. The description of the closure of the strata in-
side Z; implies that the quasi-stratification condition holds.

The delicate point is checking that the strata are approximately holomorphic
(for the modified connection).
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First we study the sequence Z;. Though for this sequence the approximate
holomorphicity is obvious, we will give a proof that works for other sequences of
strata. Indeed, by Lemma 6.1 the sequence of zero sections Z; — Ej is as
required. If we prove that the natural projections

n": LE — E

are an A.H. sequence of maps which is also e-transverse for some ¢ > 0, then the
composition of the local maps defining Z; < Ej with the projection " are local
functions for (z") "' (Zy) = Zi = JhEj meeting the conditions of Definition 4.6.

More generally we prove that the natural projection n/_, : #)E — fg‘hEk is
approximately holomorphic: we fix A.H. coordinates and A.H. reference frames
Jntit  of #)Ex (resp. jl")‘hr,f_fu, of 75 "Ey) as in equation (33). Recall that
Proposition 5.1 implies that the sequences are indeed A.H. Using these frames
we obtain A.H. coordinates z}, ...,z ul, s (resp. z},...,z}', v}, si) for the total
space of #}Ey (resp. 75 "Ey). From

(U Lr)rliefc )= jgihrlijf\'. I (57)

we deduce 7], (jptit ;) = Wi(z,vf ), where Wi(z,vf ) is A.H. with respect to
the canonical CR structures associated to the coordinates. This, together with
the fiberwise linearity of z]_, imply that in these coordinates 7], is A.H., and
hence it is A.H. with respect to the almost CR structures of the total spaces. It is
also straightforward from equation (57) that the projections are e-transverse (an-
other way is to use rather than holonomic frames the frames g , ; of equation
(32). They are also frames for the modified metric because of for example remark
5.3, therefore one can check estimated transvesality using them, something which
is straightforward).

We would like to do something similar with the strata X ; and the projection
J'm: JhEF — Jp(M,CP™) (away from a uniform tubular neighborhood of the
zero section, where the differential goes to infinity). The image of a trivialization
]b‘t,ﬁ"’fY ;18 jp(mo r,ffv 1), also approximately holomorphic. The map is equally fi-
berwise holomorphic, but the difference is the non-linearity of the restriction to the
fibers.

We adopt a different strategy that amounts to perturbing the almost CR struc-
tures into integrable ones and then checking that j"z is CR with respect to them:
we take Darboux charts and trivialize L®* with a unitary section ¢, whose associ-
ated connection form in the domain of Darboux charts is 4. Next we trivialize
IpEi with the frames g, ; of equation (32), but using & tensored with a basis
of C"*! to trivialize C"*' @ L®*. In this way JhEr becomes the trivial bundle
Ipnme1 (Which is canonical trivialization constructed out of dz}, ..., dz}!). Let
us use in the base the canonical CR structure (D, Jy). Proposition 5.1 in the in-
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tegrable case (and for curvature of type (1,1) and with trivial derivative, as it is
the case in Darboux coordinates) implies that the modified connection defines a
new CR structure in the total space of 7y, , ,; let ();/,,:7 o) be the corresponding
distribution and almost complex structure, and let (D, J) be the distribution and
almost complex structure induced by the almost CR structure of #)E;. If in the
fiber of 7 , ,..1 we fix a ball B(g, R), then in B(0,p) x B(c, R) the Euclidean
metric is comparable with the metric carried by #)E;. More important

|d/(D — Dy)|,, < O(k™'7?),  j>0. (58)
If we use the orthogonal projection to push J into J,, : D, — D, we also have
|/ (Jy = To)l,, < O(k™%),  j=0. (59)

We use the same Darboux charts for 7 (C" x R, CP™), so locally and using ca-
nonical affine charts we have identifications with ¢, .. This is a trivial vector
bundle (again using the basis induced by dz}, ..., dz} and the basis of C"). We fix
the product CR structure and denote by (ﬁh, ]0) the distribution and almost com-
plex structure. Let (D,J) be the distribution and almost complex structure in-
duced by the almost CR structure of #;(M,CP™). By construction,

[d7(D = Dy)ys 14/ (i = Jo)l,, < OG™'2),  j =0, (60)

where Jj, is the almost complex structure on D,, defined out of J and the orthogo-
nal projection.

Equations (58), (59), (60) imply that if j"(¢; ' 0 7) : 75, , i1 = Fpynm 15 CR
with respect to (Dy,Jo) and (Dy,Jy), then it is almost CR with respect to the
global almost CR structures.

The map ;" (¢; ' on) : 75 w1 = FB, nm 15 exactly the same as in the holo-
morphic (or rather CR) models. It is CR with respect to the aforementioned CR
structures because it preserves the foliations, it is fiberwise holomorphic and sends
“enough” CR sections of #p , ., to CR sections of ¢ .. To be more precise,
for any point g € jl’)'w,m 41 and any vector v in its tangent space along the leaf and
not tangent to the fiber, we can find a CR section ¥ whose CR r-jet in x is ¢ and
such that the tangent space to its graph contains v. Since j"(¢p;!om)( Jp, F)
= jl’)h((p;l onmoF) is also a CR section, we deduce that j'(¢;!on), (Jv)=
Q07" o). ().

The strata PX; (or rather of its refinement), once we choose A.H. coordinates
and affine charts of projective space, are identified with the strata of (the refine-
ment of) the CR Thom-Boardman stratification of 75 , ,, which are CR. The
comparison between the (Dy,, Jo, go) and the original almost CR structure implies
that the strata of PX; are A.H., and hence ¥, = j'z~!(PX;) is A.H. That the pro-
jections are e-transverse is also clear, therefore the desired result follows.
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In the almost complex setting j'n: #"E; — #'(P,CP™) is equally shown to
be approximately holomorphic away from a uniform neighborhood of the zero
section. In the relative case, and for a sequence of A.H. strata PSj fulfilling the
conditions of Definition 6.3, the approximate holomorphicity of pg~'j 7 'Sk
follows from the commutativity of the diagram 51, and from the approxi-
mate holomorphicity of j'z: ¢"E; — #'(P,CP™) and of pg: #"(P,CP") —
J5(P,CP™). Recall that the strata PX; come from holomorphic models (the re-
finement of the strata of the leafwise Thom—Boardman stratification), so they are
A.H. But X is not truly a quasi-stratification of #"E;. To be more precise it is
not true that the strata only accumulate in points of Z;\®z, < Z, but it is still
true that the points of Z; in which the other strata accumulate are never hit by a
section transverse to Z; along G. Thus, the Whitney type reasoning can be ap-
plied as long as we work with r-jets along G (see the proof of Theorem 7.2). [

Remark 6.2. Notice that we only conclude that the strata different form the zero
section are approximately holomorphic uniformly far from Z;. This is enough for
our purposes, for once we obtain transversality to Z; our r-jet will be uniformly
far from Z;\®z,. All the remaining strata approach Z; accumulating only on
points of Z;\@,. Therefore, the r-jet will only hit them outside of a uniform tu-
bular neighborhood of Z;, where the approximate holomorphicity holds.

Definition 6.5. (1) An A.H. sequence of sections of Ex — (M, D, J, gx) is said to
be r-generic if its pseudo-holomorphic r-jet is uniformly transverse along D to the
Thom-Boardman-Auroux quasi-stratification of 7, Ej.

(2) An A.H. sequence of sections of £y — (P, J, G, gx) is said to be r-G-generic
over M if its pseudo-holomorphic r-jet is uniformly transverse over M to
0 < JEy.

(3) Let ¢, : M\Bx — CP" be sequence of functions which is A.H. outside of a
uniform tubular neighborhood of gj-radius # > 0 of B,. Itis said to be r-generic if
for k large enough By is a codimension 2(m + 1) calibrated submanifold and
Jhte - M\Bx — 75 (M\By,CP™) is uniformly transverse along D to the Thom—
Boardman—Auroux stratification. Moreover, it is required to intersect the strata
of strictly positive codimension out of a tubular neighborhood of Bj of g-
radius 7.

Lemma 6.5. Let i be an A. H. sequence of sections of Ex — (M, D, J,gi). Then if
Ty is r-generic its projectivization ¢, : M\t ' (Z) — CP™ is also r-generic.

Proof. 1t is elementary from the construction of the Thom-Boardman—Auroux
(quasi)-stratifications of #)E; and #;(M,CP™), Proposition 6.2 relating jj,
and j},¢, and Lemma 6.4.
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Uniform transversality of 7, to Z; implies by Remark 6.2 that ¢, intersects the
remaining strata uniformly away from the zero set. Estimated transversality along
D is also preserved when composed with j"z uniformly away from Z; the key
point is selecting appropriate local A.H. defining functions for the strata: in A.H.
coordinates and affine charts PX; ; corresponds to a CR stratum PX;. Let f be a
local CR function defining it. Then f o Ilx ;o j"(¢; ! o 7) are local defining func-
tions for Xz ;. Now Lemma 4.5 implies that local uniform estimated transversality
along D of jjtr to Zx s is equivalent to uniform transversality along D to 0 of
foj(p;ton)o it = fojn(pitody). Again by the same lemma this is equi-
valent to uniform transversality along D of jj,¢, to PX; ;. The case of the points
close to the boundary of the strata is just a problem in a vector space; it fol-
lows from j"(¢; ' o) - 7 i\ Z — Ip,.n.m DEING @ submersion which amounts
to suppressing coordinates of the fiber of 7 , .., (and because the metrics in
these coordinates are comparable with the ambient metric, so the projection is
e-transverse). O

Let (P,Q) be a symplectic manifold with (M, D, w := €)s) 2-calibrated and
G a local J-complex distribution extending D. Let 7; be an A.H. sequence of sec-
tions of Ej and denote by ¢, its projectivization away from its zero set.

Proposition 6.3. Using the above notation, if j 't : P — #"Ey is uniformly trans-
verse over M to XF < JLEy then Di v 1S 1-generic.

Proof. We will make extensive use of diagram (51):

T * PG r *
j Ek GEk

J/jrn Jj/‘ﬂ

J(P,CP™) L2 gr(P,CP™).

Step 1: Study the compatibility of the Thom-Boardman—Auroux stratifica-
tions with the identification of #) (M, CP™) with #/(P, C[P””)l e

At the points of M there is a canonical J-complex identification between D and
G, inducing isometries

Ayi: (M, CP") — jG’(P,CP’")‘M.

Let z}c, ...,z¢ be AH. coordinates adapted to (M, G). We can rewrite them
as z}, ...zl xPH 2 o2 2P where z), ... z]! x2T are by Lemma 3.6
A.H. coordinates for M. Using also the canonical affine charts of projective space

we have
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D o "
Hk,x,i : jL’)(M’ Cm)i - jD)/,,n,m = nr,m X R’

G . - _
Hk,x,i : fG,(P’ Cm)i - j@r",p,m = n),m x C? rl’

and a canonical identification in C" x R = C?

g r
A Ipynm = /C”,p,m\c"xk'

The construction of I, I1¢ ; (see equation (29) and the last paragraph in the
proof of Lemma 6.2) implies the commutativity of

r m A rr m
Jh(M,CP™) - 4L(P,CP )i

J/HI?V! JVHI(G‘I (61)

7 SN
Dy,n,m C"p,mycnyr”

The restriction of 7 , ,, to C" x R~ M coincides with 4", x R= 7p .

The identification A obviously preserves the Thom—Boardman—Auroux strati-
fications (and even the refinements), and hence so A, does.

Step 2: Check that A; ' o (6P = ip(Prae)-

Since Ay are J-complex isometries preserving the Thom—Boardman—Auroux
stratifications we omit them from now on.

By using the charts H,Qx’,-, H,gm it is easy to see that for any j € {1,...,r}, the
degree j homogeneous component of ;j 1’)(¢k‘ ) approximately coincides with
V{)((ﬁkl a)-  Similarly, the degree j homogeneous component of ji¢, approxi-
mately coincides with Vi¢,. The result follows because we also have

(Vé¢k)\M = V]g(¢k\M)'

Step 3: Analyze the behavior of jj,(¢y,,) near the set of base points By.

Since Z; = #"E) is an A.H. sequence of submanifolds and "7, an A.H. se-
quence of sections, by Corollary 4.2 uniform transversality over M is equivalent
to uniform transversality along G at the points of M. In A.H. coordinates
adapted to G, we are saying that the matrix of partial derivatives of t; with respect
to z},...,z{ has maximum rank and norm greater than some 5 > 0. But this is
equivalent to saying that is uniformly transverse to ZkG , the pullback of the zero
section of 7} Ej.

By construction L\Z; = pclj'n ! (PZ) = pg'(Zx\Zk), and the strata of
¥\ Z; when approaching the zero section accumulate into pg'(®, ), where here
Oz, < J:Ei. Therefore j'7; intersects the strata of Ef \Z; away from a tubular
neighborhood in P (and hence in M) of radius 5" of By, the zero set of j 7. Thus
(b = (7l j"rk))‘ ., intersects the strata of PX away from a tubular neigh-
borhood in M of radius ' of By.
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In general pg(j"¢;) # ji¢; but using A.H. coordinates it is easy to check that
pc(j"¢) = ji¢,. Hence, ji.¢, intersects the strata of PX; < #.(P,CP™) away
from a tubular neighborhood in M of radius 7’ of By for all k > 1.

By Steps 1 and 2 we deduce that jj (¢ ) intersects the strata of PX; <
J5(P,CP™) away from a tubular neighborhood in M of radius »’ of By for all
k> 1.

Step 4: Relate uniform transversality over M of j't; to Z,f \Z; with uniform
transversality along D of jj, (¢ ) to Py = 7p(M,CP™).

The same ideas used in the proof of Lemma 6.5 combined with pg(j'¢,) =
Je9r, show that uniform transversality over M of j'tx to ZkG \Z is equivalent to
uniform transversality over M of ji.¢;, to PX, = #5(P,CP™).

Uniform transversality over M of j/.¢, to PX; < #5(P,CP™) is comparable to
uniform transversality of (jGd;) ,, to Py = fG’(P,(C[P””)‘ y (it can be easily
proven in the charts I, TI7 ).

By Steps 1 and 2, jB(¢k|M) is uniformly transverse to PX, = #Z5(M,CP™).

If the hypothesis on the amount of transversality over M of Corollary 4.2 are
met, then jj,(¢yy,) is uniformly transverse along D to PX, < #5(M,CP™). Ob-
serve that this requirement is not a problem, since the induction construction to
obtain uniform transversality over M for j"z; to EkG \Zi can guarantee that. [

The vector bundles 7/ E) are endowed with hermitian metrics g; and connec-
tions Vi m (or just Vy), which are induced by the metrics and connections on
J"E via the projection pg. We do not know whether #;E is an almost CR sub-
manifold of #"E}, but in any case we are not interested in doing almost complex
geometry on fgEj.

Let o; be a sequence of sections of #/Ey with |V/ay| 5 < O(1) for all j>0.
Using the metric g; we have a well defined notion of uniform transversality of oy
to the Thom-Boardman-Auroux stratification £, < #}E) (Definition 4.5); notice
that we have no notion of approximate holomorphicity neither for the sequence of
sections nor for the strata.

into account remark 4.3, it can also be shown that if j"t; : P — _#"E) is uniformly
transverse over M to X7, then jlti : P — JLEy is uniformly transverse over M
to 2.

Remark 6.3. If 75 : P — Ej is A.H. then |ij6‘[k|gk < O(1) forall j > 0. Having

We finish this section by proving the following

Lemma 6.6. (1) Let S = (S{!),. 4, be an approximately holomorphic finite invari-
ant stratification of Ej such that in approximately holomorphic coordinates and
A.H. frames each sequence of strata has a CR model transverse to the fibers.
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Let 1. : M — Ej. be an A.H. sequence uniformly transverse along D to . Then
. 1(F) is a stratification of (M, D, ) by 2-calibrated submanifolds for all k > 1.

(2) Let ty. : M — Ej be an A. H. uniformly transverse to Zy and whose projectiv-
ization ¢, is r-generic. Then By U ¢,;1(U3’Zk) is a stratification by 2-calibrated sub-
manifolds of (M, D, w) for all k > 1.

Proof. Let Sf < Ej. Corollary 4.1 implies that 7, !(S{) is uniformly transverse
to D. Hence, if we check that for each x € 7, !(S{) the sequence of linear sub-
spaces Tpt; ' (Sf) = Dis A.H,, ie.,

L (Tpt (S8, JTpr ' (SP)) < O(k™'/?)

(uniformly on the point), we are done.

Let J denote the induced the almost complex structure on Ej. In approxi-
mately holomorphic coordinates and A.H. frames, the strata Sy < Ej; have a CR
model S = C™ with respect to the canonical product CR structure. Recall that
any almost CR structure defined out of Jj in the base and the fiber, and a connec-
tion form with vanishing (0, 1)-component, coincides with the product CR struc-
ture (this appears also in the proof of Lemma 6.1). Hence the linear subspaces
TpS = TpSy verify /(TpS,JTpS) < O(k~'/?), the bounds being uniform on
the points of C”, and hence uniform on the points of E.

The approximate holomorphicity of 7 implies / y/(Tpti,J Tpti) < O(k~'/?).
Since /. m(Tptk, TpSik) = n, by Proposition 3.7 in [32] for all £ > 1 the intersection
Tptir 0 TpSy is an A.H. sequence and thus also its projection to M, which proves
item (1).

Regarding item (2), By := 7' (Z;). Therefore item (1) applies.

The strata X ; are intersected uniformly away from Bj. Therefore it is equi-
valent to work with the projectivizations ¢, and the Thom—Boardman—Auroux
stratification of _#j(M,CP™), because jpti'(Zk.1) = jhdy (PZi). Since for
each canonical chart of projective space the strata have CR models in
Ih(M,C™),, everything reduces to item (1). O

We would like the pullback of any regular value of ¢, to be a 2-calibrated sub-
manifold, which forces us to study the behavior of an r-generic function near its
base locus and near the pullback of the Thom-Boardman—Auroux strata. In
our applications we would only need this analysis for the Lefschetz pencils
¢ : M\B; — CP!: the same ideas used in [35] show that indeed near the base lo-
cus |0¢,| > |04, | and thus the regular “fibers” are 2-calibrated submanifolds. On
the other hand, near the strata of the Thom-Boardman—Auroux stratification
there is no such inequality between the holomorphic and antiholomorphic compo-
nent of the derivative, and ad hoc modifications are needed to obtain 2-calibrated
regular fibers.
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In [25] the approximately holomorphic theory is appropriately modified to
construct generic CR sections for a Levi-flat CR manifold. The complication
near the base locus and degeneration loci of the leafwise differential does not occur
(over each complex leaf the CR-Thom—Boardmann stratification is holomorphic
and the restriction of the CR-r-jet holomorphic as well, therefore the former is
pulled back to the leaf to a stratification by holomorphic strata).

7. The main theorem

It is possible to perturb A.H. sections of E; = E ® L®* — (M, D, ) so that their
r-jets are transverse to an A.H. quasi-stratification of ¢} E.

Theorem 7.1. Let Ex — (M,D,w), Ex = E® L®*, and 9 = (S{!),.,, an A.H.
sequence of finite, Whitney (A) quasi-stratifications of J)Ey transverse to the
fibers. Let us fix he N. Let 0 be a strictly positive constant. Then a constant
n > 0 exists such that for any A.H. sequence ty of E, it is possible to find an A.H.
sequence ay. of Ey so that for every k bigger than some ky,

(1) [Vp(tk = au)ly, <6, j=0,....r+h,

(2) jhox is p-transverse along D to .

Theorem 7.2 below suffices for our applications; the proof of Theorem 7.1,
which is left to the interested reader, is a suitable modification of the proof of
Theorem 1.1 in [4]. The main difference is the use of a result on local estimated
transversality along D;, to 0 for A.H. functions f; : C" x R — C™.

Observe in Theorem 7.1 that while for any 2e N we can bound
VI (tx — ok)lg> J=0,...,r+h, by any arbitrarily small J, we cannot do the
same for the full derivative. For the latter it can be proven that |V/(zx — o),
< C; forall j € N, where C; are constants independent of & whose value we cannot
control. Moreover the non-integrability of D also forces us to work with se-
quences of A.H. functions all whose derivatives are controlled (even if we want
to control the size of the perturbation along D up to a finite order /); basically
the derivatives along the directions of D (up to some finite order /) will be arbi-
trarily small only if we have control for the full derivative of all the orders, and k
is chosen to be very large.

We can prove a strong transversality result for symplectic manifolds with dis-
tribution G along compact 2-calibrated subvarieties.

Theorem 7.2. Let E;, — (P, Q) and let (M, D) be a compact 2-calibrated submani-
fold of the symplectic manifold (P, Q) and G a J-complex distribution extending D.
Let us consider ¢ a C"-A.H. sequence of finite, Whitney (A) quasi-stratifications
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of #"Ey (h=2). Letd be a positive constant. Then a constant n > 0 and a natural
number kg exist such that for any C™"-A.H.(C) sequence t; of Ej it is possible to
find a C™"-A.H. sequence oy of Ej so that for any k bigger than ko,

(1) |V (tp — oK)y, <0, 7 =0,....r+h (v — o is C™*"-A.H.(9)),

(2) j'oy is y-transverse over M to & C.

Proof. We will closely follow the pattern of the proof of Theorem 1.1 in [4] but
introduce appropriate modifications.

The very basic strategy of the proof is to add a perturbation for each sequence
of strata S, so that a sequence of strata is dealt with only if all the preceding
ones have been already dealt with. The solution g; will be the result of adding
all the perturbations. To achieve our goal in this way we must make sure that at
a stage corresponding to the strata S G,f , the perturbation added is such that:

(i) uniform transversality to preceding strata is not destroyed,

(i) uniform transversality to SG,IZ is attained.

To make sure that item (i) above holds, we start by adapting the definition of
local open condition of [3] to our setting:

Definition 7.1. Let 5,77 > 0. A family of properties 2(y,7, x),.,, of sections of
bundles over P is local and C7-open if given a section 7 that satisfies 2(7, 77, x) and
a section ¢ so that |t — a|Cq( Pg) <& there exists L > 0 only depending on the CY-
norm of 7 so that T — ¢ satisfies 2(n — Le, 77 — Le, x).

The advantage of a local open property is that we have an estimate on how
much it varies according to the size of the perturbation.

In our specific problem we say that a C"*2-A.H. sequence of sections 7; of Ej
satisfies 2 (n,7,x), x € M, if j't; is (n,7)-transverse over M to SG,[: at x. We
want to show that this is a local C"+?>-open condition, because if that is the case
we know that if at a given stage we add a perturbation with small enough C"+>-
norm we will still have a sequence of sections uniformly transverse over M to SG,f.

This is proven in Theorem 1.1 [4] for full transversality. For estimated trans-
versality over M the theorem is equally true because a perturbation y, with C’+2-
size bounded by C gives rise to an r-jet such that (i) [j"xl, <L'C, (i)
IV 2l g, < L'C, and (iii) [VV7arj x|, < L'C for some L' > 0. Therefore
small perturbations of a given section give rise to an r-jet that remains within con-
trolled distance of the one for the initial section and whose derivative along TM
varies in a controlled way. Similarly for a given r-jet we can control in a ball of
uniform radius its variation up to order 2, and hence the variation of its derivative
along TM in the ball.
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Next we have to make sure that the perturbation added at each stage fulfills
condition (ii). We will split the problem of achieving transversality over M to
S G,f into doing it for points close to the boundary and far from the boundary.
Actually, the former problem turns out to be already solved. To show this we
must check that (7,7, )-transversality over M of j"t; to S GZ, for all @ < b, implies
the existence of 7, > 0 such that j"t; is 7,-transverse over M to S G,f at the points
7,-close to its boundary.

In Theorem 1.1 [4] it is shown that the quasi-stratification condition together
with full uniform transversality can be used to show that j"z; stays uniformly
away from SGZ\GSGZ, say at distance greater than some 7’ > 0; since uniform
transversality over M is stronger than uniform transversality we deduce the same
result.

We now make use of the estimated Whitney condition (A) as in Corollary 4.2.
We have the inequality

. b > b
Lon(Taij e, TS < (T, SO TS + Lon(Tagf tie, T SC). (62)

For 1" b> 0 small enough the induction hypothesis implies that for points 7”-close
to 059, there is some index a € A4y such that

Lm(TMerh T]‘t‘/[SGZ) =g
Let M denote the pullback of 7M to #"Ej. In order to make
a b
LM(TLSGka TwS%) <14/2

we use the estimated Whitney condition (A) that gives / (M, TS G,};) >y >0and
Lm(TISC], TSG,};) < C(y)"'y,/2 (see the proof of Corollary 4.2), for " small
enough. Then the desired result holds for

77y, 7= min(y’, ", min(z,/2)).
a<b

Therefore our task is reduced to constructing arbitrarily small perturbations
which solve the uniform transversality problem in points 7,-far from the
boundary. We will construct such a perturbation following Donaldson’s global-
ization method. The key point is the following.

Proposition 7.1. Let (1,1, X) ¢ yr . 7= be a family of C9-open properties of sec-
tions of Ex — (P, gx). Assume that there exist (uniform) constants p, ¢', ¢, p such
that given any 6 > 0 small enough, any x € M, and any sequence tj with uniform
C?-bound C, there exist C?-bounded sections . . for all k > 1 with the following
properties.
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(1) [V ly, < €87 =0.....q
(2) The sections (15 Xk.x have Gaussian decay away from x in C¥-norm.

(3) Tk + xx. satisfy the property Py(n,ij — c'6,y) for all y € By, (x,p) 0 M, with
n=c'd(log0™"))™".

Then given any o > 0 and Ci-bounded sections ti of Ej, there exist, for k > 1,
Ci-bounded sections oy of Ej such that

() |V (tx —ow)l,, <o j=0,...,q,
(i) the sections oy satisfy Py (e, — LJ, x) for some uniform ¢, L > 0 at any x € M.

We do not give the proof of this proposition, since it is a repetition step by step
of Donaldson’s globalization procedure [11].

Hence we must check that the hypothesis of Proposition 7.1 hold. We will use
the following local transversality result, which is a reformulation of Lemma 5.2
and Theorem 5.4 in [30].

Proposition 7.2. Let F be a function with values in C' defined over the ball of
radius 11/10 in C'. Let V be a vector subspace of C'. Let 8 be a constant
0<5<1/2 Letn= 5(P(10g(571)))71, where P is a real monomial depending on
n, [, V. Ifin the ball of radius 11/10 we have

|F| <,

<1, [|oF|, <n, |doF|, <

go —
then there exists u € C” such that F — u is n-transverse over V to 0 in the interior of
BO,1)n V.

We assume that 7, is already 77,-transverse over M at the points 7,-close to the
boundary. Let 0 <e <7,/4 small enough. If xe M such that j'ti(x) ¢
Nar (¢/2,1,) then y; . is chosen to be the zero perturbation. If jzi(x) = p e
Ngor(e/2,7,) then there exists p, such that j'z (By(x,p1)) = By, (p.p,)
JVSGZ (&,37,/4). We consider the composition f o j"t; pulled back to the domain
of an A.H. chart adapted to (M, G) and centred at x. In this way we obtain a
function Hy : B(0,p,) < C” — C!. If we apply Proposition 7.2 directly to Hy,
with V' = TM, and for J « 7, /6, we will obtain § (P(log(éfl)))71-transversality
over M to 0 for Hy — uy in By, (x,p;). The problem is how to associate u to a
perturbation of 7 (the difficulty coming from the non-linearity of the strata). In-
stead, we consider for each index I the C’-valued function such that for each

Y € By (X, p4),

O:(y) = (dfi (") J T o - i (T (1)) J TS ).
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with r,zei ; as defined in equation (33). There is a choice of / indices /i, ..., I; such

that the corresponding A.H. sections j’r,ffn ;. are a frame for a distribution com-
plementary to Kerdf (and with minimal angle bounded from below). Then
Oy,,...,0y is a frame (depending on y) of C' comparable to the canonical one.

We can write
H; = l’l]i@[] + - +h/1€®1/.

We apply Proposition 7.2 (after suitable rescalings) to the C’-valued function
he = (h},...,hl), with V =TM, for some & small enough, so we get u; € c’
such that /i — uy is clé(P(log(é’l)))71—transverse over M to 0 in By, (x,ps).
If we multiply by the functions ©y,...,0; we obtain czé(P(log(é‘l)))_l-

transversality over M to 0 for Hy — u}®;, —--- —u/®y,. Our perturbation is the
section
L 1 __ref [ _ref
Kiex = "Wl v, = =~ Wi Tpe x e

The key point is that in view of the norm of u; and the bounds on the second
derivatives of f, the C'-norm of

Hy = uj®p, — - — O — f o j" (v + 5k.x)

is bounded by O(9?). Since the C'-norm majorates the C'-norm along TM we
conclude that for ¢ small enough f o j"(zj + sk ) is c30(P(log(d ™ )))_l-transverse
over M to 0. By Lemma 4.5 we get %((045(P(log(5’1)))_1,17b — Ld,y) for all
y € By (x,ps). Since 2 (n,ij,x) is C"2-open, if & is small enough compared to
7, and n,, 77,, we still get uniform transversality to the previous strata and 57, /6-
transversality over M at the points 37, /4-close to the boundary of SkG .

So we can apply Proposition 7.1 to obtain 2 (n,,37,/4,x) (with respect to
Ska) in all the points of M.

Hence we deduce the existence of a C’*2-A.H. sequence o) such that:

(1) [V (tk —on)l,, <0, =0,....r+h (o is C"2-AH.(9)).

(2) joy is y-transverse over M to & C. O

8. Applications

We begin by proving Proposition 1.1, which can be also obtained as a simple cor-
ollary of the work of J.-P. Mohsen [30] together with some extra local work bor-
rowed from [27].

Proof of Proposition 1.1. We consider a more general situation than that of the
statement of Proposition 1.1. Let £ be any rank m Hermitian vector bundle
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over (M**! D, ), and let E; = E® Lgk (Lg is the pre-quantum line bundle of
the symplectization and E is meant to be the pullback of the initial £ to the
symplectization). We want to apply Theorem 7.2 to the sequence of zero sections
Zr, but with some changes. Basically we want to start with an A.H. sequence
which vanishes at y and is uniformly transverse on By, (p,y), and then add pertur-
bations not destroying these propertiecs. We fix A.H. coordinates adapted to
(M, G) and reference sections r,ﬁei centred at the points of M « M x [—¢,¢]. In
A H. coordinates adapted to (M, G) we take the sections zkrlﬁei p = I,....m<
n+ 1, and consider their direct sum, a section of £j. This sequence of sections 7,
vanishes at y and is »-transverse over M to Z; in By (y,p). The key point is to
keep on adding local perturbations, as described in the proof of Theorem 7.2,
which vanish at y and with C'-norm small enough compared to 7. For that we
need new reference sections vanishing at y. Notice that if di (x, y) > O(k'/®) then
r,ﬁef is already vanishing at y, so we do not need to change the reference section.
Assumlng di(x, y) < O(k'/%) once we go to A.H. coordinates adapted to (M, G)
and centred at x, the point y belongs to B(0,p'k'/%) = C"*!. Consider the poly-
nomial P(z},...,z/"") =1 —z}. Let Ly, . € GL(n+ 1,C) be the composition of
homothety and of a rotation sending y to (1,0,...,0). We define Py, .=
PolLy,  and é,ﬁef” Py \rkil For any y > 0, if we suppose di(x,y) >y
then &} ; becomes an A.H. sequence (Wlth bounds independent of x) that van-
ishes at y and so that & j» J=1,...,m, fits into a local frame of E; over
B, (x, p(y)) (we chose the linear map to arrange that the vanishing (affine) hyper-
plane of Py, . is at distance of the origin bounded from below). Since 7, is
n-transverse over M to Z; in By, (y,p), we only need to add perturbations centred
at points away from By, (y,p/2), and thus the globalization procedure can be ap-
plied with reference sections vanishing at y.

Thus it is possible to find sequences of A.H. sections 7 of Ej uniformly trans-
verse over M to Z; and vanishing at y. Hence 74|y, are uniformly transverse to Z
and vanishing at y. Let W) = fkl’A}(Zk). For all k » 1, by Corollary 4.1, Wy, is
uniformly transverse to D, and by Lemma 6.6 approximately almost complex and
therefore 2-calibrated.

The study of its topology is done very much as in the symplectic and contact
cases (see the proofs in [11], [2], [24]). O

The next result we want to prove is the existence of determinantal submani-
folds (Proposition 1.2), which is still a transversality result for O-jets (vector bun-
dles E}), but not anymore to the 0 section but to a sequence of non-linear approx-
imately holomorphic stratifications.

Proof of Proposition 1.2. Let E,F — M be Hermitian bundles with connection
and let us define the sequence of very ample vector bundles J; := E* @ F ® L®*.
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In the total space of [ we consider the sequence of stratifications S; whose strata
are Sy ; = {4 € I, |rank(4) = i}, where 4 € Hom(E, F ® L®%).

Let E, F still denote the pullback of E, F to the symplectization
(M x [~&,¢,Q). Let Iro— M x[—¢¢ be E*®F® LY =Hom(E,F ®
Lgk). Let G be as usual a J-complex distribution defined on M x [—¢, ¢] that ex-
tends D, and let

S,f,- ={Ad el q|rank(4) =i}, A€ Hom(E,F@Lgk).

By Lemma 6.1 (applied to almost complex manifolds) Sg ; 1s an approximately
holomorphic sequence of finite, Whitney (A) stratifications. Therefore we can ap-
ply Theorem 7.2 to construct an A.H. sequence of sections 7 of /i o uniformly
transverse over M to S,f , and thus along D.

Hence M is stratified by the submanifolds S;(tx) = {x € M |rank(zx(x)) = i}
for all k large enough, which are uniformly transverse to D and 2-calibrated by
Lemma 6.6. ]

Corollary 1.1 follows from the fact that in the contact case the 2-form is exact
and hence the cohomological computations are those of the bundle £* ® F.

Theorem 8.1. Let (M, D,w) be a closed integral 2-calibrated manifold, set Ey =
C"' @ L®*, and let r be any natural number. Any A.H. sequence of sections of
cmtl ®L§k — (M x [~¢,¢],Q, G) admits an arbitrarily small C"™"-perturbation
such that ¢y = M \B; — CP"™, the restriction to M of its projectivization, is an
r-generic A. H. sequence.

Proof. The proof is just Theorem 7.2 applied to the Thom—Boardman—Auroux
quasi-stratification along G of #"Ep — (M X [—e,¢],J, G,gr), combined with
Proposition 6.3. |

It must be pointed out that the behavior of A.H. functions at the points close
to the degeneration loci is more complicated than that of the leafwise holomorphic
model: firstly, and similarly to what happens for even-dimensional almost complex
manifolds, to obtain normal forms it is necessary to add perturbations so that the
function becomes holomorphic (at least in certain directions); otherwise the ap-
proximate holomorphicity is not significative due to the vanishing (degeneracy)
of the holomorphic part. Secondly, we have an extra non-holomorphic direction
that we do not control. At most, we can apply the usual genericity results to that
direction (the perturbations at most of size O(k~'/?) so as not to destroy the other
properties).

One instance of the preceding theorem is when the target space has large di-
mension, so that the generic map is an immersion along the directions of D.
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Proof of Corollary 1.2. Set E;, = C"*! ® L®k where m > 2n. Theorem 7.2 is ap-
plied to the Thom-Boardman-Auroux quasi-stratification along G of #'E; —
(M x [—¢,¢],J, G,gk) to obtain 1-generic A.H. maps ¢, : M — CP™. From the
choice of m it follows that the set of base points and of points where d¢, is not
injective is empty. It is clear that by construction that ¢, [wgs] = [wy]. O

This is a non-trivial result because the property of being an immersion along D
is not generic (for smooth maps to CP?"). Notice that if for example D is inte-
grable the property is generic for each leaf (locally), but not for the 1-parameter
family.

As mentioned in the introduction, the previous corollary can be improved in
two different ways.

Proof of Corollary 1.3. Let us assume that any 2-form in the path p, , =
(1 — t)wy + t¢;wrs is non-degenerate over &, where wps is be the Fubini—Study
2-form. Then Moser’s trick can be applied leafwise: if o is a 1-form such that
do = —(¢wps — wy), the vector fields tangent to & defined by the condition
—iy,pr; = —o generate a 1-parameter family of diffeomorphisms preserving each
leaf and sending Pr.t 10 .

The non-degeneracy over & of p, follows from the estimated transversality of
@, together with the approximate holomorphicity. For any v € D, of gx-norm 1,

Pr. (v, Jv) = (1 = )y (v, Jv) + twps (v, ¢ Jv) = (1 — 1) + 1ty > 0. O

In general a closed Poisson manifold with codimension 1 leaves does not admit
a lift to a 2-calibrated structure (for example any non-taut smooth foliation
in M3). The previous corollary can be used to state the following result:

Corollary 8.1. Let (M, %, w4) be a closed Poisson manifold with co-oriented
codimension 1 leaves. Then the Poisson structure admits a lift to a (rational) 2-
calibrated structure if and only if a multiple of wg is induced by a leafwise immer-
sion in CP?" (by pulling back wrs).

It is worth mentioning that it is possible to obtain uniform transversality to a
finite number of quasi-stratifications of the same sequences of bundles. For exam-
ple, and this leads to the second improvement of Corollary 1.2, we can obtain the
1-genericity result that gives rise to embeddings in CP™ transverse to a finite num-
ber of complex submanifolds of CP™.

We just need to consider for each submanifold the sequence of stratifications
P of #4(M,CP™), whose unique stratum (for each k) is defined to be the 1-
jets along G whose degree 0 component is a point of the submanifold; next we
pull it back to a stratification & of jGIE,j and finally to a stratification ¢ of
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I lE,f (the structure near Z; is not relevant because transversality to the Thom-—
Boardman—Auroux quasi-stratification along G implies that the sections stay
away from Z;). Therefore, we have defined a stratification of # 'Er which is triv-
ially approximately holomorphic because it is the pullback by A.H. maps of an
initial approximately holomorphic stratification of j((;) (M,CP™). Any l-generic
sequence of A.H. sections of Ej uniformly transverse to ¢, when restricted to
M gives rise to maps ¢, : M — CP" uniformly transverse along D to the sub-
manifold.

Proof of Theorem 1.1. We first apply Theorem 8.1 to obtain ¢k‘ w P M\By — Ccp!
1-generic.

Near the base points and the points where Vpdy,, vanishes, we apply the per-
turbations defined in [35] to obtain the required local models. ]

Another possible application is, as proposed by D. Auroux for symplectic
manifolds [3], [4], to obtain r-generic applications to CP"” whose composition
with certain projections CP"™ — CP" " are still r-generic (the corresponding strat-
ifications are approximately holomorphic because they are pullback of approxi-
mately holomorphic stratifications by A.H. maps; the structure near Z; is also
seen to be appropriate).

It is also possible to develop an analogous construction but for A.H. maps
to Grassmannians Gr(r,m), starting from sections of C" ® Ej, E; of rank m (see
[32], [5)).

Our techniques can be applied to any closed 2-calibrated manifold to give a
finer topological description of the 2-calibrated structure. It is possible to apply
the same idea to manifolds for which the 2-calibrated structure enters as an auxil-
iary tool. This point of view has already been adopted in [27].

We recall the following result.

Theorem 8.2 (Gromov). Let M>"*! be a closed manifold whose structural group
reduces to U(n), and let a € H*(M; 7). Then there exists o a closed maximally
non-degenerate 2-form such that [w] = a.

Proof. The structural group of the open manifold M x R reduces to U(n+ 1).
Then by [19] it carries a symplectic form representing any given cohomology class,
in particular the pullback of a to M x R. Its restriction to M x {0} is . O

So by selecting any codimension 1 distribution transverse to the kernel of w,
we have:

Corollary 8.2. Let M*"*! be a closed manifold whose structural group reduces to
U(n), and let a € H*(M; 7). Then M admits 2-calibrated structures (D,w) for
which (@] = a.
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Notice that if we apply any of the previous constructions to (M, D,w), we
obtain submanifolds and more generally stratifications of M by 2-calibrated
submanifolds. Regarding the initial structure, which was just a reduction of the
structural group to U(n), we can conclude that the corresponding strata also ad-
mit such a reduction.

Appendix A. Proof of Proposition 5.1

We write down the proof for the bundle #"E) because it is a necessary ingredient
in the proof of Theorem 7.2. The case of #;E; bears no further complications
and it is left to the interested reader.

We omit the subindices & and r for the connections whenever there is no risk of
confusion.

Recall that in coordinates the curvature can be computed as follows: in a chart
where TP is trivialized using the derivatives of the coordinates, we have the cor-
responding flat connection d on 7*P. We have the operator

VI.T"PRE, - T'PRT'PRE, V'  =dI-1®YV,
and the antisymmetrization map
asymZ:T*P®T*P—>A2T*P, a® B anp,
o n B, v) 2= a(w)B(v) — a(v)B(u).

The curvature is the composition asym,(V! o V).

Let oy = (o%.0,0k,1) be a section (maybe local) of # 'E,. The modified connec-
tion is Vi, (6x.0,0x.1) = (Vok.0, Vor.1) + (0, —F 1oy o), where —Fllgy o € TP
® TP ® Ej (see [5]). For jets along D we add —FDI’I.

The previous formula defines a connection.

Lemma A.l. Let C" — C? be the trivial bundle endowed with a connection V
whose curvature is of type (1, 1) with respect to the canonical complex structure Jy;

the connection splits into Oy + Oy. Let T be a holomorphic section of C™ (with re-
spect to the holomorphic structure induced by V). Then

Vu(z,0yt) = V(z, dyt) — (0, dydy1) (63)
and EV” (T, av‘[) =0.
Proof. By definition

Fr = asym,(V'V1).
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Let us denote the trivialization of the bundle that identifies it with C" by
&,...,&,. Since 7 is holomorphic

Fr=asym,((d®1-1® V)dy1).
If we write dyt = dz'h/¢; then
Fr = asym,(—(I® V) dz'h]&)).
But being the curvature of type (1, 1) we can write
Fr = asym, (—(I® dy) dz'hl¢)). (64)

Recall that Fr has to be understood as an element of 7*0!C? ® T7*:0C”
® C™. That amounts to switch the dz”’s with the dz!’s, which cancels the negative
sign on the right-hand side of equation (64). Thus what we obtain is

Fr:= (I® dy)dz'hlé e T(T*"'C? @ T*-°C? @ C™). (65)

But equation (65) equals

(3o @ 1+ 1® dy) d='h/¢;,
which by definition is
dyoyT. (66)
By equation (66)
dv,, (t,0y1) = (dyt, dydyt — dydyt) = 0. O

It is also clear that dy = dv,, and therefore they define the same coupled holo-
morphic jets.

Lemma A.l has an obvious approximately holomorphic version: if we have a
very ample sequence of rank m vector bundles by definition the sequences of cur-
vatures is approximately of type (1,1). Then we can fix approximately holomor-
phic coordinates and the first part of Lemma A.1 implies that for 7; a sequence of
A.H. sections of Ej, one has

F1i & 001y,
and by the second part

gHjl‘L'k X 0.
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We now move into computing the curvature of the modified connection in the
integrable case. We will denote the coupled holomorphic r-jet in the integrable
model by j/ 7.

Lemma A.2. Let C" — C? be the trivial bundle as in Lemma A.1. Assume also
that for the fixed trivialization &, . .., &, the curvature is a matrix with constant co-
efficients and that we have a frame given by holomorphic sections t, ..., T, Then
Fy =Fy,.

Proof. If the holomorphic sections 7y, ..., 1, generate the bundle, then the holo-
morphic 1-jets of z't;, 7;, | </ < p, 1 < j<m, are a basis of f‘p{m (at least on
B(0,p)). By Lemma A.1, they are a holomorphic basis.

Vijsoz't = (dv(2'7)), Vov(2'7))) — (0, Fz'1)) = Vjigz't, — (0, Fz'7). (67)

Let us write again avr, =dz'h} &, and F = a,dz'dz* € (7%'C’ ®
T+1.0C?). If we apply to Vjl ,z't; the operator asymy, Vi, Vi, :=d®@1-1® Vg,
we get:

ijﬁolzlfj + (0, asym, (dz'a,, dz' dz*t; + dzia, dz! dzshfyjés)). (68)

When we apply the same operator to (0, Fz't;), if recall that the a,, are constant
and that z'z; is a holomorphic section, we get

asym, V;(0, Fz'tj) = (0, asymy(—ay dz' d=' dz’tj — ay dz'z' d2'h] &), (69)
and the right-hand side of equation (69) equals
(0,asym, (d='Fr; + = d="Fh} &))). (70)
If we put together equations (67), (68), and (70) we obtain

FVH‘L'j = Fv‘[j. |:|

We want to use a recursive construction based on Lemmas A.1 and A.2 to in-
troduce the desired connection on 7, .

Before doing that we recall that the coupled holomorphic jets are sections
of jp’m We now prove how to modify the connection on o 2

Step 1: We identify /p » With the subbundle of # j;) m spanned by holonomic
sections, i.e., sections of the form jjl 7z, where r is any holomorphic section

of C". P01ntW1se an element y of the fiber of #' p . 1s of the form

(70,07 70,15 71,0 V1,1) € (C er''crer!'cre (T*]’OCP ® T*I’OCP)) ® C",

and belongs to 7>

/o mifand only if y, | € T*0C? © T*°C? ® C™ and y, o = 79 ;.
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Using the metric induced by the Euclidean one on the base and fiber and the
connection, we have a orthogonal projection r : j fp m fpzm

Step 2: We introduce a new connection on ¢ fp -

On j we use the modified connection Vy,. This, together with the flat con-
nection d on T*C’ defines a connection Vy, , on ¢ fp .- Notice that on ¢ fp
we also have a connection V; coming from d and Vi.

We consider the trivialization of /‘pfm furnished by the sections &, dz’fj,
1 <j<m 1<i<p,sowe can identify the bundle with C"”*™. This is a trivial
bundle with connection Vy,. By Lemma A.2 Fy, = Fy,. Recall also that in the
basis ¢;, dz'¢; the curvature Fy, is a matrix that decomposes into p + 1 blocks cor-
responding to &;,...,¢, and to dz'¢),...,dz'¢,,, 1 <i < p. For each such block
the corresponding matrix is the one for Fy in the basis ¢;. Therefore Fy, is still of
type (1, 1) and has constant entries in the aforementioned basis.

Let Vy, be the result of modifying \%:A o Since Vy, is of type (1,1) by Lemma
A.1 applied to (C""*", Vy,), if t! e T'( jp ») 1s holomorphic with respect to Vy,,
then j! ! is holomorphic with respect to Vp,. In particular jl,(jl,z'7),
Jio ('L z't;) are a local holomorphic frame of (¢ lj;,l'm, Vu,) (recall that 7; was
a local holomorphic frame of C").

Taking into account that the curvature of (C"™*"” Vy,) is of type (1,1) and
with constant entries, and that (C"™*", Vy,) has a local holomorphic basis,
Lemma A.2 gives Fy, =Fy From Fy, = Fy, it follows that FVHH = Fy
Therefore

Hy oyt 2

F‘VH2 :FV2 on fl

Step 3: Check that Vy, restricts to /p o= F /Am with the desired properties.

Let I = (ip,i1,...,0) with 1 <ip<m, 0<i; <2, ij+---+1i, <2, and let
17 :=z{'...z)/1;,. We consider the sections j.,j. 77, which are a local holomor-
phic frame /,2," (using the identification described in Step 1). We will see that
Vi jigitogtr € T(T10C? ® jp ), and therefore that the connection Vg, pre-

SErves

p,m*
We just proved in Step 2 that ]ho] ]hol'r, 1s holomorphic with respect to Vg, and
that dy,, = dy, = dv,. Letuswrite j} it = (21, 0vts, Oy, Oatr). Then

VHZj}iOIjﬁOITI = avﬁzjﬁoljlllolrl
= v, (11, Oy, Oy, Oytr)
= (avf[, avavf[, 5Vavf], &Vaéf]),
which belongs to T'(T*:°C” ® 7. ,).

Therefore, the curvature of the restriction of Vg, to /p . 18 of course of type
(1,1). The last observation is its expression in a suitable basis. The curva-
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ture of V, on ¢ fpm splits on blocks corresponding to the basis &, ..., <&,
dz'¢,, ..., dz'¢, dZ'¢,, ... dZ'¢,, dz"f @dZ'¢, ..., dz" @dz¢, 1 <ilrt<p.
Each submatrix is Fy. If we use the basis &,...,¢,, dzié, ..., dzI¢,,
dz" ©dz'¢,...,dz" ©dz'¢, 1 <irt<p, the curvature equally splits into
blocks each matching Fy.

The general case uses the following induction step: on ¢’ there exists a con-

p,m
nection Vg, with the following properties:

(1) 0u, = 0-.

(2) Fy,, = Fy, and therefore Fy, is of type (1,1).

(3) If dyt = 0 then 0y, ji ;v = 0.

(4) In the basis &; := (dzk)@l . (dz])©"¢, the curvature splits into blocks each

matching Fy.
To define Vy,,, on p’ j;l we reproduce the previous three steps.
Firstly we con51der the identification of jp’;l with the subbundle of # /p "
spanned by sections of the form j} ,jr 7, T a holomorphic section of C"".
Secondly we consider the connection Vp,, on ¢/ 1 constructed out of d and
Vu, and modify it to Vg, ,. By the induction hypothesis using the basis ; we are
in the situation of Lemma A.2, for 7, identifies with C" with a connection
whose curvature is of type (1,1) and Wlth constant coefficients, and with a frame

of holomorphic sections. Therefore FVH = FVH1 = Fy,,,. Since we can also ap-

ply Lemma A.1, for any <" € I'(.%, ) the 1jet jl " is holomorphlc with respect
to VHr+1

The third step is to check that the modified connection restricts to
Iy e g 1/)]’:,”. Using that dy, = dv,,,, any frame of sections of the form
JiojkTrs T holomorphic, is sent by the connection to sections of A ’“.

It is also routine to check that in the basis &; the curvature matrlx is made of
blocks of the form Fy.

The almost complex counterpart of the result we just proved is done exactly in
the same way. The only modification is that the connection on ¢#' #"E; does not
descend automatically to a connection on ¢''E; < #'¢"E,. We have to pro-
ject via r: ¢! #"E, — #"TVEy, but this is seen to introduce an error which is ap-
proximately vanishing. It might happen that the resulting connection amounts to
adding also a pseudo-holomorphic part. If that is the case we forget about this
contribution (which again would be approximately vanishing). Therefore, we ob-
tain a connection with all the desired properties.

Using similar considerations to the ones for 1-jets, it can be deduced that the
(r+ 1)-jet of a C™1*"-A H. sequence of sections of Ej is a C”-A.H. sequence of
sections of (#" "' Ey, Vy,,,).
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Appendix B. Chern classes and top Chern classes

Corollary 1.1 proves the existence of contact determinantal submanifolds, which
we expect to be more general than those coming from zeroes of vector bundles
constructed in [24]. To support this we recall that it is known that in the
algebro-geometric setting that determinantal varieties are more general that zeroes
of vector bundles (see for example [20], [1]), and a similar result should be ex-
pected to hold in the smooth category. A way to prove it would be exhibiting a
manifold in which there exist a cohomology class ¢ which is the Chern class of a
complex vector bundle F but it is not the top Chern class of any complex vector
bundle (i.e., showing that Chern classes are more general than top Chern classes),
the reason being that if we choose as E the trivial complex vector bundle of the
appropriate rank and the appropriate determinantal locus, we have

AE,F,i =d.

As far as the author knows such a question has not been addressed. A lot is
known about cohomology classes which can be Chern classes, mainly because for
a given finite CW complex of dimension n there is a rather clear picture of com-
plex vector bundles of rank > [n/2] (the so-called stable rank) [7]; much less is
known about lower ranks and that is what makes it difficult to discard a Chern
class as a top Chern class (besides, according to Thom [37], Theorem I1.25, in a
(compact, oriented) manifold any a € H*(M;Z) has a multiple which is a top
Chern class). In any case, finding manifolds with certain cohomological properties
would prove that Chern classes are more general than top Chern classes. For ex-
ample, according to [7] for a (compact, oriented) manifold X of dimension < 7,
any a € H*(X;Z) is the second Chern class of a rank 3 complex vector bundle.
If it were the top Chern class of some F, then Corollary 2.2 in [7] applied to the
direct sum of F with the trivial line bundle would imply that

ci(Fla+Sq*a=0 in H%(X;Z,). (71)
Therefore, if H?(X;Z,) = 0 and there exists a class @ with non-vanishing second

Steenrod square, equation (71) could not hold and hence a would not be a top
Chern class.

References

[1] E. Arrondo, A home-made Hartshorne-Serre correspondence. Rev. Mat. Complut. 20
(2007), 423-443. Zbl 1133.14046 MR 2351117


http://www.emis.de/MATH-item?1133.14046
http://www.ams.org/mathscinet-getitem?mr=2351117

510 D. Martinez Torres

[2] D. Auroux, Asymptotically holomorphic families of symplectic submanifolds. Geom.
Funct. Anal. 7 (1997), 971-995. Zbl 0912.53020 MR 1487750

[3] D. Auroux, Symplectic 4-manifolds as branched coverings of CP2. Invent. Math. 139
(2000), 551-602. Zbl 1080.53084 MR 1738061

[4] D. Auroux, Estimated transversality in symplectic geometry and projective maps. In
Symplectic geometry and mirror symmetry (Seoul, 2000), World Sci. Publ., Singapore
2001, 1-30. Zbl 1017.53066 MR 1882325

[5] D. Auroux, A remark about Donaldson’s construction of symplectic submanifolds.
J. Symplectic Geom. 1 (2002), 647-658. Zbl 05024686 MR 1959060

[6] D. Auroux, Symplectic maps to projective spaces and symplectic invariants. Turkish J.
Math. 25 (2001), 1-42. Zbl 1008.53068 MR 1829077

[7] C. Banica and M. Putinar, On the classification of complex vector bundles of stable
rank. Proc. Indian Acad. Sci. Math. Sci. 116 (2006), 271-291. Zbl 1108.55012
MR 2256005

[8] J. M. Boardman, Singularities of differentiable maps. Inst. Hautes Etudes Sci. Publ.
Math. 33 (1967), 21-57. Zbl 0165.56803 MR 0231390

[9] P. Deligne and N. Katz, Séminaire de Géométrie Algébrique du Bois-Marie,
1967-1969. Lecture Notes in Math. 340 Springer-Verlag, Berlin 1973.
Zbl 0258.00005 MR 0354657

[10] B. Deroin, Laminations dans les espaces projectifs complexes. J. Inst. Math. Jussieu T
(2008), 67-91. Zbl 1153.32004 MR 2398147

[11] S. K. Donaldson, Symplectic submanifolds and almost-complex geometry. J. Differen-
tial Geom. 44 (1996), 666—705. Zbl 0883.53032 MR 1438190

[12] S. K. Donaldson, Lefschetz fibrations in symplectic geometry. Doc. Math. 1998, Extra
Vol. ICM Berlin 98, vol. 11, 309-314. Zbl 0909.53018 MR 1648081

[13] S. K. Donaldson, Lefschetz pencils on symplectic manifolds. J. Differential Geom. 53
(1999), 205-236. Zbl 1040.53094 MR 1802722

[14] S. K. Donaldson and P. B. Kronheimer, The geometry of four-manifolds. Oxford
Math. Monogr., The Clarendon Press, Oxford 1990. Zbl 0904.57001 MR 1079726

[15] Y. M. Eliashberg and W. P. Thurston, Confoliations. Univ. Lecture Ser. 13, American
Mathematical Society, Providence, RI, 1998. Zbl 0893.53001 MR 1483314

[16] E. Ghys, Laminations par surfaces de Riemann. In Dynamique et géométrie complexes
(Lyon, 1997), Panor. Syntheses 8, Soc. Math. France, Paris 1999, 49-95.
7Zbl 1018.37028 MR 1760843

[17] E. Giroux and J.-P. Mohsen, Structures de contacte et fibrations symplectiques au-
dessus du cercle. In preparation.

[18] P. Griffiths and J. Harris, Principles of algebraic geometry. Wiley Classics Library,
John Wiley & Sons Inc., New York 1994. Zbl 0836.14001 MR 1288523

[19] M. Gromov, Partial differential relations. Ergeb. Math. Grenzgeb.(3) 9. Springer-
Verlag, Berlin 1986. Zbl 0651.53001 MR 0864505

[20] R. Hartshorne, Varieties of small codimension in projective space. Bull. Amer. Math.
Soc. 80 (1974), 1017-1032. Zbl 0304.14005 MR 0384816


http://www.emis.de/MATH-item?0912.53020
http://www.ams.org/mathscinet-getitem?mr=1487750
http://www.emis.de/MATH-item?1080.53084
http://www.ams.org/mathscinet-getitem?mr=1738061
http://www.emis.de/MATH-item?1017.53066
http://www.ams.org/mathscinet-getitem?mr=1882325
http://www.emis.de/MATH-item?05024686
http://www.ams.org/mathscinet-getitem?mr=1959060
http://www.emis.de/MATH-item?1008.53068
http://www.ams.org/mathscinet-getitem?mr=1829077
http://www.emis.de/MATH-item?1108.55012
http://www.ams.org/mathscinet-getitem?mr=2256005
http://www.emis.de/MATH-item?0165.56803
http://www.ams.org/mathscinet-getitem?mr=0231390
http://www.emis.de/MATH-item?0258.00005
http://www.ams.org/mathscinet-getitem?mr=0354657
http://www.emis.de/MATH-item?1153.32004
http://www.ams.org/mathscinet-getitem?mr=2398147
http://www.emis.de/MATH-item?0883.53032
http://www.ams.org/mathscinet-getitem?mr=1438190
http://www.emis.de/MATH-item?0909.53018
http://www.ams.org/mathscinet-getitem?mr=1648081
http://www.emis.de/MATH-item?1040.53094
http://www.ams.org/mathscinet-getitem?mr=1802722
http://www.emis.de/MATH-item?0904.57001
http://www.ams.org/mathscinet-getitem?mr=1079726
http://www.emis.de/MATH-item?0893.53001
http://www.ams.org/mathscinet-getitem?mr=1483314
http://www.emis.de/MATH-item?1018.37028
http://www.ams.org/mathscinet-getitem?mr=1760843
http://www.emis.de/MATH-item?0836.14001
http://www.ams.org/mathscinet-getitem?mr=1288523
http://www.emis.de/MATH-item?0651.53001
http://www.ams.org/mathscinet-getitem?mr=0864505
http://www.emis.de/MATH-item?0304.14005
http://www.ams.org/mathscinet-getitem?mr=0384816

The geometry of 2-calibrated manifolds S11

[21] R. Harvey and H. B. Lawson, Jr., Calibrated foliations (foliations and mass-
minimizing currents). Amer. J. Math. 104 (1982), 607-633. Zbl 0508.57021
MR 658547

[22] A. Tbort and D. Martinez Torres, Approximately holomorphic geometry and esti-
mated transversality on 2-calibrated manifolds. C. R. Math. Acad. Sci. Paris 338
(2004), 709-712. Zbl 1057.53043 MR 2065379

[23] A. Ibort and D. Martinez Torres, Lefschetz pencil structures for 2-calibrated mani-
folds. C. R. Math. Acad. Sci. Paris 339 (2004), 215-218. Zbl 1054.57029 MR 2078077

[24] A. Ibort, D. Martinez-Torres, and F. Presas, On the construction of contact submani-
folds with prescribed topology. J. Differential Geom. 56 (2000), 235-283.
Zbl 1034.53088 MR 1863017

[25] D. Martinez Torres, Approximately holomorphic geometry for projective CR mani-
folds. Preprint 2006. arXiv:math/0611125

[26] D. Martinez Torres, A higher dimensional generalization of taut foliations. Preprint
2006. arXiv:math/0602576

[27] D. Martinez, V. Muiioz, and F. Presas, Open book decompositions for almost contact
manifolds. In Proceedings of the XI fall workshop on geometry and physics (Oviedo,
Spain, 2002), Publ. R. Soc. Mat. Esp. 6, R. Soc. Mat. Esp., Madrid 2004, 131-149.
Zbl 1075.53025 MR 2123571

[28] J. N. Mather, How to stratify mappings and jet spaces. In Singularités d’applications
différentiables (Sém., Plans-sur-Bex, 1975), Lecture Notes in Math. 535, Springer-
Verlag, Berlin 1976, 128—176. Zbl 0398.58008 MR 0455018

[29] D. McDuff and D. Salamon, Introduction to symplectic topology. Oxford Math.
Monogr., The Clarendon Press, Oxford 1995. Zbl 1066.53137 MR 1373431

[30] J. P. Mohsen, Transversalit¢ quantitative et sous-variétes isotropes. Ph.D. Thesis,
Ecole Norm. Sup., Lyon 2001.

[31] V. Muiioz, F. Presas, and 1. Sols, Asymptotically holomorphic embeddings of contact
manifolds in projective spaces. In Global differential geometry: the mathematical legacy
of Alfred Gray (Bilbao, 2000), Contemp. Math. 288, Amer. Math. Soc., Providence,
RI, 2001, 386-390. Zbl 1008.53067 MR 1871038

[32] V. Muiioz, F. Presas, and I. Sols, Almost holomorphic embeddings in Grassmannians
with applications to singular symplectic submanifolds. J. Reine Angew. Math. 547
(2002), 149-189. Zbl 1004.53042 MR 1900140

[33] T. Ohsawa and N. Sibony, Kéhler identity on Levi flat manifolds and application to
the embedding. Nagoya Math. J. 158 (2000), 87-93. Zbl 0976.32021 MR 1766573

[34] 1. R. Porteous, Simple singularities of maps. In Proceedings of Liverpool singularities
symposium, 1 (1969/70), Lecture Notes in Math. 192, Springer-Verlag, Berlin 1971,
286-307. Zbl 0221.57016 MR 0293646

[35] F. Presas, Lefschetz type pencils on contact manifolds. Asian J. Math. 6 (2002),
277-301. Zbl 1101.53055 MR 1928631

[36] F. Quinn, Open book decompositions, and the bordism of automorphisms. Topology
18 (1979), 55-73. Zbl 0425.57010 MR 528236


http://www.emis.de/MATH-item?0508.57021
http://www.ams.org/mathscinet-getitem?mr=658547
http://www.emis.de/MATH-item?1057.53043
http://www.ams.org/mathscinet-getitem?mr=2065379
http://www.emis.de/MATH-item?1054.57029
http://www.ams.org/mathscinet-getitem?mr=2078077
http://www.emis.de/MATH-item?1034.53088
http://www.ams.org/mathscinet-getitem?mr=1863017
http://arxiv.org/abs/math/0611125
http://arxiv.org/abs/math/0602576
http://www.emis.de/MATH-item?1075.53025
http://www.ams.org/mathscinet-getitem?mr=2123571
http://www.emis.de/MATH-item?0398.58008
http://www.ams.org/mathscinet-getitem?mr=0455018
http://www.emis.de/MATH-item?1066.53137
http://www.ams.org/mathscinet-getitem?mr=1373431
http://www.emis.de/MATH-item?1008.53067
http://www.ams.org/mathscinet-getitem?mr=1871038
http://www.emis.de/MATH-item?1004.53042
http://www.ams.org/mathscinet-getitem?mr=1900140
http://www.emis.de/MATH-item?0976.32021
http://www.ams.org/mathscinet-getitem?mr=1766573
http://www.emis.de/MATH-item?0221.57016
http://www.ams.org/mathscinet-getitem?mr=0293646
http://www.emis.de/MATH-item?1101.53055
http://www.ams.org/mathscinet-getitem?mr=1928631
http://www.emis.de/MATH-item?0425.57010
http://www.ams.org/mathscinet-getitem?mr=528236

512 D. Martinez Torres

[37] R. Thom, Quelques propriétés globales des variétés différentiables. Comment. Math.
Helv. 28 (1954), 17-86. Zbl 0057.15502 MR 0061823

[38] G. Tian, On a set of polarized Kédhler metrics on algebraic manifolds. J. Differential
Geom. 32 (1990), 99-130. Zbl 0706.53036 MR 1064867

[39] 1. Vaisman, Symplectic geometry and secondary characteristic classes. Progr. Math. 72,
Birkhduser Boston Inc., Boston 1987. Zbl 0629.53002 MR 0932470

[40] L. C. Wilson, Nonopenness of the set of Thom-Boardman maps. Pacific J. Math. 84
(1979), 225-232. Zbl 0393.57014 MR 559640

Received September 12, 2008; revised April 2, 2009

David Martinez Torres, Centro de Analise Matematica, Geometria e Sistemas Dinamicos,
Departamento de Matematica, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001
Lisboa, Portugal

E-mail: martinez@math.ist.utl.pt


http://www.emis.de/MATH-item?0057.15502
http://www.ams.org/mathscinet-getitem?mr=0061823
http://www.emis.de/MATH-item?0706.53036
http://www.ams.org/mathscinet-getitem?mr=1064867
http://www.emis.de/MATH-item?0629.53002
http://www.ams.org/mathscinet-getitem?mr=0932470
http://www.emis.de/MATH-item?0393.57014
http://www.ams.org/mathscinet-getitem?mr=559640

