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Asymptotic distribution of certain statistics
relevant to the fitting of max-semistable models
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Abstract. According to the results in Canto e Castro et al. [1], max-semistable distribution
functions can be characterized by a parameter r > 1, by the extreme value index y and by a
real function w defined in [0,logr]. The estimation of the parameters r and y based on
ratios of differences of order statistics, or appropriate functions of these sequences, was
treated in Dias and Canto e Castro [4]. In this work we study the asymptotic distribution
of these sequences of statistics.
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1. Introduction

For a long time many efforts have been made in order to extend the class of max-
stable distributions which was considered too restrictive for some important statis-
tical applications. In fact, this class, formed by all distribution functions (d.f.’s) G
such that there exist real constants a, positive and b, satisfying G"(a,x + b,) =
G(x), for all positive integer n, is sometimes inadequate to model some non tradi-
tional phenomena, in particular those concerned with discrete distributions. It is
well known that a distribution function (d.f.) F belongs to the domain of attrac-
tion of a max-stable d.f. G, and we write F € MS(G), if and only if there exist nor-
malizing real sequences {a,} positive and {b, } such that

nEIJPoo F'ayx+b,) = G(x) forall x e R. (1)
The most common continuous d.f.’s belong to the domain of attraction of some
max-stable distribution, but the same does not happen for a long range of discrete
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and continuous multi-modal distributions. For instance, there are no normaliz-
ing real constants a, positive and b, such that the limit (1) occurs for F(x) =
(1— e’[-"])ﬂ[oﬁx](x), x € R, and for the Von Mises d.f. given by F(x)=
(1 — e~ /2sin) g, (x), x € R. However, some of those d.f.’s can be included
in a new class, which is characterized by the following limiting behavior

lim F*(a,x+b,) = G(x) forall x e Cg, (2)

n——+o0

where Cg denotes the set of continuity points of the non-degenerate d.f. G. As we
will see later, max-semistable distribution functions present a log-periodic compo-
nent that makes them attractive in areas like seismology, turbulence and finance.
In the previous alternative limit, {a,} and {b,}, with a, > 0, are suitable real se-
quences and {k,} is a non decreasing positive sequence verifying the geometric
growing condition

lim kn+1

n—-+00 kn

=r>1 (r<ow). (3)

In this case, we obtain a larger class of possible limiting distributions for the
normalized maximum known in the literature of extremes as the class MSS of
max-semistable distributions. Moreover, in this new context, if (2) holds, we say
that the d.f. F belongs to the domain of attraction of the max-semistable d.f. G,
and we write F € MSS(G). When r = 1, even for k, # n, we obtain the particular
case of the max-stable class. In the next examples the d.f’s F are such that
F € MSS(G) but F ¢ MS(G).

Example 1.1. The geometric d.f. F(x) = (1 —exp(—[x])) 1) +((x), x € R, veri-
fies (2) with k, = [¢"], @, = 1, b, = n and G(x) = exp(—exp(—[x])), x € R.

Example 1.2. Consider the d.f. F(x) = (1 —x7'(27 + cos(8mlogx))) U x,, +o((X),
x € R, where x is solution of the equation 1 = x~'(27 + cos(8zlogx)). Choos-
ing k,=[e"*, a,=e* and b, =0, the limit (2) occurs with G(x)=
exp(—x~" (27 + cos(87log x)) ) 1)o, +0((x), x € R.

During the last fifteen years there has been much interest in this topic and sev-
eral works have appeared concerning max-semistable laws. In the genesis of this
class are the papers of Pancheva [8] and Grinevich [6], [7]. These two authors have
established that a d.f. G is max-semistable if and only if is solution of the func-
tional equation

G(x)=G"(ax+b) forallxeR (4)
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for some @ >0, b € R and r > 1. More precisely, a d.f. G is max-semistable if
there exist a d.f. F, k,, a, and b, as above, such that (2) holds or, equivalently, if
G is a solution of (4). The characterization of max-semistable domains of attrac-
tion can be found in Grinevich [7] and in Canto e Castro et al. [1]. Recently, some
studies on the estimation of the unknown parameters of this new class of d.f.’s
arises in the literature, for instance Temido [10], Canto e Castro et al [2] and
Dias and Canto e Castro [4]. Furthermore, we notice that if (4) is verified then,
for each n € N, there exist reals ¢, > 0 and d, such that

G (cox + dy) = G'(ax + b) = G(x),

which enables us to prove that the class G, ., = {G: G(x) = G"(ax+ b)} coin-
cides with the class G, ., 4,, Where ¢, = a" and d, = b(a" ' 44+ a’+a+1).
Then the constant r in (4) is not unique and can be replaced by an integer power
of itself. Grinevich [6] solve the functional equation (4) proving that there are
three main families of max-semistable laws. An unifying standard expression for
these families, analogous to the generalized form of Von Mises—Jenkinson for the
max-stable f.d.’s, is given by

G, \(x) = exp{—(1 + yx)fl/"’v(log(l +yx))}, xeR, 1+yx>0andy#0,
o exp{—ev(x)}, xeRandy=0,

where v is a positive, bounded and periodic function. The parameters y and the
period p of the function v are related with the parameters @, b and r in (4) in the
following way:

e p=loga=ylogr, for y #0;

e p=>b=logr, for y =0.

Observe that the p-quantile of G,, and the p-quantile of G, (x)=
exp{—(1 + yx)_l/""} are related through y = (x+1/y)(v(1+yx))”" —1. So, a
max-semistable distribution can be a reasonable choice if a gg-plot fit to a max-
stable model shows a log-periodic oscillation along a straight line.

A characterization of max-semistable laws involving generalized inverse func-
tions was established in Canto e Castro et al [1]. Supposing, without loss of gen-
erality, that

G(0) = e,
G(1) = exp(—r"),
G is continuous at x = 0,

the generalized inverse function of —log(—log G) verifies
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(—log(—log G))™ (mlogr+x) = s, +a"w(x) forallx e [0,logr],me Z (5)

where the function w : [0,logr] — [0, 1] is non decreasing, left continuous and con-
tinuous at x = 0, and s,,, = ”:T_]lifa #landa > 0ors, =mifa=1. This repre-
sentation allowed those authors to prove that the following conditions are neces-
sary and sufficient for (2) to be verified for some sequence {k,} satisfying (3):

V(log kn+l> — V(log kn)

#atbo V(logk,) — V(logk,1) — (6)
and
V(loghy + x) — V(logks) =w(x), xe]l0,logr] (7)

TV (loghkns1) — V(logky)

where V(x) := (—log(—log F))™ (x). A max-semistable d.f. G can be completely
characterized using the parameters r and y, and also the function w. As we have
already said, the problem of the parameters estimation was firstly studied in
Temido [10] and, later on, in Dias and Canto e Castro [4]. Temido [10] proposed
that, in the estimation of the parameters, convenient functions of the sequences of
statistics

Zy(my) = s = Xom)

Ximy)y = Xmys)

should be used. Here X,,) := Xy_jn,)+1.x represents the order statistics of a
sample of size N from any random variable X and m := my is an intermediate
sequence, that is, m is an integer sequence verifying limy .., m = 400 and
limy_,, m/N = 0. Dias and Canto e Castro [4] analyzed the asymptotic behav-
ior of this sequence of statistics and proved that Z (m) converges in probability to
a‘ if and only if s =r¢, ¢ € N. Those authors also proposed some methods to
estimate the parameter » involving the sequence of statistics

Zsz (Wl)
(Z(m))*

which converges in probability to 1 if s = r¢, ¢ € N. The main goal of this paper
is to establish the asymptotic distribution of Z(m) and Ry(m) for s =r¢, ¢ € N.
In the class of max-stable laws, the study of the limit distribution of estimators
for y can be done using results obtained by Cooil [3]. These results concern the
joint asymptotic distributions of intermediate order statistics, when F is in the
first order differentiable domain of attraction of a limit law G, and we write

Ry(m) :=



Asymptotic distribution of statistics under max-semistability 405

F e MSys(G), that is, F is differentiable in a left neighborhood of xj:=
sup{x: F(x) < 1} and there exist real sequences {o,} and {f,}, with o, >0,
such that

dr" ,
W(a"x +B,) e G'(x)

locally uniformly for all x € S, where S denotes the support of G. Indeed, Cooil
[3] proved that if F € MSgy(G) then there are real functions a, positive and b,,
for y > 0, such that for all intermediate sequences m and for ¢ > 0, the stochastic
process

\/I/Z(X(mt) - bn/mt)/an/m

converges (in the sense of the convergence of all finite marginal distributions) to a
Gaussian process { W(?)},., characterized by

E(W (1) =0, 1>0,

cov(W(n), W) =476"", 0<t<n.

2. The asymptotic distribution of the sequences of statistics
In the sequel we need the following lemma.

Lemma 2.1. Let Yy, Y,,..., Yy be independent and identically distributed random
variables with standard Gumbel d.f.. Suppose that {my} is an intermediate sequence.
Then, with m := my and for all 6 > 0, the stochastic process

Om(0) i= m(”er—log(ﬂe))

T+

converges (in the sense of the convergence of all finite marginal distributions) to a
Gaussian process Q(0) with mean zero and covariance structure given by

COV(Q(QI), Q(02)) = nygz_y_l, 0<0 <0,. (8)

Proof. According to, for instance Draisma [5], for a d.f. F € MSy(G), the con-
stants a, and b, can be chosen as a, = nU’(n) and b, = U(n), where U(?) :=
(1/(1 = F))™(1). As we said before, according to Cooil [3],

Ym -U &
ﬂ( ( %mU/(%)(me)> ©)
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converges to a Gaussian process with covariances given by (8). Considering now
that F denotes the standard Gumbel distribution function, we have

U(t) = —log(—log(1 — ") (10)
and then
U(t) =logt+O(t") =logt+o(l), ast— +o.
By (10), we can obtain

1
2t = 1) log(l — 1)’

U'(n) =
and so, as t — 400,

1

U = T T tog(l = 1)

=1+r'+0u™Y=14+1r"+0(1).

Developing (9) we get the desired result since

\/,;<Y<mo> - U(%)) _ \/E<Y(mo> log(%HO(l))

1+ %4 o0(1)

_ m(mw‘—“’g%)> To(1). O

1 +%+0(1)

The next theorems establish the asymptotic normality of the sequences Z;(m) and
Ry(m) when s = r¢, ¢ € N.

Theorem 2.2. Let {X;},. | be a sequence of independent and identically distributed
random variables with continuous d.f. F. Suppose that, for some sequence {k,} sat-
isfying (3), F verifies (2) with G differentiable. Let {N,} be an integer sequence such
that N, = [ky)l, where 1 < I, < [kp1]/[ki] and lim,,_., . [, =1 € [1,r]. Let {t,} and
{m,} be integer sequences such that lim,_, , m, =lim,_, t, =lim, ., (n—1,)
= +o0. With m:=m, = k,/k,,], N := N, and Xy := Xy_j11, consider the
sequence of statistics

Xonrey — X,

Zye(m) = Zlmjrr) ~ “lm)

X(m) - X(”’H‘()

Then there exist normalizing real sequences {&,} and {v,}, with v, >0 and
limy, o0 &, = @, such that the asymptotic distribution of v,'\/m(Z.-(m) — &,,) is
standard normal.
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Proof. We only prove the case a # 1. The case a = 1 can be easily obtained in a
similar way. In a first step we will prove that

é ¢ ijll al (an/r"‘nT(m/r") +5n) - W(qm.nT(m) +ﬂn) + OP(I)
ngll + acW(Qm,nT(m) + ﬂn) - W(er”,nT(mr”) + O‘n) + OP(l)

where dm,n = 1 +m/N: Tm = (Ym - log(N/m))/qmm ﬁn = log(%) =

, (1)

nrn

loghy +0(1), 9, = f, +log(F22) =, +o(1) and %, :=f, +log ) =
p, + o(1). Taking into account that

AXi:N é F(_(Ui:N) i e (A(YIN)) = (_log(_logF))(_(Yi:N) = V(Yi:N)v (12)
where Y;.y are order statistics of a sample of size N from a Gumbel d.f. A, we get

Zom) L V(¥ jrey) = V(Yim)
' V(Y) = V(Y )

This can be rewritten using 77,,), as

d V(lOg kn*l‘n+c + qn1/r",nT(m/r“) +5n) - V(lOg kﬂ*tu + qm,nT(m) +ﬁn)

Zr( m) = . 13
( ) V(IOg knft,, + Qm,nT(m) +ﬁn) - V(IOg knft,,fc + qmre.n T(mr“) + O(n) ( )
Taking into account that the convergence in (7) is uniform, we obtain

V(loghk, + x,) = V(logk,) + w(x,)d\V + op(d'V), (14)

for all sequences x, of elements in [0,logr] and where d) = V(logk,i) —
V(logk,), i € N. Using this in the developments of the numerator and denomina-
tor in (13) and normalizing conveniently we get, after some calculations

1 1
((.) 1 + (qm//‘ ;sz(» )+5 )du nte (qm nT(m )+ﬂy,> n—tn + UP(d,S,),”“r)_oP(d,(l,)m)
Z . (m) i dn I dn( th l)(z( i dizdry,
r = 1) 1 :
d}g )t — 1 + (g, n T (m) +,Bn) n— /,1 o W(Gmre, nT(/m‘)+°‘n)dr<:—)t,,—z + (dn( t,,)_ (dn(—)tn—('>
" (c) d(< d(")
n—tp—c n—tp—c n—tp—c

Applying the results from Lemma 4.2 in [4] we obtain (11). By Lemma 2.1 we
know that the asymptotic distribution of (\/mT (re), VT (s /T (rjrey) 15
3-variate normal with mean zero and covariance matrix [g;] with og; =
pliti=8ert(i=2)c j < j i j=1,2 3. We can obtain the desired result using the delta
method. This method allow us to prove that the asymptotic distribution of a func-
tion ¢(T14, T2.py--., Thn,n) involving n explicitly, with suitable normalizing
factors, is standard normal when the asymptotic distribution of the vector of statis-
tics (va(T1,n — 01),/n(To,n — 02),. .., \/n(T , — Ox)) ismultidimensional normal,
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with mean zero and known covariance matrix, and the first order derivatives of g
in order to x;, i = 1,..., k, exist and are finite, when x; — 0; and n — +o0 (see for
instance Rao [9]). Letu = (a“—1)/(a — 1). Due to (11) we consider the function

UA AW G fre wX3 + On) — W(Gm X2 + )
u—+ a"vv(qm,,xz + ﬁn) - W(qmr(}nxl + OCn) ’

g(x17x27x37m) =da

with first order partial derivatives

ag ¢ / u—+ aCW(Qm/r‘L,nx3 + 5n) - W(qmﬁnx2 + ﬂn)
= A Ymre nW (qmr“,nxl + O‘n) R
ox1 [u+ aw(gmnxz + B,) — W(qmrenX1 + o))
aJ u-+a‘u-+ az"w(qm/rc,nxg +0p) — W(Gre nX1 + )
T = A "(gm,nx2 + ) : )
X2 [u+ aw(gmnxz + B,) — W(@mrenX1 + )]
59 . achrn/r“,nw/(qm/r‘,nx3 +5n)

a_x3 B u+ aCW(an,an +ﬁn) - W(anr‘,nxl + O‘n) )

Defining £, := 1/[u+ a‘w(p,) — w(a,)], we have

Ju+awo,) —w(p,)
T +aw(p,) —w(oy)’

é}’n = g(07 07 07 m) =
—g(0,0,0,m) = a Qe W' (2 )(u +a‘w(o,) — w(ﬁn))

0
0x
a@ (0,0,0,m) = —a g W' (B,) (1 + a“u+ a*w(5,) — w(o))hs,
aa—g (07 0,0, I’l’l) = QZCQm/r“,nwl(én)hn-

Therefore we can consider

O = ZZJU 5 (0,00, )Sj(o,o,o,m)
]

Py
= B (e (1)) (1 + @W(S) — W(B)) A+ FTHR (e W' (64))
+ ¥t (gmnw' (B, )) (u+a‘u+a 2w (6,) — W(oc,,))2 — 2P R e G
x W' (o)W (B,) (1 + aw(o,) — w(B,)) (u+ au+ a*w(d,) — w(ow))
2T R e e () (02) (4 + a“(62) — w(5,)
der 3 o dm,nGmre, W (B,)w 5,,)(u +a‘u-+ az"w(én) — w(ocn)). O
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Theorem 2.3. Let {Xi},. be a sequence of independent and identically distrib-
uted random variables with continuous d.f. F. Suppose that, for some sequence
{kn} satisfying (3), F verifies (2) with G differentiable. Let {N,} be an integer se-
quence such that N, = [ky)l, where 1 < I, < [kyy1]/[kn] and lim,,_ o, [, =1 € [1,r].
Let {m,} and {t,} be integer sequences such that lim,_ o m, =lim,_ . t, =
lim, . o (n—1t,) =+co. Consider the sequence of statistics, with m :=m, =
[kn/kn—s,] and N := N,

2

Rye(m) = 2 Ximprey = Xomy [ Xom) = Xomre)
e = = .

’ Ximyrey = Xim)

Xm) = Xomr)

Then there exist normalizing real sequences {&,} and {Um}, with vy, >0 and
limy, ;o &, = 1, such that the asymptotic distribution of v,'/m(Ry(m) — &,,) is
standard normal.

Proof. Again we only prove the case a # 1. The case « = 1 can be easily obtained
in a similar way. Using the same arguments as in the previous proof, by (12), we
can write

4 V(Yiujre) = V(¥im)

YV (Y) = V(Y )
V(10g k1,42 + Gmpre n Tomprey + &) — V(108 ks, + qum.n Timy + B)
V(1ogkn—s, + qmnTim) + B) — V(102 Kn—1,26 + quure nTimrrey + 14,)

Zr2(‘ (Wl)

where g, = 1+ m/N, Ty = (Yo — 108(N /m)) /gm0, B = log () =

logly +o(1), & = §, +log(" ) B, +o(1) and pu, := ﬁﬁlog(_ﬂc'gw—m )

n—tp—2c¢

p, + o(1). Taking into account (14), we get

1 1 . )
| 11’((1,,,/,.2(‘:nT(m/l.Z(')+Cn>d}i7)’”+2[—w(tjm’ 0 Tim) +/},1)d,§2tn OP(d;jr”—Zz-)_UP(drg—)rn>
d (2¢) + 20) + 20
d — d d*
Z (m) = "y nin n—in
. D) W(gmn T, +ﬂ) —w( T +14, )d() 0 (d<1> Y=o (d(1> ) '
n—ty—2c | o g nZ o0 TP D W2, T2y H) 4, o Ly orly)—orldy, o
n d(ZL) d(2")
n—tn=2¢ n—tn—2c
(15)

Attending once again to Lemma 4.2 in [4], from (15) we deduce

Zlm) 4 aa L+ @®W( G2y Tinjrey + &n) — W(dmn Timy + B) + 0p(1) |
T_ll + @W(gmn Ty + B,) — W(qm,.zf’nT(mrzL.) +u,) +op(1)

(16)
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Due to (11) and (16) we obtain

er‘ (m)
4 “;C:ll + az"w(qm/,.z(mT(m/,zc) +&n) = W(qgmnTmy + B,) +op(1)
a;—:ll + azcw(qm,nT(m) + ﬁn) - W(qmrz",n T(mrz“) + /ln) + OP(I)
< la—¢ % + acw(qm,nT(m) + ﬁn) - W(anr“,nT(mrL) + OC,,) + OP(I) (17)

a"*l + acw(q’"/’“”T(m/r") + 5”) - W(qm,nT(m) + ﬁn) + OP(l)
Using again Lemma 2.1 we can establish that the asymptotic distribution of

(\/}%T(mﬂ")a \/%T(mr“)v \/%T(m)v \/%T(m/r‘% \/ﬁT(m/rz‘))

is 5-variated normal with mean zero and covariance matrix given by o; =
pliti=0er+(i=3)e j < j j i=1,23,45. We apply again the delta method and,
due to (17), we choose the function

up + aZCW(Qm/VZ",nXS + 811) - W(qm-,nx3 +ﬁn>
up + azcw(qmmx?’ + ﬂn) - W(qml‘Z",nxl + :un>

g(xl,xz,x3,x4,x5,m) =

w1 + aW( G X3 + B) = W(Gre w2 + ) ]
u + acW(Qm/r‘;nx4 + 5n) - W(Qm,nx3 + ﬂn)
A
02

where ;= <=L, i=1,2,  5:=u +aW(qmnxs + B,) — wW(@mrenX2 + ),
Ti=up aCW(Qm/r“,nx4 +5n) - W(qm,nx3 + ﬂn)’ 0:=u + ClzCW(Qm,nX,% + ﬂn) -
W( e pX1 + ;) and A= up + az“w(qm/,zfﬁnm + 1) — W(gmnx3 + f,). The first
order partial derivatives of g are

%q = e (Gonre 1 + 1) ;2 Z_j

8632 —=2¢mre.nW' (qure,nX2 + “")g iz’

505 = G, W' (@, nX3 —I—ﬁn)% 2a”/1+2,1__,7 — ”}0
6654 =24 G /re W (qm/” X4 +0, )g 227

dg ;72.
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Define 7y :=u; +a“w(f,) — w(a,), 70:=u +aw©o,) —w(f,), 6Oo:=u+
a*w(B,) —wlw,), o =y +a*w(e,) — w(p,) and g, := 2a%o + 2h0ny/70 — 1o —
a*nyio/0o. Thus, with 0 = (0,0,0,0,0), we get

Em = 9g(0,m) = g—z Z—g % (Q,m) = Gpe ' (1) ;—2 ”—g
L m) = 24 ) 2B 0 = g e,
22 0m) = 20t ) g0 80 = g ) g
Therefore
U 1= iiaUS—i(Q,m)g—i(Q,m} O
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