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Abstract. In this note we study variants of the Brocard–Ramanujan Diophantine equation
n!þ 1 ¼ y2. For example, Berend and Harmse [1] proved that the equation n! ¼ yrðyþ 1Þ
has only finitely many positive integer solutions ðn; yÞ when rb 4 is a fixed integer. Here
we find all the integer solutions of this equation when r ¼ 2; 3 under the additional assump-
tion that yþ 1 is square-free or cube-free, respectively.
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1. Introduction

The question ‘‘Pour quelles valeurs du nombre entier x l’expression

1 � 2 � 3 � 4 . . . xþ 1

est-elle un carré parfait?’’ was asked by Brocard in [3] and [4]. In 1913, Ramanu-

jan (see [16] and [17]) posed the same problem as follows: ‘‘The number n!þ 1 is a

square for n ¼ 4; 5; 7: Find other values.’’ The Diophantine equation

n!þ 1 ¼ y2 ð1Þ

is now referred to as the Brocard–Ramanujan Diophantine equation. Finding all

the integer solutions ðn; yÞ of the Diophantine equation (1) is still an open problem

(see D25 in [10]). Let us give a quick history of this problem. In his contribution

to the problem, Gerardin [8] assumed that the equation (1) has no solutions in

the range 7 < n < 25. Using Gerardin’s ideas, Gupta [9] proved that the equa-

tion (1) has no solutions other than the known ones for na 63. In 1993, Overholt

[15] showed that the weak form of Szpiro’s conjecture implies that the equa-

tion (1) has only finitely many solutions. We recall that the weak form of Szpiro’s
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conjecture is a special case of the abc-conjecture and asserts that there exists a

constant C such that if a and b are coprime positive integers then

aþ b < rad
�
abðaþ bÞ

�C
;

where for a positive integer N we write radðNÞ for the product of all distinct

primes dividing N. In 2000, Berndt and Galway [2] used a computational method

and extended Gupta’s calculations to na 109. No new solution was found.

Many variants of the Brocard–Ramanujan Diophantine equation have also

been studied. In 1935, Erdős and Obláth [7] showed that the Diophantine

equation

yd e 1 ¼ n!

has no positive integer solutions ðy; d; nÞ with y > 1 and db 3. In 1996, Dabrow-

ski [5] studied the Diophantine equation

n!þ A ¼ y2 ð2Þ

in positive integers n and y when A is a fixed nonzero integer. He proved that if A

is not a square, then the equation (2) has only a finite number of positive integer

solutions ðn; yÞ. He also showed that the weak form of Szpiro’s conjecture implies

that the equation (2) has only finitely many solutions if A is a square. Using the

same method, Dufour and Kihel [6] proved that the weak form of Hall’s conjec-

ture, which too is a special case of the abc-conjecture, implies that the equation (2)

has only finitely many positive integer solutions ðn; yÞ. The weak form of Hall’s

conjecture mentioned above asserts that for every e > 0 there exists a positive

constant Ce depending on e only such that if x and y are positive integers with

x3A y2, then

maxfjx3j; jy2jg < Cejx3 � y2j6þe:

They also proved that if the integer A is not a qth power of an integer, then the

Diophantine equation

n!þ A ¼ yq;

has only finitely many positive integer solutions ðn; yÞ. In [14], Luca proved that

the abc-conjecture implies that for any P a Z½X � of degree at least 2 the Diophan-

tine equation

PðyÞ ¼ n!
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has only finitely many integer solutions ðy; nÞ with nb 0. In 2004, Kihel and

Nwabueze [13] used p-adic linear forms in logarithms to show that if P a Z½X � is
any nonzero polynomial, then any positive integer solution ðx; y; n; qÞ with q > 1

to the Diophantine equation

PðnÞn!þ xq ¼ yq with yC 1 ðmod 2Þ ð3Þ

satisfies

2n

nþ 1
< y4000ðlog 2Þ

2ðlog qÞ2 :

Moreover, it was checked computationally that the Diophantine equation

1þ
Y
kFn

1akan

k ¼ y2; ð4Þ

has only the positive integer solutions ðn; yÞ ¼ ð4; 2Þ and ð5; 5Þ in the range

na 105. Recently, Kihel and Luca [12] studied variants of the Brocard–

Ramanujan Diophantine equation (1) in which n! is replaced by the product of

the positive integers ka n not dividing n (appearing in (4), for instance). For

example, with the method from [12] one can easily show that the Diophantine

equation (3) has only finitely many integer solutions ðx; y; n; qÞ with x and y

coprime and qb 3.

In the two notes [19] and [20], the third author has studied simultaneous Dio-

phantine equations of the form x!þ A ¼ y2. Moreover, he proved that the set

S ¼ fjn!� y2j j ðn; yÞ a Ng

is of asymptotic density zero. He remarked that the Diophantine equation

n!þ 505 ¼ y2 has the three solutions ðn; yÞ ¼ ð4; 23Þ; ð5; 25Þ; ð6; 35Þ and asked if

there are any others. The fact that there are only finitely many such solutions

follows already from Dabrowski’s 1996 result [5] mentioned earlier with A ¼ 505.

The aim of this paper is to extend the work done by the third author. So,

in Section 2 we answer the question asked in [19] and [20] by showing that there

are no other solutions ðn; yÞ to the Diophantine equation n!þ 505 ¼ y2 except for

the three given above. We also prove some other results related to the Diophan-

tine equation n!þ A ¼ y2. In Section 3, we study the Diophantine equation

n! ¼ yrðyþ 1Þ for r ¼ 2; 3. We prove that the only positive integer solutions

ðy; nÞ with yþ 1 is cube-free are ðy; nÞ ¼ ð1; 2Þ; ð2; 4Þ if r ¼ 3, and the unique

positive integer solution is ðy; nÞ ¼ ð1; 2Þ if r ¼ 2. The more general equation
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n! ¼ yrðyþ 1Þ was studied by Berend and Harmse in [1]. They proved that the

above Diophantine equation has only finitely many positive integer solutions

ðn; yÞ when rb 4 if a fixed integer and left open the case 1a ra 3. Thus, we

give a partial answer to this problem for r ¼ 3. In the last section, we prove that

the set

S ¼
n���

Y
kFn

1akan

k � y2
��� j ðn; yÞ a N

o

is of asymptotic density zero.

2. On the equation n!BAF y2

Let A be a fixed nonzero integer.

Theorem 2.1. Assume that p is a prime such that p kA. If ðn; yÞ are positive inte-
gers such that

n!þ A ¼ y2; ð5Þ

then n < 2p.

Proof. Indeed, if nb 2p, then p2 j n!. Since p jA, we get that p j n!þ A, therefore

p j y2. Hence, p j y. In particular, p2 divides both n! and y2, thus also A ¼
y2 � n!, which is a contradiction. r

Remark 2.2. The only positive integer solutions ðn; yÞ of the Diophantine

equation

n!þ 505 ¼ y2 ð6Þ

are ðn; yÞ ¼ ð4; 23Þ; ð5; 25Þ; ð6; 35Þ. Indeed, to see this observe that 5 k 505, so by

Theorem 2.1 we must have n < 10. A quick computation finishes the job.

Next, we look at the Diophantine equation n!þ A ¼ y2 when A ¼ 3k þ 2 or

A ¼ 4k þ 3. The result is the following.

Theorem 2.3. Let kb 0 be a fixed integer. All positive integer solutions ðn; yÞ of
the Diophantine equation

n!þ 3k þ 2 ¼ y2 ð7Þ
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have n < 3. All positive integer solutions ðn; yÞ of the Diophantine equation

n!þ 4k þ 3 ¼ y2 ð8Þ

have n < 4. Moreover, each of the Diophantine equations (7) (8) has at most one

solution.

Proof. If nb 3 in equation (7) or nb 4 in equation (8), we then get that

2C y2 ðmod 3Þ and 3C y2 ðmod4Þ, respectively, which is impossible. For the

last part, assume say that both n ¼ 1 and n ¼ 2 yield positive integer solutions y

to (7). Then 3k þ 3 ¼ y21 and 3k þ 4 ¼ y22 , giving y22 � y21 ¼ 1, which does not

have positive integer solutions ðy1; y2Þ. A similar argument applies to show that

equation (8) has at most one positive integer solution ðn; yÞ. r

The next remark generalizes Theorem 2.2 in [20].

Remark 2.4. All positive integer solutions ðn1; n2;A; yÞ of the simultaneous

equations

n1!þ Aþ 1 ¼ y2 ð9Þ
and

n2!þ A ¼ y2 ð10Þ

have ðn1; n2Þ ¼ ð2; 1Þ. In fact, subtracting the two equations above we get

n1!� n2! ¼ 1. It is easy to see that the only positive integer solution of this last

equation is ðn1; n2Þ ¼ ð2; 1Þ.

3. On the Diophantine equation n!F yr(yB 1)

In this section we consider the Diophantine equation

n! ¼ yrðyþ 1Þ with r ¼ 2; 3: ð11Þ

We have the following result.

Theorem 3.1. The only positive integer solutions ðy; nÞ of the Diophantine equation

(11) with r ¼ 3 and yþ 1 cube-free are ðy; nÞ ¼ ð1; 2Þ; ð2; 4Þ.

Proof. Since yþ 1 is cube-free, we get that

yþ 1a
�Y

pan

p
�2
:
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Thus,

n! ¼ y3ðyþ 1Þ < ðyþ 1Þ4 <
�Y

pan

p
�8
:

From the elementary inequality n!b ðn=eÞn, we get that

n logðn=eÞa log n! < 8
X
pan

log p:

Theorem 6 of [18] shows that

X
pan

log p < 1:001102n

holds for all nb 1. Thus, we get that n < e1þ8�1:001102 or na 8174.

Next we ran a computation showing that in fact n < 80. Here is how we

checked it. For each n a ½80; 8200�, we checked that there is some prime p among

the first 9 (namely, pa 23), such that the exponent of p in n! is not a multiple of 3.

In particular, if n! ¼ y3ðyþ 1Þ for some n in our range, then p j yþ 1. Since

nb 80 > 3p, it follows that the exponent of p in n! isb bn=pcb 3, so if yþ 1 is

cube-free, then also p j y, which is a contradiction. Interestingly enough, n ¼ 8230

has the property that the exponent of p in n! is a multiple of 3 for all primes

pa 23. Finally, one checks with Mathematica that ðn; yÞ ¼ ð2; 1Þ; ð4; 2Þ are the

only positive integer solutions to the Diophantine equation n! ¼ y3ðyþ 1Þ in the

range na 80. r

We use a similar method to obtain the following result.

Theorem 3.2. The only positive integer solution ðy; nÞ of the Diophantine equation

(11) with r ¼ 2 and yþ 1 square-free is ðy; nÞ ¼ ð1; 2Þ.

Proof. Using exactly the method used in the proof of Theorem 3.1, we get that

ðn=eÞna n! < ðyþ 1Þ3a
�Y

pan

p
�3

< e3�1:001102n:

Thus, n < e1þ3�1:001102, yielding na 54. A very quick computation for solving the

cubic Diophantine equation (11) with r ¼ 2 and 1a na 54, gives the unique solu-

tion ðy; nÞ ¼ ð1; 2Þ. r
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4. On a thin set of integers

In this section we look at the set

S ¼
n���

Y
kFn

1akan

k � y2
��� j ðn; yÞ a N

o
: ð12Þ

We put SðTÞ ¼ SB ½1;T �. We prove the following result.

Theorem 4.1. The estimateaSðTÞ ¼ T 1=2þoð1Þ holds as T ! l.

Proof. Throughout this proof, we use the Landau symbolds O and o and the

Vinogradov symbolsg andfwith their usual meanings.

Let T be a large positive integer. For the lower bound on aSðTÞ, we take

pairs ðn; yÞ where n ¼ 1 and y a f1; . . . ; b
ffiffiffiffi
T

p
cg.

From now on, we deal with the upper bound. Let m a SðTÞ. We may assume

that m is not a square since there are b
ffiffiffiffi
T

p
c perfect squaresaT . For a positive

integer n we put

Mn :¼
Y
kFn

1akan

k ¼ n!

ntðnÞ=2 ;

where tðnÞ stands for the number of divisors of n.

Lemma 4.2. There exists n0 such that if n > n0 and p < n7=8 is a prime, then the

exponent of p in the prime factorization of Mn is > n1=8=2.

Proof. The exponent of p in n! isb bn=pc > n=p� 1 > n1=8 � 1. The exponent of

p in ntðnÞ=2 isf logðntðnÞ=2Þf tðnÞ log n ¼ noð1Þ as n ! l. Thus, the exponent of

p in Mn is b n1=8 � noð1Þ as n ! l, which implies the desired lower bound for

large n. r

Now write m a SðTÞ as m ¼ jMn � y2j. Thus, y2 �Mn ¼ hm, where

h a fe1g. In what follows, we show that n < T 1=2 if T > T0, where T0 is a su‰-

ciently large positive real number. Assume that this is not so. Let D be the part of

gcdðMn;mÞ build up of primes paT 7=16. For each prime paT 7=16, let ap, bp
and gp be the exact exponents at which p appears in the prime factorizations of

Mn, m and y2, respectively (some of these exponents are zero if p does not divide

D). For such values of p, it follows that p < n7=8, so by the above Lemma 4.2 we

have that ap g n1=8 gT 1=16. Clearly, since maT , we have that bpf logT .

Thus, if T is su‰ciently large, we then have that ap � bpb 3 for all primes

7Variants of the Diophantine equation n!þ 1 ¼ y2

(AutoPDF V7 28/1/10 12:47) EMS (170�240mm) Tmath J-2232 PMS, 67:1 (idp) PMU:(KN/)(WSL)7/1/2010 pp. 1–11 2232_67-1_01 (p. 7)



paT 7=16. Writing now Mn ¼ DM 0
n, m ¼ Dm1, y

2 ¼ Dz1, we get that

z1 �M 0
n ¼ hm1:

Furthermore, every prime paT 7=16 divides M 0
n. This shows that if p jD, then

bp ¼ gp. Since gp is even, we get that D is a perfect square, so z1 ¼ y2=D ¼ y21 is

a perfect square also. We thus get that

y21 �M 0
n ¼ hm1:

Furthermore, M 0
n is a multiple of 8 (since a2 � b2b 3) and y1 is odd, so

hm1C 1 ðmod 8Þ. If paT 7=16 is any odd prime, then reducing the above rela-

tion modulo p we get hm1C y2 ðmod pÞ, so ðhm1 j pÞ ¼ 1. Here and in what

follows, for integers a and b > 1 and odd, we use ða j bÞ for the Jacobi symbol.

Note that m1 > 1 since m is not a perfect square. If h ¼ 1, then m1C 1 ðmod 8Þ,
and the relation ðm1 j pÞ ¼ 1 implies by the Quadratic Reciprocity Law that

ðp jm1Þ ¼ 1. The same is true for p ¼ 2 since m1C 1 ðmod 8Þ. Hence,

ðk jm1Þ ¼ 1 for all kaT 7=16 when h ¼ 1. The same conclusion holds when

h ¼ �1. Indeed, then m1C 7 ðmod8Þ, so by the Quadratic Reciprocity Law,

1 ¼ ð�m1 j pÞ ¼ ð�1Þðp�1Þ=2ðm1 j pÞ ¼ ð�1Þðp�1Þ=2ð�1Þððp�1Þ=2Þ�ððm1�1Þ=2Þðp jm1Þ

¼ ð�1Þp�1ðp jm1Þ ¼ ðp jm1Þ:

The fact that ð2 jm1Þ ¼ 1 follows because m1C 7 ðmod 8Þ. Hence, in this case too

we have that ðk jm1Þ ¼ 1 holds for all kaT 7=16. By the Burgess bound for char-

acter sums (see [11, Theorem 12.5]), we get that

bT 7=16c ¼
X

kaT 7=16

ðk jm1ÞfT 7=32þoð1Þm
3=16
1 aT 7=32þ3=16þoð1Þ ¼ T 13=32þoð1Þ

as T ! l, which is of course a contradiction for large values of T . This contra-

diction shows that indeed n < T 1=2 if T is large.

Let zðTÞ :¼ 10 logT=log logT . Assume that n > zðTÞ. Then, by the Stirling

formula,

Mn ¼
n!

ntðnÞ=2 ¼ exp
�
n log nþO

�
tðnÞ log n

��
¼ exp

��
1þ oð1Þ

�
n log n

�
bT 10þoð1Þ;

showing that for large values of T we have that m ¼ OðM 1=9
n Þ. Thus, the equation

y2 �Mn ¼ hm gives

y2 ¼ Mn þOðM 1=9
n Þ;
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so

y ¼ M 1=2
n

�
1þOðM�8=9

n Þ
�1=2 ¼ M 1=2

n þOðM�7=18
n Þ ¼ M 1=2

n þ oð1Þ

as T ! l, implying that if n is fixed, then y must be the closest integer to M 1=2
n .

Thus, if n > zðTÞ, then y is uniquely determined in terms of n. This shows that the

number of possibilities for m is at most the number of possibilities for n; hence,

OðT 1=2Þ.
Next fix n with na zðTÞ. Let y1; . . . ; yk be all the possibilities for y such that

h ¼ 1. Then the numbers

y21 �Mn; y
2
2 �Mn; . . . ; y

2
k �Mn are all in SðTÞ: ð13Þ

Assume that y1 < � � � < yk. Then the di¤erence between the first and last of the

above numbers in (13) is y2k � y21 > ðyk � y1Þ2b ðk � 1Þ2 and it is obviouslyaT .

Hence, kfT 1=2. In the same way, one proves that if na zðTÞ is fixed, then there

are only OðT 1=2Þ possibilities for y such that m a SðTÞ and h ¼ �1. Summing

now up over all the possibilities for n, we get that there are O
�
T 1=2zðTÞ

�
¼

T 1=2þoð1Þ as T ! l such possiblities for our m. This completes the proof of the

theorem. r

Remark 4.3. By partial summation, Theorem 4.1 implies that the series

X
m AS

1

m1=2�e
< l for all e > 0:

An identical proof works to show that, as T ! l, there are at most T 1=2þoð1Þ

positive integers maT of the form jn!� y2j for some natural numbers n and y.

Note that there are also at least T 1=2þoð1Þ such integers m as well ( just take n ¼ 1

and y a f1; . . . ; bT 1=2c), so up to the exponent of oð1Þ our result is best possible.
In [20], the third author has proved that the set

S 0 ¼ fjx!� y2j j ðx; yÞ a Ng: ð14Þ

is of asymptotic density zero, although the upper bound on the counting function

of S 0 obtained there is much weaker than the present one.
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[8] A. Gérardin, Contribution à l’étude de l’équation 1 � 2 � 3 � 4 . . . zþ 1 ¼ y2. Nouv. Ann.

Math. (4) 6 (1906), 223–226. JFM 37.0230.03

[9] H. Gupta, On a Brocard-Ramanujan problem. Math. Student 3 (1935), 71.
JFM 61.1074.28

[10] R. K. Guy, Unsolved problems in number theory. 2nd ed., Springer-Verlag, New York
1994. Zbl 0805.11001 MR 1299330

[11] H. Iwaniec and E. Kowalski, Analytic number theory. Amer. Math. Soc. Colloq. Publ.
53, Amer. Math. Soc., Providence, RI, 2004. Zbl 1059.11001 MR 2061214

[12] O. Kihel and F. Luca, Variants of the Brocard-Ramanujan equation. J. Théor. Nom-
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(AutoPDF V7 28/1/10 12:47) EMS (170�240mm) Tmath J-2232 PMS, 67:1 (idp) PMU:(KN/)(WSL)7/1/2010 pp. 1–11 2232_67-1_01 (p. 10)

http://www.emis.de/MATH-item?1114.11029
http://www.ams.org/mathscinet-getitem?mr=2186995
http://www.emis.de/MATH-item?0999.11078
http://www.ams.org/mathscinet-getitem?mr=1754629
http://www.emis.de/MATH-item?08.0193.04
http://www.emis.de/MATH-item?0876.11015
http://www.ams.org/mathscinet-getitem?mr=1430045
http://www.emis.de/MATH-item?1171.11309
http://www.ams.org/mathscinet-getitem?mr=2036122
http://www.emis.de/MATH-item?0017.00404
http://www.emis.de/MATH-item?37.0230.03
http://www.emis.de/MATH-item?61.1074.28
http://www.emis.de/MATH-item?0805.11001
http://www.ams.org/mathscinet-getitem?mr=1299330
http://www.emis.de/MATH-item?1059.11001
http://www.ams.org/mathscinet-getitem?mr=2061214
http://www.emis.de/MATH-item?1171.11020
http://www.ams.org/mathscinet-getitem?mr=2477508
http://www.emis.de/MATH-item?1076.11023
http://www.ams.org/mathscinet-getitem?mr=2110768
http://www.emis.de/MATH-item?1085.11023
http://www.ams.org/mathscinet-getitem?mr=1951531
http://www.emis.de/MATH-item?0805.11030
http://www.ams.org/mathscinet-getitem?mr=1204060
http://www.emis.de/MATH-item?53.0030.02
http://www.ams.org/mathscinet-getitem?mr=2280843
http://www.emis.de/MATH-item?0295.10036
http://www.ams.org/mathscinet-getitem?mr=0457373
http://www.emis.de/MATH-item?1099.11016
http://www.ams.org/mathscinet-getitem?mr=2209106
http://www.ams.org/mathscinet-getitem?mr=2338135


Received November 12, 2008; revised March 10, 2009

Omar Kihel, Department of Mathematics, Brock University, 500 Glenridge Avenue, St.
Catharines, Ontario Canada L2S 3A1

E-mail: okihel@brocku.ca
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