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1. Introduction and statement of results

In recent years there has been an enormous success in the study of symplectic

manifolds using approximately holomorphicmethods. Thesemethods—introduced

by S. Donaldson in 1996 [11]—amount to treating symplectic manifolds as

generalizations of Kähler manifolds. To this end it is convenient to think of a

symplectic manifold, once a compatible almost complex structure J has been

fixed, as a Kähler manifold ðP; J;WÞ for which the integrability condition for J

has been dropped.

Let M be any hypersurface of the Kähler manifold ðP; J;WÞ. M inherits on

the one hand a codimension 1 distribution D :¼ JTMBTM endowed with an in-

tegrable almost complex structure J : D ! D (i.e., a CR structure of hypersurface

type), and on the other hand a closed 2-form o :¼ WjM which is nowhere degener-

ate when restricted to D. A 2-calibrated structure on M, together with a compat-

ible almost complex structure, is the structure obtained when the integrability as-

sumption on J : D ! D is dropped.

Let us assume that the CR distribution of the (2nþ 1)-dimensional CR mani-

fold (of hypersurface type) ðM;D; JÞ is co-oriented (i.e., the real line bundle

TM=D is trivial and a positive side has been chosen). The Levi form is the sym-

metric tensor

L : D�D ! TM=D; ðu; vÞ ! ½U ; JV �=P;

where U , V are local sections of D extending u; v a TxM, and we consider the

class of the above Lie bracket at x in the quotient real line bundle TM=D, where

we can make sense of positive and negative values. We can distinguish several in-

teresting geometries according to the behavior of the Levi form:

(1) If L is strictly positive (resp. negative) we get a strictly pseudo-convex (resp.

pseudo-concave) CR structure. If we drop J what remains is a co-oriented

contact structure (they always carry almost complex structures along the con-

tact distribution).

(2) If LC 0 then D integrates into a codimension 1 foliation whose leaves inherit

a Kähler structure. If J is dropped what we obtain is a class of regular Poisson

manifolds that include mapping tori associated to symplectomorphisms and

more generally cosymplectic structures (defined by a closed 1-form a and a

closed 2-form o such that abon is a volume form). When n ¼ 1 the latter

are nothing but smooth taut foliations.

(3) If n ¼ 1 and Lb 0, by dropping J we obtain a class of structures that include

all taut confoliations (see Section 3.5 in [15]).
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Definition 1.1. A 2-calibrated structure on M 2nþ1 is a pair ðD;oÞ, where D is a

codimension 1 distribution and o a closed 2-form nowhere degenerate on D.

We call the triple ðM;D;oÞ a 2-calibrated manifold. We also say that o is

positive on D. If D is integrable we speak of 2-calibrated foliations.

ðM;D;oÞ is said to be integral if ½o� a H 2ðM;RÞ is in the image of the in-

teger cohomology, in which case we choose a lift h a H 2ðM;ZÞ of ½o� that we
fix once and for all. The pre-quantum line bundle ðL;‘Þ is the unique—up to

isomorphism—Hermitian line bundle with compatible connection with Chern

class h and curvature �2pio.

As we saw 2-calibrated structures do contain contact structures, cosymplectic

structures and 3-dimensional taut confoliations.

A 2-calibrated manifold ðM;D;oÞ always admits compatible almost complex

structures J : D ! D. The purpose of this article is to explore how to adapt ap-

proximately holomorphic geometry to the tuple ðM;D;o; JÞ, and to see how we

can apply this theory to know more about ðM;D;oÞ.
In what follows all our manifolds will be closed and smooth, and all tensors

and maps smooth unless otherwise stated.

The first application we will obtain is an analog of the existence of transverse

cycles through any point of a 3-dimensional taut foliation.

The appropriate generalization of a transverse cycle is as follows.

Definition 1.2. W is a 2-calibrated submanifold of ðM;D;oÞ if TW BD has co-

dimension 1 inside TW and o is positive when restricted to it. In other words, W

must intersect D transversely and in a symplectic sub-distribution of ðD;oÞ.

The existence of submanifolds—which extends the main result for contact

manifolds in [24]—is the content of the following result:

Proposition 1.1. Let ðM 2nþ1;D;oÞ be an integral 2-calibrated manifold and Lnk

the sequence of powers of its pre-quantum line bundle (Definition 1.1). For any fixed

point y a M, any m ¼ 1; . . . ; n, and any rank m complex vector bundle E ! M, if

k a N is large enough it is possible to find 2-calibrated submanifolds Wk of M of

codimension 2m through y with the following properties:

• The inclusion l : Wk ,! M induces maps l� : pjðWkÞ ! pjðMÞ which are iso-

morphisms for j ¼ 0; . . . ; n�m� 1, and an epimorphism for j ¼ n�m. The

same result holds for the homology groups.

• The Poincaré dual of ½Wk� is cmðEnLnkÞ:

The submanifolds in Proposition 1.1 are obtained by pulling back the 0 section

of a vector bundle. Something similar can be done with the determinantal loci of
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a homomorphism of complex vector bundles (see Theorem 1.6 in [32] and Corol-

lary 5.2 in [4]).

Proposition 1.2. Let ðM;D;oÞ be an integral 2-calibrated manifold and Lnk the

sequence of powers of its pre-quantum line bundle. Let E, F be Hermitian vector

bundles with connections and consider the sequence of bundles Ik ¼ E � nF nLnk

¼ HomðE;F nLnkÞ. Then for all k a N large enough there exist sections tk of

Ik for which the determinantal loci S iðtkÞ ¼
�
x a M j rank

�
tkðxÞ

�
¼ i

�
are integral

2-calibrated submanifolds stratifying M.

The Poincaré dual of the closure of S iðtkÞ is given by the Porteous formula

[34]:

DE;FnLnk ; i ¼

cn�i cn�iþ1 � � �
cn�i�1 cn�i � � �

. .
.

cn�mþ1 � � � cn�i

���������

���������
;

where rankE ¼ m, rankF ¼ n, and cj is the j-th Chern class cjðF nLnk � EÞ de-
fined by the equality

1þ c1ðF nLnk � EÞ þ c2ðF nLnk � EÞ þ � � �

¼
�
1þ c1ðF nLnkÞ þ c2ðF nLnkÞ þ � � �

�
=
�
1þ c1ðEÞ þ c2ðEÞ þ � � �

�
:

If the rank of E and F , and i are chosen so that S i�1ðtkÞ is empty, then S iðtkÞ is a
closed 2-calibrated submanifold.

Corollary 1.1. Let ðM; aÞ, a a W1ðMÞ, be an exact contact manifold of dimension

2nþ 1. Let E, F be complex vector bundles and let i be a positive integer such that

• the codimension in HomðE;FÞ of the strata of homomorphisms of rank i is not

bigger than 2nþ 1,

• the codimension in HomðE;F Þ of the strata of homomorphisms of rank i � 1 is

bigger than 2nþ 1.

Then there exist contact submanifolds whose Poincaré dual is DE;F ; i. In particular,

for any even cohomology class which is a Chern class of some complex vector bundle

over M, there exist a contact submanifold Poincaré dual to it.

Remark 1.1. One is expecting that the determinantal submanifolds coming Prop-

osition 1.2 will be more general than the zeroes of vector bundles coming from

Proposition 1.1. A more detailed discussion of this issue appears in Appendix B.
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The next application is an analog for 2-calibrated manifolds of the embedding

theorem for symplectic manifolds of [32] (Theorem 1.2), extending results of [31]

for contact manifolds.

Corollary 1.2. Let ðM 2nþ1;D;oÞ be an integral 2-calibrated manifold. Then it is

possible to find maps fk : M ! CP2n so that for all k a N large enough one has:

• dfk jD is injective (fk is an immersion along D).

• ½f�
koFS� ¼ ½ko�, where oFS is the Fubini–Study 2-form of CP2n.

In particular if ðM 3;DÞ is a 3-manifold with a (smooth) taut confoliation, it is

possible to find immersions along D in CP2.

The previous corollary can be improved in two directions.

Corollary 1.3 (see [32], Corollary 2.6). Let ðM 2nþ1;D;oÞ be a manifold with

an integral 2-calibrated foliation. Then the maps of Corollary 1.2 can be composed

from the right with di¤eomorphisms of M, so that for all k a N large enough

the equality ½f�
koFS� ¼ ½ko� holds also at the level of foliated 2-forms, i.e.,

f�
koFS jD ¼ kwjD.

The second improvement is that the immersion along D can be perturbed to be

transverse to any finite collection of complex submanifolds of projective space.

Another application is the existence of Lefschetz pencil structures, introduced

in [23].

Definition 1.3 (see Section 1 in [13]). Let ðM;D;oÞ be a 2-calibrated manifold

and x a M. A chart j : ðCn � R; 0Þ ! ðM; xÞ is compatible with ðD;oÞ (at x) if
at the origin it sends the foliation of Cn � R by complex hyperplanes into D, and

j�oð0Þ restricted to the subspace Cn � f0g is of type ð1; 1Þ.

Definition 1.4 (see [35]). A Lefschetz pencil structure for ðM;D;oÞ is a triple

ð f ;B;DÞ, where BHM is a codimension four 2-calibrated submanifold, and

f : MnB ! CP1 is a smooth map such that:

(1) f is a submersion along D away from D, a 1-dimensional manifold transverse

to D where the restriction of the di¤erential of f to D vanishes.

(2) For any x a D there exist a chart j compatible with ðD;oÞ at x and a complex

coordinate z of CP1 defined about f ðxÞ such that

z � f � jðz; sÞ ¼ ðz1Þ2 þ � � � þ ðznÞ2 þ tðsÞ; ð1Þ

where t a ClðR;CÞ.
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(3) For any x a B there exist a chart j compatible with ðD;oÞ at x and a com-

plex coordinate z of CP1 defined about f ðxÞ such that BC z1 ¼ z2 ¼ 0 and

z � f � jðz; sÞ ¼ z1=z2.

(4) f ðDÞ is an immersed curve with generic self intersections.

Theorem 1.1. Let ðM;D;oÞ be an integral 2-calibrated manifold and let h be an

integer lift of ½o�. Then for all k a N large enough there exist Lefschetz pencils

ð fk;Bk;DkÞ such that

(1) the regular fibers are Poincaré dual to kh,

(2) the inclusion l : Wk ,! M induces maps l� : pjðWkÞ ! pjðMÞ (resp.

l� : HjðWk;ZÞ ! HjðM;ZÞ) which are isomorphisms for ja n� 2, and an epi-

morphism for j ¼ n� 1.

All the results stated follow mostly from a general principle of (estimated)

transversality along D (Theorems 7.1 and 7.2).

In a problem P of transversality along D we have three ingredients: (i) the

bundle E ! ðM;D;oÞ, (ii) the submanifold or more generally the stratification

SHE, and (iii) the section t : M ! E to be perturbed to become transverse

along D to S.

In Section 2 we will define the class of sections and bundles we will work with,

the so-called sequences of very ample bundles and approximately holomorphic

sections.

As in the approximately holomorphic theory for symplectic manifolds (see

[11], [4]), transversality problems will be solved by patching local solutions. The

right strategy to solve the corresponding local problems for sections is to turn

them into local problems for approximately holomorphic functions. This will be

done through the use of reference sections, which can be thought of as the bump

functions of the theory. The necessary local analysis needed to construct such sec-

tions is developed in Section 3.

There is a second strategy to solve P. It is not only true that the natural

example of a 2-calibrated structure is a hypersurface inside a symplectic mani-

fold, but every 2-calibrated manifold (D co-oriented) admits a symplectization

ðM � ½�e; e�;WÞ (Lemma 3.4). We will introduce a new transversality problem

P for a stratification S of a bundle E ! ðM � ½�e; e�;WÞ so that a solution

t : M � ½�e; e� ! E to P restricts to tjM a solution to P. The advantage of this

point of view is that since we are in a symplectic manifold, as long as the extension

P falls in the right class of problems we can use the existing approximately holo-

morphic theory for symplectic manifolds to solve it. Still, the existing approxi-

mately holomorphic theory turns out not to be enough for our purposes, so we

need to develop further the relative approximately holomorphic theory introduced

by J. P. Mohsen [30]. We will make an exposition of both the intrinsic and the
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relative approximately holomorphic theories, and we will prove the main transver-

sality theorem using the latter.

In Section 4 we give an account of the notion of estimated transversality of

a section along a distribution. For the intrinsic theory (problem P) the distri-

bution will be D, whereas for the relative theory the problem P will amount

to achieving transversality over MH ðM � ½�e; e�;WÞ. We will also introduce

the right class of stratifications S (already defined in the symplectic setting

in [4]), the so-called approximately holomorphic finite Whitney stratifications,

whose strata roughly behave as the zero section of a vector bundle in the sense

that locally they will be given by approximately holomorphic functions and they

will be transverse enough to the fibers. The fundamental technical result (Lemma

4.5) is that locally estimated transversality along D (resp. over M) of an approxi-

mately holomorphic section to S (resp. S) is equivalent to estimated transversal-

ity along D (resp. over M) to 0 of a related C l-valued approximately holomorphic

function.

Section 5 is devoted to the study of bundles of pseudo-holomorphic jets needed

to obtain what we call generic approximately holomorphic maps to projective

spaces, constructed by projectivizing (mþ 1)-tuples of approximately holomorphic

sections of powers of the pre-quantum line bundle Lnk (i.e., analogs of generic lin-

ear systems in complex geometry); genericity will be defined as the solution of a

uniform strong transversality problem to a stratification S in these bundles of

pseudo-holomorphic jets. Several di‰culties have to be overcome. Firstly, since

we want to obtain a strong transversality result the jet of the section to be per-

turbed has to be itself an approximately holomorphic section, so that the transver-

sality problem falls in the right class, something which fails to hold due to the uni-

form positivity along D of the sequence Lnk. This is solved by introducing a new

connection in the bundles of pseudo-holomorphic jets. Secondly, we need to de-

fine a stratification S of the right kind. This is done in Section 6 by introducing

the bundles of pseudo-holomorphic jets for maps to projective spaces, and defining

there PS—a ‘‘linear’’ analog of the Thom–Boardman stratification; S is then

constructed by pulling back PS by the corresponding jet extension of the projec-

tivization map p : Cmþ1nf0g ! CPm. The properties of both the map and of PS

are used to conclude that S is indeed of the right kind, and thus the transversality

problem falls in the right class. The necessary modifications for the relative theory

are also described.

In Section 7 we give the main strong transversality result.

The proofs of the theorems stated in this introduction are given in Section 8.

Our results are based on the existence of plenty of approximately holomorphic

sections of very ample line bundles. In the integrable setting the existence of

enough meromorphic functions/holomorphic sections has been used to prove re-

sults of similar nature to ours:
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(i) In [16] E. Ghys gave conditions on a compact space laminated by Riemann

surfaces for the existence of plenty of meromorphic functions. More generally, B.

Deroin has extended those results to laminations by complex leaves without van-

ishing cycle, and endowed with positive Hermitian line bundles [10]. The work of

Ghys and Deroin proves the existence of leafwise holomorphic embeddings into

projective spaces of the aforementioned laminated spaces (compare with Corollary

1.2), although the maps—even in the case of smooth foliations—are in general

only continuous in the transverse directions. The strategy they follow is working

in the universal cover of the leaves of the lamination. Interestingly enough,

Deroin’s results are obtained by extending some techniques of approximately holo-

morphic geometry to the leaves, which are open Kähler manifolds with bounded

geometry.

(ii) In [33] Ohsawa and Sibony gave a solution to the tangential Cauchy–

Riemann equation with L2-estimates for sections of a positive CR line bundle

over a Levi-flat compact manifold. As a consequence they were able to produce

CR embeddings into projective space of any prescribed order of regularity (though

in general non-smooth).

Part of the results of the present article were announced in [22], [23] (Proposi-

tion 1.1, Corollary 1.2, Corollary 1.3, Theorem 1.1 and Theorem 7.1), where an

account of the results available through an intrinsic approximately holomorphic

theory was presented.

While a more detailed study of 2-calibrated structures is feasible, we do not

think the results that could be obtained would be relevant enough to justify its un-

dertaking.

There are two main reasons to develop an approximately holomorphic theory

for 2-calibrated structures. The first one is because they contain contact structures

and 2-calibrated foliations. Approximately holomorphic geometry has already

been introduced in the contact setting [24], [35], [30], [31]. Its most important ap-

plication has been the construction of compatible open book decompositions for

contact manifolds of arbitrary dimension [17]. Our contribution in this article to

contact geometry is the construction of a large class of contact submanifolds and

the determination of their homology class (Corollary 1.1). We want to propose

2-calibrated foliations as an interesting higher-dimensional generalization of 3-

dimensional taut foliations. In [26]—and building on the results of this article—

it is shown that any such foliation ðM;D;oÞ contains a 3-dimensional taut folia-

tion ðW 3;DW Þ ,! ðM;DÞ so that the inclusion descends to a homeomorphism

between leaf spaces. This is done by showing that W 3 can be chosen to intersect

each leaf of ðM;DÞ in a unique connected component, which is somehow surpris-

ing since often the leaves are immersed submanifolds dense in M.

The second reason to develop an approximately holomorphic theory for 2-

calibrated structures is that sometimes they appear as auxiliary structures. If M
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is an odd-dimensional manifold and o a maximally non-degenerate closed 2-form,

any distribution D complementary to the kernel of o endows M with a

2-calibrated structure. In [27] this idea was applied to almost contact manifolds

to construct (via approximately holomorphic theory) open book decomposition

with control on the topology of the leaves (see also [36]).

If ðM;D; JÞ ,! ðCPN ;oFSÞ is a CR manifold of hypersurface type which has a

CR embedding in projective space, then in [25] we show that the constructions of

this article can be performed in the CR category. In particular CR Lefschetz pen-

cils are constructed, yielding CR Morse functions defined away from a CR sub-

manifold of base points.

All the applications outlined so far for contact manifolds, 2-calibrated folia-

tions, and projective CR manifolds use at most pseudo-holomorphic 1-jets. If

the CR manifold is Levi-flat then it makes sense to speak about r-generic CR

functions. These are defined to be leafwise r-generic holomorphic functions, i.e.,

functions whose leafwise holomorphic r-jet is transverse to the Thom–Boardman

stratification of the bundle of holomorphic r-jets over each leaf. In [25] we show

that Levi-flat CR manifolds embedded in projective space admit for all kg 1 r-

generic linear systems. These are (holomorphic) linear systems of OðkÞ ! CPN

of rank mðrÞ whose restriction to M define r-generic CR functions away from

base points (Definition 5.1). Briefly, such functions are easily seen to be CR func-

tions whose CR r-jet prolongation solve Pint a transversality problem over the

leaves of the foliation D in the bundle of CR r-jets of CR maps from M to

CPmðrÞ. One has to show that it can be ‘‘linearized’’ to a transversality problem

Plin (the bundle, the stratification, and the notion of CR r-jet all have to be re-

placed by ‘‘linear’’ analogs) that fits into the ones solved in Theorem 7.2; solutions

are shown to exist among restrictions of holomorphic sections OðkÞ. Finally, it

has to be checked that the CR solution to Plin is also a solution of Pint.

We think that the existence of r-generic linear systems for projective Levi-flat

CR manifolds is a relevant result by itself and justifies the extension of the approx-

imately holomorphic theory to higher order jet bundles, which is technically

awkward. We expect it to be useful to analyze such manifolds. For example,

one can use it to define r-generic functions f : ðM 2nþ1;D; JÞ ! CPn (with no

base points) for which the regular level sets are unions of circles (with variable

number of components), and using the analysis of the singularities one can define

a dynamical system transverse to D (at least for low values of nb 2); by iterating

the Lefschetz pencil construction (the dimensional induction of [6], Section 5) one

can also define maps to CPn�1 whose fibers (by [26]) are 3-manifolds intersecting

each leaf of D in a connected Riemann surface.

We point out that the results in [25] do not include those of Ghys and Deroin

[16], [10] and those of Ohsawa and Sibony [33]. Our results require starting with a

CR embedding into projective space ([33] gives su‰cient conditions to produce it).
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2. Ample bundles and approximately holomorphic sections

Let ðM;D;oÞ be an integral 2-calibrated manifold. Let us fix once and for all

a compatible almost complex structure J : D ! D, and a metric g so that

gjD ¼ oð�; JÞ. The kernel of o is required to be g-orthogonal to D, so as to make

some of the computations in the local theory simpler. Notice that for any such

metric the closed 2n-form on is a calibration for D [21].

If we forget about the 2-form what remains is the following structure.

Definition 2.1. An almost CR structure is a tuple ðM;D; J; gÞ where D is a

codimension 1 distribution, J : D ! D an almost complex structure, and g a

metric whose restriction to D is compatible with J (J is g-orthogonal and g-

antisymmetric).

Let ðL;‘Þ ! M be any Hermitian line bundle—or more generally vector

bundle—with compatible connection. Let D̂D denote the pullback to L of D; let ĴJ

and ĝg be the almost complex structure and metric on L, which extend the Hermi-

tian structure on the fibers and are defined on the horizontal distribution associ-

ated to ‘ by pulling back J and g, respectively. Then ðL; D̂D; ĴJ; ĝgÞ is an almost

CR manifold.

Our goal is to be able to construct sections t : M ! L which (i) are close

enough to satisfying t�J ¼ ĴJt� (for which we use the adjective almost holomorphic

instead of almost CR to be consistent with the terminology of [24] and [35]), and

(ii) transverse to suitable submanifolds of the total space of L. In the almost com-

plex setting we know that what ensures their existence is roughly speaking asking

the curvature of the connection to be of type ð1; 1Þ and positive.

Definition 2.2 (see [4], Definition 2.1). Given c > 0, db 0, a Hermitian line

bundle with compatible connection ðL;‘Þ ! ðM;D; J; gÞ is ðc; dÞ-ample (or

just ample) if its curvature F satisfies iF ðv; JvÞb cgðv; vÞ for all v a D, and

jFjD � F
1;1
jD jga d, where we use the supremum norm.

A sequence ðLk;‘kÞ of Hermitian line bundles with compatible connections

is asymptotically very ample (or just very ample) if fixed constants c > 0, d,
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ðCjÞjb0b 0 exist so that for all kg 1 the following inequalities for the curvatures

Fk hold:

(1) iFkðv; JvÞb ckgðv; vÞ for all v a D.

(2) jFk jD � Fk
1;1
jD jga dk1=2.

(3) j‘ jFkjgaCjk.

Another motivation for the previous definition is the case of Levi-flat CR

manifolds, where according to the results of Ohsawa and Sibony [33] leafwise pos-

itivity grants the existence of plenty of CR sections (with an appropriate twisting

by a line bundle).

The fundamental example of an ample bundle is the pre-quantum line bundle

L of an integral 2-calibrated manifold ðM;D;oÞ (with c ¼ 2p, d ¼ 0). Its tensor

powers Lnk define a very ample sequence of line bundles.

From now on we will only consider almost CR structures on 2-calibrated

manifolds defined by compatible almost complex structures and metrics. Simi-

larly, we will only consider the very ample sequence Lnk.

For any tk a GðLnkÞ we use J to split the restriction of ‘tk to D:

‘Dtk ¼ qtk þ qtk; qtk a GðD�1;0 nLnkÞ; qtk a GðD�0;1 nLnkÞ:

We can see qtk as a section of T �MnLnk by declaring it to vanish on

D?, and then use the Levi-Civita connection on T �M to define ‘r�1qtk a
GðT �Mnr nLnkÞ.

Let us denote the rescaled metric kg by gk.

Definition 2.3. A sequence of sections tk of Lnk is approximately J-holomorphic

(or approximately holomorphic or simply A.H.) if positive constants ðCjÞjb0 exist

such that

j‘ jtkjgk aCj; j‘ j�1qtkjgk aCjk
�1=2:

If we want to make the bounds explicit speak of an A.H.(Cj) sequence.

Remark 2.1. The original notion of A.H. sequence introduced in [24], [35] is a bit

more general than Definition 2.3. The di¤erence—as well as the fact that only a

finite number of derivatives were taken into account—is that the direction orthog-

onal to D had a di¤erent treatment. The main theorem of [24] produced appro-

priate A.H. sequences of sections with good control on any finite number of deriv-

atives along D but little along D?. Using the relative theory one can obtain

solutions with control in all directions, so we can avoid using the technically

more complicated definition of [24], [35].
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3. The local approximately holomorphic theory

Perhaps the most important idea in Donaldson’s work [11] was the construction of

localized A.H. sections (inspired by the work of Tian [38]) by adopting a unitary

point of view instead of a holomorphic one. The use of a unitary connection in a

Darboux chart allowed him to find a model for the coupled Cauchy–Riemann

equation invariant under rescaling—provided that one works in the appropriate

tensor power of the pre-quantum line bundle—and to explicitly write down con-

centrated solutions giving rise to the so-called reference sections.

The local approximately holomorphic theory, using an intrinsic construction

or the symplectization to be introduced in Section 3.1, is based on the choice of

appropriate families of charts. In the intrinsic local theory we need as well a local

model for the coupled Cauchy–Riemann equations and a good choice of explicit

solution.

For 2-calibrated manifolds the local model for the intrinsic approximately

holomorphic theory (that can only be achieved asymptotically when k ! l) is

the following:

• The domain is Cn � R, with coordinates z1; . . . ; zn, s (sometimes we write

them as x1; . . . ; x2nþ1 or x1; . . . ; x2n, s).

• The distribution Dh is the tangent space to the level hyperplanes of the verti-

cal or real coordinate s.

• The identification of each leaf with Cn means that we have fixed the leafwise

standard almost complex structure J0.

• The metric is the Euclidean one g0 with Levi-Civita connection d (usual par-

tial derivatives), and the distance is the Euclidean norm j � j.

• The 2-form in the fixed coordinates is required to be

ostd ¼
i

2

Xn

i¼1

dzibdzi: ð2Þ

• We ask for a choice of unitary trivialization of the line bundle whose connec-

tion form is

A ¼ 1

4

Xn

i¼1

zi dzi � zi dzi: ð3Þ

In RN with coordinates x1; . . . ; xN let Rp denote the distribution by p-planes

3q=qxi1 ; . . . ; q=qxip4, 1a i1 < � � � < ipaN; its Euclidean orthogonal is denoted

by RN�p. If we have a distribution D 0 of dimension p in RN which is transverse
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to RN�p, we can measure its distance to Rp to order j with respect to the flat con-

nection d as follows: D 0 can be identified with an element of HomðRp;RN�pÞ. We

let vil , l ¼ 1; . . . ; p, be the vector field in RN�p such that q=qxil þ vil a D 0. Then

we define

jd jðRp �D 0Þjg0 ¼ maxfjd jvi1 jg0 ; . . . ; jd
jvip jg0g;

which by definition is coordinate dependent.

In the previous local model let us denote the line field spanned by q=qs by Dv.

According to the previous paragraph we can measure the distance in Cn � R to Dh

(resp. Dv) of any codimension 1 (resp. dimension 1) distribution transverse to Dv

(resp. Dh).

Definition 3.1. Let jk;x : ðCn � R; 0Þ ! ðUk;x; xÞ, for all x a M and all kg 1, be

a family of charts with coordinates z1k ; . . . ; z
n
k , sk. We call them a family of ap-

proximately holomorphic coordinates if there exist constants independent of k,

x (uniform) so that the following estimates hold for all kg 1 at the points of

Bð0; rk1=2Þ, r > 0:

(1) The Euclidean and the induced metric are comparable to any order, i.e.,

1

g
g0a gk a gg0; g > 0; and j‘ jj�1

k;xjg0 aOðk�1=2Þ for all jb 2;

where ‘ denotes the Levi-Civita connection with respect to g.

(2) The kernel of o, which is D?, is sent to a line field j�
k;xD

? transverse to Dh and

such that

jj�
k;xD

? �Dvjg0 a jðzk; skÞjOðk�1=2Þ;

jd jðj�
k;xD

? �DvÞjg0 aOðk�1=2Þ for all jb 1:

The pullback of D is transverse to Dv and

jj�
k;xD�Dhjg0 a jðzk; skÞjOðk�1=2Þ;

jd jðj�
k;xD�DhÞjg0 aOðk�1=2Þ for all jb 1:

(3) Regarding the antiholomorphic components,

jqj�1
k;xðzk; skÞjg0 a jðzk; skÞjOðk�1=2Þ;

j‘ jqj�1
k;xðzk; skÞjg0 aOðk�1=2Þ for all jb 1;

where qj�1
k;x is the antiholomorphic component of ‘DðpDh

� j�1
k;xÞ, with

pDh
: Cn � R ! Cn the projection onto the first factor.
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We speak of Darboux coordinates when the additional condition j�
k;xko ¼ o0

holds.

Remark 3.1. According to condition (2) (resp. (3)) we have j�
k;xD ¼ Dh,

j�
k;xD

? ¼ Dv (resp. j
�
k;xJ ¼ J0) at the origin. For most of our constructions it is

enough to require the equality up to a summand of size Oðk�1=2Þ at most, but

since these equalities are needed to prove results concerning pseudo-holomorphic

jets (in particular the identities concerning local representations and subsets of

transverse holonomy of Lemma 6.2) we decided to ask for them from the very

beginning.

Remark 3.2. If we are in an almost complex manifold, then conditions (1) and

(3) ((2) makes no sense) recover the notion of approximately holomorphic charts

(resp. Darboux charts if we add the Darboux condition on the 2-form).

A chart centred at a point for which the Darboux condition holds can always

be obtained: ðM;D;oÞ is a coisotropic submanifold of its symplectization, as de-

fined in Lemma 3.4. The local normal form theorem for coisotropic submanifolds

([39], Theorem 3.4.10) provides such a chart. Families of Darboux charts can be

constructed using the same local normal form. Since this would fall into the rela-

tive theory we prefer to give a di¤erent proof.

Lemma 3.1. Let ðM;D;oÞ be a (compact) 2-calibrated manifold (with J, g already

fixed ). Then a family of Darboux charts can always be constructed.

Proof. Let us fix a family of charts cx : R
2nþ1 ! Ux depending smoothly on x,

where x a M1 a small enough subset of M, so that c�
xD ¼ Dh, c

�
xD

? ¼ Dv at the

origin. Denote by x1; . . . ; x2n, s the coordinates on R2nþ1. We compose cx with

the di¤eomorphism Yx : R
2nþ1 ! R2nþ1 which is the identity on R2n � f0g, pre-

serves setwise the horizontal foliation Dh and sends Kerc�
xo to Dv. The di¤eo-

morphisms Yx depend smoothly on x.

Now we fix J0 to identify R2nþ1 with Cn � R and compose with an element of

GLð2n;RÞHGLð2nþ 1;RÞ (again depending smoothly on x a M1), so that we

obtain charts jx for which the pullback of J at the origin equals J0.

By compactness M can be covered with a finite number of subsets M1; . . . ;Mh

in which the above charts can be constructed. In this way we obtain charts cen-

tred at every x a M (we might have more than one chart for each x a M, but that

is not relevant) so that the bounds on tensors pulled back from M to a ball of fixed

radius in the domain of the charts will not depend on x.

We define jk;x to be the composition jx � gk�1=2 , where gk�1=2 : Cn � R !
Cn � R is the homothety by factor k�1=2. The equalities at the origin together

with the smooth dependence on x of the constructions previous to the rescaling,

imply that we have obtained approximately holomorphic coordinates.
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To obtain Darboux charts we need to modify jk;x as follows: we apply Dar-

boux’s lemma with estimates (Lemma 2.2 in [4]) to the almost complex manifolds

ðCn � f0g; j�
k;xJjCn�f0g; j

�
k;xgjCn�f0gÞ and the 2-forms j�

k;xojCn�f0g. We get di¤eo-

morphisms Ck;x on this leaf that are extended to Cn � R independently of the

vertical coordinate sk. The bounds on Ck;x and their derivatives coming from

Lemma 2.2 in [4] imply that the compositions jk;x �Ck;x : ðCn � R; 0Þ !
ðUk;x; xÞ still define approximately holomorphic coordinates. Moreover, we can

assume ðjk;x �Ck;xÞ�J ¼ J0 at the origin.

Since q=qsk generates the kernel of

ðjk;x �Ck;xÞ�o ¼
X

1ai<la2n

oil dx
i
kbdxl

k þ
X

1aia2n

oi dx
i
kbdsk

all oi vanish. Closedness implies that each function oil is independent of sk.

Therefore ðjk;x �Ck;xÞ�o is determined by its restriction to Cn � f0g, which by

construction is ostdjCn�f0g. Thus, o is sent to ostd. r

Darboux charts are useful because there local computations become simpler.

Let dk denote the distance defined by the metric gk.

Recall that in the domain of a Darboux chart we can always fix xk;x a unitary

trivialization of Lnk whose connection form is A (equation (3)).

Lemma 3.2. Let jk;x : ðCn � R; 0Þ ! ðUk;x; xÞ be a family of Darboux charts with

coordinates x1
k ; . . . ; x

2n
k , x2nþ1

k . Let F be a bundle associated to either TM or D and

let Fk;x ! Bð0; rk1=2ÞHCn � R denote the pullback of F by jk;x. Associated to

the Darboux coordinates there is a canonical trivialization zk;x; j of Fk;x. Let Tk be

a sequence of sections of F nLnk and use the frames zk;x; j n xk;x to write j�
k;xTk

locally as a function T 0
k;x. Let Pj be a polynomial such that for any multi-index a of

length j ¼ 0; . . . ; r, at the points of Bð0; rk1=2Þ and for all kg 1 we have

���� q

qxa
k

T 0
k;x

����
g0

aPjðjðzk; skÞjÞOðk�1=2Þ:

Then j‘rTkðyÞjgk aQr

�
dkðx; yÞ

�
Oðk�1=2Þ, where the polynomial Qr depends only

on P1; . . . ;Pr. Conversely, from bounds using the global metric elements gk, dk, ‘

we obtain similar bounds for the local Euclidean elements.

Proof. This is a simple calculation based on items (1) and (2), and in the Darboux

condition of Definition 3.1. Also notice that the presence of the connection form

and its derivatives is absorbed by the polynomial, since jAjaOðjðzk; skÞjÞ and its

derivatives are of order Oð1Þ. r
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Remark 3.3. Lemma 3.2 admits di¤erent modifications. It holds in a similar

fashion for bounds of order Oð1Þ instead of order Oðk�1=2Þ, and also for sections

Tk of F instead of F nLnk (with Fk;x locally trivialized by zk;x; j). It is also pos-

sible to consider the inequalities in the ball of (uniform) radius r > 0 rather than

rk1=2. There is also a version for symplectic manifolds.

Let q0 denote the ð0; 1Þ-component with respect to J0 : C
n � R ! Cn � R of

the leafwise derivation operator dDh
.

Lemma 3.3. Let jk;x : ðCn � R; 0Þ ! ðUk;x; xÞ be a family of Darboux charts with

coordinates x1
k ; . . . ; x

2n
k , sk. Let Lk;x ! Bð0; rk1=2ÞHCn � R denote the pullback

of Lnk by jk;x. Let tk be a sequence of sections of Lnk such that j�
k;xtk ¼

fk;xxk;x. Let Pj, Pj 0 be polynomials such that for any multi-indices a, b of length

j ¼ 0; . . . ; r� 1, and j 0 ¼ 0; . . . ; r, respectively, at the points of Bð0; rk1=2Þ and for

all kg 1 the following inequalities hold:���� q

qx
b
k

fk;x

����
g0

aP 0
j ðjðzk; skÞjÞOð1Þ; ð4Þ

���� q

qxa
k

ðq0 þ A0;1Þ fk;x
����
g0

aPjðjðzk; skÞjÞOðk�1=2Þ: ð5Þ

Then we have

j‘rtkðyÞjgk aQ 0
r

�
dkðx; yÞ

�
Oð1Þ; ð6Þ

j‘r�1qtkðyÞjgk aQr�1

�
dkðx; yÞ

�
Oðk�1=2Þ; ð7Þ

where the polynomial Qr�1 (resp. Q
0
r) depends only on P1; . . . ;Pr�1, P

0
1; . . . ;P

0
r (resp.

P 0
1; . . . ;P

0
r). Conversely, from bounds using gk, dk, ‘, J we obtain similar bounds for

g0, j � j, dþ A, J0.

Proof. The equivalence between equations (4) and (6) is the content of Lemma

3.2, but for bounds of order Oð1Þ (see Remark 3.3). The equivalence of equations

(4), (5) and equations (6), (7) follows again easily from the properties of Darboux

charts. We sketch the case r ¼ 1.

From now on j�
k;xJ, j

�
k;xD, j�

k;xgk and all the tensors and sections pulled back

to the domain of the charts will be denoted by J, D, gk; . . . whenever there is no

risk of confusion.

Let ei be any of the local vector fields associated to the first 2n coordinates. By

condition (2) in Definition 3.1 there exists ui a local vector field such that ei þ ui is

tangent to D and

juijg0 a jðzk; skÞjOðk�1=2Þ; jd juijg0 aOðk�1=2Þ; jb 1: ð8Þ
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The endomorphism J is defined on D. We can use the orthogonal projection w.r.t

g0 onto Dh to induce out of J another almost complex structure JDh
: Dh ! Dh.

Condition (3) in Definition 3.1 implies that

jJ0 � JDh
jg0 a jðzk; skÞjOðk�1=2Þ; jd jðJ0 � JDh

Þjg0 aOðk�1=2Þ; jb 1: ð9Þ

By definition qeiþuitk ¼ 1=2‘eiþuitk þ i=2‘JðeiþuiÞtk.
Equation (8) combined with Lemma 3.2 implies that

j‘uitkjgk aP 0
1

�
dkðx; yÞ

�
Oðk�1=2Þ:

Again equations (8) and (6), condition (3) in Definition 3.1, and Lemma 3.2 imply

that

j‘JðeiþuiÞtk � ‘Jheitkjgk aP 00
1

�
dkðx; yÞ

�
Oðk�1=2Þ:

Therefore the bounds in equation (7) we want for qeiþuitk are equivalent to the

same kind of bounds for

1=2‘eitk þ i=2‘Jheitk;

and by equation (9) for

1=2‘eitk þ i=2‘J0eitk;

and by definition

1=2‘eitk þ i=2‘J0eitk ¼
�
ðq0 þ A0;1Þei fk;x

�
xk;x:

Bounds for higher order derivatives are proven similarly. r

Definition 3.2 (see [4], Definition 2.2). A sequence of sections of Lnk has Gaus-

sian decay with respect to x if there exist polynomials ðPjÞjb0 and a constant l > 0

so that

j‘ jtkðyÞjgk aPj

�
dkðx; yÞ

�
e�ldkðx;yÞ2 :

for all y a M and for all jb 0.

The main purpose of the use of Darboux charts is the construction of reference

sections trefk;x.

Corollary 3.1. Let ðM;D;oÞ be a compact 2-calibrated manifold. Then for all

x a M A.H. sections trefk;x with Gaussian decay with respect to x can be

constructed. The bounds are uniform on k, x and these sections have norm greater

than some constant k in Bgkðx; rÞ, where k; r > 0 are uniform on k, x.
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Proof. We follow Donaldson’s ideas in [11], Section 2. Let us fix Darboux charts

and xk;x trivializations of Lnk for which the connection form is A. Let b be a

standard cut-o¤ function of a single variable, with bðtÞ ¼ 1 when jtja 1=2 and

bðtÞ ¼ 0 when jtjb 1.

Define bkðzk; skÞ ¼ bðk�1=6jðzk; skÞjÞ.
In the points where the derivatives of bk do not vanish we have jðzk; skÞjb

Ck1=6, with C uniform (on k, x). Using this inequality we deduce that

jdbkjg0 a jðzk; skÞj2Oðk�1=2Þ;

jd2bkjg0 a jðzk; skÞjOðk�1=2Þ;

jd jbkjg0 aOðk�1=2Þ; jb 3:

ð10Þ

Consider the function f ðzk; skÞ ¼ e�jðzk ; skÞj2=4. We have

q0 f þ A0;1f ¼ 0: ð11Þ

The reference sections are

trefk;x :¼ bk f xk;x: ð12Þ

Equation (10) implies that for any multi-index a of length ja r,

���� q

qxa
bk f

����
g0

aPjðjðzk; skÞjÞj f jOð1Þ:

Therefore, Lemma 3.2 for bounds of type e�l 0jðx;yÞj2Oð1Þ, l 0 > 0, gives the Gaus-

sian decay with respect to x:

j‘rtrefk;xðyÞjgk aQr

�
dkðx; yÞ

�
e�ldkðx;yÞ2Oð1Þ; l > 0;

where l appears when relating the distance induced by g and g0. The Gaussian

decay also implies

j‘rtrefk;xjgk aOð1Þ:

The bound for j‘r�1qt refk;xjgk is obtained using the same ideas: from equations

(10) and (11) it follows that

���� q

qxa
ðq0 þ A0;1Þbk f

����
g0

aPjðjðzk; skÞjÞj f jOðk�1=2Þ

for any multi-index a of length ja r� 1.
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Lemma 3.3 for bounds of type e�l 0jðx;yÞj2Oð1Þ, e�l 0jðx;yÞj2Oðk�1=2Þ, l 0 > 0 (in

equations (4) and (5) resp.) gives

j‘r�1qt refk;xjgk aQr

�
dkðx; yÞ

�
e�ldkðx;yÞ2Oðk�1=2ÞaOðk�1=2Þ:

for some l > 0.

The existence of constants k; r > 0 such that jtrefk;xjbk in Bgkðx; rÞ, can be eas-

ily checked. r

We observe that many of the inequalities we are using (for global tensors) have

the same pattern. We will introduce a definition that will avoid the excessive ap-

pearance in the notation of such inequalities.

Let E be a Hermitian bundle with connection, F a bundle associated either to

TM or to D, and let Ek denote the sequence F nEnLnk.

Definition 3.3. Let Tk;x, x a M, be a family of sequences of sections of Ek. We

say that Tk;x is Cr-approximately vanishing (or that the sequence vanishes in the

Cr-approximate sense), and denote it by Tk;xQUr 0, if positive constants C0; . . . ;Cr

exist so that

j‘ jTk;xjgk aCjk
�1=2; j ¼ 0; . . . ; r: ð13Þ

There is an analogous definition for sequences Tk of sections of Ek (i.e., with-

out extra dependence on the point x a M).

Using the above language one of the conditions for a sequence tk of Lnk to

be A.H. (Definition 2.3) is that qtk a GðD�0;1 nLnkÞ has to be approximately

vanishing.

Remark 3.4. Given tk an approximately holomorphic sequence of sections of

Lnk, we have defined ‘r�1qtk a T �Mnr nLnk by taking covariant deriva-

tives of qtk thought of as a section of T �MnLnk. We might have equally

defined ‘r�1qtk as the image of ‘rtk by the projection pr : T
�Mnr nLnk !

T �Mnr�1 nD�0;1 nLnk, for using Darboux charts and Lemmas 3.2 and 3.3

(with the inequalities j‘ jtkjgk aOð1Þ, jb 0) one checks that qtk QU 0 if and only

if jpjð‘ jtkÞjgk aOðk�1=2Þ, jb 1.

3.1. Relative approximately holomorphic theory and symplectizations

Definition 3.4. Let ðP;WÞ be a symplectic manifold and ðM;D;oÞ a 2-calibrated

manifold. We say that l : M ,! P embeds M as a 2-calibrated submanifold of P if

l �W ¼ o.
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Lemma 3.4. Let ðM;D;oÞ be a compact co-oriented 2-calibrated manifold. Then

it is possible to define a symplectization so that ðM;D;oÞ embeds as a 2-calibrated

submanifold. Any fixed compatible almost complex structure and metric can be ex-

tended to a compatible almost complex structure and metric in the symplectization.

Proof. Let J and g be fixed compatible almost complex structure and metric. The

symplectization ðM � ½�e; e�; J; g;WÞ is constructed as follows: let t be the co-

ordinate of the interval. Let a be the unique 1-form of pointwise norm 1 (and

positively oriented) whose kernel is D. The closed 2-form W is defined to be

oþ dðtaÞ, where a and o represent the pullback of the corresponding forms to

M � ½�e; e�. If e is chosen small enough then W is symplectic.

In the points of M the almost complex structure is extended by sending the

positively oriented g-unitary vector in D? to q=qt; in those points q=qt is also de-

fined to have norm 1 and to be orthogonal to TM. It is routine to further extend J

to a compatible almost complex structure on the symplectization. The metric de-

fined by W and the almost complex structure also extends g. We will not use dif-

ferent notation for the extension of the almost complex structure and metric if

there is no risk of confusion.

We also fix G a J-complex distribution on the symplectization restricting to D

at the points of M. To do that we choose any line field that at the points of M

contains q=qt; this line field spans a complex line field. Its orthogonal with respect

to g is by construction J-complex and extends D. r

Remark 3.5. We want to work out a relative theory for embeddings in arbitrary

symplectic manifolds—not just in symplectizations—because of our applications

to CR manifolds, where we need an ambient complex manifold with plenty of

holomorphic sections.

Let ðM;D;oÞ be a 2-calibrated submanifold of ðP;WÞ. Let us fix J a compat-

ible almost complex structure on ðP;WÞ so that D is J-invariant, and let us define

g ¼ Wð�; J�Þ. The restriction of ðJ; gÞ to ðM;DÞ induces an almost CR structure.

We also choose G a J complex distribution that coincides with D at the points

of M. The main example to have in mind is the symplectization of ðM;D;oÞ with
an almost complex structure as defined in Lemma 3.4.

We have at our disposal the approximately holomorphic theory for symplectic

manifolds [4]. At this point we pause to warn the reader that throughout this sec-

tion and the rest of the article we will be using A.H. sequences of sections defined

in both 2-calibrated (Definition 2.3) and symplectic manifolds (see definitions in

[4] or Definition 2.3 for an almost complex base space). Whenever there is no

risk of confusion about the base space we will just speak about A.H. sequences

of sections.
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Let ðLW;‘Þ ! ðP;WÞ be the pre-quantum line bundle. Its powers ðLnk
W ;‘kÞ

define a very ample sequence of line bundles (in the sense of [4]), which restricts

to a very ample sequence of line bundles ðLnk;‘kÞ ! ðM;D; J; gkÞ (Definition

2.2).

One expects that if tk a GðLnk
W Þ is a (symplectic) A.H. sequence of sections,

then tk jM : M ! Lnk is also an A.H. sequence of sections (Definition 2.3). Even

more, we will see that it is possible to construct reference sections by restricting

(symplectic) reference sections centred at points of M. The key point to prove

these results is the choice of appropriate charts.

Recall that in Cp ¼ R2p we denote the foliation whose leaves are associated to

g distinguished complex coordinates (resp. d distinguished real coordinates) by Cg

(resp. Rd ); its Euclidean orthogonal is denoted by Cp�g (resp. R2p�d ). From now

on if we compare the distance of Cg to any distribution of the same dimension, we

will assume the latter to be transverse to Cp�g.

Definition 3.5. Let ðP;WÞ be a compact symplectic manifold and G a J-complex

distribution of complex dimension g. A family of (symplectic) approximately

holomorphic coordinates (resp. Darboux charts) jk;x : ðCp; 0Þ ! ðUk;x; xÞ is said
to be adapted to G if

jCg � Gjg0 a jðzk; skÞjOðk�1=2Þ; jd jðCg � GÞjg0 aOðk�1=2Þ;

jCp�g � G?jg0 a jðzk; skÞjOðk�1=2Þ; jd jðCp�g � G?Þjg0 aOðk�1=2Þ;

for all jb 1.

The existence of approximately holomorphic (resp. Darboux) charts adapted

to G is straightforward: once we have approximately holomorphic (resp. Dar-

boux) charts, we compose with a unitary transformation sending G to Cg at the

origin.

Given a 2-calibrated submanifold ðM;DÞ ,! ðP;WÞ, in order to select coordi-

nate charts adapted to M we fix a distribution TkM defined in a tubular neighbor-

hood of M as follows: the neighborhood is defined by flowing a little bit the geo-

desics normal to M. For each point y in the neighborhood, let x a M be the

starting point of the unique geodesic normal to M through y. Then Tk
yM is the

result of parallel transport of TxM along that geodesic.

Definition 3.6. Let ðM;DÞ ,! ðP;WÞ be a 2-calibrated submanifold, G a J-

complex distribution which extends D (perhaps defined in a tubular neighborhood

of M), and TkM a distribution constructed as above. A family of (symplectic)

A.H. coordinates jk;x : ðCp; 0Þ ! ðUk;x; xÞ (centred at every point of P) is adapted

to ðM;GÞ if it is adapted to G and for the charts centred at points of M the fol-

lowing conditions hold:
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(1) M sits in each chart as a fixed linear subspace R2nþ1 � f0gHCp and at the

origin D ¼ R2n � f0gHR2nþ1 � f0g, D? ¼ f0g � RHR2nþ1 � f0g.
(2) jR2nþ1 � TkMjg0 a jðzk; skÞjOðk�1=2Þ, jd jðR2nþ1 � TkMÞjg0 aOðk�1=2Þ for all

jb 1.

We speak of A.H. charts adapted to ðM;GÞ and Darboux over M if

j�
k;xojM ¼ o0: ð14Þ

Lemma 3.5. Let ðM;DÞ ,! ðP;WÞ be a 2-calibrated submanifold. Then approxi-

mately holomorphic charts adapted to ðM;GÞ and Darboux over M can always be

constructed.

Proof. We start by fixing approximately holomorphic coordinates adapted to G.

Then we forget about the ones centred at points of M, that are going to be substi-

tuted by new ones. For every x a M we fix initial charts jx depending smoothly

on the center—at least in a small neighborhood about each point—with

ðjxJ �; j�
xgÞ ¼ ðJ0; g0Þ at the origin. Then we compose with maps Yx : ðCp; 0Þ !

ðCp; 0Þ that are tangent to the identity map at the origin and send M to a vector

space in Cp. The image of the distribution D is J0-complex at the origin. By com-

posing with a unitary transformation ðDx;TxMÞ can be assumed to be sent to

ðCn � f0g;R2nþ1 � f0gÞHR2p.

Next we essentially apply Lemma 3.1 on the leaf R2nþ1 � f0gHR2p to get

Darboux charts for M: let Xx : R
2nþ1 ! R2nþ1 be the map which is the identity

on Cn � f0g, preserves the foliation by complex hyperplanes, and sends the kernel

of o to the ‘‘vertical’’ or real line field in R2nþ1 � f0g. We extend it to a di¤eo-

morphism of R2p independently of the coordinates x2nþ2; . . . ; x2p. Since the map

is by construction tangent to the identity at the origin, we keep the properties at

the origin described in the previous paragraph.

We now apply Darboux’ lemma on R2n � f0g for each x. The result is a

di¤eomorphism on R2n that can be assumed to preserve J0 at the origin. We ex-

tend it independently of x2nþ1; . . . ; x2p to a di¤eomorphism of Cp. Notice that

ðDx;TxMÞ goes to ðR2n � f0g;R2nþ1 � f0gÞ, Jx to J0, GxaG?
x to CnaCp�n,

and KerojDx
to the Euclidean orthogonal of R2n � f0gHR2nþ1 � f0g. Hence if

we apply the homothety gk�1=2 : R2p ! R2p we obtain a family of charts with the

desired properties. r

Lemma 3.6. A family of A.H. charts jk;x : ðCp; 0Þ ! ðUk;x; xÞ adapted to ðM;GÞ
and Darboux over M constructed as in Lemma 3.5 restricts to M to Darboux

charts.
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Proof. It follows because the charts in Lemma 3.5 are obtained by applying a con-

struction depending smoothly on the center of the chart to obtain a number of

equalities for tensors and distributions at the origin, and then rescaling. Therefore

when we restrict the charts to M condition (1) in Definition 3.1 holds. Conditions

(2) and (3) follow because before rescaling DxaD?
x is sent to R2naR and Jx

to J0. The Darboux condition (equation (14)) holds by construction. r

Lemma 3.7. Let jk;x : ðCp; 0Þ ! ðP; xÞ be charts coming from Lemma 3.5. Then

in Bð0; rk1=2ÞHCp it is possible to fix a family of unitary trivializations of j�
k;xL

nk
W

with connection forms Ak;x such that for all kg 1:

(1) jAk;xjg0 aOðjzkjÞ, jdAk;xjg0 aOð1Þ, jd jAk;xjg0 aOðk�1=2Þ, jb 2.

(2) Ak;xjM ¼ 1
2

Pn
i¼1ðx2i�1

k bdx2i
k � x2i

k bdx2i�1
k Þ.

Proof. By construction jj�
k;xkojg0 aOð1Þ, jd jj�

k;xkojg0 aOðk�1=2Þ, jb 1, on

Bð0; rk1=2Þ. Hence, we deduce the existence unitary trivializations with connec-

tion forms A 0
k;x satisfying the bounds of condition (1).

When we restrict the connection forms to M they coincide with A up to a exact

1-form dFk;x defined on R2nþ1 � f0g; its bounds are as in item (1) above, but on

R2nþ1 � f0g instead of on Cp. We extend it to Cp independently of the remaining

coordinates and still denote it by Fk;x. It is always possible to find a unitary triv-

ialization xk;x of j
�
k;xL

nk
W whose connection form is A 0

k;x þ dFk;x. These trivializa-

tions give the desired result. For simplicity we will denote the family by A when

there is no risk of confusion. r

Let G be the J-complex distribution on P that extends D. Given tk a GðLnk
W Þ,

the restriction of the covariant derivative of tk to G will be denoted by

‘Gtk a GðG� nLnk
W Þ. Since G is J-complex we can write

‘Gtk ¼ qGtk þ qGtk; qGtk a GðG�0;1 nLnk
W Þ; qGtk a GðG�1;0 nLnk

W Þ:

Lemma 3.8. (1) If tk : P ! Lnk
W is an A.H. sequence then tk jM : M ! Lnk is also

an A.H. sequence.

(2) Moreover, the restriction of a family of reference sections of ðLnk
W ;‘kÞ !

ðP;WÞ centred at the points of M (as defined in [4]) is a family of reference sections

of ðLnk;‘kÞ ! ðM;D;oÞ.
(3) If tk : P ! Lnk

W is an A.H. sequence then qGtk QU 0.

Proof. We fix a family of A.H. charts adapted to ðM;GÞ and Darboux over M,

and trivialize the bundles Lnk
W as in Lemma 3.7. Let x1

k; . . . ; x
2p
k be the coordinates

and write tk;x ¼ fk;xxk;x.
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We first observe that Lemmas 3.2 and 3.3 for symplectic manifolds also hold

for the connection forms Ak;x provided by Lemma 3.7. By Lemma 3.6 the restric-

tion of the coordinates to M are Darboux charts. We can apply Lemma 3.2 for

almost complex manifolds, bounds of order Oð1Þ, and the connection forms pro-

vided by Lemma 3.7, to conclude that the partial derivatives of fk;x are bounded

by Oð1Þ in the ball Bð0; rÞHR2p. In particular we get the same bounds if we only

take into account the partial derivatives with respect to the variables x1
k ; . . . ; x

2nþ1
k

and restrict our attention to Bð0; rÞHR2nþ1. Now if we apply Lemma 3.2

(this time for almost CR manifolds) we conclude that j‘ jðtk jMÞjg0 aOð1Þ in

Bð0; rÞHR2nþ1, for all jb 0 and for all x a M, the constants being independent

of x. Therefore j‘ jðtk jMÞjgk aOð1Þ, for all jb 0, in all points of M.

Lemma 3.3 for symplectic manifolds and the connections of Lemma 3.7 gives

���� q

qxa
k

ðq0 þ A0;1
k;xÞ fk;x

����
g0

aOðk�1=2Þ ð15Þ

in Bð0; rÞHR2p. Let us consider the splitting Cn � Cp�n. The operator q0 þ A
0;1
k;x

and its derivatives can be split into two pieces using it. We consider the part in-

volving dz1k ; . . . ; dz
n
k , for which the above inequalities also hold, but now in

Bð0; rÞHR2nþ1. Since the restriction of Ak;x to Cn � R is A, the restriction to M

of the piece of q0 þ A0;1
k;x involving dz1k ; . . . ; dz

n
k is the operator q0 þ A0;1 of

Lemma 3.3. Thus we can apply this lemma (we already have the required bounds

for the partial derivatives of fk;x) to conclude qðtk jMÞQU 0, and this proves item

(1).

It is also easy to check that reference sections for Lnk
W centred at the points of

M restrict to reference sections for Lnk, and hence item (2) also holds.

To prove qGtk QU 0 we use the previous ideas: equation (11) and Lemma 3.3

give, for all jb 0,

j‘ jqCntkjg0 aOðk�1=2Þ

in Bð0; rÞHR2p, where qCn is the part of q0 þ Ak;x involving dz1k ; . . . ; dz
n
k . The

choice of A.H. charts adapted to G and the bounds j‘ jtkjg0 aOð1Þ, for all

jb 0, easily imply that

j‘ jðqCntk � qGtkÞjg0 aOðk�1=2Þ

for all jb 0 and therefore qGtk QU 0. r

Remark 3.6. Notice that item (3) in Lemma 3.8 is an assertion about a section

defined on P, and not on M unlike in item (1).

450 D. Martı́nez Torres



3.2. Higher rank ample bundles. So far we have only considered approximately

holomorphic theory for the sequence of line bundles ðLnk;‘kÞ ! ðM;D;oÞ, but
there are obvious extensions for sequences of the form EnLnk, where E is any

Hermitian bundle of rank m with compatible connection. Regarding the local

theory the role of the reference sections is played by the reference frames

trefk;x;1; . . . ; t
ref
k;x;m, where each trefk;x; j is an A.H. sequence with Gaussian decay with

respect to x and they are a frame of E comparable to a unitary one in Bgkðx; rÞ,
r > 0. Reference frames are constructed by tensoring reference sections for Lnk

with local unitary frames of E.

4. Estimated transversality and finite, Whitney (A), approximate
holomorphic stratifications

Let tk be an A.H. sequence of sections of Lnk ! ðM;D;oÞ. Proposition 1.1 for

codimension 2 submanifolds is proved by pulling back the 0 section of Lnk. To

obtain that Wk is a 2-calibrated submanifold, tk has to be transverse along D so

that TWk BD defines a codimension 1 distribution on Wk. Next, to make sure

that Wk BD is a symplectic distribution, the ratio jqtkðxÞj=jqtkðxÞj has to be

smaller than 1; since ‘D ¼ qþ q, ‘DtkðxÞ is required not only surjective but also

to have norm greater than Oðk�1=2Þ (estimated transversality).

For each point x we can use the reference sections to turn the local estimated

transversality problem along D on Bgk ðx; rÞ into an estimated transversality prob-

lem along Dh for an A.H. sequence of functions

Fk;x : Bð0; r 0ÞHCn � R ! C;

where tk � jk;x ¼ Fk;x � ðtrefk;x � jk;xÞ (more generally Cm-valued functions for bun-

dles of rank m). Equivalently, we have to solve an estimated transversality prob-

lem for a 1 real parameter family of A.H. functions

Fk;xð�; skÞ : Bð0; r 0ÞHCn ! C:

This problem is known to have a solution [5], [24]. The solution of the local trans-

versality problem along Dh will produce a new function Fk;x � uk;x, and therefore

a perturbation

wk;x :¼ ð�uk;x � j�1
k;xÞ � t refk;x

so that we obtain estimated transversality along D for tk þ wk;x over the ball

Bgkðx; rÞ. But the reference section is supported in Bgkðx; r 00k1=6Þ, being the con-

sequence that there will be interference among di¤erent local solutions. However,
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unlike transversality, estimated transversality does behave well under addition,

and in the presence of ‘‘enough’’ local estimated transversality, Donaldson’s glob-

alization procedure gives global estimated transversality (see the proof of Theorem

7.2).

Definition 4.1. Let ðP; gÞ be a Riemannian manifold, ðE;‘Þ a Hermitian bundle

over it, and Qx a subspace of TxP. We say that t : P ! E is h-transverse to 0 at x

along Qx if either jtðxÞjb h or ‘Qx
tðxÞ has a right inverse with norm bounded by

h�1.

If Q is a distribution we say that t is h-transverse along Q to 0 if the above

condition holds at all the points where Q is defined. When Q is the tangent bundle

of a submanifold we also say that t is h-transverse over the submanifold to 0.

Let ðM;D;oÞ be a 2-calibrated manifold, Ek :¼ EnLnk, and tk : ðM; gkÞ !
ðEk;‘kÞ a sequence of sections. We say that the sequence tk is uniformly trans-

verse along D to 0 if h > 0 exist such that tk is h-transverse along D to 0 for all

kg 1.

For a symplectic manifold the definition of uniform transversality along a dis-

tribution Q (possibly the tangent bundle to a 2-calibrated submanifold) is analo-

gous.

It is possible to attain estimated transversality along D using both the intrinsic

and the relative point of view. Using the former what we do is (locally) solving

transversality problems for 1-parameter families of A.H. functions from Cn to

Cm. Regarding the latter we follow the ideas of J.-P. Mohsen developed for con-

tact manifolds, working in the symplectization ðM � ½�e; e�;WÞ and solving the es-

timated transversality problem for A.H. sections, but this time over M. Then we

can use the following

Lemma 4.1 ([30], second lemma in Section 6.1). Let ðM;D;oÞ be a 2-calibrated

manifold. If in the symplectization ðM � ½�e; e�;WÞ we are able to find an A.H. se-

quence tk, h-transverse over M to 0, then for any constant C, 0 < C <
ffiffiffi
2

p
=2, there

exists k0ðCÞ such that for any kb k0 the section tk jM is Ch-transverse along D to 0.

The proof is just an estimated version of the following elementary fact: if a

J0-complex linear function l : Cn � R ! Cm is surjective, then it has a surjective

restriction to each complex hyperplane. Otherwise the kernel of the restriction,

being complex, would have real dimension bigger than 2ðn�mÞ þ 2, and l could

not be surjective.

4.1. Geometric reformulation of estimated transversality. We recall that in

this section we deal with estimated transversality along D in a 2-calibrated mani-

fold (intrinsic theory), or with estimated transversality over a 2-calibrated sub-

452 D. Martı́nez Torres



manifold M inside a symplectic manifold P (relative theory). Sometimes we might

refer to both situations as transversality along a distribution Q in the Riemannian

manifold P.

As remarked in the previous subsection, for sequences of 1-parameter families

of A.H. functions Fk;xð�; skÞ : Bð0; rÞHCn ! Cm one can achieve estimated trans-

versality, and thus the use of reference frames allows us to get local estimated

transversality along D to the 0 section of very ample vector bundles Ek. More

generally, one expects to be able to attain estimated transversality along D to

sequences of submanifolds Sk HEk of very ample vector bundles, where the Sk

locally look like the zero section of a trivial vector bundle: more precisely, the se-

quence of submanifolds should be locally defined by functions fk : Uk HEk ! C l ,

Sk BUk ¼ f �1
k ð0Þ, which are approximately holomorphic with respect to the al-

most CR structure in the total space of the bundles ðEk;‘kÞ ! ðM;D; J; gkÞ in-

duced by the one on M, the connection, and the Hermitian metric on Ek, so that

fk � tk � jk;x : Bð0; rÞHCn � R ! Cm

is an A.H. sequence of functions (or a weaker property that ensures this last

condition). That should allow us to find an A.H. perturbation

wk;x : Bgkðx; r 00k1=6Þ ! Ek

so that the A.H. sequence

fk � ðtk þ wk;xÞ : Bgkðx; rÞ ! Cm

is uniformly transverse along D to 0. Finally, we should make sure that this im-

plies enough estimated transversality along D to Sk for the sequence of sections

tk þ wk;x : Bgkðx; rÞ ! Ek

to make Donaldson’s globalization procedure work.

In the relative context tk : P ! Ek the estimated transversality problem over

MHP to the 0 section has the same di‰culty as the usual estimated transversality

problem to the 0 section (this is the work of J.-P. Mohsen [30], Section 5). Thus,

one expects this principle to be valid in the case of relative estimated transversality

to more complicated strata Sk.

To give a global definition of what transversality to a submanifold SHE is,

we need to recall a more geometric definition of estimated transversality along a

distribution Q, together with the following concepts.

Definition 4.2. Let W be a vector space with non-degenerate inner product so

that for any u; v a W we can compute the (unoriented) angle Jðu; vÞ. Given
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U a Grðp;WÞ and V a Grðq;WÞ, p; q > 0, the maximal angle of U and V ,

JMðU ;VÞ, is defined as follows:

JMðU ;VÞ :¼ max
u AUnf0g

min
v AVnf0g

Jðu; vÞ:

In general the maximal angle is not symmetric, but when p ¼ q it has symme-

try and defines a distance in the corresponding Grassmannian (see [32]).

The minimum angle between transverse complementary subspaces is defined as

the minimum angle between two non-zero vectors, one on each subspace. An ex-

tension of this notion for transverse subspaces with non-trivial intersection is:

Definition 4.3 (Definition 3.3 in [32]). Using the notation of Definition 4.2,

JmðU ;VÞ, the minimum angle between U and V non-void subspaces of W , is de-

fined as follows:

• If dimU þ dimV < dimW , thenJmðU ;VÞ :¼ 0.

• If the intersection is non-transverse, thenJmðU ;VÞ :¼ 0.

• If the intersection is transverse, we consider the orthogonal to the intersec-

tion and its intersections Uc and Vc with U and V , respectively. We define

JmðU ;VÞ :¼ minu AUcnf0g minv AVcnf0gJðu; vÞ.

The minimum angle is symmetric.

The most important property relating maximal and minimal angle is:

Proposition 4.1 (Proposition 3.5 in [32]). For non-void subspaces U, V, W of Rn

the following inequality holds:

JmðU ;VÞaJMðU ;W Þ þJmðW ;VÞ:

We will also be using the following

Lemma 4.2 (Lemma 3.8 in [32]). Let U, V be non-zero subspaces of Rn and let

h : U ! V? be the projection from U with respect to the decomposition Rn ¼
V aV?. If h has a right inverse y satisfying jyj < h�1 thenJmðU ;VÞ > h.

Let t : P ! E be a section of a Hermitian bundle with connection and Q a dis-

tribution on P. Let us denote the pullback of Q to E by Q̂Q. Let H be the hori-

zontal distribution associated to the linear connection and let HQ denote its inter-

section with Q̂Q. Finally let TQt denote the intersection of the tangent bundle of the

graph of t with Q̂Q.
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Lemma 4.3. There exists a constant C > 0 determined by upper bounds on

j‘QtðxÞj, jtðxÞj such that:

(1) If ‘QtðxÞ has a right inverse with norm bounded by h�1 thenJmðHQ;TQtÞb
C�1h (the angle measured in Q̂QtðxÞ).

(2) If JmðHQ;TQtÞb h then ‘QtðxÞ has a right inverse with norm bounded by

ðC sin hÞ�1
.

Proof. Let us assume that Q ¼ TP. The vector space TtðxÞE ¼ HtðxÞaT vEx is

endowed with the direct sum metric. We compose with an isometry preserving

the direct sum structure so that HtðxÞaT vEx becomes RaaRb with the Eucli-

dean metric. Let h : TtðxÞ ! Rb be the orthogonal projection. By Lemma 4.2

applied to U ¼ TtðxÞ and V ¼ Ra � f0g ¼ HtðxÞ, if h has a right inverse y with

jyja h�1 thenJm

�
HtðxÞ;TtðxÞ

�
b h.

By definition ‘tðxÞ : TxP ! T vEx ¼ Ex is the composition h � dtðxÞ, with the

di¤erential dtðxÞ : TxP ! TtðxÞ, which is an isomorphism. Now if y 0 is a right

inverse for ‘tðxÞ, jy 0ja h�1, then dtðxÞ � y 0 is a right inverse for h with norm

bounded by jdtðxÞjh�1. Thus, by Lemma 4.2Jm

�
HtðxÞ;TtðxÞ

�
b jdtðxÞj�1h.

Conversely, the projection h has always a right inverse y of minimum norm.

Let us define W :¼ TtðxÞBHtðxÞ and Uc :¼ TtðxÞBW?. If we compose y with

the orthogonal projection TtðxÞ ! Uc, we obtain a right inverse ŷy for hjUc
such

that jyj ¼ jŷyj. If nowJm

�
HtðxÞ;TtðxÞ

�
b h then the equation involving inequal-

ities of Lemma 3.8 in [32] implies that

jŷyja ðsin hÞ�1; ð16Þ

and therefore dtðxÞ�1 � y is a right inverse for ‘tðxÞ with norm bounded by

jdtðxÞj�1ðsin hÞ�1.

In the case QATP we fix an isometry sending ðHQ;HÞ at tðxÞ to

ðRa 0 � f0g;RaÞ with the Euclidean metric, and apply the above arguments to

Ra 0
aRb.

Note that we have C ¼ jdQtðxÞj, with dQtðxÞ the restriction of dtðxÞ to Qx.

Observe that a bound for jdQtðxÞj can be obtained from upper bounds for jtðxÞj
and j‘QtðxÞj. r

Remark 4.1. In the definition of minimum angleJmðU ;VÞ, when U , V are not

complementary we work with the intersections in ðU BVÞ? where we can apply

the usual notion of minimum angle for complementary subspaces. Instead of

ðU BVÞ? one might choose any other subspace W complementary to U BV to

give a di¤erent notion of minimum angle. In certain situations this is a good strat-

egy because there are natural complementary subspaces available. It is easy to see

that the new notion of minimum angle is comparable to the one of Definition 4.3,

and the comparison is given by multiplying by a constant depending only on
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JmðU BV ;W Þ (there is no ambiguity since these are complementary subspaces).

Actually, those new notions depending on the complementary coincide with the

one given in 4.3, but for a new metric which is comparable to the Euclidean one

in terms of JmðU BV ;W Þ (very much as it happened with the isomorphism

dQtðxÞ in the previous lemma).

We need a second result relating angles and intersections.

Lemma 4.4. Let U, V, W be linear subspaces of Rn such thatJmðV ;WÞb g > 0.

LetJMðU ;VÞa d. Then there exists Cðg; dimV ; nÞ > 0 such that

JMðU BW ;V BW ÞaCd:

Proof. For each u a Unf0g, we haveJðu;VÞ ¼J
�
u; hðuÞ

�
, where h : Rn ! V is

the orthogonal projection. We consider a complementary space to V possibly dif-

ferent from V?: because JmðV ;W Þb g > 0 the dimension of W is greater or

equal than the codimension of V , and the intersection of V and W is transverse.

As a consequence any subspace (of W ) complementary to V BW in W is also

complementary to V in Rn. We let VW be the orthogonal to V BW in W ,

and we define hW : Rn ! V to be the projection along VW (whose restriction to

W is the orthogonal projection onto V BW ). It follows that J
�
u; hW ðuÞ

�
a

CJ
�
u; hðuÞ

�
¼ CJðu;VÞ, and by construction if u a U BW then J

�
u; hW ðuÞ

�
¼

Jðu;V BWÞ. r

Let SHE be a submanifold in the total space of the vector bundle E over

either a 2-calibrated or a symplectic manifold, transverse to the fibers. Let ĝg be

the metric in E induced by the connection, the bundle metric, and the metric g in

the base. The submanifold might not have a tubular neighborhood of positive

radius. If we assume S to be in a compact region—as it will be the case in our

applications—then the problem comes from the behavior near its boundary

qS ¼ SnS. Thus a reasonable extension of Definition 4.1 to our non-linear setting

must deal separately with points close to qS and with the other points of S.

Definition 4.4. Given h > 0 the points of S h-far from (resp. h-close to) the

boundary are those points in S at ĝg-distance of qS greater or equal (resp. smaller)

than h > 0. For any h > 0—typically much smaller than h—we define NSðh; hÞ to
be those points that can be joined to a point h-far from the boundary by a geodesic

arc normal to S and of length smaller or equal than h.

We now define the distribution TkS at the points of NSðh; hÞ by parallel trans-

port of TS along the geodesics normal to S, starting at the points h-far from the

boundary of S.

TkS plays the role of H. We use the notation T
k
QS :¼ TkSB Q̂Q.
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Definition 4.5. t is ðh; hÞ-transverse along Q to S at x if either (i) tðxÞ misses the

union of S with NSðh; hÞ, or (ii) tðxÞ enters in NSðh; hÞ so thatJmðTQt;T
k
QSÞb h

at tðxÞ, or (iii) tðxÞ intersects S at the points h-close to the boundary with

JmðTQt;TQSÞb h at tðxÞ.
Uniform transversality of tk along Q to Sk is defined as ðh; hÞ-transversality for

some h; h > 0 and for all kg 1.

Conditions on a sequence of submanifolds Sk of complex codimension l (or

more generally on stratifications) can be imposed, so that local estimated transver-

sality along Q of tk;x at the points of Bgkðx; rÞ to the points of Sk far from qSk is

equivalent to estimated transversality along Q of a related C l-valued function to 0

(Lemma 4.5).

We will consider stratifications S ¼ ðSa
k Þ, a a Ak, which are (i) finite in the

sense thataðAkÞ must be bounded independently of k, and (ii) the boundary of

each strata qSb
k ¼ Sb

knSb
k will be the union of the strata of smaller dimension

qSb
k ¼ 6

a<b

Sb
k :

Definition 4.6. Let Ek ¼ EnLnk ! ðM;D; J; gkÞ and let ðSa
k Þa AAk

be finite

stratifications of Ek whose strata are transverse to the fibers. Let r a N, rb 2.

The sequence of strata is Whitney Cr-approximately holomorphic ðCr-A.H.) if

for any bounded open set Uk of the total space of Ek and any e > 0, constants

Ce; re > 0 only depending on e and on the size of Uk, but not on k, can be found,

so that for any point y a Uk in a strata Sa
k for which dĝgkðy; qSa

k Þ > e, there exist

complex valued functions f1; . . . ; fl such that Bĝgk ðy; reÞBSa
k is given f1 ¼ � � � ¼

fl ¼ 0, and the following properties hold:

(1) (Uniform transversality to the fibersþ transverse comparison) The restriction

of df1b � � �bdfl to T vEk is bounded from below by re.

(2) (Approximate holomorphicity along the fibers) The restriction of the function

f ¼ ð f1; . . . ; flÞ to each fiber is Cr-A.H.ðCeÞ.

(3) (Horizontal approximate holomorphicityþ holomorphic variation of the re-

striction to the fiberþ estimated variation of the restriction to the fiber) For

any l, k and t Cr-A.H.ðlÞ local section of Ek with image cutting Bĝgk ðy; reÞ,
fj � t is Cr-A.H.ðlCeÞ. Moreover, if y is a local Cr-A.H.ðlÞ section of

t�T vEk, then dftðyÞ is Cr-A.H.ðlCeÞ.

(4) (Estimated Whitney condition (A)) For each h > 0 small enough, there exists

dðhÞ > 0 such that for all y a Sb
k at distance smaller than d of Sa

k H qSb
k ,

JMðTkSa
k ;TS

b
k Þ at y is bounded by h.
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Remark 4.2. If we give the corresponding definition using as base space an al-

most complex manifold instead of an almost CR manifold, we almost recover

the Definition 3.2 in [4] (our condition (4) is a bit weaker).

Condition (1) is equivalent to the strata have minimum angle with the fibers

bounded from below. We just try to mimic the picture of the 0 section with re-

spect to the fibers of a vector bundle, in which case we even have orthogonality.

Conditions (2) and (3) guarantee that if tk : M ! Ek is A.H., then the corre-

sponding C l-valued function to be made transverse to 0 is A.H.

Recall that for a stratification S of some RN , a stratum Sb satisfies Whitney’s

condition (A) if for every converging sequence xn ! x, xn a Sb, x a Sa H qSb, so

that TxnS
b is converging, the limit contains TxS

a. Condition (4) is an estimated

Whitney condition (A).

Definition 4.7. Let S be as in Definition 4.6 (over either a 2-calibrated or a sym-

plectic manifold). Then tk is uniformly transverse along Q to S if there exists

strictly positive numbers ðha; haÞ for all a a Ak such that:

(1) For all a a Ak and for all kg 1 tk is ðha; haÞ-transverse along Q to Sa
k .

(2) For each b, 6
a<b

NS a
k
ðha; haÞ contains the points of Sb

k hb-close to qSb
k .

Now that we have the notion of uniform transversality of a sequence of sec-

tions to an appropriate stratification, we need tools to relate it with local uniform

transversality for sequences of (related) functions.

Lemma 4.5. Let Sa
k be a sequence of strata as those in the stratifications of Defini-

tion 4.6 for the base space P either an almost CR manifold (intrinsic theory) or an

almost complex manifold (relative theory). Let e > 0 and 0 < hf e. Let y a Ek be

a point in the stratum e-far from the boundary, and let f ¼ ð f1; . . . ; flÞ be the corre-
sponding local C l -valued function defining the stratum in Bĝgkðy; reÞ. Let tk be a sec-

tion of Ek whose graph enters in Bĝgkðy; reÞ. Then there exist constants r 0ðe; h; jtkjÞ;
Cðe; j‘Qtkj; jtkjÞ;C 0ðe; j‘Qtkj; jtkjÞ > 0 such that:

(1) If JmðTQt;T
k
QS

aÞb h in Bĝgkðy; reÞ, then dQð f � tÞ has a right inverse with

norm

bounded by
�
C sinðh=2Þ

��1
in Bĝgk ðy; r 0Þ.

(2) If dQð f � tÞ has a right inverse with norm bounded by h�1 in Bĝgkðy; reÞ, then
JmðTQt;T

k
QS

aÞbC 0�1h in Bĝgk ðy; r 0Þ.

Proof. By simplicity we omit the subindices for the sections tk, the bundles, and

the strata.

Let us assume thatJmðTQt;T
k
QS

aÞb h.
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Step 1: Show the existence of r 0ðe; h; jtjÞ > 0 such thatJmðTQt;Ker df B Q̂QÞb
h=2 in Bĝgkðy; r 0Þ.

According to Proposition 4.1 (Proposition 3.5 in [32])

JmðTk
QS

a;TQtÞaJMðTk
QS

a;Ker df B Q̂QÞ þJmðKer df B Q̂Q;TQtÞ;

and therefore we need to prove the existence of r 0 > 0 so that in Bĝgkðy; r 0Þ

JMðTk
QS

a;Ker df B Q̂QÞa h=2: ð17Þ

Condition (1) in Definition 4.6 implies that JmðKer df ; Q̂QÞb gðeÞ. If we find

r 0 > 0 such that in Bĝgkðy; r 0Þ

JMðTkSa;Ker df ÞaC
�
gðeÞ

��1
h=2; ð18Þ

we can apply Lemma 4.4, where U ¼ TkSa, V ¼ Ker df , W ¼ Q̂Q to conclude that

equation (17) holds.

Equation (18) is proven using appropriate charts. The situation we are trying

to mimic is that of a locally trivialized vector bundle and we measure the maximal

angle between the parallel copies of the 0 section (here the leaves of ker df ) and H

(here TkSa).

Due to the bounds in Definition 4.6 we can find a chart Fy : R
a ! Bĝgk ðy; reÞ

such that in Bð0; r 00ÞHRa (i) the metrics g0 and F�
y ĝgk (we write ĝgk if it is clear that

we work in the chart) are comparable, and the Christo¤el symbols of ĝgk are

bounded by Oð1Þ (the bounds being uniform on k, y), and (ii) the foliation

Ker df is sent to the foliation Ra�2l . In Bð0; r 00ÞHRa the stratum S becomes

Ra�2l � f0g and tubular neighborhoods for ĝgk and g0 are comparable. At any

point q in the neighborhood, a vector in u a TkS is the result of parallel trans-

lating (with ĝgk) a vector v in Ra�2l � f0g over y 0 a Ra�2l � f0g along the cor-

responding ĝgk-geodesic. Since the Christo¤el symbols are bounded, Jðu; vÞ is

bounded by eGt � 1, G > 0. So by decreasing t, the distance of q to S, we bound

the maximal angle by CðgÞ�1h=2. Therefore the final radius r 0 depends on h, on e

(because CðgÞ depends on e), and on how g0 and ĝgk are related (to order one).

This final relation depends on f (and hence on e) and on the metric ĝgk (and hence

on jtj).
Step 2: Show that JmðTQt;Ker df B Q̂QÞb h=2 implies that dQð f � tÞ has a

right inverse with norm bounded by
�
Cðe; j‘Qtj; jtjÞ sinðh=2Þ

��1
.

The proof of item (2) in Lemma 4.3 implies that the orthogonal projection

h : TQt ! ðKer df B Q̂QÞ? has a right inverse with norm bounded by
�
sinðh=2Þ

��1

(equation (16)). Let VE denote the orthogonal in the fiber T vE of ðKer df B Q̂QÞB
T vE. Due to condition (1) in Definition 4.6, this is a subspace complementary to

459The geometry of 2-calibrated manifolds



Ker df B Q̂Q and such thatJmðVE ;Ker df B Q̂QÞ is bounded from below in terms of

re, and hence in terms of e.

Let hE : TQt ! VE be the projection along Ker df B Q̂Q. It follows that there

is a constant C1ðeÞ�1 > 0 and a right inverse for hE with norm bounded by

C1ðeÞ�1ðsin h=2Þ�1. We now define

h 00 ¼ df � hE � dQt : Q ! C l :

By construction, h 00 ¼ dQð f � tÞ. Condition (1) about the restriction of df to the

fiber implies the existence of a right inverse for h 00 with norm bounded by

jdQtj�1
C2ðeÞ�1

C1ðeÞ�1ðsin h=2Þ�1. Therefore, dQð f � tÞ has a right inverse with

norm bounded by Cðe; jdQtjÞ sinðh=2Þ�1 in Bĝgk

�
y; r 0ðe; h; jtjÞ

�
, which proves item

(1).

Conversely, if dQð f � tÞ has a right inverse Bĝgkðy; reÞ with norm bounded by

h�1, Step 2 above implies that hE � dQt has a right inverse with norm bounded by�
C 0

1ðeÞ2h
��1

.

Item (1) in Lemma 4.3 gives

JmðTQt; ker df B Q̂QÞbC 0ðe; j‘Qtj; jtjÞ2h;

and combined with Step 1 we conclude that

JmðTQt;T
k
QS

aÞbC 0ðe; jdQtjÞh in Bĝgk

�
y; rðe; h; jtjÞ

�
:

Observe that the constants C, C 0 grow very large as e and h tend to zero. r

Remark 4.3. The previous lemma does not involve almost complex structures at

all. Hence it also holds for arbitrary Hermitian bundles, sections, and strata

which fulfill condition (1) in Definition 4.6.

Using appropriate choices of complementary subspaces to get a bound from

below for certain minimal angles, as noticed in Remark 4.1, we can prove the fol-

lowing

Lemma 4.6. Let S ¼ ðSa
k Þa AA be a sequence of approximately holomorphic strat-

ifications as in Definition 4.6. Assume that the sequence tk is uniformly transverse

to S along a distribution Q whose dimension is greater of equal than the codimen-

sion of the strata, and that the uniform bounds jtkj; j‘tkjgk aOð1Þ hold. Then

t�1
k ðSa

k Þ is a subvariety of M uniformly transverse to Q for each a a A.

Proof. We must prove that for a sequence of points xðkÞ in t�1
k ðSa

k Þ we have

Jm

�
Txt

�1
k ðSa

k Þ;Q
�
b g > 0 ð19Þ

for all kg 1 independently of the points.
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Denote tkðxÞ ¼ q. We claim that equation (19) will follow from

Jm

�
tk�Txt

�1
k ðSa

k Þ; tk�Q
�
b g 0 > 0; ð20Þ

where the angle is measured in TtkðxÞ with the induced metric. The reason is that

the bound on jtkj implies that the metric in Ek is comparable to the product metric

given by any trivialization by reference frames (and using on each factor the Her-

mitian metric in the fiber and gk coming from the base). Then we use the bound

on j‘tkj to conclude that in this product metric Jm

�
TtkðxÞ;T vEkðqÞ

�
b d1 > 0,

where T vEk is the tangent space to the fiber. Hence, our claim follows.

We can rewrite equation (20) as

Jm

�
TQtkðxÞ;Ttk BTSa

k ðqÞ
�
b g 0 > 0: ð21Þ

Our second claim is that

Jm

�
TSa

k ðqÞ;T vEkðqÞ
�
b d2 > 0: ð22Þ

Indeed, this follows from condition (1) in Definition 4.6 if we are in a point h-far

from the boundary of Sa
k . For points h-close, we use the estimated Whitney con-

dition (A) together with Proposition 4.1 to prove equation (22). Since T vEk H Q̂Q,

we also conclude that

Jm

�
TSa

k ðqÞ; Q̂Q
�
b d3 > 0: ð23Þ

We will reinterpret equation (23) by choosing a suitable complementary space

to TSa
k B Q̂QðqÞ which is not its orthogonal W (see remark 4.1). Let W1 H Q̂Q (resp.

W2 H Q̂Q) be the intersection of TtkðxÞ (resp. TSa
k ðqÞ) with the orthogonal of

TSa
k BTtk B Q̂QðqÞ inside Q̂Q, and let W3 be the intersection of TtkðxÞ with the or-

thogonal of Q̂Q. FromJm

�
TtkðxÞ;T vEkðqÞ

�
b d1 we obtain thatJm

�
TtkðxÞ; Q̂Q

�
b

d1, and by hypothesisJm

�
TQTtkðxÞ;TQS

a
k ðqÞ

�
b d4 > 0. Both inequalities imply

that W 0 :¼ W1aW3 can be used instead of W . By construction W 0B Q̂Q ¼ W1,

so from equation (23) we conclude that

Jm

�
W 0BTSa

k ðqÞ;W1

�
b d5 > 0: ð24Þ

Notice as well that to compute equation (21) we have to intersect the cor-

responding vector subspaces with the orthogonal of TSa
k BTtk B Q̂QðqÞ inside

TtkðxÞ. From what we have seen, we can rather choose as complementary space

W 0. Since W 0BTQtkðxÞ ¼ W1 and W 0B
�
Ttk BTSa

k ðqÞ
�
¼ W 0BTSa

k ðxÞ, we
have to compute the left-hand side of equation (23), so the result follows. r

In particular the following corollary is deduced:
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Corollary 4.1. Let S ¼ ðSa
k Þa AA be a sequence of A.H. stratifications over the 2-

calibrated manifold ðM;D;oÞ as in Definition 4.6. Assume that the A.H. sequence

tk is uniformly transverse to S along D. Then for each a a Ak, t
�1
k ðSa

k Þ is either
empty if the codimension of Sa

k is bigger than the dimension of D (or M), or a sub-

variety uniformly transverse to D.

For a symplectic manifold, transversality along the directions of a (compact) sub-

variety N implies that either (i) t�1
k ðSa

k Þ is at gk-distance of N bounded from below

or (ii) it is a subvariety (at least defined in a gk-neighborhood of N) uniformly trans-

verse to N.

If we analyze the proof of Lemma 4.6, Corollary 4.1 for 2-calibrated manifolds

is equivalent to saying that uniform transversality along D implies uniform trans-

versality over M (along TM). The converse is also true, extending therefore Moh-

sen’s relative transversality result to appropriate sequences of stratifications.

Corollary 4.2. Let S ¼ ðSa
k Þa AAk

be a sequence of A.H. stratifications over the 2-

calibrated manifold ðM;D;oÞ as in Definition 4.6. Assume that the A.H. sequence

tk is uniformly transverse to S (over M) for suitable constants ðha; haÞ, a a Ak.

Then tk is also uniformly transverse along D to S.

Proof. By induction we can assume that tk is uniformly transverse along D to Sa
k

for every a < b. Let q a Sb
k , with tkðxÞ ¼ q, h 0-close to qSb

k . We want to show

that

Jm

�
TDtkðxÞ;TDS

b
k ðqÞ;

�
b h 0

and will do it by applying for some index a a Ak the inequality

Jm

�
TDtkðxÞ;Tk

DS
a
k ðqÞ

�
aJM

�
T

k
DS

a
k ðqÞ;TDS

b
k ðqÞ

�
þJm

�
TDtkðxÞ;TDS

b
k ðqÞ

�
: ð25Þ

If h 0 is small enough, condition (2) in Definition 4.7 implies the existence of an in-

dex a a Ak such that q a NS a
k
ðha; haÞ. If we apply induction we conclude

Jm

�
TDtkðxÞ;Tk

DS
a
k ðqÞ

�
b ha, so we only need to make

JM

�
T

k
DS

a
k ðqÞ;TDS

b
k ðqÞ

�
f ha:

This is done using Lemma 4.4 with U ¼ TkSaðqÞ, V ¼ TSbðqÞ, W ¼ D̂D. We need

to check that

JM

�
TkSa

k ðqÞ;TSb
k ðqÞ

�
f ha; ð26Þ

Jm

�
TSb

k ðqÞ; D̂D
�
b g: ð27Þ
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Equation (26) follows by the estimated Whitney condition by taking h 0 small

enough; equation (27) uses again the inequality of Proposition 4.1,

Jm

�
D̂D;TkSa

k ðqÞ
�
aJM

�
TkSa

k ðqÞ;TSb
k ðqÞ

�
þJm

�
D̂D;TSb

k ðqÞ
�
;

together withJm

�
D̂D;TkSa

k ðqÞ
�
b 2g (by condition (1) in Definition 4.6) and equa-

tion (26).

So far we deduced some h 0-transversality only at the points h 0-close to the

boundary of Sb
k . Now let us assume that for some h > 0,Jm

�
TtkðxÞ;TkSb

k ðqÞ
�

b h in the tubular neighborhood NS b
k
ðh; h 0Þ (here comes the requirement on the

constants controlling the transversality, i.e., in those points h 0-far from the bound-

ary we need to make sure thatJm

�
TtkðxÞ;TkSb

k ðqÞ
�
is uniformly bounded from

below). If tkðxÞ a NS b
k
ðh; h 0Þ, then, by Lemma 4.5, h-transversality implies h 0-

transversality to 0 of the function f � tk : Bgk ðx; r 0Þ ! C l . From the approximate

holomorphicity of the composition f � tk, for all kg 1 a result analogous to

Lemma 4.1 yields
ffiffi
2

p

3 h 0-transversality along D, which again by Lemma 4.5 gives

h 00-transversality along D to Sb
k (we suppose that h 00a h).

Therefore, it follows that tk is ðh 00; h 0Þ-transverse along D to Sb
k . r

5. Pseudo-holomorphic jets

The main applications of the theory of approximately holomorphic geometry for

2-calibrated manifolds are deduced from the existence of generic rank m linear sys-

tems.

Let us assume that ðM;D; JÞ is a Levi-flat CR manifold and L ! M a positive

CR line bundle. Let Cm ! M denote the trivial (and trivialized) bundle of rank m

endowed with the trivial connection.

Definition 5.1. A CR section t : M ! Cmþ1 nL (or a rank m linear system of L)

is r-generic if its zero set B is a CR submanifold of the expected dimension, and

the projectivization f : MnB ! CPm is a leafwise r-generic holomorphic map,

i.e., when restricted to each leaf it is transverse to the Thom–Boardman stratifica-

tion of the bundle of holomorphic r-jets of holomorphic maps from the leaf to

CPm.

The proof of the existence of r-generic linear systems (possibly of large enough

powers of L) is the main subject of [25].

The strong transversality property for a CR function f : M ! CPm to be r-

generic is as follows: we consider Jr
CRðM;CPmÞ the bundle of CR r-jets (of foli-

ated holomorphic r-jets) of CR maps from M to CPm. This bundle admits a CR
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Thom–Boardman stratification PS, which restricts to each leaf to the correspond-

ing holomorphic Thom–Boardman stratification. A CR function f is r-generic if

and only if its CR r-jet j rCRf : M ! Jr
CRðM;CPmÞ (which by definition is the foli-

ated holomorphic r-jet) is transverse along D to PS.

Assume that our CR submanifold embeds holomorphically in some complex

manifold P and that D extends to a holomorphic foliation integrating the complex

distribution G. There is a canonical submersion pG : JrðP;CPmÞ ! Jr
GðP;CPmÞ

from holomorphic r-jets to foliated ones. The foliated Thom–Boardman stratifi-

cation PSHJr
GðP;CPmÞ restricts over M to the CR Thom–Boardman stratifica-

tion PS of Jr
CRðM;CPmÞ. Let us denote the pullback pG

�1ðPSÞ by PSG.

For any holomorphic function f : P ! CPm it is an elementary fact that

j rGf a G
�
Jr
GðP;CPmÞ

�
—the holomorphic r-jet along G—is transverse along G to

PS at the points of M, if and only if j rf a G
�
JrðP;CPmÞ

�
is transverse along G

to PSG at the points of M. By the results of the previous section, this is equivalent

to being transverse over M to PSG.

To obtain an r-generic linear system there is an additional complication com-

ing from the base locus. We first need to make sure that t : P ! Cmþ1 nL is

transverse over M to the zero section, and then solve the r-genericity problem for

the projectivization (in a compact region of Pnt�1ð0Þ). Instead of working first

with the section t and then with the projectivization, following ideas of D.

Auroux [4] we restate the whole issue as a unique transversality problem over

M for the pseudo-holomorphic r-jet extension of t, a section of a vector bundle

JrðCmþ1 nLÞ. The advantage is that we work with vector bundles and we can

use the module structure of sections.

5.1. The integrable case. Let E ! P be a Hermitian bundle over a complex

manifold with compatible connection ‘, whose curvature satisfies F 0;2
‘ ¼ 0. The

total space of the bundle is a complex manifold (Theorem 2:1:53 in [14]) and there

is a notion of holomorphic section and hence of holomorphic r-jet. The space of

r-jets has natural charts obtained out of holomorphic coordinates in the base and a

holomorphic trivialization of the bundle. They provide a local identification of

the holomorphic r-jets with Jr
n;m, the usual r-jets for holomorphic maps from Cn

to Cm.

Let q0 be the Cauchy–Riemann operator defined (locally) using the canonical

structure J0 in the base (the chart) and the trivial connection d in Cm. The con-

nection on the fiber bundle can be used to give a di¤erent notion of local holomor-

phic r-jet (in principle chart dependent) by just considering the operator q‘: if the

connection matrix in the trivialization is Ax ¼ A1;0
x , then the coupled 1-jet of a

holomorphic section t is defined to be ðt; q0tþ AxtÞ). Higher order coupled

jets are constructed by induction using the connection induced by the flat metric

and ‘.
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Observe that locally for the above choice of coordinates and trivialization of

the bundle, both the usual r-jets and coupled r-jets fill the bundle

�Xr

j¼0

ðT�1;0CnÞpj
�
nCm ¼ Jr

m;n;

wherep stands for the symmetric part of the tensor product and ðT�1;0CnÞp0 n
Cm for Cm. This is due to the existence through any point of E of holomorphic

frames tangent to the horizontal distribution of the connection, together with the

vanishing F
2;0
‘ (the latter implying that dA and its derivatives are symmetric ten-

sors when evaluated on ð1; 0Þ-vectors).
For Levi-flat CR manifolds the local model for the pseudo-holomorphic jets to

be introduced is the following: the base space is ðCn � R; J0; g0Þ (or rather a ball of

Euclidean radius r > 0), the bundle is assumed to be trivialized by a CR frame

and the curvature is of type ð1; 1Þ. The bundle of CR r-jets is denoted by Jr
Dh;n;m

(foliated holomorphic r-jets along Dh); its fiber over each point is that of Jr
n;m.

There is an obvious notion of CR coupled r-jet. The hypothesis on the trivializa-

tion and on the curvature imply that they are also symmetric, so they fill the bun-

dle Jr
Dh;n;m

¼ Jr
n;m � R.

Using Darboux charts and suitable trivializations this model will be achieved

in an approximate way in the theory for 2-calibrated manifolds.

There is a final local model we wish to introduce that would appear in Kähler

manifolds P with a holomorphic foliation integrating a complex distribution G.

Locally, we have holomorphic coordinates Cg � Cp�g with G sent to Cg (which

integrates into the foliation with leaves Cg � f�g), and we work with foliated

coupled jets along the leaves of Cg. The corresponding bundle of coupled foliated

r-jets is denoted by Jr
Cg;p;m. It coincides with J r

g;m � Cp�g. Transversality prob-

lems for this bundle will be transferred to transversality problems in Jr
p;m, so we

need no further analysis of its properties, though we will be interested at some

point in studying the natural submersion Jr
p;m ! Jr

Cg;p;m. This local model is

achieved in an approximate way in a symplectic manifold (with compatible almost

complex structure and metric) with a J-complex distribution G—not necessarily

integrable—, by using approximate holomorphic charts adapted to G.

5.2. Pseudo-holomorphic jets. Denote sequence EnLnk ! ðM;D;oÞ by Ek.

We define the bundles

Jr
DEk :¼

�Xr

j¼0

ðD�1;0Þpj
�
nEk;

where p stands for the symmetric part of the tensor product of complex vector

bundles. They carry Hermitian vector bundle metrics induced by gk jD, the one
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on Ek, and the symmetrization map

symj : ðD�1;0Þnj ! ðD�1;0Þpj
: ð28Þ

The Levi-Civita connection induces a connection on D� (using the metric to see

D� ,! T �M and then projecting T �M ! D�) and therefore in D�1;0 (using the

splitting D�1;0 þD�0;1); combined with the connection on Ek and the symmetriza-

tion map they define connections ‘k; r. The total spaces Jr
DEk also carry metrics

constructed in the usual fashion out of the metric in the base, the connection, and

the vector bundle Hermitian metric.

The definition of pseudo-holomorphic r-jets along D (or just pseudo-

holomorphic r-jets) for a sequence Ek of Hermitian vector bundles is given by in-

duction (see [4]). Let tk be a sequence of A.H. sections of Ek. By definition

j0Dtk ¼ tk. Let j r�1
D tk a Jr�1

D Ek be the (r� 1)-jet of tk. It has homogeneous com-

ponents of degrees 0; 1; . . . ; r� 1. We will denote the homogeneous component

of degree j a f0; . . . ; r� 1g by q j
symtk a G

�
ðD�1;0Þpj nEk

�
. The connection

‘k; r�1 is actually a direct sum of connections defined on the direct summands

ðD�1;0Þpj nEk, j ¼ 0; . . . ; r� 1. For simplicity and if there is no risk of confu-

sion we will use the same notation for the restriction of ‘k; r�1 to each of the

summands. The restriction of ‘k; r�1q
r�1
symtk to D defines a section ‘k; r�1;Dq

r�1
symtk

a G
�
D� n ðD�1;0Þpr�1 nEk

�
. For each x a M it is a form on D with values in

the complex vector space ðD�1;0Þpr�1 nEk. Therefore we can consider its ð1; 0Þ-
component qqr�1

symtk a G
�
D�1;0 n ðD�1;0Þpr�1 nEk

�
. By applying the symmetriza-

tion map symr of equation (28) we obtain qr
symtk a G

�
ðD�1;0Þpr nEk

�
.

Definition 5.2. Let tk be a section of ðEk;‘kÞ. The pseudo-holomorphic r-jet

j rDtk is a section of the bundle Jr
DEk ¼

�P j¼0
r ðD�1;0Þpj

�
nEk defined out of the

(r� 1)-jet by the formula j rDtk :¼ ð j r�1
D tk; q

r
symtkÞ.

Remark 5.1. The previous definition incorporates the fact that the degree r and

(r� 1) homogeneous components of the r-jet are symmetrization of the pseudo-

holomorphic 1-jet of qr�1
symtk; then we have to add the homogeneous components

of lower degree. Actually, we could have equally defined j rDtk by taking the sym-

metrization of the pseudo-holomorphic 1-jet of j r�1
D tk (because this gives the ho-

mogeneous components of degree 1; . . . ; r) and then adding tk, the degree zero ho-

mogeneous component.

Remark 5.2. The pseudo-holomorphic r-jets are useless for our purposes for low

values of k. We are interested in having a notion of r-jet of an A.H. sequence

which in approximately holomorphic coordinates and for suitable local trivializa-

tions of Ek, is as close as possible to the local coupled holomorphic r-jet defined in

Cn � R using J0 and the flat metric (introduced in Section 5.1). As k grows large
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and due to the proximity between gk, J and J0, g0 in Bð0; rÞHCn � R we will see

that the norm of the di¤erence at any order between the two notions of r-jet is

bounded by Oðk�1=2Þ.

For a symplectic manifold ðP;WÞ with a J-complex distribution G the bundle

of pseudo-holomorphic r-jets along G will be defined to be

Jr
GEk :¼

�Xr

j¼0

ðG�1;0Þpj
�
nEk:

We have a canonical projection pG : JrEk ! Jr
GEk. We also use the splitting

TP ¼ GaG? to see Jr
GEk as a subbundle of JrEk; hence every section of Jr

GEk

can be seen as a section of JrEk. To define the pseudo-holomorphic r-jet along G

we use the same induction procedure as in the definition of pseudo-holomorphic

r-jets along D, but either before or after symmetrizing we project T�1;0P ! G�1;0

(or even before taking the ð1; 0Þ-component we project T �PC ! G�
C); the result of

either choice is the same.

Once approximately holomorphic coordinates have been fixed we have a ca-

nonical pointwise ðJ0 � JÞ-complex linear identification

TCn ! D;
q

qxi
k

7! q

qxi
k

þ ai
q

qsk
;

q

qyi
k

7! J
q

qxi
k

þ ai
q

qsk

	 

: ð29Þ

The inverse of its dual is a ðJ0 � JÞ-complex bundle map

$k;x : T
�1;0Cn ! D�1;0: ð30Þ

It should be stressed that this identification is only important in the ball of some gk
radius r > 0, the region where our computations have to be more accurate (in or-

der to obtain local estimated transversality). There, for some constant g > 0,

j$k;xjg0 a g; j$�1
k;xjg0 a g and jd j$k;xjg0 aOðk�1=2Þ ð31Þ

for all jb 1. The Gaussian decay of the reference sections will take care of what

happens out of these balls. We also notice that by writing dzik we will mean

$k;xðdzikÞ.
Let us assume that we have also fixed a family of reference sections of

trefk;x a GðLnkÞ. Using any local unitary basis of E (with bounds uniform on x) to-

gether with the reference sections, we have a family of trivializations trefk;x; j,

j ¼ 1; . . . ;m, of Ek in the balls Bgk ðx; rÞ for all x and for all k large enough. The

A.H. coordinates and the associated bundle maps $k;x provide a local basis
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dz1k ; . . . ; dz
n
k of D�1;0. We obtain a family of trivializations of Jr

DEk about any

point as follows: for I ¼ ði0; i1; . . . ; inÞ with 1a i0am, 0a i1 þ � � � þ ina r we set

mk;x; I :¼ dz1k
pi1 p � � � p dznk

pin n trefk;x; i0
: ð32Þ

Definition 5.3. A family of sequences tk;x; I : M ! Ek is called a family of holo-

nomic frames if

(1) they are A.H. sections with Gaussian decay w.r.t to x,

(2) there exist r; g > 0 such that in the balls Bgkðx; rÞ and for all points and all k

large enough the sequences j rDtk;x; I : M ! Jr
DEk define a frame which is g-

comparable to mk;x; I in the following sense: if we write j rDtk;x; I in the basis

mk;x; I , for the corresponding matrix Mk;x we have

jMk;xjg0 a g; jM�1
k;xjg0 a g:

One checks that the notion of holonomic reference frame does not depend ei-

ther on the fixed approximately holomorphic coordinates, or in the chosen refer-

ence sections of Ek to define mk;x; I . Only the constants involved in the definition

change.

In this situation there is still a weak point. The main goal is to construct sec-

tions whose pseudo-holomorphic r-jets are transverse to certain stratifications.

For that we need the pseudo-holomorphic r-jets to be A.H. sections of the bundles

Jr
DEk (resp. JrEk for symplectic manifolds with J-complex distribution G), so

that we can apply the transversality results from approximately holomorphic

theory (to be proved in section 7). We intend to use holonomic reference frames

defined as follows: if I is one of the (nþ 1)-tuples introduced before we set

nk;x; I :¼ j rDt
ref
k;x; I ; where trefk;x; I :¼ ðz1kÞ

i1
. . . ðznkÞ

intrefk;x; i0
a GðEkÞ: ð33Þ

In the Kähler case and due to the presence of curvature (see [5]), the coupled jets

are not anymore holomorphic sections of Jr
n;m with respect to the complex struc-

ture induced by the connection. Similarly, the frames nk;x; I fail to be families of

holonomic frames because the sections are not approximately holomorphic if

rb 1. This di‰culty is overcome by introducing a new almost complex structure

(a new connection) in Jr
DEk (resp. JrEk). This is the content of the following

proposition whose proof is given in Appendix A.

Proposition 5.1. The sequence Jr
DEk ! ðM;D; J; gkÞ, which is very ample for the

connections ‘k; r previously described, admits new connections ‘k;Hr
such that:

(1) ‘k; r � ‘k;Hr
a D�0;1 n ðJr

DEkÞ. Hence, if in order to compute the pseudo-

holomorphic jets (Definition 5.2) we use the connections ‘k;Hr
instead of ‘k; r,

then the result is the same.
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(2) Let us denote the curvatures of ‘k;Hr
and ‘k; r by Fk;Hr

and Fk; r, respectively.

Then Fk;Hr
QUFk; r and hence ðJr

DEk;‘k;Hr
Þ is a very ample sequence.

(3) If tk : M ! Ek is a Crþh-A.H. sequence of sections, then j rDtk : M ! Jr
DEk is a

Ch-A.H. sequence of sections for the connections ‘k;Hr
.

In the integrable model ðE;‘Þ ! ðCn � R;Dh; J0; g0Þ, with E ¼ L1a � � � a
Lm, we can introduce new connections ‘Hr

(here there is no dependence in k, since

distribution, (almost) complex structure, and metric are the standard ones). If the

curvature Fi of each line bundle Li, i ¼ 1; . . . ;m, restricted to the leaves is of type

ð1; 1Þ and has constant components with respect to the coordinates z1; . . . ; zn, then
the restrictions to each leaf of the curvatures FHr

and Fr (item (2) above) coincide.

As a consequence the new almost CR structure in the total space of Jr
Dh;n;m

induced

by ‘Hr
is also integrable (the foliation does not vary, just the leafwise complex

structure). Also if t is a CR section (Cm-valued function), then the coupled CR jet

is a CR section of ðJr
Dh;n;m

;‘Hr
Þ.

In the case of ðP;WÞ symplectic with a J-complex distribution G, analogous re-

sults hold for JrEk and for the integrable model.

As we said we postpone the proof until Appendix A, but we introduce the for-

mula for the connection.

Let sk ¼ ðsk;0; sk;1Þ be a section (maybe local) of J1
DEk. We define

‘H1
ðsk;0; sk;1Þ ¼ ð‘sk;0;‘sk;1Þ þ ð0;�F

1;1
D sk;0Þ;

where F 1;1
D sk;0 a D�0;1 nD�1;0nEk (see [5]).

Remark 5.3. The approximate equality FH1;k
QUFk has useful consequences. As-

sume for simplicity that Ek ¼ Lnk. Fix approximately holomorphic coordinates

and trivialize the line bundle so that the connection form is A (equation (3)).

Then in the local frame ð1; 0Þn tk, ð0; dz1kÞn tk; . . . ; ð0; dznkÞn tk J1
DLk and

over Bð0; rÞHCn � R the connection matrix of ‘k;H1
is up to summands bounded

(at any order) by Oðk�1=2Þ

A � 1
2 dz

1
k � � � � 1

2 dz
n
k

0 A � � � 0

. .
.

0 0 � � � A

���������

���������
:

In particular we have a uniform control on the new metric of the total space of the

bundles J1
DLk (resp. J1Lk). In a similar manner this uniform control also holds

for the bundles Jr
DEk (resp. J

rEk). A useful outcome is that if we have a sequence
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of stratifications S such that for a choice of approximate holomorphic coordi-

nates and reference frames, in the associated local basis mk;x; I of equation (32)

the strata Sa
k are given by equations (functions) that do not depend neither on k

nor on x, then the di¤erent bounds associated to the strata (basically those of the

local functions defining them) will not depend on k and x (because we can com-

pute them for the corresponding model with the Euclidean metric elements).

6. The linearized Thom–Boardman stratification

For the very ample sequences Ek there is an easy su‰cient condition for a se-

quence of stratifications to be finite, Whitney (A), and approximately holomor-

phic.

Let us denote by T the group of translations of Cn � R (resp. Cp in the relative

case).

Lemma 6.1. Let ðSa
k Þa AA be a sequence of stratifications of Ek ! ðM;D;oÞ such

that for a choice of approximately holomorphic coordinates and approximately holo-

morphic trivialization it is sent to ðSaÞa AA, a fixed CR finite, Whitney (A) stratifica-

tion of Cm ! Cn � R transverse to the fibers. Then the sequence ðSa
k Þa AA is as in

Definition 4.6.

Conversely, from a Whitney (A) CR stratification of Cm ! Cn � R transverse to

the fibers and invariant under the action of T�GLðm;CÞ (or T� C�), using the

local identifications of Ek with Cm furnished by A.H. coordinates and A.H. trivial-

izations, it is possible to induce an approximately holomorphic sequence of finite,

Whitney (A) stratifications of Ek.

Proof. Recall that we are interested in constructing A.H. sequences of sections

transverse to ðSa
k Þa AA; in particular this sections will be uniformly bounded.

Therefore, for each k, x we can work in the subset Bð0; rÞ � Bð0;RÞH ðCn � RÞ
� Cm ¼ Cm, for some R > 0. Let f be a function defining locally a stratum Sa,

which by hypothesis can be chosen to be CR. Condition (1) in Definition 4.6

holds trivially for the model S and therefore for ðSa
k Þa AA, because when we com-

pare the Euclidean metric and ĝgk we get the same inequalities as in condition (1) in

Definition 3.1.

Since the model stratification is Whitney (A) and we work in a compact region,

Whitney’s condition (A) implies the estimated Whitney condition (A) for the Eu-

clidean metric and hence for ĝgk.

Let ĴJ0 be the leafwise holomorphic structure associated to the canonical CR

structure of Cm ¼ ðCn � RÞ � Cm and let D̂Dh denote the foliation by complex

hyperplanes. Since the local function f defining Sa is CR, it is in particular fiber-

wise holomorphic, and this proves condition (2) in Definition 4.6.
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Let ðD̂D; ĴJ; ĝgkÞ be the almost CR structure on Bð0; rÞ � Bð0;RÞ induced by the

one on Ek. In order to prove condition (3) it su‰ces to check that f is A.H. with

respect to that almost CR structure. We are going to slightly modify the induced

almost CR structure: instead of D̂D we select D̂Dh. By using the Euclidean or-

thogonal projection, we can push ĴJ : D̂D ! D̂D into an almost complex structure

J 0 : D̂Dh ! D̂Dh.

Since jd jðD̂D� D̂DhÞjg0 aOðk�1=2Þ for all jb 0, it follows that f is A.H. with re-

spect to ðD̂D; ĴJ; ĝgkÞ if and only if it is A.H. with respect to ðD̂Dh; J
0; g0Þ (this appears

in the proof of Lemma 3.3).

In Cm ¼ ðCn � RÞ � Cm we have canonical coordinates z1k; . . . ; z
n
k , sk,

u1k; . . . ; u
m
k . These are CR coordinates with respect to ðD̂Dh; ĴJ0Þ. By hypothesis

qf

qz1k
¼ � � � qf

qznk
¼ qf

qu1k
¼ � � � qf

qum
k

¼ 0:

If we show that z1k; . . . ; z
n
k , sk, u

1
k; . . . ; u

m
k are A.H. coordinates for ðD̂Dh; J

0; g0Þ then
we are done (this is again Lemma 3.3 in the absence of connection form). But this

follows from the fact that the trivialization of Cm is given by an A.H. frame and

therefore the induced distribution (by the connection form) H on D̂Dh is such that

jd jðH� ĴJ0HÞjg0 aOðk�1=2Þ for all jb 0.

To prove the result in the other direction we fix A.H. coordinates and A.H.

frames for Ek. The T�GLðm;CÞ-invariance of ðSaÞa AA HCm means that the lo-

cal identifications define a sequence of global stratifications, and that these do not

depend either on the A.H. coordinates or on the A.H. trivializations. It is an ap-

proximately holomorphic sequence of finite, Whitney (A) stratifications by the first

part of the proof. r

In contrast to what happens for 0-jets, it is not easy to find non-trivial approx-

imately holomorphic stratifications for higher order jets. The di‰culty comes

from the fact that the modification of the connection of Proposition 5.1 that

makes the r-jets of A.H. sequences of sections of Ek into A.H. sequences of sec-

tions of Jr
DEk, makes it very complicated to guarantee that the strata are given

by functions whose composition with an A.H. section is an A.H. function.

Example 6.1. Let Lnk
W be the sequence of powers of the pre-quantum line bundle

of a symplectic manifold of dimension 2p. Let us consider the following sequence

of strata in J1Lnk
W :

Sk;p ¼ fðs0; s1Þ j s1 ¼ 0g:

The second subindex in our notation indicates the complex dimension of the ker-

nel of the degree one homogeneous component of the 1-jet (see equation (54)).
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Using the local sections mk;x; I of equation (32), where I ¼ 1; . . . ; p, and taking

reference sections in Darboux charts, we get coordinates z1k; . . . ; z
p
k , v

0
k; v

1
k ; . . . ; v

p
k

for the total space. Sk;p is then defined by the zeros of the function f ¼
ðv1k; . . . ; v

p
kÞ : C

2pþ1 ! Cp, which is not holomorphic (or A.H.) with respect to the

modified almost complex structure of the total space. Otherwise, the composition

f � j1ðz1ktrefk;xÞ would be A.H., but that composition is ð1þ z1kz
1
k ; z

1
kz

2
k ; . . . ; z

1
kz

p
kÞ.

Actually, we cannot find A.H. functions f defining Sk;p: let us work in Dar-

boux coordinates with the canonical complex structure J0 in the base. Assume

that mk;x; I is built out of the reference section e�jzk j2=4x, where x is a unitary trivial-

ization of LW whose connection form is A in equation (3). Then J1Lnk
W becomes

locally Cpþ1 with diagonal connection matrix AIpþ1�pþ1. Proposition 5.1 for com-

plex manifolds implies that the modified almost complex structure on Cpþ1 is

integrable. The submanifold z2k ¼ � � � ¼ z
p
k ¼ v2k ¼ � � � ¼ v

p
k ¼ 0 is complex with

respect to the modified almost complex structure. Therefore, we can restrict our

attention to the case p ¼ 1. The sections j1hole
�jzk j2=4x, j1holzke

�jzk j2=4x are by Prop-

osition 5.1 holomorphic. If we use them to trivialize J1Lnk
W in a neighborhood of

the origin, then we obtain a new identification with C3 with its canonical complex

structure. Let zk, tk, sk be the new complex coordinates. A short computation

shows that

v0k ¼ tk þ zksk; v1k ¼ �zk=2tk þ ð1� zkzk=2Þsk:

Hence away from the origin Sk;p admits the parametrization

ðzk; skÞ 7!
�
zk; sk; skð2=zk � zkÞ

�
:

Therefore, Sk;p is not holomorphic with respect to the modified almost com-

plex structure, and it follows that we cannot find f A.H. defining Sk;p locally.

6.1. Quasi-stratifications. For the applications we have in mind the notion of

stratification has to be weakened. We start doing it for the local model (endowed

with the trivial connection).

Let s a S, S a submanifold of Jrþ1
Dh;n;m

. We say that a a GðJr
Dh;n;m

Þ is a local

representation for s if (i) að0Þ ¼ prþ1
r s, and (ii) s ¼ j1Dh

að0Þ a Jrþ1
Dh;n;m

, where

prþ1
r : Jrþ1

Dh;n;m
! Jr

Dh;n;m
is the natural projection and j1Dh

a denotes the CR 1-jet

of a. The equality in (ii) should be understood in the following sense: the degree

1 component of the 1-jet should give an element of Jrþ1
Dh;n;m

(with vanishing de-

gree 0 homogeneous component) and whose homogeneous components of degree

1; . . . ; rþ 1 coincide with those of s.

Definition 6.1 (see [5]). Let S be a submanifold of Jr
Dh;n;m

(resp. Jr
Cg;p;m). We de-

fine YS to be the set of points s a S for which there exists an (rþ 1)-jet ~ss (resp.
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(rþ 1)-jet along G) such that prþ1
r ~ss ¼ s and with a local representation a intersect-

ing S at s transversely along Dh (resp. along Cg). We refer to YS as the holo-

nomic transverse subset of S.

It can be checked that if S is invariant under the action of T��
GLðn;CÞ �GLðm;CÞ

�
, the second factor GLðn;CÞ �GLðm;CÞ acting fiberwise,

(resp. T�
�
GLðg;CÞ �GLðm;CÞ

�
), then YS has the same invariance property.

When an (rþ 1)-jet s is represented by a local section of Jr
Dh;n;m

, in order to

check whether prþ1
r s a S belongs to YS the local representation is essentially

unique: regarding transversality, it is enough to consider the degree 1 part of the

Taylor expansion in the coordinates z1k; z
1
k ; . . . ; z

n
k ; z

n
k (we turn the section into a

function using the basis mI ). The degree 0 part is determined by the r-jet, the hy-

pothesis implies that the antiholomorphic part is vanishing and the holomorphic

part is determined by the (rþ 1)-jet. That means in particular that we can restrict

our attention to CR representations if necessary.

The importance of YS is twofold: on the one hand it will be used to define the

stratifications we are interested in. On the other hand it is a very relevant subset

when we study transversality to the strata: indeed, if t is a CR section of Cm and

a :¼ j rDh
t is such that að0Þ ¼ s and s B YS, then a cannot be transverse along Dh

to S at s (notice that ~ss :¼
�
tð0Þ, dDh

að0Þ
�
¼ j rþ1

Dh
tð0Þ a Jrþ1

Dh;n;m
and therefore a is a

local representation of ~ss). The consequence is that if SnYS H qS 0, transversality
of t to S implies that t misses a neighborhood of SnYS in S 0.

Definition 6.1 extends to strata Sk HJr
DEk (resp. Jr

GEk): we have a notion of

pseudo-holomorphic 1-jet of a section of Jr
DEk (resp. pseudo-holomorphic 1-jet

along G of a section of Jr
GEk)—because we have a connection ‘H;D (resp. a con-

nection on Jr
GEk defined out of ‘H and the projection pG : JrEk ! J r

GEk)—and

hence the notion of local representation. Then YSk
are those points s with lifts ~ss

having a local representation transverse along D (resp. G) to Sk at s.

Recall that once a family of A.H. charts has been fixed we have identifications

$k;x : T
�1;0Cn ! D�1;0. If we also fix a family of A.H. trivializations of Ek over

the charts there is an induced identification

Pk;x : J
r
DEk ! Jr

Dh;n;m
: ð34Þ

Lemma 6.2. Let Sk be a sequence of strata of Jr
DEk, where either r ¼ 0 and

Ek ¼ EnLnk, or Ek ¼ Cm and r a N.

(1) If Ek ¼ Cm assume that for a choice of A.H. charts Pk;xðSkÞ ¼ S, where

SHJr
Dh;n;m

is invariant under the action T�GLðn;CÞ, then Pk;xðYSk
Þ ¼ YS.

(2) The same result holds for EnLnk and r ¼ 0; we need to fix A.H. trivializations

of Ek (so Pk;x is defined ) and require invariance of SHCm under the action of

T�GLðm;CÞ.
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For jets along G we have analogous results, but we need A.H. charts adapted to

G and we ask for T�GLðg;CÞ-invariance of S instead of T�GLðn;CÞ-invariance.

Proof. Since S is GLðn;CÞ-invariant, so is YS. We have the local identifications

Pk;x : J
r
DEk ! Jr

Dh;n;m
. Let y a M belong to Bð0; rÞ in the domain of the charts

centred at x1 and x2, for some k. Then there is a fiber bundle isomorphism

Fk;x1;x2 : J
r
Dh;n;m

! Jr
Dh;n;m

ð35Þ

defined as follows: for each point y in the intersection of the domains of the charts,

the restriction of the di¤erential to D is a complex J-linear map Ly. Consider the

linear map $k;x2 � L�
y �$�1

k;x2
: T�1;0Cn ! T�1;0Cn, which belongs to GLðn;CÞ.

Fk;x1;x2 in the fiber over y (or over the origin in both charts due to the T-

invariance) is the vector space isomorphism induced by $k;x2 � L�
y �$�1

k;x2
(and

the identity acting on the Cm factor of the tensor product). Since S is invariant

under the T�GLðn;CÞ-action, it follows that Fk;x1;x2ðYS;SÞ ¼ ðYS;SÞ. In par-

ticular the pair ðYS;SÞ does not depend on the chosen family of A.H. charts. We

construct an appropriate family of A.H. charts (there is no Darboux condition in-

volved here) by the usual rescaling procedure, but starting from normal coordi-

nates composed with a linear transformation so that ðD; JÞ ¼ ðDh; J0Þ at the

origin. Recall that since Ek ¼ Cm, the connection ‘k; r on Jr
DEk is just induced

by the Levi-Civita connection (in the Cm factor we use the trivial connection d).

Hence the pushforward of ‘k; r by Pk;x to Jr
Dh;n;m

has vanishing connection form

at the origin. Since we also have ðDaD?; JÞ ¼ ðDhaDv; J0Þ at the origin, for

any section a of Jr
Dh;n;m

we have j1Dað0Þ ¼ j1Dh
að0Þ. Therefore, the local represen-

tations at the origin for the canonical CR structure and the induced one coincide.

From that and D ¼ Dh at the origin, we conclude that Pk;xðYSk
Þ ¼ YS.

Item (2) is proven in the same fashion. The GLðm;CÞ-invariance implies that

we can choose any arbitrary family of A.H. trivializations. What we do is select-

ing trivializations such that the connection form over the origin is vanishing (here

we deal with the connection ‘k on Ek).

Notice that we cannot state item (2) for higher order jets because the action of

GLðn;CÞ �GLðm;CÞ does not allow us to kill at the origin of each chart the con-

nection form of the modified connection ‘k;Hr
.

For the relative results we start by modifying a bit the vector bundle isomor-

phism $k;x : T
�1;0Cp ! T�1;0P; the original ðJ0; JÞ-complex map TCp ! TP can

be easily arranged to be compatible with the splittings TCgaTCp�g and GaG?.
Due to the T�

�
GLðg;CÞ

�
-invariance we are free to pick any family of A.H.

charts adapted to G. The ones we need come from rescaling normal coordinates

composed with a linear transformation sending ðGaG?; JÞ to ðCgaCp�g; J0Þ at
the origin. In these coordinates the connection form on T�1;0Cg is vanishing, be-

cause we project the Levi-Civita connection which is already vanishing at the
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origin. Hence the 1-jets along G and Cg at the origin coincide (also because

ðGaG?; JÞ ¼ ðCgaCp�g; J0Þ at the origin), which proves the result. r

The only relevant strata Sk HJ r
DEk for which we have to consider the subsets

YSk
are the zero sections Zk. In that case (see [3]) the subsets YZk

are those r-jets

whose degree 1 component is onto.

Definition 6.2. An approximately holomorphic quasi-stratification of Jr
DEk is an

approximately holomorphic stratification in which the partial order condition is

relaxed in the following way: Zk are strata of the quasi-stratification, and for any

other strata Sk AZk when we approach Zk, it accumulates into points of ZknYZk

(so in particular Zk is not in the closure of Sk).

6.2. The Thom–Boardman–Auroux stratification for maps to projective
spaces. Let Ek ¼ Cmþ1 nLnk. Let Z0; . . . ;Zm be the complex coordinates asso-

ciated to the trivialization of Cmþ1 (at any fiber) and let p : Cmþ1nf0g ! CPm be

the canonical projection. Consider the canonical a‰ne coordinates

j�1
i : Ui ! Cm; ½Z0 : . . . : Zm� 7!

Z0

Zi
; . . . ;

Zi�1

Zi
;
Ziþ1

Zi
; . . . ;

Zm

Zi

	 

:

For each chart ji we consider the bundle

Jr
DðM;CmÞi :¼

�Xr

j¼0

ðD�1;0Þpj
�
nCm: ð36Þ

We now return to the discussion at the beginning of Section 5. Assume for the

moment that M is a Levi-flat CR manifold and fix a family of CR charts. Over

each of the balls Bgk ðx; rÞ we have the bundles Jr
Dh;n;m

of CR r-jets. Notice that if

we use the frames mk;x; I of equation (32) they are vector bundles.

The local bundles Jr
Dh;n;m

glue into the non-linear bundle Jr
CRðM;CmÞi: let

y a M be a point belonging to two di¤erent charts centred at x0 and x1,

respectively. If we send y in both charts to the origin via a translation, then the

change of coordinates restricts to the leaf through the origin to a holomorphic

map fixing the origin. The fibers over y are related by the action of the holomor-

phic r-jet of the bi-holomorphism. If we only take the linear part of the action,

which is the vector bundle map Fk;x1;x2 of equation (35), we are equally defining

a bundle, for the cocycle condition still holds. Moreover, it is a vector bundle.

Besides, since we only use the linear part we do not need either D or J to be

integrable. This bundle is Jr
DðM;CmÞi as defined in equation (36) (what we de-

fined there is rather a sequence in which the metric in the D�1;0 factors is induced
from gk). Thus for Levi-flat manifolds the vector bundles Jr

DðM;CmÞi are ‘‘linear
approximations’’ of the non-linear bundles Jr

CRðM;CmÞi.
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Proposition 6.1. (1) The vector bundles Jr
DðM;CmÞi can be glued to define the al-

most complex fiber bundles Jr
DðM;CPmÞ of pseudo-holomorphic r-jets of maps from

M to CPm, so that their fibers inherit a canonical holomorphic structure.

(2) Given fk : M ! CPm there is a notion of pseudo-holomorphic r-jet exten-

sion j rDfk : M ! Jr
DðM;CPmÞ which is compatible with the notion of pseudo-

holomorphic r-jet for the sections j�1
i � fk : M ! Cm of Definition 5.2. If

fk : M ! CPm is an A.H. sequence then j rDfk : M ! Jr
DðM;CPmÞ is also A.H.

Analogous results hold in the relative setting for the bundles JrðP;CPmÞ and

Jr
GðP;CPmÞ. Also there is an approximately holomorphic sequence of canonical

submersions pG : JrðP;CPmÞ ! Jr
GðP;CPmÞ. These submersions are left inverses

of the natural inclusions lG : Jr
GðP;CPmÞ ,! JrðP;CPmÞ so that for fk : P ! CPm

an A.H. sequence, j rGfk : P ! Jr
GðP;CPmÞ ,! JrðP;CPmÞ is A.H.

Proof. Let us denote the change of coordinates j�1
j � ji by Cji. For any y a M

the points in fyg � ðUi BUjÞHJr
DðM;CmÞi are identified with points in

fyg � ðUi BUjÞHJr
DðM;CmÞj using the same transformation j rCji in Jr

n;m in-

duced by the fiberwise holomorphic change of coordinates Cji. In other words, if

we take an approximately holomorphic chart centred at x say and containing y,

we get as in equation (34) a vector bundle isomorphism Pk;x; i : J
r
DðM;CmÞi !

Jr
Dh;n;m

. Thus for s a Jr
DðM;CmÞi there exists F : Cn ! Cm a CR function such

that Pk;x; iðsÞ ¼ j rDh
FðxÞ.

The bundle map we define is

j rCji : J
r
DðM;CmÞi ! Jr

DðM;CmÞj; s 7! P�1
k;x; j

�
j rDh

ðCji � FÞðxÞ
�
: ð37Þ

This map does not depend on the charts either: if we have a point y in two

di¤erent charts centred at x1 and x2, then we saw in the proof of Lemma 6.2

that the vector space isomorphism Fk;x1;x2 : J
r
Dh;n;m

! Jr
Dh;n;m

was induced by

T a GLðn;CÞ. The bundle map of equation (37) is equivariant with respect to

this action, because in the CR setting it is equivariant with respect to the action

in the base of CR transformations. Hence, the result follows by considering the

a‰ne CR transformation sending y in the first chart to its image in the second

and whose linear part is T � � I : Cn � R ! Cn � R.

Equivalently, the r-jet of Cji � F admits a coordinate free expression only in

terms of the r-jet of F .

Therefore the identifications j rCji give rise to a well defined locally trivial fiber

bundle Jr
DðM;CPmÞ.

Remark 6.1. If our manifold is CR and we have x belonging to two di¤erent CR

charts, then there is a natural induced identification Jr
Dh;n;m

! Jr
Dh;n;m

over the

points belonging to both charts. This identification is just the action of the CR r-

jet of the change of coordinates. We observe that this is not the action of Fk;x1;x2 ,
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which is just the action induced by the 1-jet of the change of coordinates (the only

one available for all almost CR structures!).

The fibers of Jr
DðM;CPmÞ admit a canonical holomorphic structure because

using the local identifications Pk;x; i the fiber is some CN and the change of coor-

dinates is a fiberwise holomorphic map (because it is the holomorphic r-jet of Cji),

and this proves item (1).

Let f : ðM; J;DÞ ! CPm. Its pseudo-holomorphic r-jet j rDf is defined as fol-

lows: the a‰ne charts of projective space induce maps fi :¼ j�1
i � f : M ! Cm.

Using the trivial connection d in this trivial vector bundle and the induced connec-

tion on D�1;0, we can define the corresponding pseudo-holomorphic r-jet j rDfi
(Definition 5.2). We must check that

j rDfj ¼ j rCjið j rDfiÞ: ð38Þ

More generally let H : Cm1 ! Cm2 be any holomorphic map. Then use the lo-

cal identifications Pk;x; s : J
r
DðM;CmsÞ ! Jr

Dh;n;ms
, s ¼ 1; 2, to induce the map

j rH : Jr
DðM;Cm1Þ ! Jr

DðM;Cm2Þ. We claim that for any function f : M ! Cm1

we have

j rDðH � fÞ ¼ j rHð j rDfÞ: ð39Þ

Equation (38) follows from the claim by taking H ¼ Cji.

The proof of the claim take the next two and a half pages, and it is by induc-

tion on r. Firstly we notice that from the proof of the claim for m2 ¼ 1, the proof

for any m2 follows immediately. Therefore we assume m2 ¼ 1. Secondly we ob-

serve that it is enough to check the equality in (39) for the degree r homogeneous

component of the r-jet.

We shall denote the degree r homogeneous component of j rH by drH; recall

that drH
�
j rDfðxÞ

�
depends on the components of every order of j rDfðxÞ. Let

F ¼ ðF 1; . . . ;F m1Þ : Cn � R ! Cm1 be a CR function such that

j rDfðxÞ ¼ j rDh
F ðxÞ:

Also the degree r homogeneous component of j rDh
F is denoted by qr

0F . By defini-

tion

q j
symfðxÞ ¼ q

j
0F ðxÞ; j ¼ 0; . . . ; r: ð40Þ

We start the proof of the claim for 1-jets. Once we use the identification

qfðxÞ ¼ q0F ðxÞ, we have

dH
�
qfðxÞ

�
:¼ dH

�
q0F ðxÞ

�
¼

Xm1

a¼1

q0H

q0za
q0F

aðxÞ; ð41Þ
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and using the identification of equation (40) above we get the following formula

for the right-hand side of equation (39) for 1-jets:

dH
�
qfðxÞ

�
¼ dH

�
q0FðxÞ

�
¼

Xm1

a¼1

q0H

q0za
qfaðxÞ; ð42Þ

where the partial derivatives of H are evaluated on fðxÞ ¼ FðxÞ, but we omit it in

the notation.

Regarding the left-hand side of equation (39), the computation of qðH � fÞðxÞ
is done by firstly taking in ‘ðH � fÞðxÞ its projection over D� (or restricting the

di¤erential to D). Since

‘ðH � fÞðxÞ ¼
Xm1

a¼1

q0H

q0za
‘faðxÞ ð43Þ

is the sum of partial derivatives of H multiplied by the components ‘faðxÞ of

‘fðxÞ, taking ‘DðH � fÞðxÞ amounts to substituting in equation (43) the factors

‘faðxÞ by ‘Df
aðxÞ.

Next the holomorphic component is singled out; since H is holomorphic

qðH � fÞðxÞ is computed by taking the component qfaðxÞ of ‘Df
aðxÞ in equa-

tion (43). Thus we obtain the same result as in equation (42), and this proves the

claim for 1-jets.

We need to prove the claim for 2-jets before going to the induction step. The

reason is that for 1-jets the symmetrization step is not present, unlike the case of

higher order jets.

By definition

d2H
�
j2Dh

FðxÞ
�
¼

Xm1

b;a¼1

q20H

q0zaq0zb
q0F

aðxÞn q0F
bðxÞ þ

Xm1

c¼1

q0H

q0zc
q20F

cðxÞ; ð44Þ

so using equation (40) we get for the right-hand side of equation (39)

d2H
�
j2DfðxÞ

�
¼

Xm1

b;a¼1

q20H

q0zaq0zb
qfaðxÞn qfbðxÞ þ

Xm1

c¼1

q0H

q0zc
q2symf

cðxÞ: ð45Þ

To compute q2symðH � fÞðxÞ we first di¤erentiate qðH � fÞ at x:

‘qðH � fÞðxÞ ¼
Xm1

b;a¼1

q20H

q0zaq0zb
‘faðxÞn qfbðxÞ þ

Xm1

c¼1

q0H

q0zc
‘qfcðxÞ: ð46Þ
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Taking the component along D and then the holomorphic part amounts to substi-

tuting in equation (46) ‘faðxÞ by qfaðxÞ, and ‘qfcðxÞ by q2fcðxÞ:

q2ðH � fÞðxÞ ¼
Xm1

b;a¼1

q20H

q0zaq0zb
qfaðxÞn qfbðxÞ þ

Xm1

c¼1

q0H

q0zc
q2fcðxÞ: ð47Þ

We need to show that symmetrizing equation (47) amounts to writing q2symf
cðxÞ

instead of q2fcðxÞ.
In equation (47) we have terms of ‘‘type’’ 2—those containing a second deriv-

ative of f—and terms of ‘‘type’’ ð1; 1Þ which contain the tensor product of two

derivatives of f. Terms of ‘‘type’’ ð1; 1Þ are already symmetric ( just exchange

the indices a; b); the symmetrization, being a linear projection, does not alter

them. Now one checks that the symmetrization of each summand q0H
q0zc

q2fcðxÞ is
exactly q0H

q0zc
q2symf

cðxÞ, which proves the claim for 2-jets.

We now move onto the induction step. We assume drH
�
j rDfðxÞ

�
¼

qr
symðH � fÞðxÞ and we want to prove the claim for ðrþ 1Þ-jets. By a partition of

r of degree s we understand any (ordered) s-tuple ðr1; . . . ; rsÞ, 1a sa r, 1a rj a r,

r1 þ � � � þ rs ¼ r. In the computation of drH
�
j rDfðxÞ

�
:¼ qr

0ðH � FÞðxÞ we get an

algebraic expression whose summands are of the form

qr1þ���þrs
0 H

qr1
0 z

i1 . . . qrs
0 z

is
qr1
0 F

i1ðxÞn � � � n qr
0F

isðxÞ; ð48Þ

each belonging to a partition ðr1; . . . ; rsÞ. Notice that to some partitions corre-

spond summands that are originated from di¤erent partitions of r� 1. For exam-

ple, in degree 3 we have ð1; 2Þ-terms coming from the derivation of the terms of

‘‘type’’ 2 and others obtained from the derivation of the ð1; 1Þ-terms. We do not

add summands of the same ‘‘type’’ but keep them distinguished. By induction we

assume that qr
symðH � fÞðxÞ is computed by the same algebraic expression as

drH
�
j rDh

FðxÞ
�
, but writing in the summands of equation (48) qrj

symf
ij in place of

q
rj
0 F

ijðxÞ, and then evaluating at x.

To compute qrþ1
symðH � fÞðxÞ we have to firstly di¤erentiate the algebraic ex-

pression that computes qr
symðH � fÞðxÞ. From the previous assumption a one-

to-one correspondence compatible with the partitions between the summands of

drþ1H
�
j rþ1
Dh

F ðxÞ
�
and of ‘qr

symðH � fÞðxÞ can be established. It is clear that re-

stricting to D and taking the ð1; 0Þ-component does not a¤ect the identification.

In each summand of qqr
symðH � fÞðxÞ all the factors but possibly one in the

tensor product are of the form qrj
symf

ij and hence already symmetric; the di¤erent

one is of the form qq
r 0j
symf

i 0j . Observe that the symmetrization of each summand in

qqr
symðH � fÞðxÞ amounts to putting instead of qq

r 0j
symf

r 0j its symmetrization q
r 0jþ1
sym fr 0j

and then symmetrizing the resulting expression (this is an elementary result con-
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cerning symmetric products which is proved by suitably re-grouping the permuta-

tions). Thus we have proven that

qrþ1
symðH � fÞðxÞ ¼ symrþ1

�
drþ1H

�
j rþ1
D fðxÞ

��
;

but drþ1H
�
j rþ1
Dh

F ðxÞ
�
is already symmetric. Therefore we conclude that

qrþ1
symðH � fÞðxÞ ¼ drþ1H

�
j rþ1
D fðxÞ

�
;

where the equality also holds for each summand in the algebraic expression com-

puting both quantities.

Therefore we conclude that the pseudo-holomorphic r-jet of a map to CPm is

well defined.

To be able to say when a sequence of functions of Jr
DðM;CPmÞ is A.H. we

need to introduce an almost CR structure in the total space of the r-jets. This

can be done using a connection (for example out of the Levi-Civita connection

associated to the Fubini–Study metric in the projective space and of the con-

nection on D�). In our case we choose to do something di¤erent but equiva-

lent: we use the identifications with Jr
DðM;CmÞi. Each of these trivial vector bun-

dles with trivial connection has a natural almost CR structure. Let Ki HUi be

compact sets whose interiors cover CPm. We have the corresponding subsets

Jr
D

�
M; j�1

i ðKiÞ
�
HJr

DðM;CmÞi.
We say that sk : M ! Jr

DðM;CPmÞ is A.H. if there exist constants ðCjÞjb0

such that

max
i A f0;...;mg

j‘ jð j rj�1
i � skÞðxÞjgk aCj;

max
i A f0;...;mg

j‘ j�1qð j rj�1
i � skÞðxÞjgk aCjk

�1=2;

for all x a M, jb 1, and k a N, where for each x we only take into account those

indices for which skðxÞ belongs to the interior of J r
DðM;KiÞ.

Notice that in the local models the identifications j rCji are holomorphic, there-

fore when restricted to subsets associated to compact regions of Cm
i and Cm

j the

sequence of maps j rCji : J
r
DðM;CmÞi ! J r

DðM;CmÞj is A.H. In particular the

notion of a sequence sk : M ! Jr
DðM;CPmÞ being A.H. does not depend on

the covering Ki. It is also clear that if a sequence of functions fk is A.H. then

j rDfk is also A.H. This proves item (2) of the proposition.

If ðP;WÞ is symplectic the definition of JrðP;CPmÞ is the same (we just do not

need to project the full derivative into the subspace D�). When we have a J-

complex distribution G there is an analogous definition of the bundle of pseudo-

holomorphic r-jets along G. Using the previous a‰ne coordinates of projective

space we consider the sub-bundles
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Jr
GðP;CmÞi :¼

�Xr

j¼0

ðG�1;0Þpj
�
nCm;

where Jr
GðP;CmÞi HJrðP;CmÞi via the splitting GaG? ¼ TP.

It is easily checked using the local identification between Jr
p;m and JðP;CmÞ

coming from approximately holomorphic coordinates adapted to G that the dif-

feomorphisms j rCji : J
rðP;CmÞi ! JrðP;CmÞj preserve these sub-bundles.

The proof that shows that the j rf is well defined is exactly the same we gave

for 2-calibrated manifolds; a small modification shows that j rGf is well defined

(instead of keeping the component ‘D of the odd-dimensional case, we project

over G�).
Going to the models furnished by approximately holomorphic coordinates

adapted to G, the submersion pG : Jr
p;m ! Jr

Cg;p;m is just a projection on some of

the holomorphic coordinates, and therefore it is an approximately holomorphic

sequence of maps.

Using approximately holomorphic coordinates adapted to G it is straightfor-

ward to check that if fk : P ! CPm is A.H., then both j rGfk and j rfk are A.H.

sequences of JrðP;CPmÞ. r

We recall that Zk denotes the sequence of strata of Jr
DEk (resp. JrEk, J

r
GEk)

of r-jets whose degree 0-component vanishes. We define Jr
DE

�
k :¼ Jr

DEknZk (resp.

JrE �
k :¼ JrEknZk, J

r
GE

�
k :¼ Jr

GEknZk).

Proposition 6.2. (1) There exists a bundle map j rp : Jr
DE

�
k ! Jr

DðM;CPmÞ which
is a fiberwise holomorphic submersion.

(2) Let tk be a section of Ek, and let fk ¼ p � tk : MnZðtkÞ ! CPm be its pro-

jectivization defined away from the zero subset of tk. Then the following equation

holds:

j rpð j rDtkÞ ¼ j rDfk: ð49Þ

In the almost complex case we have an analogous map j rp, and for tk : P ! Ek

and its projectivization fk the equality

j rpð j rtkÞ ¼ j rfk ð50Þ

holds where defined.

Given G a J-complex distribution we have the following commutative square of

submersions:

JrE �
k ���!pG

Jr
GE

�
k???yj rp

???yj rp

JrðP;CPmÞ ���!pG
J r
GðP;CPmÞ:

ð51Þ
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If j rGtk is a section of Jr
GE

�
k the equality

j rpð j rGtkÞ ¼ j rGfk ð52Þ

holds where defined.

Proof. We define j rp to have the same expression as in the integrable case. This

means that we fix approximately holomorphic coordinates and a section trivializ-

ing Lnk and a local frame of E ¼ Cmþ1, so that the r-jet s in question is identified

with the usual CR r-jet at a point x of a CR function F . Then j rpðsÞ is defined to

be the CR r-jet of p � F . Notice that for an appropriate chart j�1
i of projective

space,

j rpðsÞ :¼ P�1
k;x; i

�
j rDh

ðj�1
i � p � FÞðxÞ

�
a Jr

DðM;CmÞi: ð53Þ

The arguments in Proposition 6.1 that showed that the bundles Jr
DðM;CPmÞ

are well defined, also prove that j rpðsÞ is well defined independently of the ap-

proximately holomorphic coordinates and of the chart of CPm we used; it is as

well independent of the local frame of Ek, because the map is equivariant with re-

spect to the action of GLðmþ 1;CÞ on the fibers of Ek and on CPm.

It is clear that j rp is a submersion, and it is fiberwise holomorphic because in

each fiber we have a map from some Cm1 to some Cm2 (after composing with a

chart ji), whose formula is that of the integrable case which is holomorphic, so

item (1) holds.

We now prove the equality j rDðp � tkÞ ¼ j rpð j rDtkÞ: let j�1
i be any chart whose

domain contains p � tkðxÞ. Then by the definition given in Proposition 6.1,

j rDðp � tkÞðxÞ :¼ j rDðj�1
i � p � tkÞðxÞ:

We just defined in equation (53)

j rp
�
j rDtkðxÞ

�
:¼ P�1

k;x; i

�
j rDh

ðj�1
i � p � F ÞðxÞ

�
:

By Proposition 6.1 the right-hand side of the two previous equalities coincides, i.e.,

P�1
k;x; i

�
j rDh

ðj�1
i � p � F ÞðxÞ

�
¼ j rDðj�1

i � p � tkÞðxÞ:

Here the holomorphic function j�1
i � p : Cmþ1nf0g ! Cm plays the role of H in

Proposition 6.1. Also observe that the proposition is in principle only valid when

Cmþ1 has the trivial connection. In the current situation Cmþ1 is endowed with a

diagonal connection coming from the one in Lnk. The key point is that the com-

position j�1
i � p � fk is a section of Cm nLnk nL�nk and hence a Cm-valued

function independently of the trivialization of Lnk. Therefore the flat connection
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d on Cm is induced from dn Iþ In‘k in Cmþ1 nLnk, where ‘k is any Hermi-

tian connection on Lnk. In other words, the equations of Proposition 6.1 involv-

ing the connection ‘g n Iþ In d on ðT�1;0CnprÞnCmþ1 are also valid in this

setting for the connection ‘g n Iþ In ðdn Iþ In‘kÞ, and this finishes the

proof of item (2).

The previous ideas work word by word to show that for symplectic manifolds

j rp : JrE �
k ! JrðP;CPmÞ is a well defined submersion and that equation (50)

holds.

If we have a distribution G, once we use the local identification coming from

approximately holomorphic coordinates adapted to G, the commutativity of the

diagram (51) follows from the commutativity in the holomorphic case. It is also

clear that j rp : Jr
GE

�
k ! Jr

GðP;CPmÞ is a submersion and that equation (52)

holds. r

In order to describe the linearized Thom–Boardman stratification we need to

define, at least for certain kinds of strata PSa
k of J r

DðM;CPmÞ, the corresponding
subsets of transverse holonomy YPS a

k
.

Definition 6.3. Let PSk be a sequence of strata of Jr
DðM;CPmÞ so that in canon-

ical a‰ne charts of CPm and approximately holomorphic coordinates it is identi-

fied with a stratum PS of Jr
Dh;n;m

invariant under the action of T�GLðn;CÞ. We

let PSk; i :¼ PSk BJr
DðM;CmÞi and then define

YPSk
:¼ 6

i A f0;...;mg
YPSk; i

:

For Sk :¼ j rp�1ðPSkÞ, with j rp : Jr
DE

�
k ! Jr

DðM;CPmÞ the submersion of Prop-

osition 6.2, we define �YYSk
:¼ j rp�1ðYPSk

Þ.
In the relative theory we assume that for a choice of approximately holomor-

phic coordinates adapted to G and canonical a‰ne charts of projective space, the

sequence PSk; i HJr
GðP;Cm

i Þ is identified with a stratum PS of Jr
Cg;p;m ¼ Jr

g;m �
Cp�g invariant under the action of T�GLðg;CÞ. Then we define

YPSk
:¼ 6

i A f0;...;mg
YPSk; i

:

For Sk :¼ j rp�1ðPSkÞHJr
GE

�
k , SG

k :¼ pG
�1ðSkÞHJrE �

k , we define the subset
�YYSG

k
HSG

k by pulling back YPSk
to JrE �

k using either of the sides of the commu-

tative diagram (51).

Notice that by item (1) of Lemma 6.2 the subsets YPSk; i
are well defined, so

Definition 6.3 makes sense. It is also satisfactory because of the following result:
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Lemma 6.3. We have

YPSk
BJr

DðM;Cm
i Þ ¼ YPSk; i

;

YPSk
BJr

GðP;Cm
i Þ ¼ YPSk; i

:

Proof. Fix approximately holomorphic coordinates and canonical a‰ne charts of

CPm, so that Pk;x; iðPSk; iÞ ¼ PS, for all k, x, i. We need to show is that

j rCjiðYPSÞ ¼ YPS

in the domain of definition of j rCji, where Cji is a change of canonical a‰ne co-

ordinates.

Let c be an r-jet in YPS. Then we have a lift ~cc to Jrþ1
Dh;n;m

and a local represen-

tation a of the lift cutting PS transversally along Dh at c. As we mentioned re-

garding transversality the local representation is essentially unique. That means in

particular that any other representation a 0 will also share the transversality

property. By definition ~cc is the (rþ 1)-jet of a local CR function F . Then

j rDh
Fð0Þ ¼ c and

�
F ð0Þ; dDh

j rDh
F ð0Þ

�
¼

�
Fð0Þ; q0 j rDh

Fð0Þ
�
¼ j rþ1

Dh
F ð0Þ ¼ ~cc. Thus,

j rDh
F is a local representation of ~cc which is transverse to PS along Dh at c.

Since j rþ1Cjið j rþ1
Dh

F Þ ¼ j rþ1
Dh

ðCij � F Þ, we deduce that j rþ1Cjið ~ccÞ is a lift of

j rCjiðcÞ with local representation j rDh
ðCij � F Þ, which is obviously transverse

along Dh to j rCjiðPSÞ ¼ PS because j rCji is a di¤eomorphism that preserves the

pullback of Dh to Jr
Dh;n;m

. We just checked one inclusion, but that su‰ces because

Cji is a di¤eomorphism, thus the result for jets along D follows.

An analogous proof shows the desired result for jets along G. r

The linearized Thom–Boardman stratification is the pullback to Jr
DE

�
k by j rp

of the analog of the Thom–Boardman stratification of Jr
DðM;CPmÞ (see for ex-

ample [8]), together with the strata Zk. The definition is the natural extension of

the one given for symplectic manifolds by D. Auroux in [4].

A first rough definition of the stratification of J r
DðM;CPmÞ is the following:

we fix approximately holomorphic coordinates and canonical a‰ne charts of pro-

jective space, so we have charts P�1
k;x; i : J

r
Dh;n;m

! J r
DðM;CmÞi. In each Jr

Dh;n;m

there is a CR Thom–Boardman stratification which is T� ðHr
n �Hr

mÞ-invariant,
where Hr

l is the group of r-jets of germs of bi-holomorphic transformations from

C l to C l ; in particular it is T�GLðn;CÞ-invariant, so it defines a stratification

on each Jr
DðM;CmÞi. The Hr

m-invariance implies that the identifications that

define Jr
DðM;CPmÞ are compatible with the aforementioned stratifications on

Jr
DðM;CmÞi.
Once we pullback the stratification to Jr

DE
�
k the behavior of the strata when

they approach Zk needs to be clarified. To do that we re-define the stratification

as follows (see [4]):
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Given s a Jr
DE

�
k let us denote its image in Jr

DðM;CPm) by f ¼ ðf0; . . . ; frÞ.
Let us define

Sk; i ¼ fs a Jr
DE

�
k j dimC ker f1 ¼ ig: ð54Þ

If maxð0; n�mÞ < ia n, the strata Sk; i are smooth submanifolds whose boundary

is the union 6
j>i

Sk; j together with a subset of ZknYZk
.

Each Sk; i is the pullback of a stratum PSk; i HJr
DðM;CPmÞ, and the given de-

scription of their closure is easy to check.

For rb 2, define �YYSk; i
as the subset of r-jets s ¼ ðs0; . . . ; srÞ a Sk; i so that

Xk; i;s ¼ fu a D j ðiuf; 0Þ a TfPSk; ig ð55Þ

has the expected (complex) codimension in D, which is the (complex) codimension

of Sk; i in Jr
DEk, which equals the codimension of PSk; i in Jr

DðM;CPmÞ.
The subset �YYSk; i

is also the one coming from Definition 6.3: observe that YPSk; i

are exactly those points of PSk; i which have a lift with a transverse local

representation. Since the term that we add to the r-jet to define the lift is of order

rþ 1 > 2, the transversality of the local representation does not depend on the lift

that can be chosen to have vanishing component of order rþ 1.

Fix as in the proof of Lemma 6.2 A.H. coordinates so that at the origin

ðDaD?; JÞ ¼ ðDhaDv; J0Þ and the induced connection form (on Jr
Dh;n;m

) is van-

ishing; fix also the canonical a‰ne charts of CPm. Then the strata PSk; i are sent

to the Thom–Boardmman stratum PSi of J
r
Dh;n;m

. The local representation of

ðf; 0Þ can be taken to be a CR section a of Jr
Dh;n;m

. The stratum PSi is CR, there-

fore

TDh
j1Dh

að0ÞB ðTPSi B D̂DhÞ

is a complex subspace of TCn. Undoing the identifications the previous subspace

goes to the subspace in equation (55). By definition of transversality along D,

YPSk; i
are exactly those f for which Xk; i;s has the codimension of PSk; i in

Jr
DðM;CPmÞ. By construction (equation (55))

�YYSk; i
¼ j rp�1ðYPSk; i

Þ:

Hence �YYSk; i
is the same subset introduced in Definition 6.3.

If pþ 1a r, we define inductively

Sk; i1;...; ip; ipþ1
¼ fs a YSk; i1 ;...; ip

j dimCðker f1BXk; i1;...; ip;sÞ ¼ ipþ1g;

with

Xk; I ;s ¼ fu a D j ðiuf; 0Þ a TfPSk; Ig:
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As in the previous case we define �YYSk; I
either as the points such that the complex

codimension of Xk; I ;s in D is the same as the codimension of Sk; I in Jr
DEk, or as

the pullback of YPSk; I
.

If i1b � � �b ipþ1b 1, Sk; i1;...; ipþ1
is—in the local model—a smooth CR sub-

manifold whose closure in Sk; i1;...; ip is the union of the Sk; i1;...; ip; j, j > ipþ1, and a

subset of Sk; i1;...; ipn�YYSk; i1 ;...; ip
[8]. The problem is that for large values of r, n, m,

the closure of the strata in Jr
Dh;n;m

is hard to understand, and what we have

defined, once Zk has been added, might very well not be a Whitney (A) quasi-

stratification. More precisely, let Smþ1;q :¼ S
mþ1;1;...ðqÞ;1

HJr
Dh;n;m

be a so-called

Morin stratum. Then in [40] it is shown that

Smþ1;qBSmþ2;0A j;

but for q large enough dimSmþ1;q < dimSmþ2;0, thus Whitney’s condition (A) can

never hold. It is known that Jr
Dh;n;m

admits a Whitney (A) stratification contain-

ing the Morin strata. If the dimensions satisfy n < 4 or 2n > 3m� 4, then a ge-

neric function will avoid Smþ2;0 and Smþ1;2 and therefore will only intersect the

Morin strata, so the aforementioned previous stratification su‰ces (also because

the strata Sk; I do not accumulate in points of YZk
). In general one must refine

the Thom–Boardman stratification.

Recall that using the local identifications the stratification we have defined (mi-

nus Zk) is the union running over the a‰ne charts of the pullback by j rðj�1
i � pÞ :

Jr
Dh;n;mþ1nZ ! Jr

Dh;n;m
of the CR Thom–Boardman stratification PS of Jr

Dh;n;m
.

The latter is CR and T�
�
GLðn;CÞ �Hr

m

�
-invariant.

On the domain of each chart Jr
Dh;n;m

we can use the results of Mather [28] to

refine PS into a CR finite, Whitney (A) stratification transverse to the fibers and

invariant under the action of T�
�
GLðn;CÞ �Hr

m

�
, and such that the submani-

folds PSI are unions of strata of the refinement. Due to the required invariance

properties for the refinements, they can be glued to give a refinement of the strat-

ification PSk HJr
DðM;CPmÞ, which is independent of the choice of approxi-

mately holomorphic coordinates. Thus, its pullback is a finite, Whitney (A) strat-

ification of Jr
DE

�
k and such that the Sk; I are union of strata. It is by construction

invariant by the action of GLðmþ 1;CÞ on the fiber.

It is important to notice that since all the strata are contained in the closure of

Sk;maxð0;n�mÞþ1, they accumulate near Zk in points of ZknYZk
. Therefore, by add-

ing Zk we obtain a quasi-stratification of Jr
DEk.

If we have a distribution G we use exactly the same definitions but in the sub-

bundles Jr
GEk and Jr

GðP;CPmÞ. That is, we have the strata

PSk; i ¼ ff a Jr
GðP;CPmÞ j dimC ker f1 ¼ ig

and for rb 2, �YYPSk; i
HPSk; i is the subset of r-jets along G, f ¼ ðf0; . . . ; frÞ so that
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Xk; i;s ¼ fu a G j ðiuf; 0Þ a TfPSk; ig ð56Þ

has the expected (complex) codimension in G, which is the (complex) codimension

of PSk; i in Jr
GðP;CPmÞ.

The subsets PSk; I are defined similarly. The result is a stratification PSk of

Jr
GðP;CPmÞ. In charts adapted to G as in the proof of Lemma 6.2 and a‰ne

charts—for which Jr
Cg;p;m ¼ Jr

g;m � Cp�g—, the induced stratification PS is seen

to be the leafwise Thom–Boardman stratification, i.e., the Thom–Boardman strat-

ification of Jr
g;m multiplied by Cp�g.

Using the lower part of the commutative diagram (51), we pull back PSk to

PSG
k HJrðP;CPmÞ. Let SG

k be the pullback of PSG
k to JrE �

k . To refine it we first

locally refine PSk as follows: we go the leafwise Thom–Boardman stratification

furnished by the previous A.H. coordinates and a‰ne charts and construct a holo-

morphic T�
�
GLðg;CÞ �Hr

m

�
-invariant refinement in one of the leaves of Jr

Cg;p;m

(which is identified with Jr
g;m). Next we extend it independently of the remaining

p� g complex coordinates z
gþ1
k ; . . . ; zpk . The local refinements of the leafwise

Thom–Boardman stratification glue well and thus define a sequence of Whitney

(A) stratifications Jr
GðP;CPmÞ, which does not depend either on the A.H. coordi-

nates adapted to G or in the chosen a‰ne charts of CPm. Its pullback to JrE �
k

refines SG
k to a sequence of Whitney (A) stratifications.

Definition 6.4 (see [4]). (1) Given ðM;D; J; gkÞ and Ek ¼ Cmþ1 nLnk, the

Thom–Boardman–Auroux stratification of Jr
DðM;CPmÞ, denoted by PSk, is the

stratification (or rather its refinement) built out of the pieces of the Thom–

Boardman stratifications of J r
Dh;n;m

. The Thom–Boardman–Auroux quasi-

stratification of Jr
DEk is the pullback of the Thom–Boardman–Auroux stratifica-

tion of Jr
DðM;CPmÞ together with the zero section. We denote it by Sk.

(2) Given ðP; J;G; gkÞ and Ek ¼ Cmþ1 nLnk, the Thom–Boardman–Auroux

stratification of JrðM;CPmÞ along G, denoted by PSG
k , is the stratification (or

rather its refinement) built out of the pieces of the Thom–Boardman stratifications

of Jr
Cg;p;m. The Thom–Boardman–Auroux quasi-stratification of JrEk along G,

that we denote by SG
k , is the pullback of the Thom–Boardman–Auroux stratifica-

tion of JrðM;CPmÞ along G together with Zk.

Lemma 6.4. The Thom–Boardman–Auroux quasi-stratification of Jr
DEk and the

Thom–Boardman–Auroux quasi-stratification of JrEk along G are finite, Whitney

(A), and approximately holomorphic.

Proof. We start with jets along D. The description of the closure of the strata in-

side Zk implies that the quasi-stratification condition holds.

The delicate point is checking that the strata are approximately holomorphic

(for the modified connection).
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First we study the sequence Zk. Though for this sequence the approximate

holomorphicity is obvious, we will give a proof that works for other sequences of

strata. Indeed, by Lemma 6.1 the sequence of zero sections Zk HEk is as

required. If we prove that the natural projections

pr : Jr
DEk ! Ek

are an A.H. sequence of maps which is also e-transverse for some e > 0, then the

composition of the local maps defining Zk HEk with the projection pr are local

functions for ðprÞ�1ðZkÞ ¼ Zk HJr
DEk meeting the conditions of Definition 4.6.

More generally we prove that the natural projection pr
r�h : J

r
DEk ! Jr�h

D Ek is

approximately holomorphic: we fix A.H. coordinates and A.H. reference frames

j rDt
ref
k;x; I of Jr

DEk (resp. j r�h
D trefk;x; I 0 of Jr�h

D Ek) as in equation (33). Recall that

Proposition 5.1 implies that the sequences are indeed A.H. Using these frames

we obtain A.H. coordinates z1k ; . . . ; z
n
k , u

I
k , sk (resp. z1k ; . . . ; z

n
k , v

I 0

k , sk) for the total

space of Jr
DEk (resp. Jr�h

D Ek). From

pr
r�hð j rDtrefk;x; I Þ ¼ j r�h

D trefk;x; I ð57Þ

we deduce pr
r�hð j rDtrefk;x; I Þ ¼ WI ðzk; vI

0

k Þ, where WI ðzk; vI
0

k Þ is A.H. with respect to

the canonical CR structures associated to the coordinates. This, together with

the fiberwise linearity of pr
r�h imply that in these coordinates pr

r�h is A.H., and

hence it is A.H. with respect to the almost CR structures of the total spaces. It is

also straightforward from equation (57) that the projections are e-transverse (an-

other way is to use rather than holonomic frames the frames mk;x; I of equation

(32). They are also frames for the modified metric because of for example remark

5.3, therefore one can check estimated transvesality using them, something which

is straightforward).

We would like to do something similar with the strata Sk; I and the projection

j rp : Jr
DE

�
k ! Jr

DðM;CPmÞ (away from a uniform tubular neighborhood of the

zero section, where the di¤erential goes to infinity). The image of a trivialization

j rDt
ref
k;x; I is j rDðp � trefk;x; I Þ, also approximately holomorphic. The map is equally fi-

berwise holomorphic, but the di¤erence is the non-linearity of the restriction to the

fibers.

We adopt a di¤erent strategy that amounts to perturbing the almost CR struc-

tures into integrable ones and then checking that j rp is CR with respect to them:

we take Darboux charts and trivialize Lnk with a unitary section xk whose associ-

ated connection form in the domain of Darboux charts is A. Next we trivialize

Jr
DEk with the frames mk;x; I of equation (32), but using xk tensored with a basis

of Cmþ1 to trivialize Cmþ1 nLnk. In this way Jr
DEk becomes the trivial bundle

Jr
Dh;n;mþ1 (which is canonical trivialization constructed out of dz1k ; . . . ; dz

n
k ). Let

us use in the base the canonical CR structure ðDh; J0Þ. Proposition 5.1 in the in-
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tegrable case (and for curvature of type ð1; 1Þ and with trivial derivative, as it is

the case in Darboux coordinates) implies that the modified connection defines a

new CR structure in the total space of Jr
Dh;n;m

; let ðD̂Dh; J0Þ be the corresponding

distribution and almost complex structure, and let ðD̂D; ĴJÞ be the distribution and

almost complex structure induced by the almost CR structure of Jr
DEk. If in the

fiber of Jr
Dh;n;mþ1 we fix a ball Bðs;RÞ, then in Bð0; rÞ � Bðs;RÞ the Euclidean

metric is comparable with the metric carried by J r
DEk. More important

jd jðD̂D� D̂DhÞjg0 aOðk�1=2Þ; jb 0: ð58Þ

If we use the orthogonal projection to push ĴJ into ĴJh : D̂Dh ! D̂Dh we also have

jd jðĴJh � J0Þjg0 aOðk�1=2Þ; jb 0: ð59Þ

We use the same Darboux charts for Jr
Dh
ðCn � R;CPmÞ, so locally and using ca-

nonical a‰ne charts we have identifications with Jr
Dh;n;m

. This is a trivial vector

bundle (again using the basis induced by dz1k; . . . ; dz
n
k and the basis of Cm). We fix

the product CR structure and denote by ð ~DDh; ~JJ0Þ the distribution and almost com-

plex structure. Let ð ~DD; ~JJÞ be the distribution and almost complex structure in-

duced by the almost CR structure of Jr
DðM;CPmÞ. By construction,

jd jð ~DD� ~DDhÞjg0 ; jd
jð ~JJh � ~JJ0Þjg0 aOðk�1=2Þ; jb 0; ð60Þ

where ~JJh is the almost complex structure on ~DDh defined out of ~JJ and the orthogo-

nal projection.

Equations (58), (59), (60) imply that if j rðj�1
i � pÞ : Jr

Dh;n;mþ1 ! Jr
Dh;n;m

is CR

with respect to ðD̂Dh; J0Þ and ð ~DDh; ~JJ0Þ, then it is almost CR with respect to the

global almost CR structures.

The map j rðj�1
i � pÞ : Jr

Dh;n;mþ1 ! Jr
Dh;n;m

is exactly the same as in the holo-

morphic (or rather CR) models. It is CR with respect to the aforementioned CR

structures because it preserves the foliations, it is fiberwise holomorphic and sends

‘‘enough’’ CR sections of Jr
Dh;n;mþ1 to CR sections of Jr

Dh;n;m
. To be more precise,

for any point s a Jr
Dh;n;mþ1 and any vector v in its tangent space along the leaf and

not tangent to the fiber, we can find a CR section F whose CR r-jet in x is s and

such that the tangent space to its graph contains v. Since j rðj�1
i � pÞð j rDh

FÞ
¼ j rDh

ðj�1
i � p � FÞ is also a CR section, we deduce that j rðj�1

i � pÞ�ðJvÞ ¼
~JJ0
�
j rðj�1

i � pÞ�ðvÞ
�
.

The strata PSk (or rather of its refinement), once we choose A.H. coordinates

and a‰ne charts of projective space, are identified with the strata of (the refine-

ment of ) the CR Thom–Boardman stratification of J r
Dh;n;m

, which are CR. The

comparison between the ðD̂Dh; J0; g0Þ and the original almost CR structure implies

that the strata of PSk are A.H., and hence Sk ¼ j rp�1ðPSkÞ is A.H. That the pro-

jections are e-transverse is also clear, therefore the desired result follows.

489The geometry of 2-calibrated manifolds



In the almost complex setting j rp : JrE �
k ! JrðP;CPmÞ is equally shown to

be approximately holomorphic away from a uniform neighborhood of the zero

section. In the relative case, and for a sequence of A.H. strata PSk fulfilling the

conditions of Definition 6.3, the approximate holomorphicity of pG
�1j rp�1Sk

follows from the commutativity of the diagram 51, and from the approxi-

mate holomorphicity of j rp : JrE �
k ! JrðP;CPmÞ and of pG : JrðP;CPmÞ !

Jr
GðP;CPmÞ. Recall that the strata PSk come from holomorphic models (the re-

finement of the strata of the leafwise Thom–Boardman stratification), so they are

A.H. But SG
k is not truly a quasi-stratification of JrEk. To be more precise it is

not true that the strata only accumulate in points of ZknYZk
HZk, but it is still

true that the points of Zk in which the other strata accumulate are never hit by a

section transverse to Zk along G. Thus, the Whitney type reasoning can be ap-

plied as long as we work with r-jets along G (see the proof of Theorem 7.2). r

Remark 6.2. Notice that we only conclude that the strata di¤erent form the zero

section are approximately holomorphic uniformly far from Zk. This is enough for

our purposes, for once we obtain transversality to Zk our r-jet will be uniformly

far from ZknYZk
. All the remaining strata approach Zk accumulating only on

points of ZknYZk
. Therefore, the r-jet will only hit them outside of a uniform tu-

bular neighborhood of Zk, where the approximate holomorphicity holds.

Definition 6.5. (1) An A.H. sequence of sections of Ek ! ðM;D; J; gkÞ is said to

be r-generic if its pseudo-holomorphic r-jet is uniformly transverse along D to the

Thom–Boardman–Auroux quasi-stratification of Jr
DEk.

(2) An A.H. sequence of sections of Ek ! ðP; J;G; gkÞ is said to be r-G-generic

over M if its pseudo-holomorphic r-jet is uniformly transverse over M to

SG
k HJrEk.

(3) Let fk : MnBk ! CPm be sequence of functions which is A.H. outside of a

uniform tubular neighborhood of gk-radius h > 0 of Bk. It is said to be r-generic if

for k large enough Bk is a codimension 2ðmþ 1Þ calibrated submanifold and

j rDfk : MnBk ! Jr
DðMnBk;CP

mÞ is uniformly transverse along D to the Thom–

Boardman–Auroux stratification. Moreover, it is required to intersect the strata

of strictly positive codimension out of a tubular neighborhood of Bk of gk-

radius h.

Lemma 6.5. Let tk be an A.H. sequence of sections of Ek ! ðM;D; J; gkÞ. Then if

tk is r-generic its projectivization fk : Mnt�1
k ðZkÞ ! CPm is also r-generic.

Proof. It is elementary from the construction of the Thom–Boardman–Auroux

(quasi)-stratifications of Jr
DEk and Jr

DðM;CPmÞ, Proposition 6.2 relating j rDtk,

and j rDfk and Lemma 6.4.
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Uniform transversality of tk to Zk implies by Remark 6.2 that fk intersects the

remaining strata uniformly away from the zero set. Estimated transversality along

D is also preserved when composed with j rp uniformly away from Z; the key

point is selecting appropriate local A.H. defining functions for the strata: in A.H.

coordinates and a‰ne charts PSk; I corresponds to a CR stratum PSI . Let f be a

local CR function defining it. Then f �Pk;x; i � j rðj�1
i � pÞ are local defining func-

tions for Sk; I . Now Lemma 4.5 implies that local uniform estimated transversality

along D of j rDtk to Sk; I is equivalent to uniform transversality along D to 0 of

f � j rðj�1
i � pÞ � j rDtk ¼ f � j rDðj�1

i � fkÞ. Again by the same lemma this is equi-

valent to uniform transversality along D of j rDfk to PSk; I . The case of the points

close to the boundary of the strata is just a problem in a vector space; it fol-

lows from j rðj�1
i � pÞ : Jr

Dh;n;mþ1nZ ! Jr
Dh;n;m

being a submersion which amounts

to suppressing coordinates of the fiber of Jr
Dh;n;mþ1 (and because the metrics in

these coordinates are comparable with the ambient metric, so the projection is

e-transverse). r

Let ðP;WÞ be a symplectic manifold with ðM;D;o :¼ WjMÞ 2-calibrated and

G a local J-complex distribution extending D. Let tk be an A.H. sequence of sec-

tions of Ek and denote by fk its projectivization away from its zero set.

Proposition 6.3. Using the above notation, if j rtk : P ! JrEk is uniformly trans-

verse over M to SG
k HJr

GEk then fk jM is r-generic.

Proof. We will make extensive use of diagram (51):

JrE �
k ���!pG

Jr
GE

�
k???yj rp

???yj rp

JrðP;CPmÞ ���!pG
J r
GðP;CPmÞ:

Step 1: Study the compatibility of the Thom–Boardman–Auroux stratifica-

tions with the identification of Jr
DðM;CPmÞ with Jr

GðP;CPmÞjM .

At the points of M there is a canonical J-complex identification between D and

G, inducing isometries

Lk; i : J
r
DðM;CPmÞ ! Jr

GðP;CPmÞjM :

Let z1k ; . . . ; z
p
k be A.H. coordinates adapted to ðM;GÞ. We can rewrite them

as z1k ; . . . ; z
n
k , x

2nþ1
k , x2nþ2

k , znþ2
k ; . . . ; zpk , where z1k; . . . ; z

n
k , x

2nþ1
k are by Lemma 3.6

A.H. coordinates for M. Using also the canonical a‰ne charts of projective space

we have

491The geometry of 2-calibrated manifolds



PD
k;x; i : J

r
DðM;CmÞi ! Jr

Dh;n;m
¼ Jr

n;m � R;

PG
k;x; i : J

r
GðP;CmÞi ! Jr

Cn;p;m ¼ Jr
n;m � Cp�n;

and a canonical identification in Cn � RHCp

L : Jr
Dh;n;m

! Jr
Cn;p;mjCn�R

:

The construction of PD
k;x; i, P

G
k;x; i (see equation (29) and the last paragraph in the

proof of Lemma 6.2) implies the commutativity of

Jr
DðM;CPmÞ ���!Lk

Jr
GðP;CPmÞjM???yPD

k; x; i

???yPG
k; x; i

Jr
Dh;n;m

���!L Jr
Cn;p;mjCn�R

:

ð61Þ

The restriction of Jr
Cn;p;m to Cn � RQM coincides with Jr

n;m � R ¼ Jr
Dh;n;m

.

The identification L obviously preserves the Thom–Boardman–Auroux strati-

fications (and even the refinements), and hence so Lk does.

Step 2: Check that L�1
k � ð j rGfkÞjM QU j rDðfk jMÞ.

Since Lk are J-complex isometries preserving the Thom–Boardman–Auroux

stratifications we omit them from now on.

By using the charts PD
k;x; i, P

G
k;x; i it is easy to see that for any j a f1; . . . ; rg, the

degree j homogeneous component of j rDðfk jMÞ approximately coincides with

‘
j
Dðfk jMÞ. Similarly, the degree j homogeneous component of j rGfk approxi-

mately coincides with ‘
j
Gfk. The result follows because we also have

ð‘ j
GfkÞjM QU‘

j
Dðfk jMÞ:

Step 3: Analyze the behavior of j rDðfk jMÞ near the set of base points Bk.

Since Zk HJrEk is an A.H. sequence of submanifolds and j rtk an A.H. se-

quence of sections, by Corollary 4.2 uniform transversality over M is equivalent

to uniform transversality along G at the points of M. In A.H. coordinates

adapted to G, we are saying that the matrix of partial derivatives of tk with respect

to z1k ; . . . ; z
g
k has maximum rank and norm greater than some h > 0. But this is

equivalent to saying that is uniformly transverse to ZG
k , the pullback of the zero

section of J r
GEk.

By construction SG
k nZk ¼ p�1

G j rp�1ðPSkÞ ¼ p�1
G ðSknZkÞ, and the strata of

SG
k nZk when approaching the zero section accumulate into p�1

G ðYZk
Þ, where here

YZk
HJr

GEk. Therefore j rtk intersects the strata of SG
k nZk away from a tubular

neighborhood in P (and hence in M) of radius h 0 of Bk, the zero set of j rtk. Thus

ð j rfkÞjM ¼
�
j rpð j rtkÞ

�
jM intersects the strata of PSG

k away from a tubular neigh-

borhood in M of radius h 0 of Bk.
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In general pGð j rfkÞA j rGfk but using A.H. coordinates it is easy to check that

pGð j rfkÞQU j rGfk. Hence, j rGfk intersects the strata of PSk HJr
GðP;CPmÞ away

from a tubular neighborhood in M of radius h 0 of Bk for all kg 1.

By Steps 1 and 2 we deduce that j rDðfk jMÞ intersects the strata of PSk H
Jr
DðP;CPmÞ away from a tubular neighborhood in M of radius h 0 of Bk for all

kg 1.

Step 4: Relate uniform transversality over M of j rtk to SG
k nZk with uniform

transversality along D of j rDðfk jMÞ to PSk HJr
DðM;CPmÞ.

The same ideas used in the proof of Lemma 6.5 combined with pGð j rfkÞQU
j rGfk, show that uniform transversality over M of j rtk to SG

k nZk is equivalent to

uniform transversality over M of j rGfk to PSk HJr
GðP;CPmÞ.

Uniform transversality over M of j rGfk to PSk HJr
GðP;CPmÞ is comparable to

uniform transversality of ð j rGfkÞjM to PSk jM HJr
GðP;CPmÞjM (it can be easily

proven in the charts PD
k;x; i, P

G
k;x; i).

By Steps 1 and 2, j rDðfk jMÞ is uniformly transverse to PSk HJr
DðM;CPmÞ.

If the hypothesis on the amount of transversality over M of Corollary 4.2 are

met, then j rDðfk jMÞ is uniformly transverse along D to PSk HJr
DðM;CPmÞ. Ob-

serve that this requirement is not a problem, since the induction construction to

obtain uniform transversality over M for j rtk to SG
k nZk can guarantee that. r

The vector bundles Jr
GEk are endowed with hermitian metrics bgkgk and connec-

tions ‘k;H (or just ‘H ), which are induced by the metrics and connections on

JrEk via the projection pG. We do not know whether Jr
GEk is an almost CR sub-

manifold of JrEk, but in any case we are not interested in doing almost complex

geometry on Jr
GEk.

Let sk be a sequence of sections of Jr
GEk with j‘ jskjgk aOð1Þ for all jb 0.

Using the metric bgkgk we have a well defined notion of uniform transversality of sk
to the Thom–Boardman–Auroux stratification Sk HJr

GEk (Definition 4.5); notice

that we have no notion of approximate holomorphicity neither for the sequence of

sections nor for the strata.

Remark 6.3. If tk : P ! Ek is A.H. then j‘ j j rGtkjgk aOð1Þ for all jb 0. Having

into account remark 4.3, it can also be shown that if j rtk : P ! JrEk is uniformly

transverse over M to SG
k , then j rGtk : P ! Jr

GEk is uniformly transverse over M

to Sk.

We finish this section by proving the following

Lemma 6.6. (1) Let S ¼ ðSa
k Þa AAk

be an approximately holomorphic finite invari-

ant stratification of Ek such that in approximately holomorphic coordinates and

A.H. frames each sequence of strata has a CR model transverse to the fibers.
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Let tk : M ! Ek be an A.H. sequence uniformly transverse along D to S. Then

t�1
k ðSÞ is a stratification of ðM;D;oÞ by 2-calibrated submanifolds for all kg 1.

(2) Let tk : M ! Ek be an A.H. uniformly transverse to Zk and whose projectiv-

ization fk is r-generic. Then Bk Af�1
k ðPSkÞ is a stratification by 2-calibrated sub-

manifolds of ðM;D;oÞ for all kg 1.

Proof. Let Sa
k HEk. Corollary 4.1 implies that t�1

k ðSa
k Þ is uniformly transverse

to D. Hence, if we check that for each x a t�1
k ðSa

k Þ the sequence of linear sub-

spaces TDt
�1
k ðSa

k ÞHD is A.H., i.e.,

JM

�
TDt

�1
k ðSa

k Þ; JTDt
�1
k ðSa

k Þ
�
aOðk�1=2Þ

(uniformly on the point), we are done.

Let ĴJ denote the induced the almost complex structure on Ek. In approxi-

mately holomorphic coordinates and A.H. frames, the strata Sk HEk have a CR

model SHCm with respect to the canonical product CR structure. Recall that

any almost CR structure defined out of J0 in the base and the fiber, and a connec-

tion form with vanishing ð0; 1Þ-component, coincides with the product CR struc-

ture (this appears also in the proof of Lemma 6.1). Hence the linear subspaces

TDS ¼ TDSk verify JMðTDS; ĴJTDSÞaOðk�1=2Þ, the bounds being uniform on

the points of Cm, and hence uniform on the points of Ek.

The approximate holomorphicity of tk impliesJMðTDtk; ĴJTDtkÞaOðk�1=2Þ.
SinceJmðTDtk;TDSkÞb h, by Proposition 3.7 in [32] for all kg 1 the intersection

TDtk BTDSk is an A.H. sequence and thus also its projection to M, which proves

item (1).

Regarding item (2), Bk :¼ tk
�1ðZkÞ. Therefore item (1) applies.

The strata Sk; I are intersected uniformly away from Bk. Therefore it is equi-

valent to work with the projectivizations fk and the Thom–Boardman–Auroux

stratification of Jr
DðM;CPmÞ, because j rDt

�1
k ðSk; I Þ ¼ j rDf

�1
k ðPSk; I Þ. Since for

each canonical chart of projective space the strata have CR models in

Jr
DðM;CmÞi, everything reduces to item (1). r

We would like the pullback of any regular value of fk to be a 2-calibrated sub-

manifold, which forces us to study the behavior of an r-generic function near its

base locus and near the pullback of the Thom–Boardman–Auroux strata. In

our applications we would only need this analysis for the Lefschetz pencils

fk : MnBk ! CP1: the same ideas used in [35] show that indeed near the base lo-

cus jqfkj > jqfkj and thus the regular ‘‘fibers’’ are 2-calibrated submanifolds. On

the other hand, near the strata of the Thom–Boardman–Auroux stratification

there is no such inequality between the holomorphic and antiholomorphic compo-

nent of the derivative, and ad hoc modifications are needed to obtain 2-calibrated

regular fibers.
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In [25] the approximately holomorphic theory is appropriately modified to

construct generic CR sections for a Levi-flat CR manifold. The complication

near the base locus and degeneration loci of the leafwise di¤erential does not occur

(over each complex leaf the CR-Thom–Boardmann stratification is holomorphic

and the restriction of the CR-r-jet holomorphic as well, therefore the former is

pulled back to the leaf to a stratification by holomorphic strata).

7. The main theorem

It is possible to perturb A.H. sections of Ek ¼ EnLnk ! ðM;D;oÞ so that their

r-jets are transverse to an A.H. quasi-stratification of Jr
DEk.

Theorem 7.1. Let Ek ! ðM;D;oÞ, Ek ¼ EnLnk, and S ¼ ðSa
k Þa AAk

an A.H.

sequence of finite, Whitney (A) quasi-stratifications of Jr
DEk transverse to the

fibers. Let us fix h a N. Let d be a strictly positive constant. Then a constant

h > 0 exists such that for any A.H. sequence tk of Ek, it is possible to find an A.H.

sequence sk of Ek so that for every k bigger than some k0,

(1) j‘ j
Dðtk � skÞjgk < d, j ¼ 0; . . . ; rþ h,

(2) j rDsk is h-transverse along D to S.

Theorem 7.2 below su‰ces for our applications; the proof of Theorem 7.1,

which is left to the interested reader, is a suitable modification of the proof of

Theorem 1.1 in [4]. The main di¤erence is the use of a result on local estimated

transversality along Dh to 0 for A.H. functions fk : C
n � R ! Cm.

Observe in Theorem 7.1 that while for any h a N we can bound

j‘ j
Dðtk � skÞjgk , j ¼ 0; . . . ; rþ h, by any arbitrarily small d, we cannot do the

same for the full derivative. For the latter it can be proven that j‘ jðtk � skÞjgk
aCj for all j a N, where Cj are constants independent of k whose value we cannot

control. Moreover the non-integrability of D also forces us to work with se-

quences of A.H. functions all whose derivatives are controlled (even if we want

to control the size of the perturbation along D up to a finite order h); basically

the derivatives along the directions of D (up to some finite order h) will be arbi-

trarily small only if we have control for the full derivative of all the orders, and k

is chosen to be very large.

We can prove a strong transversality result for symplectic manifolds with dis-

tribution G along compact 2-calibrated subvarieties.

Theorem 7.2. Let Ek ! ðP;WÞ and let ðM;DÞ be a compact 2-calibrated submani-

fold of the symplectic manifold ðP;WÞ and G a J-complex distribution extending D.

Let us consider SG a Ch-A.H. sequence of finite, Whitney (A) quasi-stratifications
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of JrEk ðhb 2Þ. Let d be a positive constant. Then a constant h > 0 and a natural

number k0 exist such that for any Crþh-A.H.(C ) sequence tk of Ek it is possible to

find a Crþh-A.H. sequence sk of Ek so that for any k bigger than k0,

(1) j‘ jðtk � skÞjgk < d, j ¼ 0; . . . ; rþ h (tk � sk is C rþh-A.H.ðdÞ),
(2) j rsk is h-transverse over M to SG.

Proof. We will closely follow the pattern of the proof of Theorem 1.1 in [4] but

introduce appropriate modifications.

The very basic strategy of the proof is to add a perturbation for each sequence

of strata SG b

k , so that a sequence of strata is dealt with only if all the preceding

ones have been already dealt with. The solution sk will be the result of adding

all the perturbations. To achieve our goal in this way we must make sure that at

a stage corresponding to the strata SG b

k , the perturbation added is such that:

(i) uniform transversality to preceding strata is not destroyed,

(ii) uniform transversality to SG b

k is attained.

To make sure that item (i) above holds, we start by adapting the definition of

local open condition of [3] to our setting:

Definition 7.1. Let h; h > 0. A family of properties Pðh; h; xÞx AM of sections of

bundles over P is local and Cq-open if given a section t that satisfies Pðh; h; xÞ and
a section s so that jt� sjCqðP;gÞa e, there exists L > 0 only depending on the Cq-

norm of t so that t� s satisfies Pðh� Le; h� Le; xÞ.

The advantage of a local open property is that we have an estimate on how

much it varies according to the size of the perturbation.

In our specific problem we say that a Crþ2-A.H. sequence of sections tk of Ek

satisfies Pkðh; h; xÞ, x a M, if j rtk is ðh; hÞ-transverse over M to SG b

k at x. We

want to show that this is a local Crþ2-open condition, because if that is the case

we know that if at a given stage we add a perturbation with small enough Crþ2-

norm we will still have a sequence of sections uniformly transverse over M to SG b

k .

This is proven in Theorem 1.1 [4] for full transversality. For estimated trans-

versality over M the theorem is equally true because a perturbation wk with Crþ2-

size bounded by C gives rise to an r-jet such that (i) j j rwkjgk aL 0C, (ii)

j‘TMj rwkjgk aL 0C, and (iii) j‘‘TMj rwkjgk aL 0C for some L 0 > 0. Therefore

small perturbations of a given section give rise to an r-jet that remains within con-

trolled distance of the one for the initial section and whose derivative along TM

varies in a controlled way. Similarly for a given r-jet we can control in a ball of

uniform radius its variation up to order 2, and hence the variation of its derivative

along TM in the ball.
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Next we have to make sure that the perturbation added at each stage fulfills

condition (ii). We will split the problem of achieving transversality over M to

SG b

k into doing it for points close to the boundary and far from the boundary.

Actually, the former problem turns out to be already solved. To show this we

must check that ðha; haÞ-transversality over M of j rtk to SG a

k , for all a < b, implies

the existence of hb > 0 such that j rtk is hb-transverse over M to SG b

k at the points

hb-close to its boundary.

In Theorem 1.1 [4] it is shown that the quasi-stratification condition together

with full uniform transversality can be used to show that j rtk stays uniformly

away from SG a

knYSG a
k
, say at distance greater than some h 0 > 0; since uniform

transversality over M is stronger than uniform transversality we deduce the same

result.

We now make use of the estimated Whitney condition (A) as in Corollary 4.2.

We have the inequality

JmðTMj rtk;T
k
MSG a

kÞaJMðTk
MSG a

k ;TMSG b

kÞ þJmðTMj rtk;TMSG b

kÞ: ð62Þ

For h 00 > 0 small enough the induction hypothesis implies that for points h 00-close
to qSG b

k there is some index a a Ak such that

JmðTMj rtk;T
k
MSG a

kÞb ha:

Let M̂M denote the pullback of TM to JrEk. In order to make

JMðTk
MSG a

k ;TMSG b

kÞ < ha=2

we use the estimated Whitney condition (A) that givesJmðM̂M;TSG b

kÞ > g > 0 and

JMðTkSG a

k ;TS
G b

kÞ < CðgÞ�1
ha=2 (see the proof of Corollary 4.2), for h 00 small

enough. Then the desired result holds for

hb :¼ min
�
h 0; h 00;min

a<b
ðha=2Þ

�
:

Therefore our task is reduced to constructing arbitrarily small perturbations

which solve the uniform transversality problem in points hb-far from the

boundary. We will construct such a perturbation following Donaldson’s global-

ization method. The key point is the following.

Proposition 7.1. Let Pkðh; h; xÞx AM;h;h>0 be a family of Cq-open properties of sec-

tions of Ek ! ðP; gkÞ. Assume that there exist (uniform) constants r, c 0, c 00, p such

that given any d > 0 small enough, any x a M, and any sequence tk with uniform

Cq-bound C, there exist Cq-bounded sections wk;x for all kg 1 with the following

properties:
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(1) j‘ jwk;xjgk < c 00d, j ¼ 0; . . . ; q.

(2) The sections 1
d
wk;x have Gaussian decay away from x in Cq-norm.

(3) tk þ wk;x satisfy the property Pkðh; h� c 0d; yÞ for all y a Bgkðx; rÞBM, with

h ¼ c 0d
�
logðd�1Þ

��p
.

Then given any a > 0 and Cq-bounded sections tk of Ek, there exist, for kg 1,

C q-bounded sections sk of Ek such that

(i) j‘ jðtk � skÞjgk < a, j ¼ 0; . . . ; q,

(ii) the sections sk satisfy Pkðe; h� Ld; xÞ for some uniform e;L > 0 at any x a M.

We do not give the proof of this proposition, since it is a repetition step by step

of Donaldson’s globalization procedure [11].

Hence we must check that the hypothesis of Proposition 7.1 hold. We will use

the following local transversality result, which is a reformulation of Lemma 5.2

and Theorem 5.4 in [30].

Proposition 7.2. Let F be a function with values in C l defined over the ball of

radius 11=10 in C l . Let V be a vector subspace of C l . Let d be a constant

0 < d < 1=2. Let h ¼ d
�
P
�
logðd�1Þ

���1
, where P is a real monomial depending on

n, l, V. If in the ball of radius 11=10 we have

jF jg0 a 1; jqF jg0 a h; jdqF jg0 a h;

then there exists u a Cp such that F � u is h-transverse over V to 0 in the interior of

Bð0; 1ÞBV.

We assume that tk is already hb-transverse over M at the points hb-close to the

boundary. Let 0 < e < hb=4 small enough. If x a M such that j rtkðxÞ B
N

SG b
k
ðe=2; hbÞ then wk;x is chosen to be the zero perturbation. If j rtkðxÞ ¼ p a

N
SG b

k
ðe=2; hbÞ then there exists r1 such that j rtk

�
Bgk ðx; r1Þ

�
HBĝgkðp; reÞH

N
SG b

k
ðe; 3hb=4Þ. We consider the composition f � j rtk pulled back to the domain

of an A.H. chart adapted to ðM;GÞ and centred at x. In this way we obtain a

function Hk : Bð0; r2ÞHCp ! C l . If we apply Proposition 7.2 directly to Hk,

with V ¼ TM, and for df hb=6, we will obtain d
�
P
�
logðd�1Þ

���1
-transversality

over M to 0 for Hk � uk in Bgkðx; r3Þ. The problem is how to associate uk to a

perturbation of tk (the di‰culty coming from the non-linearity of the strata). In-

stead, we consider for each index I the C l-valued function such that for each

y a Bgkðx; r4Þ,

YI ðyÞ ¼
�
df1

�
j rtkðyÞ

�
j rtrefk;x; I ; . . . ; dfl

�
j rtkðyÞ

�
j rtrefk;x; I

�
;
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with trefk;x; I as defined in equation (33). There is a choice of l indices I1; . . . ; Il such
that the corresponding A.H. sections j rt refk;x; Ij

are a frame for a distribution com-

plementary to Ker df (and with minimal angle bounded from below). Then

YI1 ; . . . ;YIl is a frame (depending on y) of C l comparable to the canonical one.

We can write

Hk ¼ h1kYI1 þ � � � þ hl
kYIl :

We apply Proposition 7.2 (after suitable rescalings) to the C l-valued function

hk ¼ ðh1k ; . . . ; hl
kÞ, with V ¼ TM, for some d small enough, so we get uk a C l

such that hk � uk is c1d
�
P
�
logðd�1Þ

���1
-transverse over M to 0 in Bgkðx; r5Þ.

If we multiply by the functions YI1 ; . . . ;YIl we obtain c2d
�
P
�
logðd�1Þ

���1
-

transversality over M to 0 for Hk � u1kYI1 � � � � � ul
kYIl . Our perturbation is the

section

wk;x :¼ �u1kt
ref
k;x; I1

� � � � � ul
kt

ref
k;x; Il

:

The key point is that in view of the norm of uk and the bounds on the second

derivatives of f , the C1-norm of

Hk � u1kYI1 � � � � � ul
kYIl � f � j rðtk þ sk;xÞ

is bounded by Oðd2Þ. Since the C1-norm majorates the C1-norm along TM we

conclude that for d small enough f � j rðtk þ sk;xÞ is c3d
�
P
�
logðd�1Þ

���1
-transverse

over M to 0. By Lemma 4.5 we get Pk

�
c4d

�
P
�
logðd�1Þ

���1
; hb � Ld; y

�
for all

y a Bgkðx; r5Þ. Since Pkðh; h; xÞ is Crþ2-open, if d is small enough compared to

hb and ha, ha, we still get uniform transversality to the previous strata and 5hb=6-

transversality over M at the points 3hb=4-close to the boundary of SG
k

b
.

So we can apply Proposition 7.1 to obtain Pkðhb; 3hb=4; xÞ (with respect to

SG
k

b
) in all the points of M.

Hence we deduce the existence of a Crþ2-A.H. sequence sk such that:

(1) j‘ jðtk � skÞjgk < d, j ¼ 0; . . . ; rþ h (sk is Crþ2-A.H.(d)).

(2) j rsk is h-transverse over M to SG. r

8. Applications

We begin by proving Proposition 1.1, which can be also obtained as a simple cor-

ollary of the work of J.-P. Mohsen [30] together with some extra local work bor-

rowed from [27].

Proof of Proposition 1.1. We consider a more general situation than that of the

statement of Proposition 1.1. Let E be any rank m Hermitian vector bundle
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over ðM 2nþ1;D;oÞ, and let Ek ¼ EnLnk
W (LW is the pre-quantum line bundle of

the symplectization and E is meant to be the pullback of the initial E to the

symplectization). We want to apply Theorem 7.2 to the sequence of zero sections

Zk, but with some changes. Basically we want to start with an A.H. sequence

which vanishes at y and is uniformly transverse on Bgk ðr; yÞ, and then add pertur-

bations not destroying these properties. We fix A.H. coordinates adapted to

ðM;GÞ and reference sections t refk;x; j centred at the points of MHM � ½�e; e�. In

A.H. coordinates adapted to ðM;GÞ we take the sections z j
kt

ref
k;y; j, j ¼ 1; . . . ;ma

nþ 1, and consider their direct sum, a section of Ek. This sequence of sections tk;y
vanishes at y and is h-transverse over M to Zk in Bgkðy; rÞ. The key point is to

keep on adding local perturbations, as described in the proof of Theorem 7.2,

which vanish at y and with C1-norm small enough compared to h. For that we

need new reference sections vanishing at y. Notice that if dkðx; yÞbOðk1=6Þ then
trefk;x; j is already vanishing at y, so we do not need to change the reference section.

Assuming dkðx; yÞaOðk1=6Þ once we go to A.H. coordinates adapted to ðM;GÞ
and centred at x, the point y belongs to Bð0; r 0k1=6ÞHCnþ1. Consider the poly-

nomial Pðz1k ; . . . ; znþ1
k Þ ¼ 1� z1k . Let Lk;y;x a GLðnþ 1;CÞ be the composition of

homothety and of a rotation sending y to ð1; 0; . . . ; 0Þ. We define Pk;y;x ¼
P � Lk;y;x and xref

k;x; j :¼ Pk;y;xt
ref
k;x; j. For any g > 0, if we suppose dkðx; yÞb g

then xref
k;x; j becomes an A.H. sequence (with bounds independent of x) that van-

ishes at y and so that xref
k;x; j, j ¼ 1; . . . ;m, fits into a local frame of Ek over

Bgk

�
x; rðgÞ

�
(we chose the linear map to arrange that the vanishing (a‰ne) hyper-

plane of Pk;y;x is at distance of the origin bounded from below). Since tk;y is

h-transverse over M to Zk in Bgkðy; rÞ, we only need to add perturbations centred

at points away from Bgkðy; r=2Þ, and thus the globalization procedure can be ap-

plied with reference sections vanishing at y.

Thus it is possible to find sequences of A.H. sections tk of Ek uniformly trans-

verse over M to Zk and vanishing at y. Hence tk jM are uniformly transverse to Zk

and vanishing at y. Let Wk ¼ tk
�1
jMðZkÞ. For all kg 1, by Corollary 4.1, Wk is

uniformly transverse to D, and by Lemma 6.6 approximately almost complex and

therefore 2-calibrated.

The study of its topology is done very much as in the symplectic and contact

cases (see the proofs in [11], [2], [24]). r

The next result we want to prove is the existence of determinantal submani-

folds (Proposition 1.2), which is still a transversality result for 0-jets (vector bun-

dles Ek), but not anymore to the 0 section but to a sequence of non-linear approx-

imately holomorphic stratifications.

Proof of Proposition 1.2. Let E;F ! M be Hermitian bundles with connection

and let us define the sequence of very ample vector bundles Ik :¼ E �nF nLnk.
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In the total space of Ik we consider the sequence of stratifications Sk whose strata

are Sk; i ¼ fA a Ik j rankðAÞ ¼ ig, where A a HomðE;F nLnkÞ.
Let E, F still denote the pullback of E, F to the symplectization

ðM � ½�e; e�;WÞ. Let Ik;W ! M � ½�e; e� be E � nF nLnk
W ¼ HomðE;F n

Lnk
W Þ. Let G be as usual a J-complex distribution defined on M � ½�e; e� that ex-

tends D, and let

SG
k; i ¼ fA a Ik;W j rankðAÞ ¼ ig; A a HomðE;F nLnk

W Þ:

By Lemma 6.1 (applied to almost complex manifolds) SG
k; i is an approximately

holomorphic sequence of finite, Whitney (A) stratifications. Therefore we can ap-

ply Theorem 7.2 to construct an A.H. sequence of sections tk of Ik;W uniformly

transverse over M to SG
k , and thus along D.

Hence M is stratified by the submanifolds SiðtkÞ ¼
�
x a M j rank

�
tkðxÞ

�
¼ i

�
for all k large enough, which are uniformly transverse to D and 2-calibrated by

Lemma 6.6. r

Corollary 1.1 follows from the fact that in the contact case the 2-form is exact

and hence the cohomological computations are those of the bundle E � nF .

Theorem 8.1. Let ðM;D;oÞ be a closed integral 2-calibrated manifold, set Ek ¼
Cmþ1 nLnk, and let r be any natural number. Any A.H. sequence of sections of

Cmþ1 nLnk
W ! ðM � ½�e; e�;W;GÞ admits an arbitrarily small C rþh-perturbation

such that fk jM : MnBk ! CPm, the restriction to M of its projectivization, is an

r-generic A.H. sequence.

Proof. The proof is just Theorem 7.2 applied to the Thom–Boardman–Auroux

quasi-stratification along G of JrEk ! ðM � ½�e; e�; J;G; gkÞ, combined with

Proposition 6.3. r

It must be pointed out that the behavior of A.H. functions at the points close

to the degeneration loci is more complicated than that of the leafwise holomorphic

model: firstly, and similarly to what happens for even-dimensional almost complex

manifolds, to obtain normal forms it is necessary to add perturbations so that the

function becomes holomorphic (at least in certain directions); otherwise the ap-

proximate holomorphicity is not significative due to the vanishing (degeneracy)

of the holomorphic part. Secondly, we have an extra non-holomorphic direction

that we do not control. At most, we can apply the usual genericity results to that

direction (the perturbations at most of size Oðk�1=2Þ so as not to destroy the other

properties).

One instance of the preceding theorem is when the target space has large di-

mension, so that the generic map is an immersion along the directions of D.
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Proof of Corollary 1.2. Set Ek ¼ Cmþ1 nLnk, where mb 2n. Theorem 7.2 is ap-

plied to the Thom–Boardman–Auroux quasi-stratification along G of J1Ek !
ðM � ½�e; e�; J;G; gkÞ to obtain 1-generic A.H. maps fk : M ! CPm. From the

choice of m it follows that the set of base points and of points where qfk is not

injective is empty. It is clear that by construction that f�
k ½oFS� ¼ ½ok�. r

This is a non-trivial result because the property of being an immersion along D

is not generic (for smooth maps to CP2n). Notice that if for example D is inte-

grable the property is generic for each leaf (locally), but not for the 1-parameter

family.

As mentioned in the introduction, the previous corollary can be improved in

two di¤erent ways.

Proof of Corollary 1.3. Let us assume that any 2-form in the path rk; t ¼
ð1� tÞok þ tf�

koFS is non-degenerate over D, where oFS is be the Fubini–Study

2-form. Then Moser’s trick can be applied leafwise: if a is a 1-form such that

da ¼ �ðf�
koFS � okÞ, the vector fields tangent to D defined by the condition

�iXt
rk; t ¼ �a generate a 1-parameter family of di¤eomorphisms preserving each

leaf and sending rk; t to ok.

The non-degeneracy over D of rt follows from the estimated transversality of

fk together with the approximate holomorphicity. For any v a Dx of gk-norm 1,

rk; tðv; JvÞ ¼ ð1� tÞokðv; JvÞ þ toFSðfk�v; fk�JvÞb ð1� tÞ þ th > 0: r

In general a closed Poisson manifold with codimension 1 leaves does not admit

a lift to a 2-calibrated structure (for example any non-taut smooth foliation

in M 3). The previous corollary can be used to state the following result:

Corollary 8.1. Let ðM 2nþ1;D;oDÞ be a closed Poisson manifold with co-oriented

codimension 1 leaves. Then the Poisson structure admits a lift to a (rational ) 2-

calibrated structure if and only if a multiple of oD is induced by a leafwise immer-

sion in CP2n (by pulling back oFS).

It is worth mentioning that it is possible to obtain uniform transversality to a

finite number of quasi-stratifications of the same sequences of bundles. For exam-

ple, and this leads to the second improvement of Corollary 1.2, we can obtain the

1-genericity result that gives rise to embeddings in CPm transverse to a finite num-

ber of complex submanifolds of CPm.

We just need to consider for each submanifold the sequence of stratifications

PS of J1
G ðM;CPmÞ, whose unique stratum (for each k) is defined to be the 1-

jets along G whose degree 0 component is a point of the submanifold; next we

pull it back to a stratification S of J1
GE

�
k and finally to a stratification SG of
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J1E �
k (the structure near Zk is not relevant because transversality to the Thom–

Boardman–Auroux quasi-stratification along G implies that the sections stay

away from Zk). Therefore, we have defined a stratification of J1Ek which is triv-

ially approximately holomorphic because it is the pullback by A.H. maps of an

initial approximately holomorphic stratification of J0
G ðM;CPmÞ. Any 1-generic

sequence of A.H. sections of Ek uniformly transverse to SG, when restricted to

M gives rise to maps fk : M ,! CPm uniformly transverse along D to the sub-

manifold.

Proof of Theorem 1.1. We first apply Theorem 8.1 to obtain fk jM : MnBk ! CP1

1-generic.

Near the base points and the points where ‘Dfk jM vanishes, we apply the per-

turbations defined in [35] to obtain the required local models. r

Another possible application is, as proposed by D. Auroux for symplectic

manifolds [3], [4], to obtain r-generic applications to CPm whose composition

with certain projections CPm ! CPm�h are still r-generic (the corresponding strat-

ifications are approximately holomorphic because they are pullback of approxi-

mately holomorphic stratifications by A.H. maps; the structure near Zk is also

seen to be appropriate).

It is also possible to develop an analogous construction but for A.H. maps

to Grassmannians Grðr;mÞ, starting from sections of Cr nEk, Ek of rank m (see

[32], [5]).

Our techniques can be applied to any closed 2-calibrated manifold to give a

finer topological description of the 2-calibrated structure. It is possible to apply

the same idea to manifolds for which the 2-calibrated structure enters as an auxil-

iary tool. This point of view has already been adopted in [27].

We recall the following result.

Theorem 8.2 (Gromov). Let M 2nþ1 be a closed manifold whose structural group

reduces to UðnÞ, and let a a H 2ðM;ZÞ. Then there exists o a closed maximally

non-degenerate 2-form such that ½o� ¼ a.

Proof. The structural group of the open manifold M � R reduces to Uðnþ 1Þ.
Then by [19] it carries a symplectic form representing any given cohomology class,

in particular the pullback of a to M � R. Its restriction to M � f0g is o. r

So by selecting any codimension 1 distribution transverse to the kernel of o,

we have:

Corollary 8.2. Let M 2nþ1 be a closed manifold whose structural group reduces to

UðnÞ, and let a a H 2ðM;ZÞ. Then M admits 2-calibrated structures ðD;oÞ for

which ½o� ¼ a.
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Notice that if we apply any of the previous constructions to ðM;D;wÞ, we
obtain submanifolds and more generally stratifications of M by 2-calibrated

submanifolds. Regarding the initial structure, which was just a reduction of the

structural group to UðnÞ, we can conclude that the corresponding strata also ad-

mit such a reduction.

Appendix A. Proof of Proposition 5.1

We write down the proof for the bundle JrEk because it is a necessary ingredient

in the proof of Theorem 7.2. The case of J r
DEk bears no further complications

and it is left to the interested reader.

We omit the subindices k and r for the connections whenever there is no risk of

confusion.

Recall that in coordinates the curvature can be computed as follows: in a chart

where T �P is trivialized using the derivatives of the coordinates, we have the cor-

responding flat connection d on T �P. We have the operator

‘1 : T �PnEk ! T �PnT �PnEk; ‘1 :¼ dn I� In‘;

and the antisymmetrization map

asym2 : T
�PnT �P !52

T �P; an b 7! abb;

abbðu; vÞ :¼ aðuÞbðvÞ � aðvÞbðuÞ:

The curvature is the composition asym2ð‘1 � ‘Þ.
Let sk ¼ ðsk;0; sk;1Þ be a section (maybe local) of J1Ek. The modified connec-

tion is ‘H1
ðsk;0; sk;1Þ ¼ ð‘sk;0;‘sk;1Þ þ ð0;�F 1;1sk;0Þ, where �F 1;1sk;0 a T�0;1P

nT�1;0PnEk (see [5]). For jets along D we add �F
1;1
D .

The previous formula defines a connection.

Lemma A.1. Let Cm ! Cp be the trivial bundle endowed with a connection ‘

whose curvature is of type ð1; 1Þ with respect to the canonical complex structure J0;

the connection splits into q‘ þ q‘. Let t be a holomorphic section of Cm (with re-

spect to the holomorphic structure induced by ‘). Then

‘Hðt; q‘tÞ ¼ ‘ðt; q‘tÞ � ð0; q‘q‘tÞ ð63Þ

and q‘H
ðt; q‘tÞ ¼ 0.

Proof. By definition

Ft ¼ asym2ð‘1‘tÞ:
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Let us denote the trivialization of the bundle that identifies it with Cm by

x1; . . . ; xm. Since t is holomorphic

Ft ¼ asym2

�
ðdn I� In‘Þq‘t

�
:

If we write q‘t ¼ dzih
j
i xj then

Ft ¼ asym2

�
�ðIn‘Þ dzih j

i xj
�
:

But being the curvature of type ð1; 1Þ we can write

Ft ¼ asym2

�
�ðIn q‘Þ dzih j

i xj
�
: ð64Þ

Recall that Ft has to be understood as an element of T�0;1Cp nT�1;0Cp

nCm. That amounts to switch the dzl ’s with the dzl ’s, which cancels the negative

sign on the right-hand side of equation (64). Thus what we obtain is

Ft :¼ ðIn q‘Þ dzih j
i xj a GðT�0;1Cp nT�1;0Cp nCmÞ: ð65Þ

But equation (65) equals

ðq0 n Iþ In q‘Þ dzih j
i xj ;

which by definition is

q‘q‘t: ð66Þ

By equation (66)

q‘H
ðt; q‘tÞ ¼ ðq‘t; q‘q‘t� q‘q‘tÞ ¼ 0: r

It is also clear that q‘ ¼ q‘H
and therefore they define the same coupled holo-

morphic jets.

Lemma A.1 has an obvious approximately holomorphic version: if we have a

very ample sequence of rank m vector bundles by definition the sequences of cur-

vatures is approximately of type ð1; 1Þ. Then we can fix approximately holomor-

phic coordinates and the first part of Lemma A.1 implies that for tk a sequence of

A.H. sections of Ek, one has

Ftk QU qqtk;

and by the second part

qHj
1tk QU 0:
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We now move into computing the curvature of the modified connection in the

integrable case. We will denote the coupled holomorphic r-jet in the integrable

model by j rholt.

Lemma A.2. Let Cm ! Cp be the trivial bundle as in Lemma A.1. Assume also

that for the fixed trivialization x1; . . . ; xm the curvature is a matrix with constant co-

e‰cients and that we have a frame given by holomorphic sections t1; . . . ; tm. Then

F‘ ¼ F‘H
.

Proof. If the holomorphic sections t1; . . . ; tm generate the bundle, then the holo-

morphic 1-jets of zltj, tj, 1a la p, 1a jam, are a basis of J1
p;m (at least on

Bð0; rÞ). By Lemma A.1, they are a holomorphic basis.

‘Hj
1
holz

ltj ¼
�
q‘ðzltjÞ;‘q‘ðzltjÞ

�
� ð0;FzltjÞ ¼ ‘j1holz

ltj � ð0;FzltjÞ: ð67Þ

Let us write again q‘tj ¼ dzihs
i; jxs, and F ¼ ats dz

t dzs a GðT�0;1Cp n
T�1;0CpÞ. If we apply to ‘j1holz

ltj the operator asym2 ‘
1
H , ‘

1
H :¼ dn I� In‘H ,

we get:

F‘j
1
holz

ltj þ
�
0; asym2ðdzlats dzt dzstj þ zl dziats dz

t dzshs
i; jxsÞ

�
: ð68Þ

When we apply the same operator to ð0;FzltjÞ, if recall that the ats are constant

and that zltj is a holomorphic section, we get

asym2 ‘
1
Hð0;FzltjÞ ¼

�
0; asym2ð�ats dz

t dzl dzstj � ats dz
tzl dzihs

i; jxsÞ
�
; ð69Þ

and the right-hand side of equation (69) equals�
0; asym2ðdzlFtj þ zl dziFhs

i; jxsÞ
�
: ð70Þ

If we put together equations (67), (68), and (70) we obtain

F‘H
tj ¼ F‘tj : r

We want to use a recursive construction based on Lemmas A.1 and A.2 to in-

troduce the desired connection on Jr
p;m.

Before doing that we recall that the coupled holomorphic jets are sections

of Jr
p;m. We now prove how to modify the connection on J2

p;m.

Step 1: We identify J2
p;m with the subbundle of J1J1

p;m spanned by holonomic

sections, i.e., sections of the form j1hol j
1
holt, where t is any holomorphic section

of Cm. Pointwise, an element g of the fiber of J1J1
p;m is of the form

ðg0;0; g0;1; g1;0; g1;1Þ a
�
CaT�1;0CpaT�1;0Cpa ðT�1;0Cp nT�1;0CpÞ

�
nCm;

and belongs to J2
p;m if and only if g1;1 a T�1;0Cp pT�1;0Cp nCm and g1;0 ¼ g0;1.
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Using the metric induced by the Euclidean one on the base and fiber and the

connection, we have a orthogonal projection r : J1J1
p;m ! J2

p;m.

Step 2: We introduce a new connection on J1J1
p;m.

On J1
p;m we use the modified connection ‘H1

. This, together with the flat con-

nection d on T �Cp defines a connection ‘H1; 1
on J1J1

p;m. Notice that on J1J1
p;m

we also have a connection ‘2 coming from d and ‘1.

We consider the trivialization of J1
p;m furnished by the sections xj, dzixj,

1a jam, 1a ia p, so we can identify the bundle with Cmpþm. This is a trivial

bundle with connection ‘H1
. By Lemma A.2 F‘H1

¼ F‘1
. Recall also that in the

basis xj , dz
ixj the curvature F‘1

is a matrix that decomposes into pþ 1 blocks cor-

responding to x1; . . . ; xm and to dzix1; . . . ; dz
ixm, 1a ia p. For each such block

the corresponding matrix is the one for F‘ in the basis xj. Therefore F‘H1
is still of

type ð1; 1Þ and has constant entries in the aforementioned basis.

Let ‘H2
be the result of modifying ‘H1; 1

. Since ‘H1
is of type ð1; 1Þ by Lemma

A.1 applied to ðCmpþm;‘H1
Þ, if t1 a GðJ1

p;mÞ is holomorphic with respect to ‘H1
,

then j1holt
1 is holomorphic with respect to ‘H2

. In particular j1holð j1holzitjÞ,
j1holðzlj1holzitjÞ are a local holomorphic frame of ðJ1J1

p;m;‘H2
Þ (recall that tj was

a local holomorphic frame of Cm).

Taking into account that the curvature of ðCmpþm, ‘H1
Þ is of type ð1; 1Þ and

with constant entries, and that ðCmpþm, ‘H1
Þ has a local holomorphic basis,

Lemma A.2 gives F‘H2
¼ F‘H1; 1

. From F‘H1
¼ F‘1

it follows that F‘H1; 1
¼ F‘2

.

Therefore

F‘H2
¼ F‘2

on J1J1
p;m:

Step 3: Check that ‘H2
restricts to J2

p;m ,! J1J1
p;m with the desired properties.

Let I ¼ ði0; i1; . . . ; ipÞ with 1a i0am, 0a ij a 2, i1 þ � � � þ ipa 2, and let

tI :¼ zi11 . . . z
ip
p ti0 . We consider the sections j1hol j

1
holtI , which are a local holomor-

phic frame J2
p;m (using the identification described in Step 1). We will see that

‘H2
j1hol j

1
holtI a GðT�1;0Cp nJ2

p;mÞ, and therefore that the connection ‘H2
pre-

serves J2
p;m.

We just proved in Step 2 that j1hol j
1
holtI is holomorphic with respect to ‘H2

and

that q‘H2
¼ q‘H1; 1

¼ q‘2
. Let us write j1hol j

1
holtI ¼ ðtI ; q‘tI ; q‘tI ; q2‘tI Þ. Then

‘H2
j1hol j

1
holtI ¼ q‘H2

j1hol j
1
holtI

¼ q‘2
ðtI ; q‘tI ; q‘tI ; q2‘tI Þ

¼ ðq‘tI ; q‘q‘tI ; q‘q‘tI ; q‘q2‘tI Þ;

which belongs to GðT�1;0Cp nJ2
p;mÞ.

Therefore, the curvature of the restriction of ‘H2
to J2

p;m is of course of type

ð1; 1Þ. The last observation is its expression in a suitable basis. The curva-
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ture of ‘2 on J1J1
p;m splits on blocks corresponding to the basis x1; . . . ; xm,

dzix1; . . . ; dz
ixm, dzlx1; . . . ; dz

lxm, dzr n dztx1; . . . ; dz
r n dztxm, 1a i; l; r; ta p.

Each submatrix is F‘. If we use the basis x1; . . . ; xm, dzix1; . . . ; dz
ixm,

dzr p dztx1; . . . ; dz
r p dztxm, 1a i; r; ta p, the curvature equally splits into

blocks each matching F‘.

The general case uses the following induction step: on Jr
p;m there exists a con-

nection ‘Hr
with the following properties:

(1) qHr
¼ qr.

(2) F‘Hr
¼ F‘r

and therefore F‘Hr
is of type ð1; 1Þ.

(3) If q‘t ¼ 0 then qHr
j rholt ¼ 0.

(4) In the basis xI :¼ ðdz1kÞ
pi1 . . . ðdznkÞ

pinxi0 the curvature splits into blocks each

matching F‘.

To define ‘Hrþ1
on Jrþ1

p;m we reproduce the previous three steps.

Firstly we consider the identification of Jrþ1
p;m with the subbundle of J1Jr

p;m

spanned by sections of the form j1hol j
r
holt, t a holomorphic section of Cm.

Secondly we consider the connection ‘H1; r
on Jrþ1

p;m constructed out of d and

‘Hr
and modify it to ‘Hrþ1

. By the induction hypothesis using the basis xI we are

in the situation of Lemma A.2, for Jr
p;m identifies with CNr with a connection

whose curvature is of type ð1; 1Þ and with constant coe‰cients, and with a frame

of holomorphic sections. Therefore F‘Hrþ1
¼ F‘H1; r

¼ F‘rþ1
. Since we can also ap-

ply Lemma A.1, for any tr a GðJr
p;mÞ the 1-jet j1holt

r is holomorphic with respect

to ‘Hrþ1
.

The third step is to check that the modified connection restricts to

Jrþ1
p;m ,! J1Jr

p;m. Using that q‘Hrþ1
¼ q‘rþ1

, any frame of sections of the form

j1hol j
r
holtI , tI holomorphic, is sent by the connection to sections of Jrþ1

p;m .

It is also routine to check that in the basis xI the curvature matrix is made of

blocks of the form F‘.

The almost complex counterpart of the result we just proved is done exactly in

the same way. The only modification is that the connection on J1JrEk does not

descend automatically to a connection on J rþ1Ek ,! J1JrEk. We have to pro-

ject via r : J1JrEk ! Jrþ1Ek, but this is seen to introduce an error which is ap-

proximately vanishing. It might happen that the resulting connection amounts to

adding also a pseudo-holomorphic part. If that is the case we forget about this

contribution (which again would be approximately vanishing). Therefore, we ob-

tain a connection with all the desired properties.

Using similar considerations to the ones for 1-jets, it can be deduced that the

ðrþ 1Þ-jet of a Crþ1þh-A.H. sequence of sections of Ek is a Ch-A.H. sequence of

sections of ðJrþ1Ek;‘Hrþ1
Þ.
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Appendix B. Chern classes and top Chern classes

Corollary 1.1 proves the existence of contact determinantal submanifolds, which

we expect to be more general than those coming from zeroes of vector bundles

constructed in [24]. To support this we recall that it is known that in the

algebro-geometric setting that determinantal varieties are more general that zeroes

of vector bundles (see for example [20], [1]), and a similar result should be ex-

pected to hold in the smooth category. A way to prove it would be exhibiting a

manifold in which there exist a cohomology class a which is the Chern class of a

complex vector bundle F but it is not the top Chern class of any complex vector

bundle (i.e., showing that Chern classes are more general than top Chern classes),

the reason being that if we choose as E the trivial complex vector bundle of the

appropriate rank and the appropriate determinantal locus, we have

DE;F ; i ¼ a:

As far as the author knows such a question has not been addressed. A lot is

known about cohomology classes which can be Chern classes, mainly because for

a given finite CW complex of dimension n there is a rather clear picture of com-

plex vector bundles of rankb ½n=2� (the so-called stable rank) [7]; much less is

known about lower ranks and that is what makes it di‰cult to discard a Chern

class as a top Chern class (besides, according to Thom [37], Theorem II.25, in a

(compact, oriented) manifold any a a H 2kðM;ZÞ has a multiple which is a top

Chern class). In any case, finding manifolds with certain cohomological properties

would prove that Chern classes are more general than top Chern classes. For ex-

ample, according to [7] for a (compact, oriented) manifold X of dimensiona 7,

any a a H 4ðX ;ZÞ is the second Chern class of a rank 3 complex vector bundle.

If it were the top Chern class of some F , then Corollary 2.2 in [7] applied to the

direct sum of F with the trivial line bundle would imply that

c1ðF Þaþ Sq2 aC 0 in H 6ðX ;Z2Þ: ð71Þ

Therefore, if H 2ðX ;Z2Þ ¼ 0 and there exists a class a with non-vanishing second

Steenrod square, equation (71) could not hold and hence a would not be a top

Chern class.
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