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Nonlinear reaction diffusion systems of degenerate
parabolic type
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Abstract. In this paper we study the following parabolic problem

0:(1) — Alui| i) = gi(u) + B;V(Jus] ™ ") in 10, 00[ x Q,
uy=0 on 10, oo[ x 0Q,
ui(oa ) = Ujo in Qu

where Q is a bounded domain with smooth boundary and i =1,2,...d. Our aim is to
study existence of globally bounded weak solutions or blow-up, depending on the relations
between the parameters that appear in the problem.
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1. Introduction

The purpose of this paper is to study a reaction-diffusion system of the following
type:

01(u;) — A(|wi| "w;) = fi(u,Vu;)  in (0,00) xQ i=1,....d, (1.1)

where u is the vector u = (uy,...,uy), d is an integer > 1, g; > 0 and the reacting
functions f; have the following model form

filu, Vi) = gi(u) + V()™ w) i=1,....d, (1.2)

with E) = E;(z, x) € RY, m; > 0. We supplement this system with boundary con-
ditions

ui=0 in(0,00)xdQ i=1,....d, (1.3)
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and the initial data
w(0,.)=u;p InQ,i=1,...,d, (1.4)

Throughout this paper we use the following notations.

Let i and j be positive integers such that 1 < i, j < d, T and 7 be positive real
numbers such that 7" > 7,  is arbitrary positive real number, Q is a bounded open
set in RY (N > 1) with smooth boundary dQ, x = (x1,x,...,xy) € RY, A:=
Z,]j: | 6,% denotes the Laplace operator in Euclidean coordinates, V is the gradient
with respect to x and the outer normal on 0Q is denoted by v = (v, va,...vn),
finally Hess(u) is the hessian of u. In the following we will denote (0, T) x Q by
Or, and (7, T) x Q by Q; 7. The norm in L”(Q), p > 1, will be written |||, and
we also make use of the Sobolev spaces, especially of

Whr(Q) = {u: Q— R|ue LP(Q) and Vu e (L(Q))"}

W2(Q) = {u:Q— R|ue L’(Q) and Vu € (L*(Q) )N}

Wr(Q) == {ue W7 (Q)|Hess(u) e (L(Q ) N}

W) 2(0r) = {u: Or — Rlue L7 (|0, T[, W*"(Q)) and u, € L7 (|0, T], L (Q)) }
and

H(Q) = {u= (w2, ... ug) v : @ = R|||V(ulfw)||* € L*(Qr),i = 1,d}.

Once for all, we notice that the different constants (independent of &) are de-
noted by the same latter C.

System (1.1)—(1.4), in the case b = 0 has been studied extensively under vari-
ous types of initial and boundary conditions by a large number of authors, see
among others [3], [2], [4], [10], [11], [13],L15] and the literature therein.

This problem describes (in the case b; = 0) many phenomena, for example it
describes non-stationary gas filtration in a porous medium (where u represents
the density of the gas) or the diffusion in an biological population (u represents
the density of the population) see [15]. Finally in [18] u can be treated as a tem-
perature vector of interacting components of a combustible mixture. In the case
b # 0 the system (1.1)—(1.4) arises in:

1. Population dynamics. In the following system

{St—AS =S =0 +BYS, {0 ) vq,

— AI" = I(yS — 6) + abVI
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S and I represent, respectively, (as cited in [4] in the case when b = 0) the densities
of susceptibles and infectives under the effect of certain natural mechanism repre-
sented by 5, yIS is the force of infection or incidence term; it represents the num-
ber of susceptible individuals S infected by contact with infective individuals 7
per time unit; and o/ is the number of infectives who become susceptibles after
recovery.

2. Environmental purification. Suppose that a polluted river contains d suspen-
sions with concentration u;, i = 1,2, ...d. Then we obtain the following equations

% — ,Au; = Fi(u) — div(Vu;)

where V' is the velocity of water flow.

The following results are well known. First, in the work of Galaktionov [10], it
is proved that the global existence of nonnegative solutions of the boundary value
problem (1.1)—(1.4) in the case when d = 1 and f(u, Vu) = u”, depends on a rela-
tion between o (the power in diffusion term), f, N and the data u, where 1y > 0.

In [11] the authors considered the system (1.1)—(1.4) with: d =2, g1(ur,up) =
(u2)"; ga(uy,us) = (u1)?; b; = 0. They proved that the above system has a global
nonnegative solution, for arbitrary nonnegative initial functions u;y € L% 2(Q), if
I<p<oy+land1<g<a +1. For the limit cases p =0, + 1 or ¢ =g + 1
they established that the global solvability of the system depends on the spatial
structure of Q.

In [15] Madallena generalized the preceding work by proving the existence of
global nonnegative weak solutions for a reaction-diffusion system (1.1)—(1.4), for
arbitrary nonnegative initial functions u;o € L™ (), such that the functions f; sat-
isfy in the domain u; > 0 the following conditions

. fi(0) =0,

e fi(u) =0 for every u = (uj,us,...uy) such that u; =0 that is f; is quasi-
positive,

o filu) < 30 ojeq it + ¢ where ¢, ¢; > 0and 0 < o < 0 + 1.

Moreover, existence of nonnegative mild solution for nonnegative initial data
in L7+2(Q), when fi(u) = Y7, _ ;. cju;” and o < 0 + 1, is studied in [13], and it
is proved also that if o; = ¢; + 1 solutions may blow-up in finite time.

In this paper we generalize the preceding works, by supposing dependence on
the gradient in the reacting terms, that is namely the system (1.1)—(1.4). The paper
is organized as follows. In the next section we introduce a weak solution concept
and we state our main results on existence, uniqueness and blow-up. In Section 3,
which is the core of the remainder, we prove that one can pass from L%*! bounds
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to an L* one, under various boundary conditions. To derive the L* bounds we
use the Moser-type iteration technique of Alikakos (see [1]), for a single equation
(in the case b = 0) and developed by Dung (see [9]), in the case 0 < o; < 1, see
also the method developed in [16]. It should be noted that this section has the
advantage that, generally speaking, it is hard or almost impossible to establish
L* bounds directly from the equation.

Moreover we prove that the solution is more regular than the initial data (to be
more precise, we prove that if u;p € L72(Q) and ||u;(t, M peiriq) < €(&) for all
t>¢>0 where C is an independent constant of the 1n1t1a1 conditions, then
i (2, ) () < C(&) for all £ > & > 0) thus we obtain uniform estimates with re-
spect to the 1nitia1 data u.

In Section 5, it will be established that if the initial data belongs to
H,d:l L°*2(Q) then under appropriate growth conditions on g;, problem (1.1)—
(1.4) has a global weak solution u(r) = (ui(t),us(t),...uq(t)) (ui(r) = u;(1,x)),
which belongs to (LOO(Q))d for each 1 > ¢ > 0 and we prove that if the initial
data is bounded, problem (1.1)—(1.4) has a unique global weak solution, which is
bounded for any ¢ > 0. In the last section, we prove that in the limit case
(fi(u, Vu;) = Ed c,]u”” + b V(u/")), the global solvability depends on the spatial
structure of Q, more precisely, we prove that there exist thick domains Q such that
all (nontrivial) positive weak solutions of (1.1)—(1.4) blow up in finite time, while
they exist globally and decay uniformly to zero as ¢ — oo if Q is small.

Remark 1. In practice, it is most important to consider a positive initial data but
we will assume that it is arbitrary for mathematical considerations. For simplicity
when investigating the limit case we may assume without loss of generality that
Uiy = 0in Q.

2. Statements of main results

The following assumptions will be made throughout the paper, for all
i=1,2,...d:

(Hl) 1<m,‘<0',‘+1,

(H2) 9i(0) =

(H3) g; and b are locally lipschitz in there arguments,

(Hy)

Hy) there exist positive constants L;, a; with o; < g; + 1 such that

d
. “
16i]| < Li, |gi(u)| < L,.(Z|uj|a,, n 1)7
Jj=1

(H5) Ujo € La[+2(Q).
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Equation (1.1) is degenerate parabolic at the points where u; vanishes. There-
fore the problem (1.1)—(1.4) has, in general, no classical solutions. The weak so-
lution is defined as follows.

Definition 1. A function (u,us,...u,) is said to be a weak solution of problem

(1.1)-(1.4) on Qr ifforalli=1,2,...d

(1) [wi]"u; € L*(Qr),

(2) V(Jus]”u;) exists in the sense of distributions in Qr and V(|lu;|”u;) €
(£2(0r)",

(3) u; =0o0n (0, 7T) x 0Q in the sense of the traces,

(4) u; satisfies the identity

J ui(x, T)p;(x, T) dx — J @i dx dt + J V(|ui| "u;) Vo, dx dt
o

Or Or

N m;—1 N m;—1
:J (9:(w)g; = bV lui| ™ w; — div(by ) p; i ™ u;) dox dt
Or

+ JQ uio(x)p;(0, x) dx

for every ¢; € C'(Qr) such that ¢, = 0 on (0, T) x 0Q.

We shall say that u is a global weak solution of problem (1.1)—(1.4) if u is a
weak solution on Qr for all T > 0. By blow-up of solutions we mean that the so-
lution is defined in (0, T'), 0 < T < oo, and that at time 7 we have,

li My wior = .
tl/ff}H“(lv N i@ =+

With respect to global existence and uniqueness our main result is the follow-
ing.

Theorem 2.1. Under the above assumptions, there exists a global weak solution
u= (uy,uy,...uy) of the problem (1.1)—(1.4), which has the property that

i (-, Ol o) < F(E)  forall t>¢> 0.

If moreover u;y € L™ (Q) then u is unique in the class of bounded solutions, and has
the property that
||ui(-a I)HLO:(Q) < C fOI’ Clll > 0,

where F(&) is a positive function depending only & and C is a positive constant de-
pending only on uy.
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Moreover, if the initial data is positive and the functions g; are quasi-positive
then (uy,us,...uy) is positive.

The proof is found in sections 5 and 6. Finally, in Section 7, we present the
global existence and blow-up results, depending on the range of the parameters
in the limit case.

Theorem 2.2. Let fi(u,Vu;) = cio + Zjd:l ciju;f“ I E)V(u;”“).

a

(1) If 2d max; j—i...qcj +maxi:17_,,d||g|\(ﬂv+ 1) <24 (A is the first eigenvalue of
the Laplacian with zero Dirichlet data on 0Q) then for every positive initial
data in (L™ (Q))d there exists a global weak solution of (1.1)—(1.4) (tending to
zero in case ¢y = 0) which is unique, positive and globally bounded.

(2) UE» is independent of t, E € C¥(Q) and if cii > i, (A; is the first eigenvalue of
—Ay(x) + b;Vy(x) with zero Dirichlet data on 0Q) then any nonnegative (non-
trivial) weak solution of (1.1)—(1.4) blows up in finite time.

3. L*®-regularity

In this section we give a basic result of L*-regularity for weak solutions of
(1.1)-(1.4). More precisely, we have the following theorem.

Theorem 3.1. Let (uy,us, .. .ug) be a weak solution of the problem (1.1)—(1.4). As-
sume that there exists a positive continuous function F| not depending on uy such
that

i (t, | o) < F1(E)  forall t € [E, Trmax), i =1,....d. (3.1)
Then there exists a positive continuous function F., not depending on uy such that
Jui(t; M) < Fu (&)  forall t € [E, Tnax), i=1,....d. (3.2)
Moreover, if there exists a positive number C\(ug) such that
i (2, Ml o) < Ciug) — forall t € 0, Tiax), i =1,....d, (3.3)
then there exists a positive number C.,(ug) such that
lui(t, ) =) < Coo(uo)  forall t € [0, Trnax), i = 1,....d. (3.4)

The proof of the above theorem is obtained by an obvious modification of the
techniques of Dung [9]; the following two lemmas serve as the main ingredients.
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Lemma 3.2. Suppose that the nonnegative function y is absolutely continuous and
satisfies for almost every t the inequality

Y40y <6 withv>1,0>0,6>0. (3.5)

Then for all t > 0 we have

5\ S
(1) < 9 + (0(v = 1)1) : (3.6)
In particular, if lim, o+ y(t) = y(0) is finite, (3.6) becomes
5 1/v
»(1) < max{y(O), <9> } Sforall t > 0. (3.7)

The proof can be found in [18, page 167].

Lemma 3.3. Let p € [1,2) andr € | p, ZNTH) Then for any given n > 0, there exist
positive constants ¢(n), q depending only on p and r, such that

r 2 2
" < ([ IVl s+ i) + el
Q Q

for any u € W;’Z(Q). Here

1_1
with 7 := =
pTN T

~2r(1—1)
1=

o=

In proving local existence for degenerate equations such as (1.1)—(1.4) one
standard approach consists in approximating the problem with a sequence of non-
degenerate problems which can be solved in a classical sense. In order to do that

we consider
e an increasing sequence of positive numbers (R,), such that lim, | R, = +oc0;
1 if |r] <R,
oy, e C*(R") such that 0 <y, < 1 and y,(r) = {0 ;f :’: P
I = I ;

e smooth functions g, such that g;(ri,r2,...1rq) = gi(ri,ra, ... ra)¥(|r1| +
2| + -+ [ral);

® ¢ (r):=(|r|+¢) forallreR;

® asequence uy; = (U10z Uz0z, - - - Udo) € (CF(Q)) d (which is uniformly bounded
in L* if u;p € L*) such that (), tends to ;o in L72(Q).
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Consider the following regularizing problems:

O1(uz) — (o:+ 1) div(¢ (u,F)Vu,F) = gi:(us) + b; V(|u,?|m’ u,g) in Qr, (3.8)

subject to Dirichlet boundary conditions

u; =0 on (0,T) x 0Q, (3.9)

and initial conditions
u;(0,.) = wjp,  1n Q. (3.10)
By [14, Theorem 7.4], there is Tmax,. > 0 such that the problem (3.8)—(3.10)
has a unique maximal solution u, = (u1s, g, ... Ug) € (W1 2(01,...) )d for all

1 <g< oo
Moreover, under the additional conditions

(Hé) up=>0,i=1,2,...d,

(H7) ¢; is quasi-positive, that is g;(u) > 0 for every u = (uj,uz,...u,) such that
u; =0 and u; > 0 for i # j,

we can prove that u, is classical and positive, see [12]. In order to prove Theorem
3.1 it suffices to prove the following.

Proposition 3.4. Suppose there exists a positive continuous function F\ not depend-
ing on ¢ and ug such that

[tic (2, M o1y < F1(E)  Sforall t € [E, Trnax)- (3.11)

Then there exists a positive continuous function F,, not depending on ¢ and uy such
that

| u4ze (2, )HL" S FL (&) forall t e &, Thax)- (3.12)

Alternatively, if there exists a positive finite constant Cy(uy) not depending on & such
that

Jio (2, )| i) < Ci(uo) — for all t € [0, Tax), (3.13)
then there exists a finite positive constant C.,(uy) not depending on & such that
llic (2, )| 1 () < Coo(uo) — for all t € [0, Tinax).- (3.14)

In order to prove this proposition at first we prove the following lemmas.
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Lemma 3.5. Assuming (3.11), there exists a positive continuous function F., not
depending on ¢ and uy such that

lutie (2, ) Loy < F2(E)  forall t € [E, Tinax). (3.15)

If (3.13) is satisfied then there exists a finite positive constant Cy(uy) not depending
on ¢ such that

(e (2, )||LUL+2 < Cy(ug) forall t € [0, Trax)- (3.16)

Proof. For simplicity, we omit the index ¢. By multiplying (3.8) by |u;|”'u;, and
integrating over (2, we obtain the following inequality with the help of the Young
inequality:

1 d o2 o w2
0,’~F2EL2 o dx+JQ IV (faai| " wi) || lx

d

C ﬂ)ZJQ |uj|gj+l+0dx+nJQ|‘V(|ui|ojui)||2dx+ C(ﬂ)7

J=1

where 0 < g; + 1
From Lemma 3.3, if we take into account assumptions on o;; and m;, we find

d

dtJ |u,|‘7+2dx+ CJ ||V(|u,-|”"u,<)|\2dx

d
<2n2j IVt )l e+ C Y (] 1ol as) + o,

J=1

By adding these inequalities we obtain that, for # sufficiently small,

d . g a; o; q
E;j |ui| z+zdx+CZJ IV (Jei| i) || dx<CZ<JQ|u,.| de) e

(3.17)

Assuming (3.11), (3.17) can be written in the following form

d
dzj 2 dx + cJ V(") |> dx < C(&)  forall 1> &> 0. (3.18)
dt — Ja Q
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On the other hand, the Holder and Young inequalities imply
(@i+2)/2(0i+1) (+1)/2
J |u[|0f+2dx < C(J |ui|2(05+1)dx) g (4 < C(J |u[|2(0;+1)dx+ 1) Y
Q Q Q

where y := max <i<d

ﬁ. Then from Lemma 3.3 and Jensen inequality, (3.18)
becomes

d 2/(p+1)
dtJ Z|u,|"f+2dx+ C(J Z|ui|“‘+2dx> "< foralli=E > 0.
Q=1
(3.19)

Alternatively, if (3.13) is satisfied we obtain

2/(r+1)

d{ & <o
JJ Z |z 72 dx + C13(J Z |u,»|‘7’+2) < C(up) forallz>0. (3.20)
Lo i3 Q=1

Finally, by putting y(1) = [o > l|u,~|”"+2 dx in (3.19) and (3.20), Lemma 3.2
implies the desired result ]

We now prove inductively that u;, is bounded in L? for each p > g; + 1.

Lemma 3.6. Let p > o;+ 1. Assuming (3.11), there exists a positive function F,
not depending on uy and ¢ such that

tie(t; M o) < Fp(&)  Sforall t € [, Trmax,e)- (3.21)
If (3.13) is given, then there exists a positive constant C,(uy) not depending on e such
that

|l (2, )||L,, < Cy(ug)  forall t € [0, Trax,¢)- (3.22)

Proof. Let r;, > 1. By multiplying (3.8) by |u,|“ (@ +=1,. and integrating over Q,

we obtain the following with the help of Young inequality

1 4
re(or+ 1)+ 1 dt

_ e
(1+r)°

d
Zj |+ “’dij V(1 VD212 a4 (),

= (3.23)

J g g j 1V (| D002 312 g
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Fi 0'/

where 0 < g; + 1. In order to estimate [, |u;] D+ ix we construct the follow-

mg sequences:
2(7‘1(,1((7,‘ + 1) =+ 1)
(i + D)(1 +ry)

((G[‘i‘ 1)1 +Vk)
1 +re(oi+1) 7

k
rk:i 3 Pik = and Vik =

where | < A < +mini_;__4-17. Itis obvious that I < py <2foralli=1,...,d.

1
| (ai+1)((re+1)/2)—1

By setting w; = |u; u; and applying Lemma 3.3, we can esti-

Tk 0'/+1 +0d f | r/( Gj+1 +0)/<r1x+1)

mate [q [u)] o dx in term of ||wil,» and

|IVwi||;.. Hence (3.23) becomes

e (= [l as
dt ) 0
d s d
<03 | 19+ Co Y Il o + Clo).
Jj=1 j=1

By summing up these inequalities over i we find

J Z|w,|2/”kdx+ 1—2d17J ZHVW,H dx

szd;yJ ZHVW,H dx + Cy ZHWZHW Cl).  (3.24)

We will prove by induction on k& > 1 that
will o) < Fp(&)  forallz>& > 0. (3.25)

Assuming (3.25) for some k, (3.24) becomes
d Ed] Preaxsc| S vwd < F(¢ 3.26
a wil X+ Z” will” dx < Fp (). (3.26)
Q=1 Q=1
By combining the Hélder, Sobolev and Young inequalities we get
2/vik Vi 2 o
(J wi| dx) < CJ IVwil|>dx + C,  where v = min(vi). (3.27)
Q Q i=1,2

By letting yi(1) = [o > 12i<n lwi| " dx = ||w;|| . and inserting (3.27) into
(3.26), we find

d )
Eyk(t) + Cyk(t) F<C.
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As a consequence, Lemma 3.2 implies that (3.25) will be satisfied for k + 1. The
lemma now follows by applying Lemma 3.5. ]

Next, in order to show that the solution u, is uniformly bounded, we make use
of the following lemma.

Lemma 3.7. For any /. > 1 there exist positive constants dy, dy, dp, T and t’ with ©
and t' not depending on 2 such that if (3.11) is satisfied then for every t > & > 0 we
have

dj Dt J (G=1)/2.. 7|2
— v dx + d, V(|| v;)||” dx
Tl 2 o], 190w
<d(&)4 J 7wl dx + dy”.
Q

1<i<d

Moreover, if (3.13) is satisfied then for all t > 0 we have

dj pith J (2—1)/2,.\12
— vi| " dx + d V(|| v;)||” dx
2 Z b, 190610

I1<i<d
<l | 3 Jol v
Qi<i<d
where v; = |u;|"w; and y; = 1.
(oi+1)—1

Proof. By multiplying (3.8) by |u,| u; and integrating over Q we can pro-
ceed exactly as we did in the proof of the Lemma 3.6, to obtain that

d

dtJ |u,|>’”dx+d3j ||V(|u,»|</“~*”/zv,-)|y2dxng“J ST Jul - dsi? + C

Qliigd (328)

where o > 1. By using the Hoélder inequality and the fact that

i = [y A2 ) ) (=) =1 +) (=) +0) el a7 4)

where e is a positive number and /2 > 0 is to be chosen below, we get

JQ o dx < (L || "R/ 0=2) dx)P’ ( JQ P dx)R<JQ |7 dx)Q' (3.29)

with
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(=2 —y) e o 2a—y)
Pi= h(o—7;) +e’

Three cases may occur:

e Consider first the case N > 2. In this case it suffices to choose # = N. Then
we use the compactness of the imbedding W12 — L2"/(=2) to obtain that

A =
J o PO/ B2 gy C(Q)” ||V(|vi|(‘71)/zv,-)||2dx+J |v,»\l”dx} .
Q Q Q

(3.30)

e Next, we consider the case N = 2. One can obtain (3.30) by choosing /# > 2
and using the compactness of the imbedding W2 < L4 for all g > 2.

e Lastly, we consider the case N = 1. We choose /& > 2 and we use the com-
pactness of the imbedding W2 < L* to obtain (3.30).

Since p is independent of 4, by reporting (3.30) into (3.29) and by using the
fact that ;%5 P; + Q; = 1, Young inequality gives us

I N R e Iy R Ve ™
Q Q Q Q
(3.31)

where 7 = max;—|. d{ } for all o > 1. In particular, for « = 1 we have
J joi] 1 dx < ”J IV (Jer] D 20) |12 dx + C(nwj oty (3.32)
Q Q Q

Assuming (3.11) and by inserting (3.31) and (3.32) into (3.28) we obtain that, for
n sufficiently small,

d

dtj |vl|/'“dx+doj IV (e D201 dx < i ()2 J 7wl dx+dy(6)27,

Ql<i<d

for all r > & > 0. By exactly in the same way we can prove that if (3.13) is given
then we have
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d o _
A R W T
<d, (uo)zfj D7 ol dx + da(ug) A7 (3.33)
Qi<i<d
for all # > 0. This completes the proof of the lemma. O

As a final preliminary step we state the following lemma.

Lemma 3.8. Let J; = 2%, k € N, t and u be positive constants such that t — % > 0.
Then there exist positive constants x and Cy(u) such that

yk(t) < Uk(t7:u>7 (334)

where

yi(t) = J Z |ui|(5i+1)(7~k+yi) dx, k>1,

Ql<i<k
P Sk . 5+ik+]
Uy t, = C A _ +1 k th = ,
(1, 1) = Co(u) k(igg Vie1(s) +1)" with s P

where 6 = minj <;<2{h —y;(h —2)} >0, and h=N if N>2, h=2if N < 2.
Proof. Let us construct the following sequences

h(+1) = (h=2)(7; + 1)

Ok = T 1)~ =2y £ 1)
Py =1— O,
o
Pik:mpik,

O = (h=2)y;+ Jiepa
Sik

=Py h=(h=2)+ A

The Holder inequality implies that

) ) _ P ) Oik
[ e ([ a2 ) ([ fofean)
Q Q Q

from which, with the help of the Sobolev inequality, we obtain
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J |Ui|4/(+%' dx
Q

et o \Pi : O
< C(J \|V(|U,~|(’1"'71>/2vi||2dx 4 J |Ui|/»k+/i dX) A(J |vi|/uk—1+yi dX) }L_
Q Q Q

The Young inequality asserts then that
CJVUJ |Ui‘/1k+”/, dx < _J HV(| 1| (—=1) /21) H dx + C/lfz(J |Ui|/11<+”/f dx>sik (335)
Q Q

The remaining part of the proof follows from the proof of [9, Lemma 4]. O

4. Proof of Proposition 3.4

1. Suppose that (3.11) is given. Let ¢ and ¢’ be two positive reals such that
E>E>0. Weputy—~—f ty = é+5>§ ty =ty — uly. From (3.34) we have

I+ sup yi(t) < Coa7 (1 + sup yia (1)) ™

1>1— 1>t

By letting K: = max;—; .4 sup,:([q |og| " dx + 1) we deduce that

up (1) = G2 KO

>t
where
A = 14 S5+ Spsp—1 + -+ SkSk—1 ... 51,
B =k+ (k—1)s+ (k—2)skSk—1 + - + SkSk—1 - - - 51,

5+/lk+]
O+

Ck = SiSk—1-..851 =

In order to complete the proof it suffices to see that A, and By are of order 2% as k
tends to +oo. We found that

sup yr (1) < sup yr(t) < C(f'kZ"BngH*“)/((SJ”I'). (4.1)

1>ty 1>t

By taking the 2 —- power of both sides of (4.1) and passing to the limit as k tends
to +o0, we obtaln

supllei(r, )| (@) < lim sup(ne(0) /4 < RO,

[>§ —X >t

2. Suppose that (3.13) is given. We need the following lemma due to Alikakos [1].
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Lemma 4.1. Let o a nonnegative function defined in (0, c0) x Q, satisfying the dif-
ferential inequality

0 P
—J || 7 < —skJ ||+ (g + ek)ck[supj |w|'1"*‘+y} k=12,
t Jo Q 120 Jo

where ay, &, ¢ are respectively of order %, 2%k 2k as k tends to infinity, o is a pos-
itive constant, and (Ax—1 + 1)pr < Ak + 1. Then there exists a positive constant a
such that

supllo(t, ) < a22*+ VK,
t>0
where K > max{1, sup,ooo(t, )1, o0, ]}
Now combining (3.33) and (3.35) we obtain that

d ) .
;J Joi| T < (<2¢ + dl(uo))mfj v
t Q Q

5 Sik
Tk +yi| ik
)

Aty 4 Cip [supj |v;
t>0JQ

k=1,2,...00, which completes the proof, thanks also to Lemma 4.1.

Remark 2. The results of this section can be extended to the following cases.

Case 1.
Oui — A(Jui|“'uy) = fi(t,x,u, Vi;)  in ]0, 00 x Q
0 .
6—(|u,~|“’u,~)u,- <0 on |0, co[ x 0Q

1%

u(0,.) = o, ujp € L*(Q) in Q

with

® g > O,

o ‘ﬁ(taxauaé” Skl 215j5d|uj|“f +k2||é“6' +k3> where
©li=0:0=1,3 e 0,0+ 1+%2 |5 e 0%,

Case 2.
0,(ur) — A|w|“ws) = gi(t, x,u) + b;V(|jus] ™ "u) in 10, 00[ x Q,

0 ,

%(ui|u|”‘)u,~ <0, or

5 on ]0, o[ x 0Q,

St | (] ™) + g™ vy | < 0
j

ui(ov ) = U0 in Qv
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with
® g > 0,
e there exist oj € [O,aj +1+ g’;z[ such that for (z,x) e R* xQ and u=

(uy,un, . ..uy) we have

|gi(t, x,u)| < ky Z uj’ + ky,

1<j<d

for some positive constants kj, k»,

® m; € [0, (O’[—i- I)NTH[

5. Global existence

In order to prove the global existence we prove at first the following energy esti-
mates.

Lemma 5.1. Suppose that the assumptions (H;)—(Hs) are satisfied. Then the solu-

tion u, of (3.8)—(3.10) is global (that is Timax . = o0) and there exists a positive func-
tion F not depending on ¢ and uy such that

[luie(t, ) e < F(E)  forallt =& >0. (5.1)

. : d . . .
Moreover, if ug € (L*(Q))" then there exists a positive constant C not depending
on & such that

lluie(t, )| = < C(|luoll;)  Sforall t > 0. (5.2)

Proof. By Proposition 3.4, it is enough to show that there is a positive function Fj
such that

llie (2, ) ooy < Fo(¢)  forallt>¢ >0,
and if ug € (L*(Q)) “ then there is a positive constant Cy such that
l[t4ie (2, )| poiv2q) < Coluo)  forall £ > 0.
By multiplying (3.8) by |u;| 'u;., integrating over Q and taking into account that

o < 0j+ 1 and m; < ; 4+ 1, we obtain the following, with the help of Young and
Poincar¢ inequalities: for all # > 0,
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1
g+ 2

j az|uie\“f+2dx+j 1V (] 2|2 dix

<n2j 1Vt %) |2 dx + C().

By adding these inequalities, we find

d d
JQ S Ayl " dx + C(1 — dy) JQ SOVl ") |2 dx < Cl). (53)
i=1 i=1

By choosing # small enough in the last inequality and using the Poincaré inequal-
ity we have

d

:;Z‘J Z|uls|01+2dx+ CJQZ|ui£|2<”i+l) dx < C. (54)

i~
By using the Holder inequality in the second term of the left hand side, we find
d

d 2(o;+1)/(0i+2) v
ZJ |ui8|2(ai+l)dx2 CZ (J |ui6|‘7i+2 dx) > CZ (J |ui£|(7i+2 dX) )
Q i—1 Q

i=1
(5.5)

where v > 1 depends on o;. By inserting (5.5) into (5.4) and writing y =
Z,i o |ui;) 2 dx, we obtain the following, by also using Jensen inequality:

T o0 =c

Thanks also to Lemma 3.2, this completes the proof. |

We now proceed with the proof of global existence. By integrating the differ-
ential inequality (5.3) over [0, 7] and choosing # sufficiently small, we obtain

J|uig|ai+2(T,x)dx+J V(| ") | dede < C(T), = 1,d.
Q

Or

By using the uniform estimate (5.2), multiplying (3.8) by ¢(u;;)”'u;. and integrat-
ing over Qr, we get

T
J J ||¢(ui£)mvuia||2dxdl < C(7), i=1.,d.
0 Jo
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By compactness arguments, it follows that there exists a function #; and a subse-
quence of u;,, which we still denote by u;,, such that

(|utie| + €) 7" Vuzy — |u;| 7 Vu; weakly in L*(Qr),
|ttis| “"t4;; — |u;]“'u; in the strong topology of L*(Q7),

u;(t,.) — u;(t,.) almost everywhere in Q,

m;—

lutio] ™ 1tz — )™

u; in the strong topology of L*(Qr),

gie(u;) — gi(u) almost everywhere in Qr.

Hence the dominated convergence theorem guarantees that g;.(u,) — g;(«) in the
strong topology of L?(Qr). Since u, is a smooth solution of (3.8)—(3.10), it clearly
satisfies

@ Uie dx dt + J V(|uie| “uic) Vo, dx dt

j i, T)py(x, T) dx—j
Q Or or

B J (glb(”lw u2:)9; + b V¢z|“la|ml ulﬁ) dx dt + J uio:(x)9;(0, x) dx
Or Q

for any test function ¢;. From here, passing to the limit as ¢ tends to zero we ob-
tain that u = (uy, ua, .. .uy) is indeed a weak solution in the sense of our definition.

Finally, from the fact that, for all 1>¢ >0, [jue(t,.)| - q) is uniformly
bounded, we can extract a subsequence, still denoted (u;,(z, ))0 41> Such that as
¢ tends t0 0, (u(2,.)),.,., is weakly convergent to u;(z,.) in L?(Q) for every finite
p = 1. Hence, due to [8], one can extract a subsequence (w;(z,.)),._, - of convex
combinations of elements of u;(z,.) such that w;(z,.) — u;(t,.) weakly in L?(Qr),

and almost everywhere in Q2. From the facts just proved it follows that
ui € L5 (&, 00, L7(Q)), i=12,....d.
Moreover, if uy € (L™ (Q))d one finds that

ui € L5, (0,00, L7(Q)), i=12,....d.

6. Uniqueness

In this section we consider the question of the uniqueness of a bounded solution.
We will always assume that

(Hg) U € LOO(Q), i = 1,2,...d.
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Theorem 6.1. If, in addition to (H,)—(Hy), ujo € L*(Q) then u is unique in the
class of bounded functions.

Proof. The proof is a straightforward extension of the one given in [6] in a special
situation.

Indeed, suppose on the contrary that there exist two weak solutions
u= (u,uy,...,ug) and @ = (iy,i,...,u,;) of problem (1.1)—(1.4) such that
u,i e (LW(QT))d; that is, there exist a positive constant M(7T) and a set
J <= {1,2,...,d} such that

12
(J |ui—a,~|2dxdt) > M(T) ified, andw=aifi¢J. (6.1)
Or

We will reach a contradiction by constructing suitable test functions. In order to
do this, let us introduce a function ¥; € L*(Qr) such that

wil i — | % . N
lPI- _ ‘ 1| u;,,‘;]_" i lf ui ?é ui)
0 otherwise.

We consider a sequence of functions {¥;,} such that

i) Wi e L*(Qr),
i) e <Wi <[|¥illp-0,) + o

Y. —¥; o
— 01in L*(Qr).

V \Pia

We consider also the adjoint non-degenerate boundary value problem

iii)

6l¢is =+ lPiSA(pis =0 in QT?
0, =0 on (0, T) x 0Q, (6.2)
Vi = % inQx{r="rT}.

For any smooth function x;, with 0 < %; < 1, the problem (6.2) has a unique solu-
tion ¢, € C*(Qr) satisfying

) 0<g, <1,
11 IQ ic A(p[.g S Ca
2
iii) SupOsngjQ Vo, |~ < C,

where the constant C depends only on ;. It is obvious that the difference u; — #;
satisfies the following equality:



Degenerate reaction diffusion systems 393

J (u; — i), (x, T) dx + (o; + I)J Viuu; — |it;|“w;) Ve, dx dt
Q or

- J (s — 80)p v, )t + j (9:(u) — 9:(@)) p1(x, 1) dx
or Or

+j B Vo {Jul ™ i — | ™ ] (6.3)
or

for every ¢, € C'(Qr) such that p; =0 on (0, T) x 0Q. By setting ¢, = ¢;, and
n; = sign,(u; — ;)" in (6.3), where sign, is a regular approximation of the sign
function, we obtain

J (u,- — ﬁ;)+(x, T) dx + J Awl'e(\Pig — “P,’)(H,’ — ﬁ,) dx dt
Q Or

~ 7 mi— ~omi—1 &
:j (gi<u>—gi<u>)wis<x7z>+J BVl ™y — 2],
Or Or

By using the local Lipschitz continuity of the functions g; and |z|"z and the fact
that u, is uniformly bounded, and by letting ¢ — 0, we obtain the following in-
equality after the use of Holder inequality:

d 1/2
> lu — i dx e + C(T)(J lu; — iti|2dxdt)
Or

JQ(u,- — ) (x, T)dx < CJQT >

(6.4)
Now, if i € J we have

12
o 2 Jo, lui — | dx dt J -
(JQT |u; — 1y dxdt) < M(T) < C(T) QT|u1 | dxde. (6.5)

By combining (6.4), (6.5) and assumption (6.1) we find that

d
Jg(uf — ;)" (x,T)dx < (C+ C(T)) JQT /:ZI |uj — ;| dx dt

< (C+ (1) J S s — iy dxar

Or jeJ

By summing up over j € J we conclude that

JQZ(ujﬁj)+(x,T)dx£d(C+C(T))J S |uy -yl dvdr. (6.6)

jeJ Or jeJ
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In a similar way we can establish that, by letting »; = sgn, (u; — ;)" , then

d
JQ S (- )" (x, T) dx < d(C + C(T)) JQ Sy — il dxdr. (67)
T j=1

jeJ

By combining (6.6) and (6.7) we get that

[, St =il e < 2a(C+ ) | Sy - iyl

Q ey Or jeJ

We may apply Gronwall’s lemma to conclude. O

7. The limit cases

We will show now that in the limit case (namely, fi(u, Vu;) = Z]d: 1 c,»jug’+l

74
. J
E—)V(uf 1Y), and depending on the relation between the parameters Cijy Aiy A, We
get globally bounded weak solutions or blowing up solutions. More precisely,
we prove the following.
(1) If Qis small, in an appropriate sense, all positive weak solutions of (1.1)—(1.4)

are global.

(2) If Q is sufficiently large, all positive weak solutions of (1.1)—(1.4) blow-up (i.e.
become unbounded) in finite time.

Hence we deduce that large domains (namely, A < 1, which is equivalent to
J; < 0) are more unstable than small domains (4 > 1).

Throughout this section we suppose that (H»), (Hz), (Hg), (H7) and (Hg) are
satisfied.

7.1. Global existence. Let us consider the problem

01(u;) — A(Jui] ;) = gi(u) + E)V(|u,-|m"71u,-) in |0, o[ x Q
u; =0 on |0, co[ x 9Q (7.1)
u,-((), ) = Ujo in Q.

We suppose that

(Hy) there exist positive constants c;;, o, L; > 0 such that for all u;,u, >0 we
have

d
L. e d
lgi(u)] = cio+ > cyu” and || < L.
J
J=1
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Finally, we also suppose that

l.oaj <o +1,m=0;+1and HZH <2}vil foralli,j=1,...d
or

2. there exists jo € {1,...d} such that o, = gj, + 1, m; < g; + 1 and
cjy < A, foralli=1,...d

(H10) 9 or
Jaj=0+1,m<o+1; anddm%xdc,j < Aforallijj=1,...d
i.j=1,
or

4 oj=0+1, m=0+1; and2d max c,j+max||b||(/1+1)<2/1
foralli,j=1,...d b

Theorem 7.1. Let all the assumptions of this section be fulfilled. Then the problem
(7.1) has a unique global positive weak solution (uy,uy, .. .ug) such that

iy 1)l ooy < F(E) forall t>E>0,i=1,2,....d,

and
i(-, Ol ey <€ forallt=0,i=1,....d,

where F(&) is a positive function not depending on uy, and C is a positive constant
depending only on uy. Moreover, the semigroup S(t) corresponding to the system
(7.1) possesses a global attractor. Finally, in the fourth case in (H\o), if we assume
that cio =0 for all i = 1,...d, then the solution u tends to zero as t tends to infinity.

In proving the existence of a global weak solution, we find a priori estimates
for smooth solutions of problem (3.8)—(3.10) and proceed as in Section 5. We
give the details only in the fourth case of (Hjo).

Lemma 7.2. For all T > 0, there exists a positive function F, not depending on ¢,
such that

etz (T)| 0y [V (07 ) 720y < F(T). (7.2)
Moreover, in the fourth case of (H\o), if we assume that c;o = 0, then
. 2
IV 7200, < C; (7.3)
with C is a positive constant independent of T.

Proof. By multiplying (3.8) by u”‘+1 adding them together, and integrating over

Qr, we obtain the following w1th the help of the Cauchy—Schwartz inequality:
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l|| ( 2(oi+1) + ||Vu0,+lH )dxd[

d
2(gj+1
< ZCUJQ 2 )dxdt+ZJQ “
] T T

i=1

d d
20D dx de : J ugy? dx + C(
+Z’7JQTMIS * +Zm+2 Q i~ e . T cho

i=1

By letting M = max; j—i_.q4c; and b = max; = 1,.. .d||F,~>|| and applying the Poin-
caré inequality, we get

d 9 d
1 o2 2. —bi—2dM —b oty
E U[+2Jgui8 (T)dx+( 2 ) E J V()| dx dr

i=1

< C(T),
and
-1 o2 2% —bi=2dM — b\ & o)
;aiJerQuig' (T)dx+( = );J Vo) | d de
<C,

where C is independent of 7" if ¢;o = O for alli = 1,...d. Thus, for # small enough
we deduce

leio(T) | ooy IV (2 ) 720y < €T, (7.4)

and
leio(T) | o2 IV @ D) 12240,y < € (7.5)
ifc;o=0,i=1,...d. Our claim follows then from Theorem 3.1. O

Remark 3. As a conclusion of (7.5) and the Poincaré inequality, we emphasize
that if ¢jo = 0 then |ju7 ™| 12(0r) 18 uniformly bounded with respect to 7, that
is ||UUI+IHL2 o, and then || fi.(u, Vuie)|| 2o, ) are bounded. Thus we see that
|| fie (2t Vu,g)||Lz (0,5, tends to zero as 1 — oo .

Lemma 7.3. There is a positive constant C such that for all t > 0 we have the fol-
lowing inequality:

| VaZ (¢ Do < %C—F JQ f(ue, Vuze)ds — foralli=1,....d. (7.6)
1/2,1
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This inequality implies that the solution tends to zero as t tends to oo, provided

Cio = 0.

Proof. Lett € [£, 1], where ¢ > 0. By multiplying (3.8) by (u7*"), and integrating

the obtained result over Q x [z, 7], we obtain

2V ai+1)/2 . 2
= <0',- —|—2> JQ:/o,,@’(ufﬁ i )) dsdx + ||Vu; IH( 7t)||2,9

< Ve () +J B1(U™) fi i1, 1, Vit s dlx.
’ Qz/zr

The Cauchy—Schwartz inequality yields

2V A 0 (01))2 o 2
I'= <a,~+2) JQr/z,(Ot(uf’ v )) ds dx + ||Vu (. 0.0

+ Cl J ul{;i if(ul& u287 Vuig) dX ds.
Q//Z 1

By combining estimates (7.7) and (7.8) we deduce

[Vug (.t >||m<||Vu“+‘<,r>||§,g+czj S (1, s, Vi) dx ds.

Qt/z.r

By integrating in 7, over [é , t], the previous estimate, we conclude that
+1 2
—IIVu” (02,0

. t
< J (| Vaug (. 7r)||§7Q + CZEJ S (e, uze, Vutze) ds dx,
Qz/Zl Qr/z.r

and this completes the proof.
7.2. Blow-up results. In the following we assume that

b; is independent of 1, b, € (Cw(ﬁ))N
and

d
Si(u, Vu;) = cjo + Z cijuj“"f + E‘)V(u,-m").

J=1

(7.8)

(7.9)
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In this subsection we prove the finite time blow-up results stated in Theorem
2.2. A crucial role is played here by the first eigenvalue of the Dirichlet problem

{—Amx) + B ()Y (x) = Ay(x) in Q@
Vi(x)=0 on 0Q.

We denote by 4; the first eigenvalue and by ;(x) the corresponding eigenfunction
with the normalization y,;(x) > 0 in Q and ||y,]|,; = 1 (see [5]). It is well known
that 4; increases as the size of the domain Q decreases (see [7]).

Theorem 7.4. Suppose c; > ;. Then any positive (nontrivial) weak solution of
(1.1)—(1.4) blows up in finite time.

Proof. We multiply the equations defining ; by ;, add them together and inte-
grate over (0,7) x Q, to obtain

Xd:J (D)W, dx + 4 ZJ uf ™ (), dx di

i=1 O
d 1 d
=3 CJJ w" () dxdt + (J oW, dx + C(l)cio). (7.10)
ij=1 o i=1 Q
But
d 1
Z le/'”;ﬂr (DY, > M”fiﬂ(t)‘pi,
where M = max,_;__4c;. On the other hand, the Holder inequality yields

JQ a,+1( DY dx > (JQ ui ()Y, dx)mﬂ.

By inserting this into (7.10) and denoting g(s) = S0, ([ ui(s);dx), o=
min;—; 4 0;, we obtain

g(t) = (M —2;) Jot(g(s))ﬁl ds+ C.

This shows that there exists a finite time 7* such that

1
Jlim g(1) = +o0,

hence u blows-up in finite time. O]
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