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Abstract. This paper presents a new sufficient condition for the oscillation of all solutions
of linear difference equations with general delay argument. The significance of this condi-
tion is demonstrated by comparing with known oscillation conditions. An example illus-
trating the results is also given.
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1. Introduction

An important question in the qualitative theory of difference equations is that of
deriving sufficient conditions for the oscillation of the solutions of delay difference
equations. The oscillation theory of difference equations has been extensively
developed. See [1]-[22], [24]-[30], [32]-[34] and the references cited therein. This
paper is devoted to the oscillation of the solutions to linear difference equations
with a general delay argument.

Consider the delay difference equation

Ax(n) + p(n) x(z(n)) =0, (1.1)

where (p(n)), _, is a sequence of nonnegative real numbers and (z(n)), _ is a se-
quence of integers such that

t(n)<n—1 foralln>0 and lim z(n) = 0.

n— o0

Here A stands for the usual forward difference operator defined by
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Ah(n) =h(n+1) —h(n), n>=m,

for any sequence of real numbers (h(n)) _ .

Define

k = —min 7(n).
n=>0
(Clearly, k is a positive integer.)

By a solution of the delay difference equation (1.1), we mean a sequence of real
numbers (x(n)), __, which satisfies (1.1) for all n > 0. It is clear that, for each
choice of real numbers ¢ jx,¢ ji1,...,¢_1,¢o, there exists a unique solution
(x(n)), , of (1.1) which satisfies the initial conditions x(—k) = ¢_g, x(~k + 1)
=C_jily--,x(=1) =c_1,x(0) = ¢.

As usual, a solution (x(n))nz_ . Oof the delay difference equation (1.1) is called
oscillatory if the terms x(n) of the sequence are neither eventually positive nor
eventually negative, and otherwise the solution is said to be nonoscillatory.

In the special case where the delay (n — r(n)) is a constant, the delay differ-
ence equation (1.1) becomes

n>0

Ax(n) + p(n)x(n — k) =0, (1.2)

where k is a positive integer.

Strong interest in the delay difference equation (1.1) is motivated by the fact
that it represents a discrete analogue of the (first order) delay differential equation
(see, for example, [23] and the references cited therein)

x'(1) + p(0)x(z(1)) =0, (1.3)

where p is a nonnegative continuous real-valued function on the interval [0, c0),
and 7 is a continuous real-valued function on [0, o) such that

(t)y<t forallt>0 and lim 7(¢) = co.

— o0

In particular, the delay difference equation (1.2) represents a discrete analogue of
the (first order) delay differential equation

x'(t) + p(t)x(t — T) = 0, (1.4)

where 7 is a positive real constant.

Since 1989, many researchers have studied systematically the oscillation of the
solutions of the delay difference equation (1.1) (and, especially, of the equation
(1.2)) and a large number of oscillation criteria have been obtained, which should
be looked as discrete analogues of corresponding criteria for the oscillation of the
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solutions of the delay differential equation (1.3) (and, especially, of the equation
(1.4)). See [2]-10], [12]-[22], [24]-[30], [32]-[34] and the references cited therein.
It is the purpose of the present work to establish a new sufficient condition for the
oscillation of the solutions of the delay difference equation (1.1); the oscillation
criterion obtained should be looked upon as a discrete analogue of an oscillation
result due to Yu, Wang, Zhang and Qian [31] for the delay differential equation

(1.3).
In 1989, Erbe and Zhang [10] proved that each one of the conditions
kk
liminf p(n) > ——— 1.5
and
limsup > p(j) > 1 (1.6)

is sufficient for all solutions of (1.2) to be oscillatory. In the same year, 1989,
Ladas, Philos and Sficas [15] established that all solutions of (1.2) are oscillatory if

1 n—1 kk
liminf | — ' _ 1.7
(Clearly, condition (1.7) improves (1.5)). A substantial improvement of this oscil-
lation criterion has been presented, in 2004, by Philos, Purnaras and Stavroulakis
[22].

We now turn to the general case of the delay difference equation (1.1). The
oscillation condition (1.6) can be extended to the equation (1.1). More precisely,
if the sequence (r(n))nZ o 1s assumed to be increasing, then from Chatzarakis, Ko-
platadze and Stavroulakis [2] it follows that all solutions of (1.1) are oscillatory if

lim sup Z p(j) > 1. (1.8)
" =)

In 1991, Philos [18] extended the oscillation criterion (1.7) to the general case of

the equation (1.1), by establishing that, if the sequence (z(n)) is increasing,

then the condition

n>0

1 n—1 )) n—r(n)

(n—1(n

lim inf p(j)| > limsup (1.9)
n—o0 L’l - T(n)j:r(n) ] N oo (n _ T(n) + l)nfr(n)+l

suffices for the oscillation of all solutions of (1.1). This oscillation result has re-
cently improved substantially by Philos and Purnaras [21] (the results in [21] ex-
tend the ones given in [22] concerning the special case of equation (1.2)).
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In 2008, Chatzarakis, Koplatadze and Stavroulakis [3] proved that if

and
lim inf E p(J) >l (1.10)
n—ow e’

then all solutions of (1.1) are oscillatory. It should be emphasized that, in this os-
cillation criterion, no assumption on the increasing character of the sequence
(T(”))nzo is imposed. (In some particular cases, related conditions can be found
in Zhang and Tian [33], [34].)

It is interesting to establish sufficient conditions for the oscillation of all solu-
tions of the delay difference equation (1.1), in the case where neither (1.8) nor (1.9)
or (1.10) is fulfilled. This question has been investigated by several authors in the
special case of equation (1.2), when neither (1.6) nor (1.7) is satisfied. See, for ex-
ample, Chatzarakis and Stavroulakis [5] and the references cited therein. In the
case of equation (1.1) with a general delay argument, this question was investi-
gated for the first time by Chatzarakis, Koplatadze and Stavroulakis [2]. In the
special case that the sequence (r(n))n> o 1s increasing, the conditions established
in [2] can be formulated as follows. Set

n—1
2 = lim inf > p(i) (1.11)
=
Then
(I)if0 <o <1 and
limsup Y p(j) > 1-(1-VI—a)? (1.12)
"0 ()

or
(I)if0 <o < 1, p(n) =1 —+/1 — «a for all large n, and

n - VIz
limsup > p(j) > 1 — o e (1.13)

then all solutions of the delay difference equation (1.1) are oscillatory.
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Later these results have been improved by Chatzarakis, Philos and Stavroula-
kis in [4]. In the special case where the sequence (r(n))n is increasing, the results
n [4] can be formulated as follows:

>0

Lemma 1.1 ([4]). Assume that the sequence (t(n)), _, is increasing, and set o as in
(1.11). Let (x(n))n>_k be a nonoscillatory solution of the delay difference equation
(1.1). Then we have:

() If0 <o < 1, then

imint XD S Ly o), (1.14)
n—oo x(r(n)) 2

(i) If 0 < o < 6 — 4V/2 and, in addition,

for all large n, (1.15)

then

imint "D S Loy a1, (1.16)

Theorem 1.1 ([4)). Assume that the sequence (z(n)),
by (1.11). Then we have:
(1) If 0 < o < L1, then the condition

_ ¢ I8 increasing, and define o

hmsupz >1—— (1 —o0—V1-2a) (1.17)

n—o0

is sufficient for all solutions of the delay difference equation (1.1) to be oscillatory.
(IN) If 0 < o < 6 — 4\/2 and, in addition, (1.15) holds, then the condition

lim sup Z 1__ 2— 30— 4 — 120+ a2) (1.18)

n—aoo

is sufficient for all solutions of (1.1) to be oscillatory.

Provided that 0 < o < 6 — 4v/2 (clearly, 6 — 4v/2 < 1), we have

(2—30(—\/4—120(4—012)>%(1—a—vl—2a).

Bl—
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Therefore, when 0 < o < 6 —4+/2 and (1.15) holds, inequality (1.16) improves
(1.14), and condition (1.18) is weaker than (1.17).

In the present paper, the authors study further the equation (1.1) and essen-
tially improve the upper bound of the ratio x(z(n)) /x(n + 1) for possible nonoscil-
latory solutions (x(n)),. _, of (1.1), when neither (1.8) nor (1.9) or (1.10) is satis-
fied, and derive a new sufficient oscillation condition. This condition essentially
inproves the known conditions (1.12), (1.13) and (1.17). An example illustrating
the results is given.

2. Statement of the results and comments

Our main result is Theorem 2.1 stated below. The proof of this theorem is essen-
tially based on the following lemma.

Lemma 2.1. Assume that the sequence (t (n))n>0 is increasing. Moreover, assume
that 0 < o < —1 4 /2, where a is defined by (1.11). Then every nonoscillatory so-
lution (x(n))nz_k of the delay difference equation (1.1) satisfies

ligg;f% > %(l—oc—\/l—%c—ocz). 2.1)

Theorem 2.1. Let the assumptions of Lemma 2.1 hold. Then the condition

llmsupz >1__ (1—a—V1—-20—02) (2.2)

is sufficient for all solutions of the delay difference equation (1.1) to be oscillatory.
Remark 2.1. Observe that, when 0 < o < —1 4 /2, it is easy to see that

l—a-VI-20—2 1-VI—a l-a—I_2
> 1T S P Y1 -VI—w)’
2 V1 —o 2

and therefore the condition (2.2) is weaker than the conditions (1.12), (1.17) and
(1.13).

Remark 2.2. We note that, in the special case of the delay difference equation
(1.2), Lemma 2.1 and Theorem 2.1 have been presented by Chen and Yu [6].
We also notice that Lemma 2.1 and Theorem 2.1 should be looked upon as dis-
crete analogues of corresponding results due to Yu, Wang, Zhang and Qian [31]
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concerning the solutions of the delay differential equation (1.3) (and, especially, of
the delay differential equation (1.4)).

Now we define

a(n) = [nax. 7(s) forn>0. (2.3)

Clearly, the sequence of integers (a(n)) is increasing. Moreover, as it has been

shown in [2], it holds that

n>0

n—1
lim inf Z p(j) = liminf Z (2.4)

e j=a(n) e j=1(n)
Following Chatzarakis, Koplatadze and Stavroulakis [2], one can use (2.4) and
apply Lemma 2.1 in [2] (cf. Philos [18] and Kordonis and Philos [12]) to establish
the following generalization of Theorem 2.1.

Theorem 2.1'. Let the sequence (o(n)), _, be defined by (2.3). Moreover, assume
that 0 < o < —1 + /2, where o is deﬁned by (L.11). Then the condition

11msupz >1——1—oc—\/1—20c—oc2)

n— o0

is sufficient for all solutions of the delay difference equation (1.1) to be oscillatory.

In Theorem 2.1’ it is not assumed that the sequence (r(n ) is increasing.
Note that, if (z(n)),_, is increasing, then the sequence (a(n)), . commdes with
(T(n))nzo‘

It must be noted that an analogous generalization of Theorem 1.1 has been
presented in [4]. More precisely, the assumption that the sequence (T(”))nzo is
increasing is removed, but conditions (1.17) and (1.18) are replaced by the condi-
tions

n>0

and

hmsupz 1——2—3a—\/4—12a+a2),

n—oo

respectively, where (a(n)), _, is defined by (2.3).

n>0
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3. Proofs of Lemma 2.1 and Theorem 2.1
Proof of Lemma 2.1. Define

q(t) =pm) forn<t<n+1(mn=01,...).

Clearly, ¢ is a nonnegative real-valued function on the interval [0, o0), which is
continuous on each one of the intervals (n,n+1) (n=0,1,...). Note that
q(n) = p(n) for every integer n > 0. Furthermore, consider the real-valued func-
tion ¢ defined on the interval [0, o0) by

ot)=1t(n) forn<t<n+1(mn=0,1,...).

It is obvious that for each n = 0, 1,... the function ¢ is continuous on (n,n + 1).
We notice that o(n) = t(n) for all integers n > 0. We can immediately see that

ag(t) <t forallt>0 and lim o(¢) = oo.

[— 0

Also, as the sequence (f(n))nZO is assumed to be increasing, we observe that the
function o is increasing on [0, o0).
Let (x(n)),. , be a solution of the delay difference equation (1.1). We define

y(t) =x(n) + (Ax(n))(t—n) forn<t<n+1(n=—k —k+1,...).
It is clear that
y(n) = x(n)  for all integers n > —k.

Moreover, it is easy to verify that the real-valued function y is continuous on the
interval [—k, c0). Also, we see that y is continuously differentiable on each one of
the intervals (n,n+1) (n = —k,—k +1,...) with

V() =Ax(n) forn<t<n+1(n=—-k,—k+1,...).

Furthermore, as (x(n))nz_ . satisfies (1.1) for all integers n > 0, we can easily con-
clude that the function y satisfies

V() +qt)y(a(t) =0 forn<t<n+1(n=0,1,...). (3.1)

Next assume that the solution (x(n)) _ _, of (1.1) is nonoscillatory. Then it is
either eventually positive or eventually negative. As (—x(n)),. , is also a solu-
tion of (1.1), we may (and do) restrict ourselves only to the case where x(n) > 0 for
all large n. Let p > —k be an integer such that x(n) > 0 for all n > p, and consider
an integer r > 0 so that 7(n) > p for n > r (clearly, r > p). Then it follows imme-
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diately from (1.1) that Ax(n) < 0 for every n > r, which means that the sequence
(x(n))an is decreasing. Furthermore, it is not difficult to conclude that the func-
tion y is positive on the interval [p, o0) and that y is decreasing on [r, c0).

Consider an arbitrary real number ¢ with 0 < ¢ < o. Then we can choose an
integer 1y > r such that t(n) > r for n > ny, and

—_

-
Z p(j) >a—e forevery n > ny.
J=1(n)

For any point 7 > ny, there exists an integer n > ny such that n <t <n+ 1, and
consequently

So we have

t
J q(s)ds >o—e¢ forall t > ny. (3.2)
a(r)

Furthermore, we will establish the following claim.

Claim. For each point t > ng, there exists a t* > t such that o(t*) < t and
P

J[* q(s)ds = o —e. (3.3)

t

To prove this claim, let us consider an arbitrary point ¢ > ny. Set

fv) = qu(s) ds forv>1.

We see that f(r) = 0. Moreover, it is not difficult to show that (3.2) guarantees
that

and, in particular,
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ie., lim, . f(v) =oo. Thus, as the function f is continuous on the interval
[, c0), there always exists a point ¢* > ¢ so that f(*) = o — ¢, i.e., such that (3.3)
is satisfied. By using (3.2) (for the point ¢*) as well as (3.3), we obtain

Jt q(s)ds = J,* q(s)ds — Jt* q(s)ds > (a—¢) — (0—&) =0

a(t*) a(r*) t

and consequently we necessarily have o(#*) < . Our claim has been proved.
Now we choose an integer N > ng such that 7(n) > ny for every n > N.
Let us consider an arbitrary point # > N. By our claim, there exists a ¢* > ¢
such that o(z*) < ¢, and (3.3) holds. From (3.1) it follows that

ﬂo=yov+j 4(s)y((s)) d. (3.4)

Let s be any point with # < s < ¢*. As the function ¢ is increasing on [0, ),
we have ny <ao(f) <a(s) <o(t*) <t, and r<o(u) <o(t) for every u with
o(s) <u < t. Thus, by taking into account the fact that the function y is decreas-
ing on [r, o0), from (3.1) we obtain

t

y(o(s)) = »(0) + . q(u)y(o(u)) du

=00+ [ [ atwdy(oto)

S

= y(t) + _L(S) q(u) du — L q(u) du}y(a(t)).
So, by applying (3.2) (for the point s), we get
2 (0(6) > 300+ [(3=2) = | o) ] (o(0).

As this inequality holds true for all s with ¢ < s < ¢*, it follows from (3.4) that
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and consequently, in view of (3.3),

102 30+ -0+ {0 [ a0 [ o ashyio). 69

Noting the known formula

* +*

J 0| dwia] = [ g0 [ a0 )

or

*

[ o] [ atwad as= [ a9] [ atwya] s

we have

[ [ [ atw

*

&
=
I

q(s) ”: q(u) du} ds}

{ J;* q(s) ”ts q(u) du} ds + J

~

~
%

N = N—= N

and therefore, by (3.3),

t*q(s) Sq(u)du ds:l((x—e)z.
9] ] g de] s =

Hence, (3.5) is written as

1

(0 2 () + (o= &) p(1) + 5 (2 = &)y (0(0)). (3.6)
This gives
¥(0) > (2= )20 + 32— )0 (o(0)
ie.,
(o)’
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(Note that 0 < @ — ¢ < a < —1 + V2 < 1.) We have thus proved that
y(t) > Ay(o(r))  forallr> N,

where

(2—¢)’

SRECED))

Now, in view of (3.7) (for the point 7*), we have

y(t7) > day(a(t7)).

But since o(#*) < t and the function y is decreasing on [r, c0), we also have

¥(a(1)) = (o).

Combining the last two inequalities, we obtain

y(t") > 2ay(1)
and hence (3.6) yields

§(0) > (o) + (2~ )y(0) 52— ¥(o(1)

or

, 1
(1= (x=&) = aly(0) > 5 (2~ £)’y(a(1)).
This implies, in particular, that
l—(ex—¢&)— 4 >0.

Consequently,

Thus, it has been shown that

y(t) > Aoy(o(r)) forallr> N,
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where

(x—¢)’

bzzufwf@fmy

Following the above procedure, we can inductively construct a sequence of
positive real numbers (4,),-; with

l—(a—¢)—4, >0 (v=1,2,...)

and
2
M“:zufajg—a] =12
such that
y(t) > Ay(a(r)) forallt>N (v=1,2,...). (3.8)
As A1 > 0, we obtain
(2 — ) (2 —2)?

}Q:Z[l—(oc—e)—/h]>2[1—(“—6)]:M’

i.e., 4 > ;. By an easy induction, one can immediately see that the sequence
(A4v),s 1s strictly increasing. Furthermore, by taking into account the fact that
the function y is decreasing on [r, 0c0) and using (3.8) (for 1 = N), we get

YN) > Ay(e(N) = Ay(N)  (v=1.2,...).

Therefore, for each integer v > 1, we have 4, < 1. This ensures that the sequence
(4v),s is bounded. Since (4,), is a strictly increasing and bounded sequence of
positive real numbers, it follows that lim, .., 4, exists as a positive real number.
Set

A = lim J,.
Then (3.8) gives
y(t) = Ay(a(r)) forallz>N. (3.9)
Because of the definition of (4,), , it holds
(=)

Azzu_u_@—Ay
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1.e.

Hence, either

1 2
A= El—a—e \/1 20 —¢&) — (0 —¢)7]

or

In both cases, we have

A > ll—a—a \/1 20 —¢) — (a—¢)?]

and consequently (3.9) yields

y(t) > ll—oc—g \/1—20(—8 (@ —¢)y(a(r)) forallz=N. (3.10)

l\)

Let n be an arbitrary integer with n > N. Then, by (3.10),

y(t) = %l—oc—e \/1 2o —e) — (2 —e)lp(a(r)) forn<t<n+l.

Note that lim,_,,;1)—o ¥(f) = y(n+ 1) = x(n 4+ 1). We have thus proved that

x(n+1) > %1— (o0 — &) \/1 2(0—¢) a—e)z]x(f(n)) foralln > N.
(3.11)



An oscillation criterion 527

Finally, we see that (3.11) is written as

x(n+1)
x(r(n))

and consequently

> %[1—(06—8)—\/1—2(&—8)—(0(—8)2] for every n > N

imin L
fimnf x(z(n))

The last inequality holds true for all real numbers ¢ with 0 < ¢ < «. Hence, we can
obtain (2.1).
The proof of our lemma is now complete. O

> %[1—(0(—8)—\/1—2(0(—8)—(0(—8)2].

Proof of Theorem 2.1. Assume, for the sake of contradiction, that there exists a
nonoscillatory solution (x(n)) _ , of the delay difference equation (1.1). Since
(=x(n)),. _, is also a solution of (1.1), we can confine our discussion only to the
case where the solution (x(n))nz_k is eventually positive. Consider an integer
p = —k so that x(n) > 0 for every n > p, and let r > 0 be an integer such that
7(n) = p for n>r (clearly, r > p). Then from (1.1) we immediately obtain
Ax(n) <0 for all n > r, and consequently the sequence (x(n))wr is decreasing.

Now, we choose an integer ny > r such that t(n) > r for n > ny. Furthermore,
we consider an integer N > ny so that 7(n) > ny for n > N. Then, as the sequence
(2(n)), is increasing and the sequence (x(n)), . is decreasing, it follows from
(1.1) that, for every n > N,

n=

©(e) —x(n+ 1) = 32 px(e() = [ 3 p(i)] ()
Jj=t(n) j=t(n)
This gives
- Xnt1) for all n
J%)P(J) = X(T(l’l)) o = N.
Hence,

. - . .. x(n+1)
lim sup p(j) <1 —liminf ———~.
n—o0 ,_2(:) n—o x((n))

But, in view of Lemma 2.1, inequality (2.1) holds. So, we obtain
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hmsupz <1——1—O€—V1—20€—O€2),

n—oo
Jj=1(n)

which contradicts condition (2.2).
The proof of the theorem is complete. O

4. Example

We illustrate the significance of our results by the following example in which the
delay difference equation (1.1) is considered with a variable delay argument.

Example 4.1. Let « be a real number with 0 < o < 1/e, and define

1
A =1—(1-V1-0a) Azzl—i(l—a—\/l—m),
A3_1_a1—\/1—oc

and
A4=1—%(1—O€—V1—20€—EX2).

Note that (cf. Remark 2.1) A > A> > A3 > A4. Next, we consider a positive real
number d such that 44 — o < d < A3 — o (we notice that 44 > o). So, we have
Ay > Ay > Az >o+d > A4 Furthermore, let f be a real number with
0<p <1, and set ¢c = i and r =2+ [ ] ([%] denotes the greatest integer less
than or equal to ﬁ)

Consider now the delay difference equation (1.1) with

[ ifne{1,2,.. \{r, 7. ],
p("){d it nef{0,rr.. )

and
7(0)=-1 and t(n)=[pn] (m=12,...).

Here (p(n)), ., is a sequence of positive real numbers, and (z(n)), , is a sequence
of integers such that t(n) <n— 1 for all » > 0, and lim,_,, t(n) = c0. Moreover,
we note that the sequence (z(n)), _ is increasing.

We will first show that

>0
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n—1
. ¢
nhjg E jfoc. (4.1)
J=[pn]

To this end, we obtain, for n sufficiently large,

—1 c n—1 Jj+l ds Jn ds n
Z = Z —=cC —=cln—
At Sl s () S [ pn]

and

n—1 n—1 J d n—1 d _1
C S S n
E - <c E J — = CJ —=cln—r——.
~pr (] =1

=7 =18 (-1

But, it is easy to see that

. . n—1 1
’}Lnoqc (cln [ﬂn}) = nhj& <Chl[ﬁn]—1> = CIHB =o.

From the above it is clear that (4.1) holds true. In particular, it follows from (4.1)
that

r"—1

c
lim » —=ua (4.2)
SRR
Observe that
< [Br"] <" —1  for large n. (4.3)
Indeed, for any integer n > 0, we have [fr"] < fr" and, since ﬂ — — <1, as

n — oo, it holds that [fr"] < r" — 1, for all large n. On the other hand, for
n >0, we obtain [fr"] —r" ' > (Br" — 1) — "' = (Br—1)r"! —1. But fr—1
=BQ2+[3]) —1>p(1+4) —1=4>0and so lim,_., (fr—1)r"' — 1) =
which quarantees that lim, ... ([fr"] —"~!) = 0. Hence, [fr"] — "' >0, for
all large n. Therefore, (4.3) has been proved.

Now, in view of (4.3), we get

—1 M_1

Z p() = Z ¢ forall large n

J=[pr) =g/

and consequently, because of (4.2),

lim Z p(j) =o. (4.4)
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Furthermore, since d > G for all large j, we obtain

”Z‘:l p(j) = ”z—‘i E for all large n,
j=1pn] j=pn/
which, by virtue of (4.1), gives
. . n71
N> g .
lim inf j:z[,;,]p(/) > o (4.5)

From (4.4) and (4.5) it follows that

n—1
liminf > p(j) = a. (4.6)
=T
Next we shall prove that
lim sup Zp(])zd—kd (4.7)

Observe that

r" r—1
Z r(j) = Z p(j)+d for all large n,
AP JETA

and so, because of (4.4),

Jga%%ﬂﬁ=a+d (4.8)

Furthermore, we see that

In2\ Ini
fim (21U gy (D)
n—oo \ Inr Inr n—oo \ Inr Inr

which implies that

nn_In[gn]
Inr Inr

<1 for sufficiently large n.

Hence, for each large n, there exists at most one integer n* so that
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<n*"<— or In[fn <n"Inr<lnn,

i.e., such that

By taking into account this fact, we obtain

n n n—1
Sos Y Svd=Y S+54d
=B j=1pn/ =t

for all large n. Thus, by using (4.1), we derive

lim sup Z p(j) <oa+d. (4.9)

From (4.8) and (4.9) we conclude that (4.7) is always valid.
Here, we observe that (4.6) coincides with (1.11). Moreover, since

Ag<o+d< Az < Ay < Ay,

it follows from (4.7) that condition (2.2) of Theorem 2.1 is satisfied and therefore
all solutions of (1.1) are oscillatory. Observe, however, that none of the conditions
(1.13), (1.17) and (1.12) is satisfied. In addition, we immediately see that condi-
tions (1.8), (1.9) and (1.10) are also not satisfied.
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