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Series of reciprocal products with factors
from linear recurrence sequences

Peter Bundschuh
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Abstract. In this article we study the values of power series > z"/ H,-j:o W vimy at certain
points of their domain of meromorphy from the arithmetical point of view. (W) is a se-
quence of non-zero integers satisfying a recurrence W, .| = pW, + ¢W,_, with non-zero
integers p, ¢ such that the discriminant A = p> + 4q is positive but not a square. The
main interest is to characterize the situations, where these values lie in the real quadratic
number field Q(v/A) or even in @, but we also include some transcendence problems.
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1. Introduction and main result

Melham [6] considered, for given positive real p, the binary linear recurrence
Wy=pWpi+W,a (n=23...), (1)

which is uniquely determined by the pair ( Wy, W) of initial values. For (W, W)

being (0, 1) or (2, p), the corresponding sequences are denoted by (U,) and (V,),
respectively, and these can be explicitly given in the form

Un: - Vn:an_‘_ﬂn (2)

for any n € Ny :={0,1,2,...}. Here a, f§ are the two real roots of the companion
polynomial X2 — pX — 1 of (1). In the case p =1, (U,) and (V,,) are the Fibo-
nacci and Lucas sequence, respectively (which we denote, as usual, by (F,) and
(L)), and in the case p = 2 the Pell and Pell-Lucas sequence, respectively.



414 P. Bundschuh

The main objective of Melham’s note [6] is to express the series

- 1
_ 3
Z Wk W(n+m)k ( )

n=1

in the two cases W, = U, and W, = V,, in closed form by values of the Lambert
series >~ z"/(1 — z") at the points B, p*. B in the first case, where f* can
be omitted in the second one. Here k,m € N := Ny\{0} are odd and f satisfies
0 > f > —1. The particular case m = 1 of this problem has been treated earlier
by André-Jeannin [1].

The main aim of the present paper is to investigate arithmetically series of type
(3), in fact, far-reaching generalizations of them, without recourse to their repre-
sentation by the above-mentioned Lambert series. Plainly, for that purpose we
need arithmetical hypotheses on the parameter p in (1). More generally, we shall
consider linear recurrences of the form

Wn:an—l+an—2 (n:2737"')7 (4>

with p,q, Wy, W) € Z and pgW; # 0 implying, in particular, W, € Z for any
n e Ng. Then the companion polynomial X2 — pX — ¢ of (4) has two non-zero
roots, which are distinct (and denoted by «, S as above) if the expression
A := p?> + 44 is non-zero. Moreover, both of them are real and have distinct ab-
solute values if we suppose that even A > 0. Without loss of generality, we will
always assume that |«| > |f|. Requiring additionally that A is not a square, both
roots are irrational and generate the same real quadratic number field Q(v/A).
Moreover, it is easily seen that every W, can be written in the form

W, = gan + hﬁn (l’l € No)v (5)
where g and /4 can be expressed by o, f and the initial values W, W) in the form

W =B
Sl

N WQOC— W1

k=g

(6)

implying that g, 1 € Q(v/A)\{0}. From (5) it is clear that at most one W,, n € N,
can vanish.

We now state our main result, from which we will deduce later, by suitable spe-
cialization, arithmetic data on Melham’s series (3). But first we recall that the de-
nominator of an algebraic number J, denoted by den(d), is the smallest ¢ € N such
that d - 0 is an algebraic integer.
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Theorem 1.1. Suppose that (W,,) € Z™N, with W,, # Ofor any n € N, satisfies the
linear recurrence (4) with p e 7, q € {1,—1} and A = p* + 4q > 0 not a square.
Assume that the roots o,  of the companion polynomial of (4) satisfy |o| > |B|, and
that the g,h € K* in the representation (5) of the W, are such that ¥ is a unit in the
ring of integers Ok of K := @(\/Z) Finally, let j, k,m e N and ¢ e No.

Then, for the meromorphic function W;(z;k,l,m), defined in |z| < || by the
power series
o0 Zn
— (7
n=1 H n+1m k+(/

the following alternative holds.

(i) For every ye K* with y # (—q)”k =k for all peZ, p< j, and with
den(y~lal/+2=2k) < |%’k/4 Sor some T € Ny one has #;(y;k,¢,m) ¢ K. This is
true if m is odd; for even m, however, one has to suppose additionally that

—(=¢)"! le’kforp—l Lj—1L

q)
(11) For y—( q) oIk vithsomep e {1,...,j =1} if m is odd, and for
+(—q)" i~ 2” Kwithsomep € {1,...,j— 1} if m is even, the number
(y, k,€,m) lies in K and can be explicitly determined.

Remark 1.2. If j = 1 the power series (7) does not depend on m, hence we write
from now on #(z; k, ) instead of #(z; k,¢,m). Note that, in this case, the alter-
native (ii) cannot occur and, moreover, the additional hypothesis on y for even m
can be dropped from (i).

Remark 1.3. The hypotheses on p, ¢ and A in our theorem imply |p| > 1 if g =1,
and |p| = 3 if ¢ = —1. The assumption ¢ € {1, —1} guarantees that not only «, f
are in Ok but also o', #~!. This will be needed later in the proof. The hypothesis
on the quotient § can be checked in each case via (6). It should be pointed out that,
from now on, we define U,, V, as in (2), no matter if ¢ = 1 (as at the very begin-
ning) or ¢ = —1. Then, in the ‘U-case’ we have to take g = —h = ;5 in (5), and
g = h = 11n the ‘V-case’. Hence, in these two standard cases, the condltlon on 7 is
satisfied.

Remark 1.4. By a, 07! € Ok, every expression of the form y~'al/+2=2k with
vy = +a®, w € Z, has denominator 1. Hence, for those y’s, the denominator condi-
tion needed only in case (i) is satisfied.

In the next section, we will present several applications of Theorem 1.1 with
y = +1. It should be noted that the consideration of the points y = +a“, @ € Z,
would be equally possible but technically more unpleasant. On the other hand, by
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(7), #>(1;k,0,m) is exactly Melham’s series (3), for which, under the conditions of
our theorem, the following characterization will be deduced in Corollary 2.3:

War(l;k,6,m) ¢ K < g=1 and km odd.

Notice that in Theorem 2 of [6] the series #>5(1; k,0,m) was considered in just
this case ¢ = 1, km odd for the particular sequences (W) being (U,) or (V,). In
these two cases, we will obtain in Corollaries 2.4 and 2.5 below more detailed in-
formation by looking a bit more precisely to the proof of Theorem 1.1.

2. Some corollaries and transcendence problems

These will concern the two cases y = +1 for odd j, for j divisible by 4, and for
j=2.

Corollary 2.1. Assume the hypotheses of Theorem 1.1 and let j be odd. Then the
values of both series W;(1;k,€,m) and W;(—1;k,¢,m) are not in K = Q(v/A).

Corollary 2.2. Assume the hypotheses of Theorem 1.1 and let j be a multiple of 4.
Then W;(1;k,¢,m) € K holds always, but W;(—1;k,¢,m) € K holds if and only if m
is even.

Corollary 2.3. Suppose that the conditions of Theorem 1.1 are fulfilled. Then the
Jfollowing two equivalences hold:

a) Wi(l;k,t,m) ¢ K< q=1 and km is odd,
b) #32(—1;k,l,m) ¢ K < (—q)k =1 and m is odd.

If either ¢ = —1 or ¢ = 1 and km is even, then #5(1;k,¢,m) is in K, and the
same holds for #5(—1;k, £,m) if m is even or (—¢)* = —1. According to part (ii)
in our theorem, these sums can be explicitly determined. Our next corollary pre-
cisely describes in both situations the conditions for #5(+1;k, £, m) to lie in K\Q
or in @, at least in the two standard cases (U,) and (V,,) of (W,), where we self-
evidently write % and 7" instead of #".

Corollary 2.4. Suppose that the conditions of Theorem 1.1 are satisfied. Then the
following is true.
a) The values of the sums U, (1;k, 0,m), 75(1;k, €, m) lie in K\Q if either ¢ = —1
or q =1 and k is even, but they lie in Q if ¢ = 1, k is odd and m is even.
b) The values of the sums Uy(—1;k,0,m), V2(=1;k,l,m) lie in K\Q if
(—q)* = =1, but they lie in Q if (—q)* =1 and m is even.



Series of reciprocal products with factors from linear recurrence sequences 417

This corollary is purely qualitative. In the subsequent one, we explicitly deter-
mine the sums #5(+1;k,¢,m) in the U- and V-case under the conditions stated
in Corollary 2.4 being necessary and sufficient that their values belong to K\Q or
to Q.

Corollary 2.5. Assume the conditions of Theorem 1.1.

a) If either g = —1 or ¢ =1 and k is even, then

U1k, 0, m) = (=q) (zm: Vikst _ mx/Z) =: D(U),

2Unk =1 Unk+(‘
(=)' [ m U
V(1 k, 6, m) = (—— )::D ),
2( m> 2Umk \/Z =1 Vnk+€ ( )

and if ¢ = 1, k is odd and m is even, then

Ui m/2 1

ULk bom)=—-y ——————— =: §(U),

2 ) Unic = Ugi-1)+0 Unik+t )
U m/2 1

Unk <= Voi-1)k+0Vaikre

151k, b,m) = = S(V).

(—q)* = —1, then U>(~1;k,6,m) = D(U) and +>(~1;k,t,m) = D(V). If
(—q)k =1 and m is even, then Uy(—1;k,t,m) = —S(U) and ¥5(—1;k,{,m)
=-S(V).

b)

=

In particular, if k =1, £ = 0 and m is even and U, V' are the usual Fibonacci
and Lucas numbers, respectively, we deduce from the third formula in a) that

12 <] 12

D 5
FnFn+m Fy, i—1 Fri 1 Fy; ' =1 LnLn+/n Fon i—1 Ly 1 Lo; -

Both formulae are due to Brousseau [2]. Moreover, we find from the first formula
in b) and from L, = 2F,_| + F, that

) SR o VE) EEN (LSS oL R

m

a formula due to Rabinowitz [8]. Using instead the second formula in b) and
S5F, =2L, | + L, we obtain the following Lucas analogue:
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= (=" 1 1-V5 L,
nX_;LnLIH—m__ﬁ(m 2 +n2:; Ln )

Notice that the two last formulae hold for arbitrary positive integers m.

Our last corollary will concern the case j = 4. Under the conditions of Theo-
rem 1.1, Corollary 2.2 tells us precisely when #4(+1;k,¢,m) lies in K. Having
Corollaries 2.4 and 2.5 in mind, we may ask if it is possible to describe here also
the exact conditions for these values to lie in K\Q or in @. For reasons to be ex-
plained in Remark 4.2 below, we are not able to solve this problem in full gener-
ality, even not in the general U- or V'-case (as we did right before for j = 2) but
just in the particular case p = g = 1 of Fibonacci and Lucas sequences, where we
will write # and % instead of W, U, V.

Corollary 2.6. For m € N the following assertions hold.
a) Both Z4(1;1,0,m) and %4(1;1,0,m) lie in Q(v/5)\Q,

b) both F4(—1;1,0,m) and L4(—1;1,0,m) are rational if m is even, but do not lie
in Q(V/5) if m is odd.

As a matter of fact, we shall prove in Section 4 that
F4(j;1,0,m) = a;(m) F>(—j;1,0,m) + bj(m)  for j e {1,—1} 9)

(and two similar formulae for the #’s) hold with certain explicit rational a;(m),
b;(m) satisfying a;(m) # 0 for any m € N. Using (9), b) from Corollary 2.4 implies
a), and a) from Corollary 2.4 implies the part of even m in b), whereas
F4(—1;1,0,m) ¢ Q(v/5) for odd m is already known from Corollary 2.2 or can
be seen from a) in Corollary 2.3.

To deal also with a numerical example, we compute from (20) below
a1(2) = — 35, b1(2) = — 5 in (9), and using (8) for m =2, i.e., #5(—1;1,0,2) =
2— \/5, we find

- 1 55 1313
=1 FnFn+2Fn+4Fn+6 24 2880

Some transcendence problems. We conclude this section by a few questions on
transcendence and algebraic independence. For example, one could adopt the
principle that every function value appearing in our theorem or in its corollaries,
that is not in our quadratic field K, should be transcendental. Another good open
problem, proposed by Ribenboim [9], p. 60, is the algebraic independence of the
three series #;(1;1,0,1), j =1,2,3.
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The only known transcendence results in our topic stem from the fact, proved
by Duverney, the Nishiokas and Shiokawa [5] (see also [4]), that the series

; U2n—1 Zl V2n ; 7n

are transcendental, the first two if ¢ = 1, the third if ¢ = —1. These assertions
were deduced from Nesterenko’s [7] famous transcendence theorems on modular
functions. In our notation, the above three series are #(1;2,1), ¥(1;2,0),
7°(1;1,0) (compare Remark 1.2). Using formula (15) below with y = «/=1% one
concludes the transcendence of

Ui (o*V7D52,1,m),  #5(PV7052,0,m), ¥5(/ 715 1,0,m)

for any j,m € N, the first two if ¢ = 1, the third if ¢ = —1.

3. Proof of Theorem 1.1

We first investigate the power series (7) analytically. For j =1 it reduces to

>

on which it was shown in Lemma 3 of [3]: The series (10), convergent in |z| < |«|*,
has a meromorphic continuation to the whole complex plane. This continuation
W (z;k,¢) has its poles exactly at the points of (%)Ik, i € Ny, and they are all
simple.

Denoting, for arbitrary j e N, the power series (7), convergent in |z| < |a|*, by
Wi(z;k,¢,m) as in our theorem, we next clarify the connection of #; and #;,.
For that purpose we start from the identity

n

(10)

nk+é

imk _ imk imk \ . nk+(
W(nJrjm)kJré - ﬂ] Wokre = g(OC‘] - ﬁj )Oﬁ

following from (5). Multiplying this identity by z"/ (sz:o Winsimyk+e) and sum-
ming over all n € N we obtain after an easy calculation that

7\ G\ m n
| — <[3—> Wiz ke, 0,m) + (ﬁ > oo
z n=1 H WnJrlm k+/

= gocz(ocjmk—ﬂjmk)”f/jﬂ(ockz; k,l,m). (11)
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By the induction assumption, #;(z; k, ¢, m) is holomorphic in |z| < |o’*, hence has
no pole at all points g% e2@n/m (1 =0, . —1). Thus, we conclude from (11):
peCrisa pole of #;41 if and only 1f poc ks a pole of #;, 1.e., if and only if
p= oc“*”"( ) for suitable i € Ny. With

m _ Bjkm
Aj(z) = W7
ﬂjkm m i (12)
1 R
Cjzm n=1 H}‘]:O W(n+im)k+l

Cj — gaé(ajmk _/gjmk)7

BJ(Z) =

equation (11) can be equivalently written as

Wit =4 (5 )i(5) + 8 () (13)

if we suppress for the moment the parameters ¢, m and (partly) k. From this we

obtain by iteration
Jj—1
z
) I 4 (o) 09
1=p+1

- j—1 - J—1 z
i) = W(a(/lﬂc) HAP (OCUP)") - =1 & <°<(“’)k
e -

for j =1,2,..., with the usual convention to interpret empty products or sums as
1 or 0, respectively. Thus, (14) is trivial for j = 1. If (14) is true for some j € N,
then (13) leads to

y4 J z
Wi (2) = W(ﬁ) I14 (m)

p=1

i) Al o (2)

whence formula (14) holds for j+ 1 instead of j. Clearly, (14) describes the con-
nection of the function #(z; k, £, m) with #"(z; k, ¢).

Having all analytic tools for the proof of our theorem, we next quote Theorem
2 from [3] as our main arithmetic tool.

Lemma 3.1. Let K be an algebraic number field and Ok its ring of integers. As-
sume that o, f € K* have the following three properties: % is a unit in Ok; the inclu-
sion K < @((%)S> holds for every s € N, the inequalities }%‘ > 1 and ‘(%){U}‘ <1



Series of reciprocal products with factors from linear recurrence sequences 421

hold for any o € Aut(Q|Q)\{id}. Assume further g,h € K* such that { is a unit in
Ok, and suppose that the W, from (5) are non-zero for any n € N. For fixed k € N,
0 e Ny, let W (z;k, ) denote the meromorphic function defined in |z| < |a|* by the
power series (10).

Then W (y;k,t) ¢ K holds for every y e K*\o* ( ) Mo satisfying the condition
2(k:Q)
den( _lﬁk(ﬁ) ) < |ﬁ| for some t € N.

Assuming now all hypotheses of Theorem 1.1, we obviously intend to apply
the precedmg lemma with K = Q(v/A). From af = —q € {1,—1} we conclude
that 7= +a? and ﬁ = + /% are both in Ok, whence % is a unit. Since this one lies
outside the unit 01rcle by an assumption of our theorem, its only conjugate lies in
the unit disk. From

(-

- <_Tq>s(p + VA)*

Q(EE) )

it is evident that (%)S lies in @(v/A)\Q for every s € N. Hence all three as-
sumptions on o, f in Lemma 3.1 are verified. Thus, Lemma 3.1 implies that
W(p;k,0) ¢ K for any ye K* with y# (—¢)"*a@®*V% for v=0,1,... and
den(y o> Dk) < ]%‘kM = |a|*/? for suitable 7 € Ny, which proves our theorem in
the case j = 1.

Suppose that j > 2. We use formula (14), which we rewrite in the more de-
tailed form evaluated at the point z = y:

#iGs s tom) = (e )H (oo )+ Disktm). (13

Here the rational function D; could be written down explicitly using (14) and the
definitions in (12). The exphclt form of 4, in (12) shows that

(7 g s
P O((j_p)k prm !

m
This vanishes if and only if (W) =1 for some p € {1,...,j—1}. Since
K = R we have only to find the real numbers y satisfying the last equation. By
p=—1, itsays
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7 .
— ] =1 f m l,...,j—1}
((_q)/’ka(j—z;;)k> orsome p e {l,...,j—1}

For odd m, this is equivalent to y = (—¢)”*a/=2)% for some p e {1,...,j— 1},
and for even m with y = +(—¢)” *ali=20)k for such a p. Precisely, if one of the cases
characterized here occurs, then #;(y;k,¢,m) = D;(y;k,¢,m) € K holds. In each
other case we have H/J);} A, (575%) € K* and then, by (15), we deduce the claim

of Theorem 1.1 from the basis step j = 1.

4. Proof of the Corollaries 2.1-2.6

Proof of Corollary 2.1. As we know from Remark 1.4, the denominator condition
in (i) of Theorem 1.1 is satisfied for y = +1. On the other hand, j — 2p # 0 holds
for any p € Z since j is odd, whence |i(—q)pka(f‘2p)k\ # 1 for any such p, and case
(i) applies to both #j(+1;k, £, m). 0

Proof of Corollary 2.2. Suppose 4| j. If y =1 we apply (ii) of our theorem with
p =%, which is even. Let y = —1. If m is even, then again (ii) proves the claim,
but if m is odd, the inequality (—g)”*a(/=2)% % —1 holds for every p € Z and then
(i) proves the assertion in this case. O

Proof of Corollary 2.3. Suppose that j = 2.

a) For the equivalence of this case we use Theorem 1.1 with y = 1. If either
g=—1org=1,modd, k even, or ¢ =1, m even, then the assumptions in (ii)
are fulfilled (taking p = 1), whence #5(1;k,¢,m) e K. But if ¢=1 and k, m
odd, we can apply case (i) to obtain #5(1;k,¢,m) ¢ K.

b) To prove the equivalence here, we put y = —1. If m is even, we can fulfill
the condition y = i(—q)"k a/=2)% using p = 1 as before and a suitable choice of
the sign. But if m is odd and (—¢)* = —1, the expression (—q)”*a(/=2)% becomes
—1 for p=1. Hence (ii) applies again, and #3(—1;k,¢,m) lies in both situa-
tions in K. Supposing m odd, (—g)* =1, the first half of (i) shows that
Wr(—1;k,¢,m) ¢ K. ]

Proof of Corollary 2.5. a) Taking again j =2, y =1, the last considerations of
Section 3 show that 4;(¢~*) = 0 if either ¢ = —1 or ¢ = 1 and mk even, whence,
by (14), (12) and of = —¢,

1 1 m 1
I — B ()= : :
W15k, €,m) 1(ak> glomk — fky Zoc”"'*[ Wi+t 16)

n=1
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To evaluate the finite sum appearing here in the two cases (U,) and (V},) of (W),
we start from o” — " = /AU, o” + " = V, (compare (2)) implying that 2" =
V, —VAU,. Hence we obtain from (16)

1 m (_q)nk+fﬂnk+€ (_q)[ m k(VnIH-Z )
Uy(1;k, 0, m) = = —g)" (L VA, (17
2 ) Umk; Unire 20U ,;( RN (17)

The sum > (—q) " equals m if either ¢ = —1 or ¢ = 1, k even, proving the first
formula in a). If ¢ = 1, k odd and m even, the sum 3", (—¢)"* vanishes and (17)
yields that

itk tom) = LSy Yot (18)
T 2Uk —1 Unk+/ .
To evaluate this sum still further, we use the formula
UnVyik — Uy iV = —2(—q)" Uy~ for any N,k € Ny, (19)

which can be easily checked via (2) and off = —¢. Applying (19) we obtain from
formula (18) that

Wr(1;k, 6, m) = (—1)f 22 _p(_p)@i- Dkt gy,
FACTHTES 2U i P U(Zi—l)kMUz,'kH

proving the third assertion in a).
We similarly obtain from (16) that

(—4)4 - nk( Unk+é>
V(i k,b,m) = ——L N oy (1= VA ,
2 ) 2VAU, ;( ) nk-+0

leading to the second and fourth formula in a) depending on the case ¢, k, m.
b) We take j =2, y = —1 and suppose that either m is even or m is odd and
(—¢)¥ = —1. After an easy calculation we obtain that

1 1 m (_1)"
—1: =B|——|= '
%( 7k, é, m) 1 ( ka> g(OC'nk _ ﬂmk) Z O("kaé WnkJré

n=1

Proceeding as in a) we now have to use that ) ", (—(—q)k)" equals m if
(—¢)* = —1 but vanishes if (—¢)* = 1 and m is even. O
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Proof of Corollary 2.6. As we saw at the end of Section 2, it is enough to
prove (9), and these formulae are immediate consequences of the subsequent
lemma. ]

Lemma 4.1. The following equations hold for any m € N:

F2mF3msz=974(_Z§ 1, O, Wl)

2m n m+n

2m m m : + m §
— — l z" + 1 z: 1 0 F
= (Z 2m ) ( 7 ) Z F Fn 2 E,+m

_5F2mF3mzzmo(£4(_Z; 1,0, m)

21 "
= (sz — Lopz™ + 1),,5,”2(2;1,0,m) —Zn ’ + Loy, i .
n=1 LnLn+n1 n=1 LnLner

Applying the first formula with z = —1, we get equation (9) for j = 1 with

2~ (=1)"L,,
1 m ( 1)”’!+I‘l
= Ly, 2
bl(m) F2mF3m ( ? ; F Fn-Hn F Fn+m) ( 0>

Note here that Ly, # +2, hence a;(m) # 0 for every m € N.
Proof of Lemma 4.1. We first show that

Fn+2an+3m + FnFn+n1 - LZanFn+3m = (_l)nF2mF3rm (21)
Ln+2an+3m + LnLner - LZanLn+3m = _5(_1)nF2mF3m (22)

for any m,n € Ny. For this we quote the formulae

Fiyj = Fiooby + FiFjy, Liyy = LiooFj+ LiFj, (23)
Froy = FaFp = F = (=1)",  Liy = LiLy — Ly = =5(=1)",  (24)
valid for any i, j,n € Ny with the conventions F_; := 1, L_| := —1. They can be

easily verified by induction using the recurrence relation (4) of the F’s and L’s,
respectively. Denoting now the left-hand side of (21) (and (22)) by ®,, , and
®L  respectively, the first formula in (23) leads to

m,n?

m,n

(D,I; n (Fmean + F2an+1)(F3mflEz + FSan+1) + Fn(mellrn + FanJrl)
- L2n1E1(F3mlen + FSanJrl)
= F2mF3mF + AnanFn+l + Ban2~

n+1
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Here we put
A = (Fom1Fsm + FonFsprt + Fiy — LomFsm) — FomFam.
Using the first formula in (23) again and
Famii + Fi = LomFomyi (25)
for i = m, we obtain that 4,, = —F>,,F5,. On the other hand, we define
By := (Fam-1Fsm—1 + FanFsm + Fot — LomFsm-1) — FamFm,

whence B, = —F5,F3, using the first formula in (23) and (25) for i =m — 1.
Thus,
q)g_’n - F2mF3m (Fz

n+1

— FyFyyy — F)

yielding (21), by the first formula in (24).
The proof of (22) is similar. Of course, instead of the first formula in (23) we
have to apply the second one, and the final result is

q)L = F2mF3mL2 + AanLn-H + Bng = F2mF3m (Fz

m,n n+1 n+1

_FnFn+1 _FnZ),

hence (22), by the second formula in (24).

To prove now Lemma 4.1, we multiply (21) and (22) by (-—2)"/
(FuFsmFrnsomFoism) and (=2)"/(LyLyomLpiomLni3m), respectively.  Summing
over all n € N we obtain both formulae, as claimed. |

Remark 4.2. Let us try to decide if, e.g., #4(1;k, ¢, m) lies in K\@Q or in Q using
the method of proof of Corollary 2.5 for #5(1;k,¢,m). We then apply (14) to
j=2, z=1 and see from (12) that A,(x )= (1- (ocﬂ)ZMk)/Cz =0.
Thus, again formula (14) leads to

1 1 1

But the relative complexity, in particular, of the B’s appearing here (compare (12))
prevents us from reaching our goal along these lines, even in the U- or V-case.
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