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Series of reciprocal products with factors
from linear recurrence sequences
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Abstract. In this article we study the values of power series
P

zn=
Q j

i¼0 WðnþimÞk at certain
points of their domain of meromorphy from the arithmetical point of view. ðWnÞ is a se-
quence of non-zero integers satisfying a recurrence Wnþ1 ¼ pWn þ qWn�1 with non-zero
integers p, q such that the discriminant D ¼ p2 þ 4q is positive but not a square. The
main interest is to characterize the situations, where these values lie in the real quadratic
number field Qð

ffiffiffiffi
D

p
Þ or even in Q, but we also include some transcendence problems.
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1. Introduction and main result

Melham [6] considered, for given positive real p, the binary linear recurrence

Wn ¼ pWn�1 þWn�2 ðn ¼ 2; 3; . . .Þ; ð1Þ

which is uniquely determined by the pair ðW0;W1Þ of initial values. For ðW0;W1Þ
being ð0; 1Þ or ð2; pÞ, the corresponding sequences are denoted by ðUnÞ and ðVnÞ,
respectively, and these can be explicitly given in the form

Un ¼
an � b n

a� b
; Vn ¼ an þ b n ð2Þ

for any n a N0 :¼ f0; 1; 2; . . .g. Here a, b are the two real roots of the companion

polynomial X 2 � pX � 1 of (1). In the case p ¼ 1, ðUnÞ and ðVnÞ are the Fibo-

nacci and Lucas sequence, respectively (which we denote, as usual, by ðFnÞ and

ðLnÞ), and in the case p ¼ 2 the Pell and Pell–Lucas sequence, respectively.



The main objective of Melham’s note [6] is to express the series

Xl
n¼1

1

WnkWðnþmÞk
ð3Þ

in the two cases Wn ¼ Un and Wn ¼ Vn in closed form by values of the Lambert

series
Pl

n¼1 z
n=ð1� znÞ at the points b2k, b4k, b8k in the first case, where b4k can

be omitted in the second one. Here k;m a N :¼ N0nf0g are odd and b satisfies

0 > b > �1. The particular case m ¼ 1 of this problem has been treated earlier

by André-Jeannin [1].

The main aim of the present paper is to investigate arithmetically series of type

(3), in fact, far-reaching generalizations of them, without recourse to their repre-

sentation by the above-mentioned Lambert series. Plainly, for that purpose we

need arithmetical hypotheses on the parameter p in (1). More generally, we shall

consider linear recurrences of the form

Wn ¼ pWn�1 þ qWn�2 ðn ¼ 2; 3; . . .Þ; ð4Þ

with p; q;W0;W1 a Z and pqW1A 0 implying, in particular, Wn a Z for any

n a N0. Then the companion polynomial X 2 � pX � q of (4) has two non-zero

roots, which are distinct (and denoted by a, b as above) if the expression

D :¼ p2 þ 4q is non-zero. Moreover, both of them are real and have distinct ab-

solute values if we suppose that even D > 0. Without loss of generality, we will

always assume that jaj > jbj. Requiring additionally that D is not a square, both

roots are irrational and generate the same real quadratic number field Qð
ffiffiffiffi
D

p
Þ.

Moreover, it is easily seen that every Wn can be written in the form

Wn ¼ gan þ hb n ðn a N0Þ; ð5Þ

where g and h can be expressed by a, b and the initial values W0, W1 in the form

g ¼ W1 �W0b

a� b
; h ¼ W0a�W1

a� b
ð6Þ

implying that g; h a Qð
ffiffiffiffi
D

p
Þnf0g. From (5) it is clear that at most one Wn, n a N0,

can vanish.

We now state our main result, from which we will deduce later, by suitable spe-

cialization, arithmetic data on Melham’s series (3). But first we recall that the de-

nominator of an algebraic number d, denoted by denðdÞ, is the smallest d a N such

that d � d is an algebraic integer.
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Theorem 1.1. Suppose that ðWnÞ a ZN0 , with WnA 0 for any n a N, satisfies the

linear recurrence (4) with p a Z, q a f1;�1g and D ¼ p2 þ 4q > 0 not a square.

Assume that the roots a, b of the companion polynomial of (4) satisfy jaj > jbj, and
that the g; h a K� in the representation (5) of the Wn are such that

g
h
is a unit in the

ring of integers OK of K :¼ Qð
ffiffiffiffi
D

p
Þ. Finally, let j; k;m a N and ‘ a N0.

Then, for the meromorphic function Wjðz; k; ‘;mÞ, defined in jzj < jaj jk by the

power series

Xl
n¼1

znQ j�1
i¼0 WðnþimÞkþ‘

; ð7Þ

the following alternative holds.

(i) For every g a K� with gA ð�qÞrkað j�2rÞk for all r a Z, r < j, and with

denðg�1að jþ2t�2ÞkÞ <
��a
b

��k=4 for some t a N0 one has Wjðg; k; ‘;mÞ B K. This is

true if m is odd; for even m, however, one has to suppose additionally that

gA�ð�qÞrkað j�2rÞk for r ¼ 1; . . . ; j � 1.

(ii) For g ¼ ð�qÞrkað j�2rÞk with some r a f1; . . . ; j � 1g if m is odd, and for

g ¼eð�qÞrkað j�2rÞk with some r a f1; . . . ; j � 1g if m is even, the number

Wjðg; k; ‘;mÞ lies in K and can be explicitly determined.

Remark 1.2. If j ¼ 1 the power series (7) does not depend on m, hence we write

from now on Wðz; k; ‘Þ instead of W1ðz; k; ‘;mÞ. Note that, in this case, the alter-

native (ii) cannot occur and, moreover, the additional hypothesis on g for even m

can be dropped from (i).

Remark 1.3. The hypotheses on p, q and D in our theorem imply jpjb 1 if q ¼ 1,

and jpjb 3 if q ¼ �1. The assumption q a f1;�1g guarantees that not only a, b

are in OK but also a�1, b�1. This will be needed later in the proof. The hypothesis

on the quotient g
h
can be checked in each case via (6). It should be pointed out that,

from now on, we define Un, Vn as in (2), no matter if q ¼ 1 (as at the very begin-

ning) or q ¼ �1. Then, in the ‘U-case’ we have to take g ¼ �h ¼ 1
a�b

in (5), and

g ¼ h ¼ 1 in the ‘V -case’. Hence, in these two standard cases, the condition on g
h
is

satisfied.

Remark 1.4. By a; a�1 a OK , every expression of the form g�1að jþ2t�2Þk with

g ¼eao, o a Z, has denominator 1. Hence, for those g’s, the denominator condi-

tion needed only in case (i) is satisfied.

In the next section, we will present several applications of Theorem 1.1 with

g ¼e1. It should be noted that the consideration of the points g ¼eao, o a Z,

would be equally possible but technically more unpleasant. On the other hand, by
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(7), W2ð1; k; 0;mÞ is exactly Melham’s series (3), for which, under the conditions of

our theorem, the following characterization will be deduced in Corollary 2.3:

W2ð1; k; ‘;mÞ B K , q ¼ 1 and km odd:

Notice that in Theorem 2 of [6] the series W2ð1; k; 0;mÞ was considered in just

this case q ¼ 1, km odd for the particular sequences ðWnÞ being ðUnÞ or ðVnÞ. In

these two cases, we will obtain in Corollaries 2.4 and 2.5 below more detailed in-

formation by looking a bit more precisely to the proof of Theorem 1.1.

2. Some corollaries and transcendence problems

These will concern the two cases g ¼e1 for odd j, for j divisible by 4, and for

j ¼ 2.

Corollary 2.1. Assume the hypotheses of Theorem 1.1 and let j be odd. Then the

values of both series Wjð1; k; ‘;mÞ and Wjð�1; k; ‘;mÞ are not in K ¼ Qð
ffiffiffiffi
D

p
Þ.

Corollary 2.2. Assume the hypotheses of Theorem 1.1 and let j be a multiple of 4.

Then Wjð1; k; ‘;mÞ a K holds always, but Wjð�1; k; ‘;mÞ a K holds if and only if m

is even.

Corollary 2.3. Suppose that the conditions of Theorem 1.1 are fulfilled. Then the

following two equivalences hold:

a) W2ð1; k; ‘;mÞ B K , q ¼ 1 and km is odd,

b) W2ð�1; k; ‘;mÞ B K , ð�qÞk ¼ 1 and m is odd.

If either q ¼ �1 or q ¼ 1 and km is even, then W2ð1; k; ‘;mÞ is in K , and the

same holds for W2ð�1; k; ‘;mÞ if m is even or ð�qÞk ¼ �1. According to part (ii)

in our theorem, these sums can be explicitly determined. Our next corollary pre-

cisely describes in both situations the conditions for W2ðe1; k; ‘;mÞ to lie in KnQ
or in Q, at least in the two standard cases ðUnÞ and ðVnÞ of ðWnÞ, where we self-

evidently write U and V instead of W.

Corollary 2.4. Suppose that the conditions of Theorem 1.1 are satisfied. Then the

following is true.

a) The values of the sums U2ð1; k; ‘;mÞ, V2ð1; k; ‘;mÞ lie in KnQ if either q ¼ �1

or q ¼ 1 and k is even, but they lie in Q if q ¼ 1, k is odd and m is even.

b) The values of the sums U2ð�1; k; ‘;mÞ, V2ð�1; k; ‘;mÞ lie in KnQ if

ð�qÞk ¼ �1, but they lie in Q if ð�qÞk ¼ 1 and m is even.
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This corollary is purely qualitative. In the subsequent one, we explicitly deter-

mine the sums W2ðe1; k; ‘;mÞ in the U- and V -case under the conditions stated

in Corollary 2.4 being necessary and su‰cient that their values belong to KnQ or

to Q.

Corollary 2.5. Assume the conditions of Theorem 1.1.

a) If either q ¼ �1 or q ¼ 1 and k is even, then

U2ð1; k; ‘;mÞ ¼ ð�qÞ‘

2Umk

�Xm
n¼1

Vnkþ‘

Unkþ‘
�m

ffiffiffiffi
D

p �
¼: DðUÞ;

V2ð1; k; ‘;mÞ ¼ ð�qÞ‘

2Umk

� mffiffiffiffi
D

p �
Xm
n¼1

Unkþ‘

Vnkþ‘

�
¼: DðVÞ;

and if q ¼ 1, k is odd and m is even, then

U2ð1; k; ‘;mÞ ¼ Uk

Umk

Xm=2

i¼1

1

Uð2i�1Þkþ‘U2ikþ‘
¼: SðUÞ;

V2ð1; k; ‘;mÞ ¼ Uk

Umk

Xm=2

i¼1

1

Vð2i�1Þkþ‘V2ikþ‘
¼: SðVÞ:

b) If ð�qÞk ¼ �1, then U2ð�1; k; ‘;mÞ ¼ DðUÞ and V2ð�1; k; ‘;mÞ ¼ DðVÞ. If

ð�qÞk ¼ 1 and m is even, then U2ð�1; k; ‘;mÞ ¼ �SðUÞ and V2ð�1; k; ‘;mÞ
¼ �SðVÞ.

In particular, if k ¼ 1, ‘ ¼ 0 and m is even and U , V are the usual Fibonacci

and Lucas numbers, respectively, we deduce from the third formula in a) that

Xl
n¼1

1

FnFnþm

¼ 1

Fm

Xm=2

i¼1

1

F2i�1F2i
;

Xl
n¼1

1

LnLnþm

¼ 1

Fm

Xm=2

i¼1

1

L2i�1L2i
:

Both formulae are due to Brousseau [2]. Moreover, we find from the first formula

in b) and from Ln ¼ 2Fn�1 þ Fn that

Xl
n¼1

ð�1Þn

FnFnþm

¼ 1

2Fm

�Xm
n¼1

Ln

Fn

�m
ffiffiffi
5

p �
¼ 1

Fm

�
m
1�

ffiffiffi
5

p

2
þ
Xm
n¼1

Fn�1

Fn

�
; ð8Þ

a formula due to Rabinowitz [8]. Using instead the second formula in b) and

5Fn ¼ 2Ln�1 þ Ln we obtain the following Lucas analogue:
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Xl
n¼1

ð�1Þn

LnLnþm

¼ � 1

5Fm

�
m
1�

ffiffiffi
5

p

2
þ
Xm
n¼1

Ln�1

Ln

�
:

Notice that the two last formulae hold for arbitrary positive integers m.

Our last corollary will concern the case j ¼ 4. Under the conditions of Theo-

rem 1.1, Corollary 2.2 tells us precisely when W4ðe1; k; ‘;mÞ lies in K . Having

Corollaries 2.4 and 2.5 in mind, we may ask if it is possible to describe here also

the exact conditions for these values to lie in KnQ or in Q. For reasons to be ex-

plained in Remark 4.2 below, we are not able to solve this problem in full gener-

ality, even not in the general U- or V -case (as we did right before for j ¼ 2) but

just in the particular case p ¼ q ¼ 1 of Fibonacci and Lucas sequences, where we

will write F and L instead of W, U, V.

Corollary 2.6. For m a N the following assertions hold.

a) Both F4ð1; 1; 0;mÞ and L4ð1; 1; 0;mÞ lie in Qð
ffiffiffi
5

p
ÞnQ,

b) both F4ð�1; 1; 0;mÞ and L4ð�1; 1; 0;mÞ are rational if m is even, but do not lie

in Qð
ffiffiffi
5

p
Þ if m is odd.

As a matter of fact, we shall prove in Section 4 that

F4ð j; 1; 0;mÞ ¼ ajðmÞF2ð�j; 1; 0;mÞ þ bjðmÞ for j a f1;�1g ð9Þ

(and two similar formulae for the L’s) hold with certain explicit rational ajðmÞ,
bjðmÞ satisfying ajðmÞA 0 for any m a N. Using (9), b) from Corollary 2.4 implies

a), and a) from Corollary 2.4 implies the part of even m in b), whereas

F4ð�1; 1; 0;mÞ B Qð
ffiffiffi
5

p
Þ for odd m is already known from Corollary 2.2 or can

be seen from a) in Corollary 2.3.

To deal also with a numerical example, we compute from (20) below

a1ð2Þ ¼ � 5
24 , b1ð2Þ ¼ � 113

2880 in (9), and using (8) for m ¼ 2, i.e., F2ð�1; 1; 0; 2Þ ¼
2�

ffiffiffi
5

p
, we find

Xl
n¼1

1

FnFnþ2Fnþ4Fnþ6
¼ 5

ffiffiffi
5

p

24
� 1313

2880
:

Some transcendence problems. We conclude this section by a few questions on

transcendence and algebraic independence. For example, one could adopt the

principle that every function value appearing in our theorem or in its corollaries,

that is not in our quadratic field K , should be transcendental. Another good open

problem, proposed by Ribenboim [9], p. 60, is the algebraic independence of the

three series Fjð1; 1; 0; 1Þ, j ¼ 1; 2; 3.
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The only known transcendence results in our topic stem from the fact, proved

by Duverney, the Nishiokas and Shiokawa [5] (see also [4]), that the series

Xl
n¼1

1

U2n�1
;

Xl
n¼1

1

V2n
;

Xl
n¼1

1

Vn

are transcendental, the first two if q ¼ 1, the third if q ¼ �1. These assertions

were deduced from Nesterenko’s [7] famous transcendence theorems on modular

functions. In our notation, the above three series are Uð1; 2; 1Þ, Vð1; 2; 0Þ,
Vð1; 1; 0Þ (compare Remark 1.2). Using formula (15) below with g ¼ að j�1Þk one

concludes the transcendence of

Ujða2ð j�1Þ; 2; 1;mÞ; Vjða2ð j�1Þ; 2; 0;mÞ; Vjða j�1; 1; 0;mÞ

for any j;m a N, the first two if q ¼ 1, the third if q ¼ �1.

3. Proof of Theorem 1.1

We first investigate the power series (7) analytically. For j ¼ 1 it reduces to

Xl
n¼1

zn

Wnkþ‘
; ð10Þ

on which it was shown in Lemma 3 of [3]: The series (10), convergent in jzj < jajk,
has a meromorphic continuation to the whole complex plane. This continuation

Wðz; k; ‘Þ has its poles exactly at the points ak
�
a
b

�ik
, i a N0, and they are all

simple.

Denoting, for arbitrary j a N, the power series (7), convergent in jzj < jaj jk, by
Wjðz; k; ‘;mÞ as in our theorem, we next clarify the connection of Wj and Wjþ1.

For that purpose we start from the identity

WðnþjmÞkþ‘ � b jmkWnkþ‘ ¼ gða jmk � b jmkÞankþ‘

following from (5). Multiplying this identity by zn=ð
Q j

i¼0 WðnþimÞkþ‘Þ and sum-

ming over all n a N we obtain after an easy calculation that

0
@1� b jk

z

 !m
1
AWjðz; k; ‘;mÞ þ b jk

z

 !mXm
n¼1

znQ j�1
i¼0 WðnþimÞkþ‘

¼ ga‘ða jmk� b jmkÞWjþ1ðakz; k; ‘;mÞ: ð11Þ
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By the induction assumption, Wjðz; k; ‘;mÞ is holomorphic in jzj < jaj jk, hence has
no pole at all points b jke2pim=m ðm ¼ 0; . . . ;m� 1Þ. Thus, we conclude from (11):

p a C� is a pole of Wjþ1 if and only if pa�k is a pole of Wj , i.e., if and only if

p ¼ að jþ1Þk�a
b

�ik
for suitable i a N0. With

AjðzÞ :¼
zm � b jkm

Cjzm
;

BjðzÞ :¼
b jkm

Cjzm

Xm
n¼1

znQ j�1
i¼0 WðnþimÞkþ‘

;

Cj :¼ ga‘ða jmk � b jmkÞ;

ð12Þ

equation (11) can be equivalently written as

Wjþ1ðzÞ ¼ Aj

z

ak

� �
Wj

z

ak

� �
þ Bj

z

ak

� �
ð13Þ

if we suppress for the moment the parameters ‘, m and (partly) k. From this we

obtain by iteration

WjðzÞ ¼ W
z

að j�1Þk

� �Yj�1

r¼1

Ar
z

að j�rÞk

� �
þ
Xj�1

r¼1

Br
z

að j�rÞk

� � Yj�1

i¼rþ1

Ai
z

að j�iÞk

� �
ð14Þ

for j ¼ 1; 2; . . . , with the usual convention to interpret empty products or sums as

1 or 0, respectively. Thus, (14) is trivial for j ¼ 1. If (14) is true for some j a N,

then (13) leads to

Wjþ1ðzÞ ¼ W
z

a jk

� �Yj
r¼1

Ar
z

að j�rþ1Þk

� �

þ
Xj�1

r¼1

Br
z

að j�rþ1Þk

� � Yj
i¼rþ1

Ai
z

að j�iþ1Þk

� �
þ Bj

z

ak

� �
;

whence formula (14) holds for j þ 1 instead of j. Clearly, (14) describes the con-

nection of the function Wjðz; k; ‘;mÞ with Wðz; k; ‘Þ.
Having all analytic tools for the proof of our theorem, we next quote Theorem

2 from [3] as our main arithmetic tool.

Lemma 3.1. Let K be an algebraic number field and OK its ring of integers. As-

sume that a; b a K� have the following three properties: a
b
is a unit in OK; the inclu-

sion KHQ
��

a
b

�s�
holds for every s a N; the inequalities

��a
b

�� > 1 and
���a

b

�fsg�� < 1
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hold for any s a AutðQjQÞnfidg. Assume further g; h a K� such that
g
h
is a unit in

OK, and suppose that the Wn from (5) are non-zero for any n a N. For fixed k a N,

‘ a N0, let Wðz; k; ‘Þ denote the meromorphic function defined in jzj < jajk by the

power series (10).

Then Wðg; k; ‘Þ B K holds for every g a K�nak
�
a
b

�kN0
satisfying the condition

den
�
g�1bk

�
a
b

�tk�2½K :Q�
<
��a
b

��k for some t a N0.

Assuming now all hypotheses of Theorem 1.1, we obviously intend to apply

the preceding lemma with K ¼ Qð
ffiffiffiffi
D

p
Þ. From ab ¼ �q a f1;�1g we conclude

that a
b
¼ea2 and

b

a
¼eb2 are both in OK , whence

a
b
is a unit. Since this one lies

outside the unit circle, by an assumption of our theorem, its only conjugate lies in

the unit disk. From

a

b

� �s
¼ ð�qa2Þs

¼ �q

4

� �s
ðpe

ffiffiffiffi
D

p
Þ2s

¼ �q

4

� �s Xs
j¼0

2s

2j

� �
p2ðs�jÞD j e

ffiffiffiffi
D

p Xs�1

j¼0

2s

2j þ 1

� �
p2ðs�jÞ�1D j

!

it is evident that
�
a
b

�s
lies in Qð

ffiffiffiffi
D

p
ÞnQ for every s a N. Hence all three as-

sumptions on a, b in Lemma 3.1 are verified. Thus, Lemma 3.1 implies that

Wðg; k; ‘Þ B K for any g a K� with gA ð�qÞnkað2nþ1Þk for n ¼ 0; 1; . . . and

denðg�1að2t�1ÞkÞ <
��a
b

��k=4 ¼ jajk=2 for suitable t a N0, which proves our theorem in

the case j ¼ 1.

Suppose that jb 2. We use formula (14), which we rewrite in the more de-

tailed form evaluated at the point z ¼ g:

Wjðg; k; ‘;mÞ ¼ W
g

að j�1Þk

� �Yj�1

r¼1

Ar
g

að j�rÞk

� �
þDjðg; k; ‘;mÞ: ð15Þ

Here the rational function Dj could be written down explicitly using (14) and the

definitions in (12). The explicit form of Ar in (12) shows that

Ar
g

að j�rÞk

� �
¼ gm � að j�rÞmkbrmk

Crgm
:

This vanishes if and only if
�

g

að j�rÞkb rk

�m
¼ 1 for some r a f1; . . . ; j � 1g. Since

K HR we have only to find the real numbers g satisfying the last equation. By

b ¼ � q

a
, it says
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g

ð�qÞrkað j�2rÞk

 !m

¼ 1 for some r a f1; . . . ; j � 1g:

For odd m, this is equivalent to g ¼ ð�qÞrkað j�2rÞk for some r a f1; . . . ; j � 1g,
and for even m with g ¼eð�qÞrkað j�2rÞk for such a r. Precisely, if one of the cases

characterized here occurs, then Wjðg; k; ‘;mÞ ¼ Djðg; k; ‘;mÞ a K holds. In each

other case we have
Q j�1

r¼1 Ar

� g

að j�rÞk

�
a K� and then, by (15), we deduce the claim

of Theorem 1.1 from the basis step j ¼ 1.

4. Proof of the Corollaries 2.1–2.6

Proof of Corollary 2.1. As we know from Remark 1.4, the denominator condition

in (i) of Theorem 1.1 is satisfied for g ¼e1. On the other hand, j � 2rA 0 holds

for any r a Z since j is odd, whence jeð�qÞrkað j�2rÞkjA 1 for any such r, and case

(i) applies to both Wjðe1; k; ‘;mÞ. r

Proof of Corollary 2.2. Suppose 4 j j. If g ¼ 1 we apply (ii) of our theorem with

r ¼ j

2 , which is even. Let g ¼ �1. If m is even, then again (ii) proves the claim,

but if m is odd, the inequality ð�qÞrkað j�2rÞk A�1 holds for every r a Z and then

(i) proves the assertion in this case. r

Proof of Corollary 2.3. Suppose that j ¼ 2.

a) For the equivalence of this case we use Theorem 1.1 with g ¼ 1. If either

q ¼ �1 or q ¼ 1, m odd, k even, or q ¼ 1, m even, then the assumptions in (ii)

are fulfilled (taking r ¼ 1), whence W2ð1; k; ‘;mÞ a K . But if q ¼ 1 and k, m

odd, we can apply case (i) to obtain W2ð1; k; ‘;mÞ B K .

b) To prove the equivalence here, we put g ¼ �1. If m is even, we can fulfill

the condition g ¼eð�qÞrkað j�2rÞk using r ¼ 1 as before and a suitable choice of

the sign. But if m is odd and ð�qÞk ¼ �1, the expression ð�qÞrkað j�2rÞk becomes

�1 for r ¼ 1. Hence (ii) applies again, and W2ð�1; k; ‘;mÞ lies in both situa-

tions in K . Supposing m odd, ð�qÞk ¼ 1, the first half of (i) shows that

W2ð�1; k; ‘;mÞ B K . r

Proof of Corollary 2.5. a) Taking again j ¼ 2, g ¼ 1, the last considerations of

Section 3 show that A1ða�kÞ ¼ 0 if either q ¼ �1 or q ¼ 1 and mk even, whence,

by (14), (12) and ab ¼ �q,

W2ð1; k; ‘;mÞ ¼ B1
1

ak

� �
¼ 1

gðamk � bmkÞ
Xm
n¼1

1

ankþ‘Wnkþ‘
: ð16Þ
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To evaluate the finite sum appearing here in the two cases ðUnÞ and ðVnÞ of ðWnÞ,
we start from an � b n ¼

ffiffiffiffi
D

p
Un, a

n þ b n ¼ Vn (compare (2)) implying that 2b n ¼
Vn �

ffiffiffiffi
D

p
Un. Hence we obtain from (16)

U2ð1; k; ‘;mÞ ¼ 1

Umk

Xm
n¼1

ð�qÞnkþ‘bnkþ‘

Unkþ‘
¼ ð�qÞ‘

2Umk

Xm
n¼1

ð�qÞnk Vnkþ‘

Unkþ‘
�

ffiffiffiffi
D

p� �
: ð17Þ

The sum
Pm

n¼1ð�qÞnk equals m if either q ¼ �1 or q ¼ 1, k even, proving the first

formula in a). If q ¼ 1, k odd and m even, the sum
Pm

n¼1ð�qÞnk vanishes and (17)

yields that

U2ð1; k; ‘;mÞ ¼ ð�1Þ‘

2Umk

Xm
n¼1

ð�1Þn Vnkþ‘

Unkþ‘
: ð18Þ

To evaluate this sum still further, we use the formula

UNVNþk �UNþkVN ¼ �2ð�qÞNUk for any N; k a N0; ð19Þ

which can be easily checked via (2) and ab ¼ �q. Applying (19) we obtain from

formula (18) that

U2ð1; k; ‘;mÞ ¼ ð�1Þ‘

2Umk

Xm=2

i¼1

�2ð�1Þð2i�1Þkþ‘
Uk

Uð2i�1Þkþ‘U2ikþ‘
;

proving the third assertion in a).

We similarly obtain from (16) that

V2ð1; k; ‘;mÞ ¼ ð�qÞ‘

2
ffiffiffiffi
D

p
Umk

Xm
n¼1

ð�qÞnk 1�
ffiffiffiffi
D

p Unkþ‘

Vnkþ‘

� �
;

leading to the second and fourth formula in a) depending on the case q, k, m.

b) We take j ¼ 2, g ¼ �1 and suppose that either m is even or m is odd and

ð�qÞk ¼ �1. After an easy calculation we obtain that

W2ð�1; k; ‘;mÞ ¼ B1 � 1

ak

� �
¼ 1

gðamk � bmkÞ
Xm
n¼1

ð�1Þn

ankþ‘Wnkþ‘
:

Proceeding as in a) we now have to use that
Pm

n¼1

�
�ð�qÞk

�n
equals m if

ð�qÞk ¼ �1 but vanishes if ð�qÞk ¼ 1 and m is even. r
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Proof of Corollary 2.6. As we saw at the end of Section 2, it is enough to

prove (9), and these formulae are immediate consequences of the subsequent

lemma. r

Lemma 4.1. The following equations hold for any m a N:

F2mF3mz
2mF4ð�z; 1; 0;mÞ

¼ ðz2m � L2mz
m þ 1ÞF2ðz; 1; 0;mÞ �

X2m
n¼1

zn

FnFnþm

þ L2m

Xm
n¼1

zmþn

FnFnþm

;

�5F2mF3mz
2mL4ð�z; 1; 0;mÞ

¼ ðz2m � L2mz
m þ 1ÞL2ðz; 1; 0;mÞ �

X2m
n¼1

zn

LnLnþm

þ L2m

Xm
n¼1

zmþn

LnLnþm

:

Applying the first formula with z ¼ �1, we get equation (9) for j ¼ 1 with

a1ðmÞ ¼ 2� ð�1ÞmL2m

F2mF3m
;

b1ðmÞ ¼ 1

F2mF3m

�
L2m

Xm
n¼1

ð�1Þmþn

FnFnþm

�
X2m
n¼1

ð�1Þn

FnFnþm

�
: ð20Þ

Note here that L2mAe2, hence a1ðmÞA 0 for every m a N.

Proof of Lemma 4.1. We first show that

Fnþ2mFnþ3m þ FnFnþm � L2mFnFnþ3m ¼ ð�1ÞnF2mF3m; ð21Þ
Lnþ2mLnþ3m þ LnLnþm � L2mLnLnþ3m ¼ �5ð�1ÞnF2mF3m ð22Þ

for any m; n a N0. For this we quote the formulae

Fiþj ¼ Fi�1Fj þ FiFjþ1; Liþj ¼ Li�1Fj þ LiFjþ1; ð23Þ
F 2
nþ1 � FnFnþ1 � F 2

n ¼ ð�1Þn; L2
nþ1 � LnLnþ1 � L2

n ¼ �5ð�1Þn; ð24Þ

valid for any i; j; n a N0 with the conventions F�1 :¼ 1, L�1 :¼ �1. They can be

easily verified by induction using the recurrence relation (4) of the F ’s and L’s,

respectively. Denoting now the left-hand side of (21) (and (22)) by FF
m;n and

FL
m;n, respectively, the first formula in (23) leads to

FF
m;n ¼ ðF2m�1Fn þ F2mFnþ1ÞðF3m�1Fn þ F3mFnþ1Þ þ FnðFm�1Fn þ FmFnþ1Þ

� L2mFnðF3m�1Fn þ F3mFnþ1Þ

¼ F2mF3mF
2
nþ1 þ AmFnFnþ1 þ BmF

2
n :
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Here we put

Am :¼ ðF2m�1F3m þ F2mF3mþ1 þ Fm � L2mF3mÞ � F2mF3m:

Using the first formula in (23) again and

F4mþi þ Fi ¼ L2mF2mþi ð25Þ

for i ¼ m, we obtain that Am ¼ �F2mF3m. On the other hand, we define

Bm :¼ ðF2m�1F3m�1 þ F2mF3m þ Fm�1 � L2mF3m�1Þ � F2mF3m;

whence Bm ¼ �F2mF3m using the first formula in (23) and (25) for i ¼ m� 1.

Thus,

FF
m;n ¼ F2mF3mðF 2

nþ1 � FnFnþ1 � F 2
n Þ

yielding (21), by the first formula in (24).

The proof of (22) is similar. Of course, instead of the first formula in (23) we

have to apply the second one, and the final result is

FL
m;n ¼ F2mF3mL

2
nþ1 þ AmLnLnþ1 þ BmL

2
n ¼ F2mF3mðF 2

nþ1 � FnFnþ1 � F 2
n Þ;

hence (22), by the second formula in (24).

To prove now Lemma 4.1, we multiply (21) and (22) by ð�zÞn=
ðFnFnþmFnþ2mFnþ3mÞ and ð�zÞn=ðLnLnþmLnþ2mLnþ3mÞ, respectively. Summing

over all n a N we obtain both formulae, as claimed. r

Remark 4.2. Let us try to decide if, e.g., W4ð1; k; ‘;mÞ lies in KnQ or in Q using

the method of proof of Corollary 2.5 for W2ð1; k; ‘;mÞ. We then apply (14) to

j ¼ 2, z ¼ 1 and see from (12) that A2ða�2kÞ ¼
�
1� ðabÞ2mk

�
=C2 ¼ 0.

Thus, again formula (14) leads to

W4ð1; k; ‘;mÞ ¼ B2
1

a2k

� �
A3

1

ak

� �
þ B3

1

ak

� �
:

But the relative complexity, in particular, of the B’s appearing here (compare (12))

prevents us from reaching our goal along these lines, even in the U- or V -case.
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P. Bundschuh, Universität zu Köln, Mathematisches Institut, Weyertal 86-90, 50931 Köln,
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