Portugal. Math. (N.S.) Vol. 67, Fasc. 1, 2010, 13–56 DOI 10.4171/PM/1856 **Portugaliae Mathematica** © European Mathematical Society

Sums of $(2^r + 1)$ -th powers in the polynomial ring $\mathbb{F}_{2^m}[T]$

Mireille Car

(Communicated by Rui Loja Fernandes)

Abstract. Let F be a finite field with 2^m elements and let $k = 2^r + 1$. We study representations and strict representations of polynomials $M \in F[T]$ by sums of k-th powers. A representation

$$M = M_1^k + \dots + M_s^k$$

of $M \in F[T]$ as a sum of k-th powers of polynomials is strict if $k \deg M_i < k + \deg M$.

Mathematics Subject Classification (2010). Primary 11T55; Secondary 11R58. Keywords. Finite fields, polynomials, Waring's problem.

1. Introduction

Let F be a finite field of characteristic p with p^m elements and let k > 1 be an integer. The similarity between the ring \mathbb{Z} of rational integers and the polynomial ring F[T] had led to investigate an analogue of the Waring problem for F[T], ([18], [10], [15], [4], [16], [6], [2], [11]). Roughly speaking, Waring's problem over F[T] consists in representing a polynomial $M \in F[T]$ as a sum

$$M = M_1^k + \dots + M_s^k \tag{1.1}$$

with $M_1, \ldots, M_s \in F[T]$. Some obstructions to that may occur which led to consider Waring's problem over the subring $\mathscr{S}(F,k)$ formed by the polynomials of F[T] which are sums of k-th powers. Two variants of Waring's problem over $\mathscr{S}(F,k)$ have been considered. The unrestricted Waring's problem ([15], [16]), consists in proving the existence of an integer $w = w(p^m, k)$ with the property that whenever $M \in \mathscr{S}(F,k)$ and $s \ge w(p^m,k)$, the equation (1.1) is solvable. Without degree conditions in (1.1), the problem of representing M as sum (1.1) is

close to the so called easy Waring's problem for \mathbb{Z} . In order to have a problem close to the non easy Waring's problem, the degree conditions

$$\deg M_i \le n \tag{1.2}$$

are required with n defined by the condition

$$k(n-1) < \deg M \le kn. \tag{1.3}$$

With such degree conditions, the representation (1.1) is *strict* in opposition to representations without degree conditions. For the strict Waring's problem, analogue of the classical numbers $g_{\mathbb{N}}(k)$ and $G_{\mathbb{N}}(k)$ have been defined as follows. Let $g(p^m, k)$ respectively $G(p^m, k)$ denote the least integer *s*, if it exists, such that every polynomial $M \in \mathscr{S}(F, k)$, respectively every polynomial $M \in \mathscr{S}(F, k)$ of sufficiently large degree, may be written as a sum (1.1) satisfying the degree conditions (1.2) and (1.3). Otherwise, $g(p^m, k)$ respectively $G(p^m, k)$ is equal to ∞ . This notation is possible since these numbers only depend on p^m and k. Waring's problem consists in determining or, at least, bounding the numbers $g(p^m, k)$ and $G(p^m, k)$. In [11], it was announced without proof that

if k and
$$p^m$$
 are such that $p^m \ge 9k^6$, then $G(p^m, k) \le k \log k - \frac{1}{2} \log k + 7$.

Proposition 4.5 in [1] and Corollary 3.8 below give examples of pairs $\{k, p^m\}$ for which these bounds are not valid. Bounds for $g(p^m, k)$ and $G(p^m, k)$ were given in [1] where the author described a process intoduced in [6] and performed in [2] to deal with the polynomial Waring's problem for cubes.

Some notations and definitions are necessary before stating the main results proved in [1].

If every $a \in F$ is a sum of k-th powers, the field F is called a Waring field for the exponent k or briefly, a k-Waring field. If F is a k-Waring field, let $\ell(p^m, k)$ denote the the least integer ℓ such that every element of F is the sum of ℓ k-th powers. Let $\lambda(p^m, k)$ denote the least integer s such that -1 is the sum of s k-th powers. Let $\Delta(p^m, k) = \gcd(p^m - 1, k)$.

Let $v(p^m, k)$ denote the least integer v, if it exists, such that T may be written as a sum $(a_1T + b_1)^k + \cdots + (a_vT + b_v)^k$ with $a_i, b_i \in F$. Otherwise, let $v(p^m, k) = \infty$. If $v(p^m, k)$ is finite, every $P \in F[T]$ may be written as a sum

$$P = (a_1P + b_1)^k + \dots + (a_{v(p^m,k)}P + b_{v(p^m,k)})^k$$

so that $\mathscr{S}(F,k) = F[T]$ and F is a k-Waring field.

The two following theorems were proved in [1].

Theorem 1.1. Let $k \ge 3$ be coprime with p. Let F be a k-Waring field with p^m elements and characteristic p. Suppose that $p^m > k$. Then $\mathscr{G}(F,k) = F[T]$,

$$v(p^{m},k) \le k/\Delta(p^{m},k) + \ell(p^{m},k)(k-k/\Delta(p^{m},k)),$$
 (1.4)

$$G(p^{m},k) \le \frac{\log k}{\log(k/(k-1))} + \max(\ell(p^{m}m,k),\lambda(p^{m},k)+1) + v(p^{m},k), \quad (1.5)$$

so that

$$G(p^{m},k) \leq \frac{\log k}{\log(k/(k-1))} + k\ell(p^{m},k) + 2$$

$$\leq k \log(k-1) + k\ell(p^{m},k) + 3.$$
(1.6)

Theorem 1.2. Let $k \ge 3$ be coprime with p. Let F be a k-Waring field with p^m elements and characteristic p. If p > k, then

$$g(p^m, k) \le \ell(p^m, k)(k^3 - 2k^2 - k + 1).$$
(1.7)

The same result remains true in the case where $k = hp^{\nu} - 1 < p^{m}$, for some positive *integers* v *and* $h \leq p$ *.*

The case of exponent $k = p^r + 1$ is not covered by these theorems. The aim of this paper is the study of Waring's problem in the case where p = 2, $k = 2^r + 1$. In this case, it is possible to compute the exact value of $v(2^m, 2^r + 1)$. This yields an improvement for the bounds given in [1], see Corollary 3.5 below. The case of odd characteristic p is more difficult and will be studied further. It will appear that the numbers $g(p^m, k)$ and $G(p^m, k)$ are not sufficient to describe every possible case. Thus, we introduce new parameters.

From now on, F is a finite field with 2^m elements.

Let $\mathscr{S}^*(F,k)$ denote the set of polynomials in F[T] which are strict sums of k-th powers. Let $g^*(2^m, k)$, respectively $G^*(2^m, k)$, denote the least integer s, if it exists, such that every polynomial $M \in \mathscr{G}^*(F, k)$, respectively, every polynomial $M \in \mathscr{S}^*(F,k)$ of sufficiently large degree, may be written as a strict sum

$$M = M_1^k + \dots + M_s^k.$$

The main results proved in this work are summarized in the following theorems.

Theorem 1.3. Suppose that $k = 2^r + 1 > 3$. (I) If $m/\operatorname{gcd}(m, r) > 3$ then the set $\mathcal{Q}(F, k)$ is a

) If
$$m/\gcd(m,r) \ge 3$$
, then the set $\mathscr{S}(F,k)$ is equal to the whole ring $F[T]$,

$$\mathscr{S}^*(F,k) = \mathscr{A}_0 \cup \mathscr{A}_\infty \cup \Big(\bigcup_{N=1}^{k-3} \mathscr{A}_N\Big),$$

(AutoPDF V7 28/1/10 12:48) EMS (170×240mm) Tmath J-2232 PMS, 67:1 (idp) PMU:(KN/)7/1/2010 AC1: WSL 22/01/2010 pp. 13–56 2232_67-1_02 (p. 15)

where

$$\mathcal{A}_0 = F, \qquad \mathcal{A}_\infty = \{A \in F[T] \mid \deg A > k(k-3)\},$$
$$\mathcal{A}_N = \left\{A \in F[T] \mid A = \sum_{n=0}^N \sum_{i=0}^N x_{n,i} T^{i+n2^i}\right\}$$

with $x_{n,i} \in F$.

(II) If m divides r, then

$$\mathscr{S}^{*}(F,k) = \mathscr{S}(F,k) = \{A \in F[T] \,|\, A^{2^{r}} + A \equiv 0 \;(\text{mod}\; T^{4^{r}} + T)\}.$$

(III) If $m/\gcd(m, r) = 2$, then

$$\mathscr{S}(F,k) = \{ A \in F[T] \, | \, A^{2^r} + A \equiv 0 \; (\text{mod } T^{4^r} + T) \}$$

and $\mathscr{S}^*(F,k)$ is the set formed by the $A \in \mathscr{S}(F,k)$ such that either deg A is not multiple of k, or deg A is multiple of k and the leading coefficient of A is in the subfield of F of order $2^{\operatorname{gcd}(m,r)}$.

This theorem is a consequence of Corollaries 3.3, 5.2 and 5.6 below.

Theorem 1.4. *Suppose that* $k = 2^r + 1 > 5$ *.*

(I) (i) If $m/\gcd(m, r) \ge 3$, then $g(2^m, k) = \infty$.

(ii) If $m/\gcd(m,r) \ge 3$ and $m/\gcd(m,r) \ne 4$, then

$$G(2^{m},k) = G^{*}(2^{m},k) \le 3k+2,$$

(iii) if $m/\gcd(m, r) = 4$, then

$$G(2^{m},k) = G^{*}(2^{m},k) \le 3k+3$$

(iv) if $m/\gcd(m, r)$ is odd, then

$$g^*(2^m, k) \le 6k - 6,$$

(v) if $m/\gcd(m, r)$ is even and > 4, then

$$g^*(2^m, k) \le 6k - 5,$$

(vi) if $m/\gcd(m, r) = 4$, then

$$g^*(2^m, k) \le 7k - 7.$$

(II) If m divides r, then

 $G(2^m, k) = G^*(2^m, k) \le 3k - 3, \qquad g(2^m, k) = g^*(2^m, k) \le 3k - 3.$

(III) If $m/\gcd(m, r) = 2$, then

$$G(2^m, k) = g(2^m, k) = \infty, \qquad G^*(2^m, k) \le g^*(2^m, k) \le 2k.$$

This theorem is a consequence of Corollary 5.6 below. It shows that the analogy with the rational integers does not work completely since the following bounds hold for large exponents k ([19], [5], [9], ch. 21):

$$G_{\mathbb{N}}(k) \le k \left(\log k + \log(\log k) + O(1) \right);$$

$$2^{k} + \left[(3/2)^{k} \right] - 2 \le g_{\mathbb{N}}(k) \le 2^{k} + \left[(3/2)^{k} \right] + \left[(4/3)^{k} \right] - 2.$$

The case k = 3 is covered by Corollaries 3.3, 3.5, 5.2 and Proposition 5.5 below. Results given by Corollaries 3.3, 3.5, 5.2 and Proposition 5.5 do not improve those results that were already proved in [7] or [8]. In the case k = 5, we show:

Theorem 1.5. (I) (i) If $m/\gcd(m, 2) \ge 3$, then $g(2^m, 5) = \infty$. (ii) If $m/\gcd(m, 2) \ge 3$ and $m/\gcd(m, 2) \ne 4$, then

$$G(2^m, 5) = G^*(2^m, 5) \le 12,$$

(iii) if $m/\gcd(m, 2)$ is odd and > 1, then

$$g(2^m, 5) = \infty, \quad g^*(2^m, 5) \le 24,$$

(iv) if $m/\gcd(m, 2)$ is even and > 4, then

$$g^*(2^m, 5) \le 25,$$

(v) if m = 8, then

$$g^*(2^m, 5) \le 28, \qquad G(2^m, 5) = G^*(2^m, 5) \le 13.$$

(II) If m = 4, then

$$G(2^m, 5) = g(2^m, 5) = \infty, \quad G^*(2^m, 5) \le g^*(2^m, 5) \le 10.$$

(III) If m = 1 or 2, then

 $G(2^m, 5) = G^*(2^m, 5), \quad g(2^m, 5) = g^*(2^m, 5) \le 12.$

This theorem is a consequence of Corollaries 3.5, and 5.6 below. For the positive integers, the corresponding bounds are $G_{\mathbb{N}}(5) \leq 17$, $g_{\mathbb{N}}(5) \leq 37$ ([17], [3]).

The paper is organized as follows. In order to get the exact value of $v(2^m, k)$ we have to prove that some algebraic equations have solutions in F. This is done in Section 2. In Section 3 we compute the numbers $v(2^m, k)$. Bounds for the numbers $G(2^m, k)$ follow. In Section 4 we prove some identities involving a caracterization of strict sums of small degrees. In Section 5 we describe a descent process and we conclude the proof.

We fix an algebraic closure \overline{F} of the field F and for any positive integer n we denote by \mathbb{F}_{2^n} the subfield of \overline{F} with 2^n elements, so that $F = \mathbb{F}_{2^m}$. Our proofs often use the following facts:

The field F contains exactly $\Delta(2^m, k) = \gcd(2^m - 1, k) = \gcd(2^m - 1, 2^r + 1)$ k-th roots of 1. We introduce the notations

$$Q = 2^{r} = k - 1, \qquad q = 2^{\gcd(m, r)}, \tag{1.8}$$

$$d = \gcd(m, r), \tag{1.9}$$

so that

$$q = 2^d. \tag{1.10}$$

If x is a real number, we denote by [x] its integral part and by $\lceil x \rceil$ the least integer $n \ge x$.

Since gcd(q + 1, q - 1) = 1, every $x \in \mathbb{F}_q$ is a (q + 1)-th power.

2. Equations

Since a k-th power in F is a $gcd(2^m - 1, k)$ -th power, we begin this section by computing $\Delta = gcd(2^m - 1, k)$. We continue by studying a sum of characters related to sums of Δ -th powers.

2.1. The greatest common divisor. I think that the results contained in the following proposition are well known, althought I am unable to give any reference for them, Lemma 4 in [12] only giving incomplete results. The proof given here differs from the original one. Its present simplified form is due to the referee.

Proposition 2.1. (i) We have

$$gcd(2^m - 1, 2^r - 1) = 2^d - 1.$$
 (2.1)

(ii) The numbers $2^m - 1$ and $2^r + 1$ are not coprime if and only if m/d is even and, in that case,

$$\gcd(2^m - 1, 2^r + 1) = 2^d + 1. \tag{2.2}$$

Proof. (i) Let a and b be positive integers with $a \ge b$. If $a = bc + \rho$ with $0 \le \rho < b$, then

$$2^{a} - 2^{\rho} = 2^{\rho}(2^{bc} - 1) = 2^{\rho}(2^{b(c-1)} + \dots + 2^{b} + 1)(2^{b} - 1),$$

so that

$$2^{a} - 1 = (2^{b} - 1)C + 2^{p} - 1,$$

with C a positive integer and $2^{\rho} - 1 < 2^{b} - 1$. The euclidean algorithm for $gcd(2^{m} - 1, 2^{r} - 1)$ exactly mimics that for gcd(m, r). Thus,

$$gcd(2^m - 1, 2^r - 1) = 2^{gcd(m,r)} - 1.$$

(ii) Since $gcd(2^r + 1, 2^r - 1) = 1$, we have

$$\gcd(2^m - 1, 2^{2r} - 1) = \gcd(2^m - 1, 2^r + 1) \gcd(2^m - 1, 2^r - 1)$$

From part (i),

$$gcd(2^m - 1, 2^r + 1) = \frac{2^{gcd(m,2r)} - 1}{2^{gcd(m,r)} - 1}.$$

Let v_2 denote the 2-adic valuation. We have

$$\gcd(m, 2r) = \begin{cases} \gcd(m, r) & \text{if } v_2(m) \le v_2(r), \\ 2 \gcd(m, r) & \text{if } v_2(m) > v_2(r). \end{cases}$$

Therefore, $gcd(2^m - 1, 2^r + 1) \neq 1$ if and only if m/gcd(m, r) is even, and in that case,

$$gcd(2^m - 1, 2^r + 1) = 2^{gcd(m,r)} + 1.$$

2.2. The system $\mathscr{E}(u, v, a, b)$

Lemma 2.2. Let $(u, v) \in F^2$ be such that $uv \neq 0$ and $u^{Q^2-1} \neq v^{Q^2-1}$. For every ordered pair $(a, b) \in F^2$, the system $\mathscr{E}(u, v, a, b)$:

$$\begin{cases} a = u^{Q}x + v^{Q}y, \\ b = ux^{Q} + vy^{Q} \end{cases}$$
(2.3)

has a unique solution in F^2 .

Proof. Immediate.

2.3. Exponential sums. In this subsection, we suppose that m/d is even, so that $\mathbb{F}_{a^2} \subset F$. Let

$$n = m/2d, \tag{2.4}$$

so that

$$F = \mathbb{F}_{q^{2n}}.\tag{2.5}$$

Let $tr : F \to \mathbb{F}_2$ denote the absolute trace on *F* and let ψ be the character of the additive group of *F* defined by

$$\psi(x) = (-1)^{\operatorname{tr}(x)}.$$
(2.6)

Then ψ is not trivial. For *a* and *b* elements of *F*, let

$$\sigma(a,b) = \sum_{x \in F} \psi(ax^q + bx).$$
(2.7)

Proposition 2.3. Let $a, b \in F$. Then

(i) $\sigma(a,b) \in \{0,2^m\}$, (ii) $\sigma(a,b) = 2^m$ if and only if $a = b^q$.

Proof. Since q is a power of 2, the map $\gamma : x \mapsto (ax^q + bx)$ is additive and $\psi \circ \gamma$ is a character of the additive group of F. This proves (i). Let $b \in F$. Then

$$\sum_{a \in F} \sigma(a, b) = \sum_{a \in F} \sum_{x \in F} \psi(ax^q + bx).$$

Inverting the order of summation gives

$$\sum_{a \in F} \sigma(a, b) = \sum_{x \in F} \psi(bx) \sum_{a \in F} \psi(ax^q).$$

Since ψ is not trivial, the last inner sum is 0 if $x \neq 0$ and $|F| = 2^m$ if x = 0. Thus,

$$\sum_{a \in F} \sigma(a, b) = 2^m.$$

In view of the part (i), there exists one and only one $a \in F$ such that $\sigma(a, b) = 2^m$. For every $x \in F$, $tr((bx)^q) = tr((bx)^{2^d}) = tr(bx)$ so that $\psi(b^q x^q + bx) = 1$. Thus, $\sigma(b^q, b) = 2^m$ and b^q is the unique $a \in F$ such that $\sigma(a, b) = |F|$.

Let *B* denote the set of non-zero k-th powers in *F*. From Proposition 2.1 and (1.10),

$$|B| = \frac{2^m - 1}{q + 1}.\tag{2.8}$$

21

For $t \in F$, let

$$f(t) = \sum_{x \in F} \psi(tx^{q+1}).$$
 (2.9)

Proposition 2.4. (I) *We have* $f(0) = 2^{m}$.

(II) Let $t \in F^*$.

(i) If t ∈ B, then f(t) = f(1) and f(t)² = 2^mq².
(ii) If t ∉ B, then f(t)² = 2^m.
(iii) If t ∉ B, then qf(t) + f(1) = 0.

Proof. (I) is obvious. Let $t \in F^*$. Then

$$f(t)^{2} = \sum_{y \in F} \sum_{x \in F} \psi \left(t \left(y^{q+1} + (x+y)^{q+1} \right) \right) = \sum_{x \in F} \psi (tx^{q+1}) \sum_{y \in F} \psi \left(t (x^{q}y + xy^{q}) \right).$$

From the previous proposition, the inner sum is 0 or 2^m and is equal to 2^m if and only if $tx = t^q x^{q^2}$. The inner sum is equal to 2^m if and only if $x \in X(t)$, where

$$X(t) = \{ x \in F \, | \, x = t^{q-1} x^{q^2} \}.$$

If t is not a (q + 1)-th power, then $X(t) = \{0\}$ and $f(t)^2 = 2^m$, proving (II-ii). Suppose that $t = u^{q+1}$ with $u \in F$. The map $x \mapsto ux$ is a permutation of the field F. Thus,

$$f(t) = \sum_{x \in F} \psi((ux)^{q+1}) = \sum_{y \in F} \psi(y^{q+1}) = f(1).$$

Let $x \in F^*$. Then

$$x \in X(1) \Leftrightarrow 1 = x^{q^2 - 1} \Leftrightarrow x \in (\mathbb{F}_{q^2})^*.$$

There are exactly $(q^2 - 1)$ non-zero elements $x \in X(1)$ and if x is one of them, then $x^{q+1} \in \mathbb{F}_q$ so that $\operatorname{tr}_{\mathbb{F}_{q^2}|\mathbb{F}_q}(x^{q+1}) = 0$. Thus, $\operatorname{tr}(x^{q+1}) = 0$ and $\psi(x^{q+1}) = 1$. Therefore, if $t \in B$, then

$$f(t)^2 = q^2 2^m$$

This proves (II)(i).

Let B' denote the set of non (q + 1)-th powers in F. Then by (2.8),

$$|B'| = \frac{q(2^m - 1)}{q + 1}.$$
(1)

If $t \in B$, then f(t) = f(1). Let $c \in B'$. If $t \in B'$, then |f(t)| = |f(c)|. Set $f(t) = \varepsilon_t f(c)$. Observe that $\varepsilon_t = \pm 1$. We compute the sum

$$\Sigma = \sum_{t \in F^*} f(t)$$

by two different ways. Firstly,

$$\Sigma = \sum_{t \in F} f(t) - 2^m = \sum_{t \in F} \sum_{x \in F} \psi(tx^{q+1}) - 2^m.$$

Inverting the order of summation gives

$$\Sigma = 0. \tag{2}$$

On the other hand,

$$\Sigma = \sum_{t \in B} f(t) + \sum_{t \in B'} f(t).$$

Thus,

$$\Sigma = |B|f(1) + f(c) \sum_{t \in B'} \varepsilon_t.$$
(3)

By (2.8), (2) and (3),

$$\left|f(c)\sum_{t\in B'}\varepsilon_t\right|=\frac{2^m-1}{q+1}|f(1)|.$$

From (II)(i), (II)(ii) and (1),

$$\left|\sum_{t\in B'}\varepsilon_t\right| = \frac{q(2^m-1)}{q+1} = |B'|.$$

(AutoPDF V7 28/1/10 12:48) EMS (170×240mm) Tmath J-2232 PMS, 67:1 (idp) PMU:(KN/)7/1/2010 AC1: WSL 22/01/2010 pp. 13–56 2232_67-1_02 (p. 22)

Hence, for each $t \in B' \varepsilon_t = \varepsilon_c$ and f(t) = f(c). From (2) and (3),

$$\frac{2^m - 1}{q + 1}f(1) + \frac{q(2^m - 1)}{q + 1}f(c) = 0.$$

Therefore, for every $t \in B'$,

$$\frac{2^m - 1}{q + 1}f(1) + \frac{q(2^m - 1)}{q + 1}f(t) = 0,$$

proving (II)(iii).

For our purpose a knowledge of the values of f(t) for all t is not necessary. It is sufficient to know the value of f(1) in the case where $|F| = q^4$. This is done below. The proof provides the value of f(1) in all cases. We have to introduce some new notations.

Let $t_{2,1}$ denote the trace from \mathbb{F}_{q^2} to \mathbb{F}_q . For $i \in \{1, 2, 2n\}$ let τ_i denote the absolute trace of \mathbb{F}_{q^i} . For $i \in \{1, 2, 2n\}$ let ψ_i be the character of the additive group of the field \mathbb{F}_{q^i} defined by

$$\psi_i(x) = (-1)^{\tau_i(x)}.$$
(2.10)

Observe that the characters ψ_i are not trivial and

$$\tau_2 = \tau_1 \circ t_{2,1}, \quad \text{tr} = \tau_{2n},$$
 (2.11)

so that

$$\psi = \psi_{2n}.\tag{2.12}$$

For i = 1, 2, 2n, let

$$S_i = \sum_{x \in \mathbb{F}_{q^i}} \psi_i(x^{q+1}).$$
 (2.13)

Note that

$$f(1) = S_{2n}.$$
 (2.14)

Proposition 2.5. We have

$$S_1 = 0$$
 (2.15)

23

and

24

$$S_{2n} = (-1)^{n+1} q^{n+1}.$$
 (2.16)

for $n \ge 1$,

Proof. (I) Since q - 1 and q + 1 are coprime, the map $x \mapsto x^{q+1}$ is a permutation of the field \mathbb{F}_q . Since ψ_1 is not trivial,

$$S_1 = \sum_{x \in \mathbb{F}_q} \psi_1(x) = 0.$$

(II) If $x \in \mathbb{F}_{q^2}$, then $x^{q+1} \in \mathbb{F}_q$. Moreover, if z is a non-zero element in \mathbb{F}_q , there are exactly (q+1) elements $x \in \mathbb{F}_{q^2}$ solutions of the equation $x^{q+1} = z$. Thus,

$$S_2 = 1 + \sum_{\substack{x \in \mathbb{F}_{q^2} \\ x \neq 0}} \psi_2(x^{q+1}) = 1 + (q+1) \sum_{\substack{y \in \mathbb{F}_q \\ y \neq 0}} \psi_2(y) = -q + (q+1) \sum_{\substack{y \in \mathbb{F}_q \\ y \neq 0}} \psi_2(y).$$

With (2.10) and (2.11) we obtain

$$S_2 = -q + (q+1) \sum_{y \in \mathbb{F}_q} (-1)^{\tau_2(y)} = -q + (q+1) \sum_{y \in \mathbb{F}_q} (-1)^{\tau_1(t_{2,1}(y))} = q^2.$$

This proves (2.16) in the case where n = 1.

(III) From [13], formulas 4.13, 4.14, p. 119, there exist algebraic integers $\lambda_1, \ldots, \lambda_q$ of modulus q such that

$$S_{2n} = -\sum_{i=1}^q \lambda_i^n.$$

We have $S_2 = q^2$. Thus, for each index i, $\lambda_i = -q$. Therefore,

$$S_{2n} = -q(-q)^n = (-1)^{n+1}q^{n+1}.$$

2.4. Sums of *k*-th powers in *F*. Let *i* be a positive integer. For $a \in F$, let $v_i(a)$ denote the number of solutions $(x_1, \ldots, x_i) \in F^i$ of the equation

$$a = x_1^k + \dots + x_i^k.$$
(2.17)

Proposition 2.6. Suppose that m/d odd. Then, for any positive integer *i* and for any $a \in F$,

$$v_i(a) = 2^{m(i-1)}$$
.

Proof. From Proposition 2.1, gcd(k, |F| - 1) = 1, so that the map $a \mapsto a^k$ is a permutation of F.

Proposition 2.7. Suppose m/d even. Then

$$v_1(0) = 1,$$
 $v_2(0) = (q+1)2^m - q,$ $v_3(0) = 2^{2m} + f(1)(q-1)(2^m - 1)$

and for $a \in F^*$ we have

$$v_1(a) = \begin{cases} q+1 & \text{if } a \in B, \\ 0 & \text{if } a \notin B, \end{cases}$$

$$v_2(a) = 2^m - q + (q-1)f(a),$$

$$v_3(a) = 2^{2m} - 2^m - (q-1)f(1) + (q-1)f(1)f(a) + 2^m v_1(a).$$

Proof. Observe that a k-th power in F is a (q + 1)-th power. Let $a \in F^*$. If $a \notin B$, then $v_1(a) = 0$. If $a \in B$, then $v_1(a)$ is equal to the number of (q + 1)-th roots of 1 in F, that is, $v_1(a) = q + 1$. Let i = 1, 2, 3. By orthogonality,

$$v_i(a) = \sum_{x \in F} \frac{1}{|F|} \sum_{t \in F} \psi(t(a + x_1^{q+1} + \dots + x_i^{q+1})).$$

Thus, after inverting the order of summation, we get with (2.9),

$$2^{m} v_i(a) = \sum_{t \in F} \psi(at) f(t)^i.$$
(1)

Let i = 2, 3. From Proposition 2.4,

$$2^{m}v_{i}(a) = 2^{im} + q^{2}2^{m}\sum_{t \in B} \psi(at)f(t)^{i-2} + 2^{m}\sum_{\substack{t \in F^{*}\\t \notin B}} \psi(at)f(t)^{i-2}.$$

Hence,

$$v_i(a) = 2^{(i-1)m} - 2^{(i-2)m} + (q^2 - 1) \sum_{t \in B} \psi(at) f(t)^{i-2} + \sum_{t \in F} \psi(at) f(t)^{i-2}.$$
 (2)

Suppose that i = 2. Then with (2.8),

$$v_2(0) = 2^m - 1 + \frac{(2^m - 1)(q^2 - 1)}{q + 1} + 2^m = q2^m + 2^m - q.$$

(AutoPDF V7 28/1/10 12:48) EMS (170×240mm) Tmath J-2232 PMS, 67:1 (idp) PMU:(KN/)7/1/2010 AC1: WSL 22/01/2010 pp. 13–56 2232_67-1_02 (p. 25)

Let $a \in F^*$. From (2),

$$v_2(a) = 2^m - 1 + (q^2 - 1) \sum_{t \in B} \psi(at).$$

If $t \in B$, the equation $t = u^{q+1}$ has q + 1 solutions. Thus,

$$v_2(a) = 2^m - 1 + (q-1)\sum_{u \in F^*} \psi(au^{q+1}) = 2^m - q + (q-1)\sum_{u \in F} \psi(au^{q+1}),$$

so that

$$v_2(a) = 2^m - q + (q - 1)f(a).$$

Suppose that i = 3. Then from (2) and (1),

$$v_3(a) = 2^{2m} - 2^m + (q^2 - 1) \sum_{t \in B} \psi(at) f(t) + 2^m v_1(a),$$

so that

$$v_3(a) = 2^{2m} - 2^m + (q-1) \sum_{u \in F^*} \psi(au^{q+1}) f(u^{q+1}) + 2^m v_1(a).$$

From Proposition 2.4,

$$v_3(a) = 2^{2m} - 2^m + (q-1)f(1)\sum_{u \in F^*} \psi(au^{q+1}) + 2^m v_1(a),$$

so that with (2.6),

$$v_3(a) = 2^{2m} - 2^m - (q-1)f(1) + (q-1)f(1)f(a) + 2^m v_1(a).$$

The following proposition completes Small's theorem ([14]), which states that if m > 4r, then F is a k-Waring field with $\ell(2^m, k) \le 2$.

Proposition 2.8. (I) *F* is a Waring field for the exponent *k* if and only if $\frac{m}{d} \neq 2$.

- (II) If $\frac{m}{d}$ is odd, then $\ell(2^m, k) = 1$.
- (III) If $\frac{m}{d}$ is even and if $\frac{m}{d} \ge 4$, then $\ell(2^m, k) = 2$. (IV) If $\frac{m}{d} = 2$, every $x \in F$ which is a sum of k-th powers is a k-th power.

Proof. From Proposition 2.1, if $\frac{m}{d}$ is odd, then $\Delta(2^m, k) = 1$ and F is a k-Waring field with $\ell(2^m, k) = 1$. Now we suppose $\frac{m}{d}$ even. Then $\Delta(2^m, k) = 1 + 2^d$. Let n = m/2d. Since $\Delta(2^m, k) > 1$, we have $\ell(2^m, k) \ge 2$. We prove that, with the exception n = 1, F is a k-Waring field with $\ell(2^m, k) \le 2$. Let $a \in F$ be different from a k-th power. From Propositions 2.7 and 2.4,

$$v_2(a) = 2^m - q + (q-1)f(a) \ge 2^m - q - (q-1)2^{m/2} = q^{2n} - q - q^{n+1} + q^n.$$

If n > 1, then $v_2(a) > 0$, so that *a* is the sum of two *k*-th powers. Thus, if $a \in F$, either *a* is a *k*-th power, or *a* is a sum of two *k*-th powers. Hence, $\ell(2^m, k) = \ell(F, k) \le 2$.

Now suppose that $F = \mathbb{F}_{q^2}$. If $x \in F$ is a (q+1)-th power, say $x = y^{q+1}$ with $y \in F$. Then $x^q = x$ and $x \in \mathbb{F}_q$. If $a \in F$ is a sum of (q+1)-th powers, then $a \in \mathbb{F}_q$ and a is a (q+1)-th power.

Proposition 2.9. For $a \in F$, let $N_3(a)$ denote the number of $(x, y, z) \in F^3$ such that

$$\begin{cases} x^{k} + y^{k} + z^{k} = a, & (e_{1}) \\ xy \neq 0, & (e_{2}) \\ x^{Q^{2}-1} \neq y^{Q^{2}-1}. & (e_{3}) \end{cases}$$
 (F(a))

(I) Suppose that m/d odd. Then, for $a \in F$, we have

$$N_3(a) = (2^m - 1)(2^m - q).$$

(II) Suppose that m/d even. Then

$$N_3(0) = 2^{2m} - 2^m(q^3 + 1) + q^3 + (q - 1)(2^m - 1)f(1),$$

and for $a \in F^*$, we have

$$N_{3}(a) = \begin{cases} 2^{2m} + 2^{m}(q^{3} - 3q^{2} - 1) + 2q^{3} - (q - 1)(q^{2} - q + 1)f(1) & \text{if } a \in B, \\ 2^{2m} - 2^{m}(2q^{2} - 2q + 1) + q^{3} - q^{2} + (q - 1)(q - 2)f(1) & \text{if } a \notin B, \end{cases}$$

where f is as in (2.9).

Proof. (I) Suppose that m/d odd. From Proposition 2.1, $gcd(k, 2^m - 1) = 1$, so that the map $x \mapsto x^k$ is bijective. Thus, for each pair $(x, y) \in F^2$ satisfying (e₂) and (e₃), there is one and only one $z \in F$ such that (x, y, z) is solution of $(\mathscr{F}(a))$. Therefore, $N_3(a)$ is the number of $(x, y) \in F^2$ satisfying (e₂) and (e₃). Let $(x, y) \in F^* \times F^*$. Then (x, y) does not satisfy (e₃) if and only if $(y/x)^{Q^2-1} = 1$, that is, if and only if $(y/x) \in F \cap \mathbb{F}_{Q^2}$. Thus,

$$N_3(a) = |F^*|^2 - |F^*|(q-1) = (2^m - 1)(2^m - q).$$

(II) Suppose that m/d even. Let $\mathscr{A}(a)$ denote the set formed by the $(x, y, z) \in F^3$ satisfying conditions (e₁), (e₂) and (e₃). Then

$$N_3(a) = |\mathscr{A}(a)|. \tag{1}$$

Let

$$\mathscr{B}_0(a) = \{ (x, y, z) \in F^3 \mid x^k + y^k + z^k = a, xy = 0 \}$$

and

$$\mathscr{B}_1(a) = \{ (x, y, z) \in F^3 \mid x^k + y^k + z^k = a, xy \neq 0, x^{\mathcal{Q}^2 - 1} = y^{\mathcal{Q}^2 - 1} \}.$$

Then

$$v_3(a) = |\mathscr{A}(a)| + |\mathscr{B}_0(a)| + |\mathscr{B}_1(a)|.$$
(2)

Firstly, we deal with $\mathscr{B}_0(a)$. We have

$$\mathscr{B}_{0}(a) = \mathscr{B}_{0,0}(a) \cup \mathscr{B}_{0,1}(a) \cup \mathscr{B}_{1,0}(a),$$
(3)

with the $\mathscr{B}_{i,j}(a)$ defined as follows. For $(x, y, z) \in \mathscr{B}_0(a)$,

$$\begin{aligned} & (x, y, z) \in \mathscr{B}_{0,0}(a) \iff (x, y) = (0, 0) \\ & (x, y, z) \in \mathscr{B}_{0,1}(a) \iff y \neq 0, \\ & (x, y, z) \in \mathscr{B}_{1,0}(a) \iff x \neq 0. \end{aligned}$$

Now $(0,0,z) \in \mathscr{B}_{0,0}(a) \Leftrightarrow a = z^k$, so that

$$|\mathscr{B}_{0,0}(a)| = v_1(a) \tag{4}$$

and $(0, y, z) \in \mathscr{B}_{0,1}(a) \Leftrightarrow a = y^k + z^k$ with $y \neq 0$, so that

$$|\mathscr{B}_{0,1}(a)| = v_2(a) - v_1(a).$$
(5)

By symmetry, with (3), (4) and (5),

$$|\mathscr{B}_0(a)| = 2v_2(a) - v_1(a).$$
(6)

Now we deal with $\mathscr{B}_1(a)$. Let $(x, y) \in F^* \times F^*$. Then $x^{Q^2-1} = y^{Q^2-1} \Leftrightarrow y = ux$ with $u^{Q^2-1} = 1$. Thus,

$$|\mathscr{B}_1(a)| = \sum_{\substack{u \in F\\ u^{\mathcal{Q}^{2-1}} = 1}} n_u(a)$$

where $n_u(a)$ is the number of $(x, z) \in F^* \times F$ such that

$$a = x^{k}(1+u^{k}) + z^{k}.$$
(7)

Let $u \in F^*$. Then $u^{Q^2-1} = 1$ if and only if $u \in F^* \cap \mathbb{F}_{Q^2} = (\mathbb{F}_{q^2})^*$. Thus,

$$|\mathscr{B}_1(a)| = \sum_{\substack{u \in \mathbb{F}_{q^2} \\ u \neq 0}} n_u(a).$$
(8)

If $u \in (\mathbb{F}_{q^2})^*$, then $(u^{Q+1})^{Q-1} = 1$, so that $u^k = u^{Q+1} \in \mathbb{F}_Q \cap F$. Thus, $u^k \in (\mathbb{F}_q)^*$. Since gcd(q-1, Q+1) = 1, there exists a unique element $w(u) \in \mathbb{F}_q$ such that $w(u)^k = 1 + u^k$. Let $x \in F^*$ and let $u \in (\mathbb{F}_{q^2})^*$. If $u^k = 1$, then (x, z) satisfies (7) if and only if $a = z^k$, so that

$$n_u(a) = |F^*|v_1(a).$$

If $u^k \neq 1$, then (x, z) satisfies (7) if and only if $a = x^k w(u)^k + z^k$, so that $n_u(a) = v_2(a) - v_1(a)$.

There are exactly q + 1 elements $u \in (\mathbb{F}_{q^2})^*$ such that $u^k = 1$. Therefore, by (8),

$$|\mathscr{B}_1(a)| = (q^2 - q - 2)v_2(a) + ((q+1)(2^m - 1) - (q^2 - q - 2))v_1(a).$$
(9)

Combining (1), (2), (6) and (9), we get

$$N_3(a) = v_3(a) - (q^2 - q)v_2(a) - (q2^m + 2^m - q^2)v_1(a).$$

We conclude using Propositions 2.4 and 2.7.

Corollary 2.10. Let $a \in F$.

(I) If $a \neq 0$ and $m/d \ge 3$, or if a = 0 and $m/d \ge 3$ with $m/d \neq 4$, then $(\mathscr{F}(a))$ has solutions in F^3 .

(II) If $m/d \leq 2$, then $(\mathscr{F}(a))$ has no solutions in F^3 .

(III) Suppose that m = 4d. Then $(\mathcal{F}(0))$ has no solutions in F^3 . Let $a \in F$. Then there exists $(x, y, z, u) \in F^4$ such that

$$\begin{cases} x^{k} + y^{k} + z^{k} + u^{k} = a, & (e_{1}), \\ xy \neq 0, & (e_{2}), \\ x^{Q^{2}-1} \neq y^{Q^{2}-1}. & (e_{3}). \end{cases}$$
($\mathscr{G}(a)$)

Proof. Let $a \in F$. Suppose that m/d odd. From the previous proposition, part (I), $N_3(a) > 0 \Leftrightarrow m > d$. Thus $(\mathscr{F}(a))$ has solutions if and only if m/d > 1.

Suppose that m/d even, say m = 2nd. The case n = 1 is obvious since the condition (e₃) is not satisfied in a field with $q^2 = 2^{2d}$ elements. For every $a \in F$, $(\mathscr{F}(a))$ has zero solutions. Suppose that n > 1. From the previous proposition, (2.14) and (2.16),

$$N_3(0) = (2^m - 1)(q^{2n} - q^3 + (-q)^{n+1}(q - 1)).$$

If n > 2, then $N_3(0) > 0$, so that $(\mathscr{F}(0))$ has solutions. If n = 2, then $N_3(0) = 0$, so that $(\mathscr{F}(0))$ has zero solutions. Let $a \in B$. From Propositions 2.4 and 2.9,

$$N_{3}(a) \geq 2^{2m} + 2^{m}(q^{3} - 3q^{2} - 1) + 2q^{3} - (q - 1)(q^{2} - q + 1)q2^{m/2}$$

> $2^{2m} + 2^{m}(q^{3} - 3q^{2} - 1 - q(q - 1)(q^{2} - q + 1))$
= $2^{2m} - 2^{m}(q^{4} - 3q^{3} + 5q^{2} - q + 1) > q^{4n} - q^{2n+4} \geq 0.$

Thus, $(\mathscr{F}(a))$ has solutions. Let $a \in F^* - B$. From Propositions 2.4 and 2.9,

$$N_{3}(a) \geq 2^{2m} - 2^{m}(2q^{2} - 2q + 1) + q^{3} - q^{2} - (q - 1)(q - 2)q2^{m/2}$$

> $2^{2m} - 2^{m}(q^{3} - q^{2} + 1)$
> $2^{2m} - 2^{m}q^{3} = q^{4n} - q^{2n+3} > 0.$

If $n \ge 2$, then $N_3(a) > 0$. Thus, $(\mathscr{F}(a))$ has solutions.

Suppose that n = 2. If $a \neq 0$, for each (x, y, z) solution of $(\mathscr{F}(a))$, (x, y, z, 0) is a solution of $(\mathscr{G}(a))$; if a = 0, for each (x, y, z) solution of $(\mathscr{F}(1))$, (x, y, z, 1) is a solution of $(\mathscr{G}(a))$.

3. The numbers $v(2^m, k)$

Proposition 3.1. We have $v(2^m, k) \ge 3$. Moreover, if *m* divides 2*r*, then $v(2^m, k) = \infty$.

Proof. Suppose that $v(2^m, k) = s$. Then there exists $(u_1, v_1, \ldots, u_s, v_s) \in F^{2s}$ such that

$$T = \sum_{i=1}^{s} (u_i T + v_i)^{Q+1},$$

so that

$$0 = \sum_{i=1}^{s} u_i^Q v_i \tag{1}$$

and

$$1 = \sum_{i=1}^{s} u_i v_i^{Q}.$$
 (2)

Raising (1) to the power Q gives

$$0=\sum_{i=1}^{s}u_i^{Q^2}v_i^Q.$$

If *m* divides 2*r*, that is, if $F \subset \mathbb{F}_{Q^2}$, then $u_i^{Q^2} = u_i$ for all *i*, contradicting (2). Suppose that s = 2. In that case there exists $(x, y, u, v) \in F^4$ such that

$$0 = x^k + u^k, \tag{3}$$

$$0 = x^{\mathcal{Q}}y + u^{\mathcal{Q}}v,\tag{4}$$

$$1 = xy^Q + uv^Q. \tag{5}$$

If xu = 0, (3) yields that (x, u) = (0, 0) so that (5) is not satisfied. Thus, $xu \neq 0$. From (3), u = xz with z a k-th root of 1, so that with (4), v = zy, and by (5), $1 = xy^{Q} + zx(zy)^{Q} = 0$, leading to a contradiction.

Proposition 3.2. (I) If $m/d \notin \{1, 2, 4\}$, then $v(2^m, k) = 3$. (II) If m/d = 4, then $v(2^m, k) = 4$.

Proof. (I) Suppose that $m/d \notin \{1, 2, 4\}$. From Proposition 3.1, it is sufficient to prove that $v(2^m, k) \leq 3$.

By Corollary 2.10(I), there exists $(a_1, a_2, a_3) \in F^3$ such that

$$\begin{cases} (a_1)^k + (a_2)^k + (a_3)^k = 0, \\ a_1 a_2 \neq 0, \\ (a_1)^{Q^2 - 1} \neq (a_2)^{Q^2 - 1}. \end{cases}$$

Let $(b_1, b_2) \in F^2$ be a solution of $(\mathscr{E}(a_1, a_2, 0, 1))$ with $(\mathscr{E}(x, y, u, v))$ defined by (2.3). Then

$$(a_1)^{\mathcal{Q}}b_1 + (a_2)^{\mathcal{Q}}b_2 = 0,$$

$$a_1(b_1)^{\mathcal{Q}} + a_2(b_2)^{\mathcal{Q}} = 1,$$

so that

$$(a_1T + b_1)^k + (a_2T + b_2)^k + (a_3T)^k = T + (b_1)^k + (b_2)^k$$

Thus, $T + (b_1)^k + (b_2)^k$ is sum of three k-th powers of linear polynomials. Therefore, $v(F,k) \leq 3$.

(AutoPDF V7 28/1/10 12:48) EMS (170×240mm) Tmath J-2232 PMS, 67:1 (idp) PMU:(KN/)7/1/2010 AC1: WSL 22/01/2010 pp. 13-56 2232_67-1_02 (p. 31)

(II) Suppose that m/d = 4. We first prove that $v(2^m, k) > 3$. Indeed, suppose $v(2^m,k) = v(F,k) = 3$. Then there is $(\alpha_1,\beta_1,\alpha_2,\beta_2,\alpha_3,\beta_3) \in F^6$ such that

$$T = (\alpha_1 T + \beta_1)^k + (\alpha_2 T + \beta_2)^k + (\alpha_3 T + \beta_3)^k.$$

If $\alpha_3 = 0$, the change of the variable $U = T + \beta_3^k$ shows that $v(2^m, k) = 2$ and leads to a contradiction. Thus, $\alpha_3 \neq 0$. Now, the change $U = T + \beta_3 \alpha_3^{-1}$ shows that there exists $(a_1, a_2, b_1, b_2, a_3) \in F^4$ such that

$$T = (a_1T + b_1)^k + (a_2T + b_2)^k + (a_3T)^k,$$

so that the system $(\mathscr{F}(0))$ has a solution, contradicting Corollary 2.10. Thus, $v(2^m, k) > 3.$

By Corollary 2.10(II), there exists $(a_1, a_2, a_3, a_4) \in F^4$ such that

$$\begin{cases} (a_1)^k + (a_2)^k + (a_3)^k + (a_4)^k = 0, \\ a_1 a_2 \neq 0, \\ (a_1)^{Q^2 - 1} \neq (a_2)^{Q^2 - 1}. \end{cases}$$

Let $(b_1, b_2) \in F^2$ be solution of $(\mathscr{E}(a_1, a_2, 0, 1))$. Then

$$(a_1T + b_1)^k + (a_2T + b_2)^k + (a_3T)^k + (a_4T)^k = T + (b_1)^k + (b_2)^k,$$

so that T is sum of four k-th powers of linear polynomials. Therefore, $v(F,k) \le 4$.

Corollary 3.3. We have $\mathcal{G}(F,k) = F[T]$ if and only if $m/d \ge 3$. More precisely, if either m/d is odd and $m \neq d$, or if m/d is even and m/d > 4, then every $A \in F[T]$ is sum of three k-th powers; if m = 4d, then every $A \in F[T]$ is sum of four k-th powers.

We are ready to present our first result.

Proposition 3.4. We suppose that m does not divide 2r.

(I) Let
$$s \ge \left[\frac{\log k}{\log(k/(k-1))}\right]$$
. Then every $P \in F[T]$ of degree $\ge \delta(s,k) = k\left[\frac{k^2 - 2k - k^2\left(1 - \frac{1}{k}\right)^{s+1}}{1 - k\left(1 - \frac{1}{k}\right)^{s+1}}\right] - k + 1$ is the strict sum of $\left(s + v(2^m, k) + 2\right)$ k-th powers.
Moreover, if $s \ge \frac{\log k}{\log(k/(k-1))}$, then $\delta(s,k) \le k^4 - 3k^3 + 2k^2 - 2k + 1$.
(III) Let $s \ge \frac{\log(k(k-1)/2)}{\log(k/(k-1)/2)}$. Then every $P \in F[T]$ of degree $\ge k^3 - 3k + 1$ is the

(III) Let $s \ge \frac{\log(k/(k-1))^2}{\log(k/(k-1))}$. Then every $P \in F[T]$ of degree $\ge k^3 - 3k + 1$ is the

strict sum of $(s + v(2^m, k) + 2)$ k-th powers. (III) Let $s \ge \frac{3\log k}{\log(k/(k-1))} - 1$. Then every $P \in F[T]$ such that $k^3 - 2k^2 - k + 1$ $\le \deg P \le k^3 - 3k$ is the strict sum of $(s + v(2^m, k) + 2)$ k-th powers.

Proof. From Propositions 2.8 and 3.2, *F* is a *k*-Waring field and $v(2^m, k)$ is finite. Let $w(m, k) = v(2^m, k) + \max(\ell(2^m, k), 1 + \lambda(2^m, k))$. From [1], Proposition 5.3, we have:

(I) Let $s \ge \left[\frac{\log k}{\log(k/(k-1))}\right]$. Then every $P \in F[T]$ of degree $\ge \delta(s,k) = k\left[\frac{k^2-2k-k^2\left(1-\frac{1}{k}\right)^{s+1}}{1-k\left(1-\frac{1}{k}\right)^{s+1}}\right] - k + 1$ is a strict sum of s + w(m,k) k-th powers. Moreover, if $s \ge \frac{\log k}{\log(k/(k-1))}$, then $\delta(s,k) \le k^4 - 3k^3 + 2k^2 - 2k + 1$. (II) Let $s \ge \frac{\log(k(k-1)/2)}{\log(k/(k-1))}$. Then every $P \in F[T]$ of degree $\ge k^3 - 3k + 1$ is the

strict sum of s + w(m, k) k-th powers.

(III) Let $s \ge \frac{3\log k}{\log(k/(k-1))} - 1$. Then every $P \in F[T]$ such that $k^3 - 2k^2 - k + 1 \le \deg P \le k^3 - 3k$

is the strict sum of s + w(m, k) k-th powers.

From Proposition 2.8, $\ell(2^m, k) \leq 2$. We conclude the proof by noting that $\lambda(2^m, k) = 1$.

Corollary 3.5. (I) If m does not divide 2r and $m \neq 4d$, then $G(2^m, k) \leq k \log k + 5$. (II) If m = 4d, then $G(2^m, k) \leq k \log k + 6$.

Proof. Given by Proposition 3.4(I).

Corollary 3.6. For odd m > 1 or for even m = 2n with odd n > 1, or for m = 4n with n > 2, we have $G(2^m, 5) \le 12$ and we have $G(256, 5) \le 13$.

The proof of the following proposition uses an argument already used in the proof of Proposition 4.4 in [1].

Proposition 3.7. Suppose that m = 2d. Let $a \in F$ be such that $a \notin \mathbb{F}_q$. Let $b \in F$ be such that $b^Q = a$. For $n \ge Q$, let

$$B_n = aT^{nk} + bT^{nk+1-Q^2}.$$

Then B_n is sum of three k-th powers and is not a strict sum of k-th powers.

Proof. We have

$$B_n = (bT^{n+1} + T^{n-Q})^k + (bT^{n+1})^k + (T^{n-Q})^k.$$

Since m = 2d, the field F has q^2 elements and a sum of k-th powers in F is in the subfield \mathbb{F}_q . Since a is not in \mathbb{F}_q , and B_n has degree multiple of k, B_n is not a strict sum of k-th powers.

Corollary 3.8. If m = 2d, then $G(2^m, k) = \infty$.

33

4. Identities and strict sums of small degree

First we begin by stating two simple and useful lemmas.

Lemma 4.1. For each $a \in \mathbb{F}_q$, there exists $\alpha \in \mathbb{F}_{q^2}$ such that $a = \alpha^q + \alpha$. Let $\theta \in \mathbb{F}_{q^2}$ be such that

$$\theta^q + \theta = 1. \tag{4.1}$$

Suppose that $\mathbb{F}_{q^2} \subset F$. Then for every positive odd integer *j* and every pair (X, Y) of polynomials in F[T], we have

$$\theta^{q^{\prime}} + \theta = 1 \tag{4.2}$$

and

$$X^{q^{j}}Y + XY^{q^{j}} = (\theta X + Y)^{q^{j}+1} + ((\theta + 1)X + Y)^{q^{j}+1}.$$
(4.3)

Proof. The trace map $x \mapsto x^q + x$ from \mathbb{F}_{q^2} to its subfield \mathbb{F}_q is onto. There is $\theta \in \mathbb{F}_{q^2}$ such that $\theta^q + \theta = 1$. On the other hand, $\theta^{q^2} = \theta$, so that, by induction, for every positive integer *s*, we have $\theta^{q^{2s}} = \theta$ and $\theta^{q^{2s+1}} = (\theta^{q^{2s}})^q = \theta^q = \theta + 1$. Identity (4.3) is an immediate consequence of (4.2).

Lemma 4.2. *For* $i \in \{0, ..., Q - 1\}$ *and* $X \in F[T]$ *, let*

$$L_i(X) = X^Q T^i + X T^{Qi}.$$
 (4.4)

Then the map $X \mapsto L_i(X)$ is additive, and the following identities are satisfied:

$$L_i(X) = (X + T^i)^{Q+1} + X^{Q+1} + T^{(Q+1)i}.$$
(4.5)

For every $b \in F$,

$$L_i(X + bT^i) = L_i(X) + (b^Q + b)T^{i(Q+1)}.$$
(4.6)

Moreover, if $F \subset \mathbb{F}_{Q^2}$, then, for every $c \in F^*$,

$$L_{i}(X) + c^{Q+1}T^{(Q+1)i} = \left(\frac{1}{c^{Q}}X + cT^{i}\right)^{Q+1} + \left(\frac{1}{c^{Q}}X\right)^{Q+1},$$
(4.7)

If $\mathbb{F}_{q^2} \subset F$, then

$$L_i(X) = (\theta X + T^i)^{Q+1} + (\theta X + X + T^i)^{Q+1}.$$
(4.8)

Proof. The proof of (4.5) and (4.6) is immediate. The proof of (4.7) follows from observing that $c^{Q^2} = c$. We use (4.3) to prove (4.8).

Proposition 4.3. Suppose that $m/d \ge 3$.

(I) *Let* 0 < N < k - 2 *and let*

$$A = \sum_{n=0}^{kN} a_n T^n$$

be a polynomial of F[T] such that

$$k(N-1) < \deg A \le kN.$$

Then A is a strict sum of k-th powers if and only if $a_n = 0$ for each $n \in$ $\bigcup_{i=0}^{N-1} [iQ+N+1,(i+1)Q-1]. \quad Thus, if k > 3, then \mathscr{S}(F,k) \neq \mathscr{S}^*(F,k) \text{ and } \mathbb{S}(F,k) \neq \mathbb{S}^*(F,k)$ $g(2^m,k) = \infty.$

(II) Let $A \in F[T]$ be such that

$$k(k-3) < \deg A \le k(k-2).$$

Then A is a strict sum of k-th powers.

(III) Let $A \in F[T]$ of degree $\leq k(k-2)$ be a strict sum of k-th powers. Then A is a strict sum of $v(2^m, k) \left[\frac{\deg A}{k} \right] + \ell(2^m, k)$ k-th powers. (IV) Let $A \in F[T]$ of degree $\leq k(k-2)$. Then

$$A = \sum_{i=1}^{s} (X_i)^k$$

with $s = v(2^m, k)(k-2) + \ell(2^m, k)$ and deg $X_i \le k-2$ for i = 1, ..., s.

Proof. By Propositions 2.8 and 3.2, the numbers $\ell(2^m, k)$ and $v(2^m, k)$ are finite. Let N be a positive integer such that N < Q. Let $A \in F[T]$ with k(N-1) < C $\deg A \leq kN$ be a strict sum of s k-th powers. Thus,

$$A = \sum_{i=1}^{s} (Y_i)^{Q+1},$$

where for $i = 1, \ldots, s$,

$$Y_i = \sum_{n=0}^N y_{i,n} T^n$$

with $y_{i,n} \in F$. Then

$$A = \sum_{i=1}^{s} \sum_{n=0}^{N} (y_{i,n})^{\mathcal{Q}} T^{\mathcal{Q}_n} Y_i = \sum_{n=0}^{N} T^{\mathcal{Q}_n} \Big(\sum_{i=1}^{s} (y_{i,n})^{\mathcal{Q}} Y_i \Big)$$

Let

$$X_n = \sum_{i=1}^s (y_{i,n})^Q Y_i$$

Then

$$A = \sum_{n=0}^{N} X_n T^{nQ}$$

If N < Q - 1, in the above sum, there are no monomials $\alpha_i T^i$ with exponent *i* in the intervals $[N+1, Q-1], [Q+N+1, 2Q-1], \ldots, [(N-1)Q+N+1, NQ-1]$. The necessary condition in (I) is proved. Moreover, if $Q \neq 2$, there exist polynomials of degree $\leq k(Q-2)$ which are not strict sums of *k*-th powers. By Corollary 3.3, $\mathscr{S}(F,k) = F[T]$. If k > 3, then $\mathscr{S}(F,k) \neq \mathscr{S}^*(F,k)$ and $g(2^m,k) = \infty$.

Now let $A \in F[T]$ with deg $A \le k(k-2)$, that is, deg $A \le Q^2 - 1$. Let N be defined by

$$k(N-1) < \deg A \le kN. \tag{1}$$

Let

$$A = \sum_{n=0}^{Q^2 - 1} a_n T^n$$

In addition, if N < Q - 1, we suppose that $a_n = 0$ for each $n \in \bigcup_{i=0}^{N-1} J_i$ with

$$J_i = [iQ + N + 1, (i+1)Q - 1].$$

In order to prove parts (I) and (II), we shall prove that there is a positive integer s and, for i = 1, ..., s, there are polynomials

$$X_i = \sum_{n=0}^N x_{i,n} T^n$$

such that

$$A = \sum_{i=0}^{s} (X_i)^{Q+1}.$$
 (2)

The proof will show that (2) is solvable when $s = v(2^m, k)N + \ell(2^m, k)$, proving the part (III) of the proposition.

Let

$$I = I(N) = \begin{cases} \{0, \dots, Q^2 - 1\} & \text{if } N = Q - 1, \\ \{0, \dots, kN\} - \bigcup_{i=0}^{N-1} J_i & \text{if } N < Q - 1. \end{cases}$$

Observe that

$$I = \{n = Q\beta + \rho \mid 0 \le \beta, \rho \le N\}$$

We begin by proving that there is a positive integer s such that the system $(r_n)_{n \in I}$ is solvable, where (r_n) denotes the equation

$$a_n = \sum_{i=1}^{s} \sum_{\substack{n=Q\beta+\rho\\0\le\beta\le N\\0\le\rho\le N}} (x_{i,\beta})^Q x_{i,\rho} \tag{(r_n)}$$

with unknowns $x_{i,\beta} \in F$, $1 \le i \le s$, $0 \le \beta \le N$.

Let $v = v(2^m, k)$. From Proposition 3.2,

$$v = \begin{cases} 3 & \text{if } m/d \neq 4, \\ 4 & \text{if } m/d = 4. \end{cases}$$

For each non negative integer $n \leq Q^2 - 1$, there is a unique ordered pair (β, ρ) such that

$$n = Q\beta + \rho, \qquad 0 \le \beta \le Q - 1, \ 0 \le \rho \le Q - 1,$$

and a unique $\bar{n} \leq Q^2 - 1$ with $\bar{n} = Q\rho + \beta$. The map $n \mapsto \bar{n}$ is bijective with fixed points the integers *n* which are divisible by Q + 1 = k. We distinguish two classes of equations (r_n) , the special ones and the ordinary ones. The special equations are the equations (r_n) with index *n* multiple of Q + 1. The ordinary equations will be considered by pairs $\{r_n, r_{\bar{n}}\}$. We introduce a notation. Let $(u, w) \in F^2$ be such that $uw \neq 0$ and $u^{Q^2-1} \neq w^{Q^2-1}$. By Lemma 2.2, for each $(\alpha, \beta) \in F^2$, there exists a unique $(x, y) \in F^2$ solution of $\mathscr{E}(u, w, \alpha, \beta)$, that is (x, y) satisfies

$$\begin{cases} \alpha = u^{Q}x + w^{Q}y, \\ \beta = ux^{Q} + wy^{Q}. \end{cases}$$

We put

$$(x, y) = \varphi(u, w, \alpha, \beta).$$

We construct a solution recursively. At each step, we consider a special equation together with some pairs of ordinary equations. If v = 3, we denote $(\mathscr{F}(a))$ by $(\mathscr{H}(a))$, and if v = 4, we denote $(\mathscr{G}(a))$ by $(\mathscr{H}(a))$, with $(\mathscr{F}(a))$ and $(\mathscr{G}(a))$ defined as in Corollary 2.10.

Level N: Corollary 2.10 implies the existence of $(x_{1,N}, \ldots, x_{v,N})$ solution of $(\mathscr{H}(a_{kN}))$, that is,

$$b_N = a_{kN} = (x_{1,N})^k + \dots + (x_{v,N})^k$$

with

$$x_{1,N}x_{2,N} \neq 0$$

and

$$(x_{1,N})^{Q^2-1} \neq (x_{2,N})^{Q^2-1}.$$

For j = 1, ..., N, let $(x_{1,N-j}, x_{2,N-j}) = \varphi(x_{1,N}, x_{2,N}, a_{kN-j}, a_{\overline{kN-j}})$, and let $x_{i,N-j} = 0$ for $2 < i \le v$. At this step, with s = v, equations (r_n) and $(r_{\overline{n}})$ are satisfied by $(x_{i,j})_{1 \le i \le v}$ for $n \in \{QN, ..., kN\}$. Observe that for each j = 1, ..., N, we have $\overline{kN-j} = Q(N-j) + N$, so that k(N-1) is the greatest $n \in I$ for which the exponent *n* has not been considered.

Level N - 1: Set

$$b_{N-1} = a_{k(N-1)} + \sum_{i=1}^{v} (x_{i,N-1})^k$$

Corollary 2.10 implies the existence of $(x_{v+1,N-1},\ldots,x_{2v,N-1})$ solution of $(\mathscr{H}(b_{N-1}))$. For $j = 1,\ldots,N-1$, let $(x_{v+1,N-1-j},x_{v+2,N-1-j}) = \varphi(x_{v+1,N-1},x_{v+2,N-1},\alpha,\beta)$ with

$$\alpha = (x_{1,N-1})^{\mathcal{Q}} x_{1,N-1-j} + (x_{2,N-1})^{\mathcal{Q}} x_{2,N-1-j} + a_{k(N-1)-j},$$

$$\beta = x_{1,N-1} (x_{1,N-1-j})^{\mathcal{Q}} + x_{2,N-1} (x_{2,N-1-j})^{\mathcal{Q}} + a_{\overline{k(N-1)-j}},$$

and let $x_{i,N-j} = 0$ for $2 + v < i \le 2v$. At this step, with s = 2v, equations (r_n) and (r_n) are satisfied by $(x_{i,j})_{1 \le i \le 2v}$ for $n \in \{QN, \ldots, kN\} \cup \{Q(N-1), \ldots, k(N-1)\}$. Observe that for each $j = 1, \ldots, N-1$, we have k(N-1) - j = 1.

(AutoPDF V7 28/1/10 12:48) EMS (170×240mm) Tmath J-2232 PMS, 67:1 (idp) PMU:(KN/)7/1/2010 AC1: WSL 22/01/2010 pp. 13–56 2232_67-1_02 (p. 38)

Q(N-1-j) + N - 1, so that k(N-2) is the greatest $n \in I$ for which the exponent *n* has not been considered.

Levels N - 2, ..., N - h, with h < N: The level N - h deals with exponents n and \overline{n} for $n \in \{Q(N - h), ..., k(N - h)\}$.

Suppose that the previous steps have given $(x_{i,j})_{1 \le i \le hv}$ satisfying equations (r_n) and (r_n) with s = hv and n running through $\bigcup_{i=N-h+1}^{N} \{Qi, \ldots, ki\}$. Let

$$b_{N-h} = a_{k(N-h)} + \sum_{i=1}^{vh} (x_{i,N-h})^k.$$

Let $(x_{hv+1,N-h},\ldots,x_{(h+1)v,N-h})$ be solution of $(\mathscr{H}(b_{N-h}))$. For $j = 1,\ldots,N-h$, let

$$(x_{hv+1,N-h-j}, x_{hv+2,N-h-j}) = \varphi(x_{hv+1,N-h}, x_{hv+2,N-h}, \alpha_j, \beta_j)$$

with

$$\alpha_{j} = a_{k(N-h)-j} + \sum_{\nu=1}^{\nu h} (x_{\nu,N-h})^{Q} x_{\nu,N-h-j},$$

$$\beta_{j} = a_{\overline{k(N-h)-j}} + \sum_{\nu=1}^{\nu h} x_{\nu,N-h} (x_{\nu,N-h-j})^{Q},$$

and let $x_{i,N-j} = 0$ for $2 + hv < i \le (h+1)v$. At this step, with s = (h+1)v, we have obtained $(x_{i,j})_{1\le i\le s}$ satisfying equations (r_n) for n and $(r_{\bar{n}})$ with n running over $\bigcup_{i=N-h}^{N} \{Qi, \ldots, ki\}$. We note that for each $j = 1, \ldots, N-h$, we have $\overline{Q(N-h)} - j = k(N-h-j) + N-h$, so that k(N-h-1) is the greatest $n \in I$ for which the exponent n has not been considered. Thus, the process goes on.

After level 1, with s = vN, we have obtained $(x_{i,j})_{1 \le i \le s}$ satisfying the equations (r_n) for all $n \in I$ apart from n = 0. For i = 1, ..., vN, let

$$X_i = \sum_{\nu=0}^{N} x_{i,\nu} T^{\nu}.$$
 (3)

Level 0: Let

$$b_0 = a_0 + \sum_{i=1}^{Nv} (x_{i,0})^k.$$

Then by (3),

$$A + \sum_{i=1}^{N_v} (X_i)^k = b_0.$$
(4)

Since F is a k-Waring field, b_0 is sum of $\ell = \ell(2^m, k)$ k-th powers, say

$$b_0 = (z_1)^k + \dots + (z_\ell)^k.$$
 (5)

From (4) and (5),

$$A = \sum_{i=1}^{Nv} (X_i)^k + \sum_{i=1}^{\ell} (z_i)^k.$$

From (1) and (5), A is a strict sum of $(vN + \ell)$ k-th powers.

Observe that, if deg $A \le k(k-3)$, the same process works with Q-1 at the place of N. In that case we get that

$$A = \sum_{i=1}^{(Q-1)v} (X_i)^k + \sum_{i=1}^{\ell} (z_i)^k$$

with deg $X_i \leq Q-1$ for i = 1, ..., (Q-1)v. This remark proves the part (IV).

Lemma 4.4. Suppose that $F \subset \mathbb{F}_{Q^2}$. Let $A \in F[T]$ be a sum of k-th powers. Then $T^{Q^2} + T$ divides $A^Q + A$.

Proof. Let $x \in \mathbb{F}_{Q^2}$. Since $A \in \mathbb{F}_{Q^2}[T]$, A(x) is a sum of k-th powers in \mathbb{F}_{Q^2} , so that $A(x) \in \mathbb{F}_Q$. Thus, $A(x)^Q + A(x) = 0$. Therefore, $A^Q + A$ is divisible by (T + x) for each $x \in \mathbb{F}_{Q^2}$ and

$$T^{\mathcal{Q}^2} + T = \prod_{x \in \mathbb{F}_{\mathcal{Q}^2}} (T + x)$$

divides $A^Q + A$.

Proposition 4.5. Suppose that $F \subset \mathbb{F}_{O^2}$. Let

$$A = \sum_{n=0}^{Q^2 - 1} a_n T^n$$

be a polynomial of F[T] with deg $A < Q^2$ such that $A^Q + A$ is multiple of $T^{Q^2} + T$. Then

40

(I) for every n = Qj + i with $0 \le j < Q$, $0 \le i < Q$, we have

$$a_n = (a_{\bar{n}})^Q,$$

where $\bar{n} = Qi + j;$

(II) if $F \subset \mathbb{F}_Q$, then A is a strict sum of (3k - 5) k-th powers; (III) if $F \not\subset \mathbb{F}_Q$, then A is a strict sum of (2k - 3) k-th powers.

Proof. Let

$$A = A_0 + A_1 T^{Q} + \dots + A_{Q-1} T^{(Q-1)Q}$$

be the expansion of A in base T^Q . Thus, for $j = 0, \ldots, Q - 1$,

$$A_j = a_{Qj} + a_{Qj+1}T + \dots + a_{Qj+Q-1}T^{Q-1}.$$

Then

$$A^{Q} = \sum_{j=1}^{Q-1} (A_j)^{Q} (T^{jQ^2} + T^j) + \sum_{j=0}^{Q-1} (A_j)^{Q} T^j.$$

For $j = 1, \ldots, Q - 1$, $T^{jQ^2} + T^j$ is congruent to $0 \pmod{T^{Q^2} + T}$. Thus,

$$A^{\mathcal{Q}} \equiv \sum_{j=0}^{\mathcal{Q}-1} (A_j)^{\mathcal{Q}} T^j \quad (\text{mod } T^{\mathcal{Q}^2} + T)$$

and

$$A + A^{\mathcal{Q}} \equiv \sum_{j=0}^{\mathcal{Q}-1} ((A_j)^{\mathcal{Q}} T^j + A_j T^{\mathcal{Q}j}) \pmod{T^{\mathcal{Q}^2} + T}.$$
 (1)

For j = 0, ..., Q - 1, $deg((A_j)^Q T^j + A_j T^{Qj}) \le Q^2 - 1$, so that by (1),

$$\sum_{j=0}^{Q-1} \left((A_j)^Q T^j + A_j T^{Qj} \right) = 0,$$

that is,

$$\sum_{j=0}^{Q-1} \sum_{i=0}^{Q-1} \left((a_{Qj+i})^Q T^{Qi+j} + a_{Qj+i} T^{Qj+i} \right) = 0.$$
(2)

Let $n \in \{0, \ldots, Q^2 - 1\}$. Then *n* is uniquely written as $n = Q\alpha + \rho$, with $\alpha, \rho < Q$. By (2),

(AutoPDF V7 28/1/10 12:48) EMS (170×240mm) Tmath J-2232 PMS, 67:1 (idp) PMU:(KN/)7/1/2010 AC1: WSL 22/01/2010 pp. 13–56 2232_67-1_02 (p. 41)

$$a_n = a_{Q\alpha + \rho} = (a_{Q\rho + \alpha})^Q = (a_{\bar{n}})^Q.$$
(3)

This proves (I).

Let $n \in \{1, \dots, Q^2 - 2\}$ be non-divisible by Q + 1. If n = Qj + i, with $0 \le i < Q, 0 \le j < Q$, then

$$a_n T^n + a_{\bar{n}} T^{\bar{n}} = (a_{Qi+j})^Q T^{Qj+i} + (a_{Qi+j}) T^{Qi+j} = L_i(a_{Qi+j} T^j)$$

and so

$$A = \sum_{i=0}^{Q-1} a_{(Q+1)i} T^{i(Q+1)} + \sum_{i=0}^{Q-2} \sum_{j=i+1}^{Q-1} L_i(a_{Qi+j} T^j).$$
(4)

For *n* divisible by Q + 1, equality (2) gives $a_n = (a_n)^Q$, proving that $a_n \in \mathbb{F}_Q$, this fact being obvious when $F \subset \mathbb{F}_Q$.

(A) Suppose that $F \subset \mathbb{F}_Q$, that is $F = \mathbb{F}_q$ or equivently, m | r. By Proposition 2.1, $\Delta(2^m, k) = 1$. For every $i = 0, \ldots, Q - 1$, there is $c_i \in F$ such that

$$a_{(Q+1)i} = (c_i)^k = (c_i)^{Q+1}.$$

Therefore, by (4),

$$A = \sum_{i=0}^{Q-1} (c_i T^i)^{Q+1} + \sum_{i=0}^{Q-2} \sum_{j=i+1}^{Q-1} L_i(a_{Q_{i+j}} T^j)$$
$$= (c_{Q-1} T^{Q-1})^{Q+1} + \sum_{i=0}^{Q-2} ((c_i T^i)^{Q+1} + L_i(B_i))$$

with

$$B_i = \sum_{j=i+1}^{Q-1} a_{Qi+j} T^j.$$
 (5)

By (4.5) and (4.7),

$$A = (c_{Q-1}T^{Q-1})^{k} + \sum_{\substack{i=0\\a_{(Q+1)i}=0}}^{Q-2} \left((B_{i} + T^{i})^{k} + (B_{i})^{k} + (T^{i})^{k} \right) + \sum_{\substack{i=0\\a_{(Q+1)i}\neq0}}^{Q-2} \left(\frac{1}{c_{i}^{Q}}B_{i} + c_{i}T^{i} \right)^{k} + \left(\frac{1}{c_{i}^{Q}}B_{i} \right)^{k},$$
(6)

so that A is sum of (1 + 3(Q - 1)) k-th powers of polynomials.

We consider the degrees. Suppose that

$$\deg A = d = (Q+1)N - \rho.$$
 (7)

with

$$0 \le \rho < N. \tag{8}$$

We have $a_{(Q+1)i} = 0$ for i > N. Thus, the monomials $c_i T^i$ which occur in (6) have degree $\leq N$. For j > N or for j = N and $i > N - \rho$, we have $a_{Qj+i} = 0$ so that, by part (I), $a_{Qi+j} = 0$. Let i > N. From (5), we have $B_i = 0$, so that the terms $(B_i + T^i)^k + (T^i)^k$ which occur in (6) cancel. By (7) and (8), the sum (6) is strict. This proves (II) in the case where $F \subset \mathbb{F}_Q$.

(B) Suppose that $F \not\subset \mathbb{F}_Q$. Since $F \subset \mathbb{F}_{Q^2}$, we have $F = \mathbb{F}_{q^2}$. Thus, m = 2d and r/d is odd. The trace map $x \mapsto x^q + x$ from $F = \mathbb{F}_{q^2}$ to \mathbb{F}_q is onto. For every $i = 0, \ldots, Q - 2$, $a_{(Q+1)i} \in F \cap \mathbb{F}_Q = \mathbb{F}_q$, so that there is $b_i \in F$ such that

$$a_{(Q+1)i} = b_i^q + b_i.$$

For every $y \in \mathbb{F}_{q^2}$, we have $y^{q^2} = y$, so that, by induction, for every positive integer *j*, we have $y^{q^{2j}} = y$ and $y^{q^{2j+1}} = y^q$. Since $Q = q^{r/d}$ with r/d odd, for every $i = 0, \ldots, Q - 2$, we have

$$a_{(Q+1)i} = b_i^Q + b_i.$$

Moreover, since $a_{Q^2-1} \in \mathbb{F}_Q$, a_{Q^2-1} is a k-th power of an element $c_{Q-1} \in \mathbb{F}_{Q^2} = F$. Thus,

$$a_{(Q+1)i}T^{(Q+1)i} = ((b_i)^Q + b_i)T^{(Q+1)i}$$
 for $0 \le i \le Q-2$,

and

$$a_{Q^2-1}T^{Q^2-1} = (c_{Q-1}T^{Q-1})^k.$$

Therefore,

$$\begin{split} A &= (c_{Q-1}T^{Q-1})^k + \sum_{i=0}^{Q-2} \left(\left((b_i)^Q + b_i \right) T^{(Q+1)i} + \sum_{j=i+1}^{Q-1} L_i(a_{Qi+j}T^j) \right) \\ &= (c_{Q-1}T^{Q-1})^k + \sum_{i=0}^{Q-2} \left(\left((b_i)^Q + b_i \right) T^{(Q+1)i} + L_i(B_i) \right), \end{split}$$

with B_i defined by (5). By (4.6),

$$A = (c_{Q-1}T^{Q-1})^k + \sum_{i=0}^{Q-2} L_i(B_i + b_iT^i).$$

Let $\theta \in \mathbb{F}_{q^2}$ be as in Lemma 4.1. In view of identity (4.8), identity (6) above may be replaced by

$$A = (c_{Q-1}T^{Q-1})^{k} + \sum_{i=0}^{Q-2} \left(\left(\theta B_{i} + (\theta b_{i} + 1)T^{i} \right)^{k} + \left(\theta B_{i} + B_{i} + (\theta b_{i} + b_{i} + 1)T^{i} \right)^{k} \right), \quad (6')$$

so that A is sum of 1 + 2(Q - 1) k-th powers of polynomials. We finish the proof of the part (II) proving as above that (6') is a strict sum.

5. The descent

In this section we generalize a descent process used in [8] and [7] to deal with the case k = 3. Using formula (4.5), for a given polynomial

$$X = \sum_{i=0}^{N} x_i T^i,$$

we replace the monomial $x_N T^N$ by the sum of an appropriate $L_i(Y)$ and two monomials of lower degree. Then we repeat the process. The method is described in the following proposition.

Proposition 5.1. Let *n* be a positive integer and let $X \in F[T]$ with degree < Qn. Then there exist $Y_0, Y_1, \ldots, Y_{Q-1}, R \in F[T]$ such that

$$X = \sum_{i=0}^{Q-1} L_i(Y_i) + R,$$
(5.1)

$$\deg(Y_i) < n \quad if \ 0 \le i \le Q - 1, \tag{5.2}$$

$$\deg R < Q^2, \tag{5.3}$$

$$R = \sum_{i=0}^{Q-1} \sum_{j=0}^{i} a_{Qj+i} T^{Qj+i},$$
(5.4)

with $a_0, \ldots, a_{Q^2-1} \in F$.

(AutoPDF V7 28/1/10 12:48) EMS (170×240mm) Tmath J-2232 PMS, 67:1 (idp) PMU:(KN/)7/1/2010 AC1: WSL 22/01/2010 pp. 13–56 2232_67-1_02 (p. 44)

Proof. Set

$$X = \sum_{j=0}^{Qn-1} x_j T^j$$

with $x_j \in F$ for $j = 0, \dots, Qn - 1$. For $j = 0, \dots, Qn - 1$, let $\xi_j \in F$ be defined by

 $\xi_j^Q = x_j.$

(I) Suppose that $n \leq Q$. Put $x_j = \xi_j = 0$ if $j \geq Qn$. Then

$$X = \sum_{r=0}^{Q-2} T^r \Big(\sum_{j=r+1}^{Q-1} \xi_{Qj+r} T^j \Big)^Q + \sum_{r=0}^{Q-1} T^r \Big(\sum_{j=0}^r x_{Qj+r} T^{Qj} \Big)$$

and by (4.4),

$$X = \sum_{r=0}^{Q-2} \left(L_r \left(\sum_{j=r+1}^{Q-1} \xi_{\mathcal{Q}j+r} T^j \right) + \sum_{j=r+1}^{Q-1} \xi_{\mathcal{Q}j+r} T^{\mathcal{Q}r+j} \right) + \sum_{r=0}^{Q-1} \sum_{j=0}^r x_{\mathcal{Q}j+r} T^{\mathcal{Q}j+r},$$

that is,

$$X = \sum_{r=0}^{Q-1} L_r(Y_r(X)) + R(X)$$
(1)

with R(X) of the form

$$R(X) = \sum_{r=0}^{Q-1} \sum_{j=0}^{r} a_{Qj+r} T^{Qj+r},$$
(2)

with $Y_{Q-1} = 0$ and

$$Y_r(X) = \sum_{j=r+1}^{Q-1} \xi_{Qj+r} T^j$$

for r = 0, ..., Q - 2. If n < Q, then for each r and for each $j \ge n$, we have $Qj + r \ge Qn$ and so $\xi_{Qj+r} = 0$ so that deg $Y_r(X) < n$.

(II) Suppose that n = Q + 1. Then

$$X = X' + \sum_{r=0}^{Q-1} x_{Q^2+r} T^{Q^2+r}$$

with

46

$$\deg X' < Q^2. \tag{3}$$

Thus with (4.4),

$$X = X' + x_{\mathcal{Q}^2} T^{\mathcal{Q}^2} + \sum_{r=1}^{\mathcal{Q}^{-1}} \left(L_r(\xi_{\mathcal{Q}^2 + r} T^{\mathcal{Q}}) + \xi_{\mathcal{Q}^2 + r} T^{\mathcal{Q}(r+1)} \right),$$

so that

$$X = X'' + (x_{Q^2} + \xi_{Q^2 + Q^{-1}})T^{Q^2} + \sum_{r=1}^{Q^{-1}} L_r(\xi_{Q^2 + r}T^Q),$$
(4)

with

$$\deg X'' < Q^2. \tag{5}$$

Set $(x_{Q^2} + \xi_{Q^2+Q-1}) = \eta^Q$. Then

$$(x_{Q^2} + \xi_{Q^2 + Q - 1})T^{Q^2} = L_0(\eta T^Q) + \eta T^Q,$$

so that with (4) and (5),

$$X = Y + L_0(\eta T^{Q}) + \sum_{r=1}^{Q-1} L_r(\xi_{Q^2 + r} T^{Q}).$$

From (3), we have deg $Y < Q^2$. By (1) and (2),

$$X = \sum_{r=0}^{Q-1} L_r(Y_r(X)) + R(X),$$
(6)

with R(X) of the required form (2) and deg $Y_r(X) \le Q$ for $r = 0, \ldots, Q - 1$.

(III) Suppose that n > Q + 1. Let (n_j) be the sequence of integers defined by the conditions:

$$n_0 = n, \qquad n_j = \left\lceil \frac{n_{j-1}}{Q} \right\rceil + Q - 1, \tag{7}$$

If $n_j > Q + 1$, then $n_j > n_{j+1}$. Let *s* denote the least integer such that $n_s \le Q + 1$. We set $X_0 = X$ and we shall prove by induction on *j*, that for every $j \ge 0$,

$$X = \sum_{r=0}^{Q-1} L_r(B_{r,j}) + X_j$$
(8)

where $B_{0,j}, \ldots, B_{Q-1,j}, X_j \in F[T]$ satisfy the degree conditions

$$\deg X_j < Qn_j, \qquad \deg B_{r,j} < n. \tag{9}$$

Then we shall conclude the proof, taking j = s.

We start taking $X_0 = X$ and $B_{0,0} = \cdots = B_{Q-1,0} = 0$. Let $j \in \{0, \dots, s-1\}$. We suppose that relations (8) and (9) are satisfied. We set $v = n_j$ and

$$X_j = \sum_{\alpha=0}^{Q\nu-1} y_{\alpha} T^{\alpha}.$$

For $\alpha = 0, \ldots, Q\nu - 1$, let $\eta_{\alpha} \in F$ be such that $y_{\alpha} = (\eta_{\alpha})^{Q}$. For $r = 0, \ldots, Q - 1$, let

$$Z_r = \sum_{\alpha=0}^{\nu-1} \eta_{Q\alpha+r} T^{\alpha}$$

and

$$X_{j+1} = \sum_{r=0}^{Q-1} Z_r T^{Qr}$$

so that

$$\deg Z_r < v, \qquad \deg X_{j+1} \le v + Q^2 - Q - 1.$$
(10)

By (8) and (4.4),

$$X = \sum_{r=0}^{Q-1} L_r(B_{r,j} + Z_r) + X_{j+1}.$$

We consider the degrees. We have $\deg(B_{r,j} + Z_r) < \max(n, n_j) = n$, and, by (7), $\deg X_{j+1} < n_j + Q^2 - Q + 1 \le Qn_{j+1}$.

(AutoPDF V7 28/1/10 12:48) EMS (170×240mm) Tmath J-2232 PMS, 67:1 (idp) PMU:(KN/)7/1/2010 AC1: WSL 22/01/2010 pp. 13–56 2232_67-1_02 (p. 47)

Corollary 5.2. Suppose that $F \subset \mathbb{F}_{Q^2}$. Then $\mathscr{S}(F,k)$ is the subset of F[T] formed by the polynomials A such that $T^{Q^2} + T$ divides $A^Q + A$.

Proof. From Lemma 4.4,

$$\mathscr{S}(F,k) = \mathscr{S}(F,Q+1) \subset \{A \in F[T] : (T^{\mathcal{Q}^2} + T) \,|\, A^{\mathcal{Q}} + A\}.$$

Conversely, let $X \in F[T]$ be such that $T^{Q^2} + T$ divides $X^Q + X$. From (5.1) and (5.3), X may be written as a sum

$$X = \sum_{r=0}^{Q-1} L_r(Y_r) + R$$
 (1)

with $Y_1, \ldots, Y_{Q-1}, R \in F[T]$ and

$$\deg R < Q^2. \tag{2}$$

By (4.5), for r = 0, ..., Q, L_r is a sum of k-th powers and by Lemma 4.4, $(L_r(Y_r))^Q + L_r(Y_r)$ is multiple of $T^{Q^2} + T$. By (1), $R^Q + R$ is multiple of $T^{Q^2} + T$. From (2) and Proposition 4.5, R is a sum of k-th powers so that X is a sum of k-th powers.

Lemma 5.3. Let *n* be a positive integer and let $H \in F[T]$ be such that

$$k(n-1) < \deg H \le kn. \tag{5.5}$$

In addition, in the case where m = 2d and $\deg H = kn$, we suppose that the leading coefficient of H is a k-th power. Then we have

$$H = B_1^k + B_2^k + \sum_{i=0}^{Q-1} L_i(Y_i) + R,$$
(5.6)

where $B_1, B_2, Y_0, ..., Y_{Q-1}, R \in F[T]$ with

$$\deg B_1, \deg B_2 \le n,\tag{5.7}$$

$$\deg Y_0, \dots, \deg Y_{Q-1} < n, \tag{5.8}$$

$$\deg R < Q^2, \tag{5.9}$$

$$R = \sum_{i=0}^{Q-1} \sum_{j=0}^{i} x_{Qj+i} T^{Qj+i},$$
(5.10)

with $x_{O_{i+i}} \in F$ for all i and j.

Moreover, if deg H = kn, and if either m divides 2d, or m/d is odd, then $B_1 = 0$.

Proof. Suppose that $m/d \ge 3$. From Proposition 2.8, F is a k-Waring field with $\ell(2^m, k) \le 2$, so that $\max(\ell(2^m, k) - 1, 1) = 1$. By [1], Lemma 5.1, there exist B_1 , $P \in F[T]$ such that

$$H = B_1^k + P \tag{1}$$

with

$$\deg B_1 \leq n, \quad \deg P = kn,$$

the leading coefficient of P being a k-th power.

Suppose that $m/d \le 2$. From Proposition 2.8, if m = d, then F is a k-Waring field with $\ell(2^m, k) = 1$, so that the leading coefficient of H is a k-th power. If m = 2d and if deg H = kn, by hypothesis, the leading coefficient of H is a k-th power. Let $P \in F[T]$ be defined by

$$H = \varepsilon(H)T^{kn} + P, \tag{2}$$

where

$$\varepsilon(H) = \begin{cases} 0 & \text{if } \deg H = kn, \\ 1 & \text{if } \deg H < kn. \end{cases}$$
(3)

We note that the leading coefficient of *P* is a *k*-th power and that (1) is true with $B_1 = 0$ in the case where deg H = kn.

By [1], Lemma 5.2, there exists B_2 , $X \in F[T]$ such that

$$P = B_2^k + X$$
, $\deg X < (k-1)n = Qn$, $\deg B_2 = n$. (4)

By Proposition 5.1, there exist $Y_0, Y_1, \ldots, Y_{Q-1}, R \in F[T]$ such that

$$X = \sum_{i=0}^{Q-1} L_i(Y_i) + R,$$
(5)

with

 $\deg(Y_i) < n$

for $0 \le i < Q$,

 $\deg R < Q^2,$

and R of the form

$$R = \sum_{i=0}^{Q-1} \sum_{j=0}^{i} x_{Qj+i} T^{Qj+i}$$

We get (5.6) from (1), (4) and (5), the degree conditions (5.7) being satisfied. \Box

We are now ready to present our second result.

Proposition 5.4. Suppose that $m/d \ge 3$. Then the following holds:

(I) Every polynomial $H \in F[T]$ with degree $\geq k^3 - 2k^2 + 1$ is the strict sum of $3k + v(2^m, k) - 1$ k-th powers.

(II) Every polynomial $H \in F[T]$ with degree $\geq k^2 - 3k + 1$ is the strict sum of $(k-2)v(2^m,k) + 3k + \ell(2^m,k) - 1$ k-th powers. Moreover, if $H \in F[T]$ is such that $k^2 - 3k + 1 \leq \deg H \leq k^2 - 2k$, then H is the strict sum of $(k-2)v(2^m,k) + \ell(2^m,k)$ k-th powers.

Proof. The last claim in (II) is given by Proposition 4.3 (III). We prove the other ones. Let $H \in F[T]$ and let *n* be the integer defined by

$$k(n-1) < \deg H \le kn.$$

From (5.6)–(5.9),

$$H = B_1^k + B_2^k + \sum_{i=0}^{Q-1} L_i(Y_i) + R,$$

where $B_1, B_2, Y_0, ..., Y_{Q-1}, R \in F[T]$ with

$$\deg B_1, \deg B_2 \le n, \qquad \deg Y_0, \dots, \deg Y_{Q-1} < n, \tag{1}$$

$$\deg R < Q^2. \tag{2}$$

By (4.5),

$$L_i(Y_i) = (Y_i + T^i)^k + Y_i^k + (T^i)^k.$$

Thus,

$$H = B_1^k + B_2^k + \sum_{i=0}^{Q-1} \left((Z_{i,1})^k + (Z_{i,2})^k + (Z_{i,3})^k \right) + R,$$
(3)

with $Z_{i,1}, Z_{i,2}, Z_{i,3}$ polynomials such that

$$\deg Z_{i,1}, \deg Z_{i,2}, \deg Z_{i,3} \le \max(i, n-1).$$
(4)

Set $v = v(2^m, k)$. Then there exist $a_1, b_1, \ldots, a_v, b_v$ in F such that

$$R = (a_1 R + b_1)^k + \dots + (a_v R + b_v)^k.$$
 (5)

By (3) and (5),

$$H = B_1^k + B_2^k + \sum_{i=0}^{Q-1} \left((Z_{i,1})^k + (Z_{i,2})^k + (Z_{i,3})^k \right) + (a_1 R + b_1)^k + \dots + (a_v R + b_v)^k,$$
(6)

so that *H* is a sum of 2 + v + 3Q *k*-th powers of polynomials. By (1), (2), (4) and (5), these polynomials have their degrees bounded by $\max(n, Q^2 - 1)$. If $n \ge Q^2 - 1$, then (6) is a strict sum. This proves (I).

By Proposition 4.3 (IV), since deg $R < Q^2$, R is a sum of

$$s = (Q - 1)v(2^m, k) + \ell(2^m, k)$$

k-th powers V_1^k, \ldots, V_s^k with deg $V_i \le Q - 1$. Thus, by (3), *H* is a sum of $2 + 3Q + s = (k - 2)v(2^m, k) + 3k + \ell(2^m, k) - 1$ *k*-th powers. If $n \ge Q - 1$, this sum is strict. This proves (II).

Proposition 5.5. (I) If m divides r, then every $H \in \mathscr{S}(F,k)$ with degree multiple of k is a strict sum of (3k - 4) k-th powers.

(II) If m divides r, then every $H \in \mathcal{S}(F,k)$ with degree non multiple of k is a strict sum of (3k - 3) k-th powers.

(III) If m/d = 2 every $H \in \mathcal{S}(F, k)$ with degree multiple of k and whose leading coefficient is a k-th power in the field F is a strict sum of (2k - 1) k-th powers.

(IV) If If m/d = 2, every $H \in \mathcal{S}(F,k)$ of degree non multiple of k is a strict sum of (2k) k-th powers.

Proof. Suppose that $F \subset \mathbb{F}_{Q^2}$. Then *m* divides 2*r*. If *m* does not divide *r*, then m/d = 2.

Let $H \in \mathscr{S}(F,k)$ be such that

$$k(n-1) < \deg H \le kn. \tag{1}$$

In addition, in the case where m = 2d and deg H = kn, we suppose that the leading coefficient of H is a k-th power. From (5.6)–(5.10),

$$H = B^{k} + Y^{k} + \sum_{i=0}^{Q-1} L_{i}(Y_{i}) + R$$

where $B, Y, Y_0, \ldots, Y_{Q-1}, R \in F[T]$ with

$$\deg B \le n, \qquad \deg Y = n, \tag{2}$$

$$\deg Y_0, \dots, \deg Y_{Q-1} < n, \tag{3}$$

$$R = \sum_{i=0}^{Q-1} \sum_{j=0}^{i} x_{Qj+i} T^{Qj+i}.$$
(4)

Moreover, from Lemma 5.3, if deg H = kn, we have B = 0. In view of (4.5), R + H is a sum of k-th powers. Since $H \in \mathscr{S}(F,k)$, R is also a sum of k-th powers. From (4) and Proposition 4.5(I), if $v \in \{0, \ldots, Q^2 - 1\}$ is not multiple of (Q + 1), then $x_v = 0$, and if $v \in \{0, \ldots, Q^2 - 1\}$ is multiple of Q + 1, then $x_v \in F \cap \mathbb{F}_Q$. Thus,

$$H = B^{k} + Y^{k} + \sum_{i=0}^{Q-1} \left(L_{i}(Y_{i}) + x_{(Q+1)i} T^{(Q+1)i} \right)$$
(5)

with

$$x_{(Q+1)i} \in \mathbb{F}_Q$$
 for $0 \le i \le Q - 1$.

(A) Suppose that *m* divises *r* so that $F = \mathbb{F}_q \subset \mathbb{F}_Q$. Then for each $i = 0, \ldots, Q - 1$,

$$x_{(Q+1)i} = y_i^{Q+1}.$$
 (6)

Let $u, v \in F$ be defined by

$$u^2 = x_{Q+1} + 1, \quad v^2 = x_0 + 1$$
 (7)

and let

$$Z = Y + uT + v. \tag{8}$$

Observe that $u^Q = u$ and $v^Q = v$. Then

$$Z^{k} = Z^{Q+1} = Y^{k} + Y^{Q}(uT+v) + Y(uT^{Q}+v) + u^{2}T^{Q+1} + uvT^{Q} + uvT + v^{2}.$$

From (5), (6) and (7), if Q > 2,

$$H = B^{k} + Z^{k} + \sum_{i=2}^{Q-1} (L_{i}(Y_{i}) + x_{(Q+1)i}T^{ki}) + L_{0}(Y_{0} + vY) + 1 + L_{1}(Y_{1} + uY + uv) + T^{k}$$

and if Q = 2, then

$$H = B^{k} + Z^{k} + L_{0}(Y_{0} + vY) + 1 + L_{1}(Y_{1} + uY + uv) + T^{k}.$$

Suppose that Q > 2. Then by (6),

$$H = B^{k} + Z^{k} + \sum_{i=2}^{Q-1} \left(L_{i}(Y_{i}) + y_{i}^{(Q+1)i} T^{(Q+1)i} \right) + L_{0}(Y_{0} + vY) + 1 + L_{1}(Y_{1} + uY + uv) + T^{Q+1}.$$
(9)

Let i = 2, ..., Q - 1. From (4.5) or (4.7), according as $y_i = 0$ or $y_i \neq 0$, $L_i(Y_i) + y_i^{(Q+1)i} T^{(Q+1)i}$ is a sum of three or two k-th powers of polynomials. By (3), these polynomials have degree $\leq \mu = \max(n, Q - 1)$. By (4.7), (2) and (3), $L_0(Y_0 + vY) + 1$ and $L_1(Y_1 + uY + uv) + T^k$ are also sums of two k-th powers of polynomials of degree $\leq \mu$.

By (9) and (2), *H* is a sum of $(\chi(H) + 3(Q-2) + 5)$ *k*-th powers of polynomials with degree bounded by μ with $\chi(H) = 0$ or 1 according as deg H = kn or deg $H \neq kn$. In view of (1), when $n \ge Q - 1$, this sum is strict. This remains true if Q = 2. Now, if n < Q - 1, then deg $H < Q^2 - 1$. From Proposition 4.5(II), *H* is a strict sum of (3Q - 2) *k*-th powers.

(B) Suppose that m = 2d. Then Q is an odd power of q and $\mathbb{F}_{q^2} \subset F$. For $i = 0, \ldots, Q-1$, we have $x_{(Q+1)i} \in \mathbb{F}_q$, so that there is $y_i \in \mathbb{F}_{q^2}$ such that $x_{(Q+1)i} = y_i + (y_i)^q = y_i + (y_i)^Q$. Thus, by (4.6), $L_i(Y_i) + x_{(Q+1)i}T^{(Q+1)i} = L_i(Y_i + y_iT^i)$. From (4.8) we get that $L_i(Y_i) + x_{(Q+1)i}T^{(Q+1)i}$ is sum of two *k*-th powers. By (5), *H* is a sum of $(\chi(H) + 2Q + 1)$ *k*-th powers. In the case where n < Q - 1 we conclude with Lemma 4.4 and Proposition 4.5.

Corollary 5.6. Suppose that k > 3.

(I) Suppose that m does not divide 2r. Then

$$\mathscr{G}^*(F,k) = \mathscr{A}_0 \cup \mathscr{A}_\infty \cup \left(\bigcup_{N=1}^{k-3} \mathscr{A}_N\right)$$

where

$$\mathcal{A}_0 = F, \qquad \mathcal{A}_\infty = \{A \in F[T] : \deg A > k(k-3)\},$$
$$\mathcal{A}_N = \left\{A \in F[T] : A = \sum_{n=0}^N \sum_{i=0}^N x_{n,i} T^{i+nQ}\right\}$$

with $x_{n,i} \in F$. Moreover:

(AutoPDF V7 28/1/10 12:48) EMS (170×240mm) Tmath J-2232 PMS, 67:1 (idp) PMU:(KN/)7/1/2010 AC1: WSL 22/01/2010 pp. 13–56 2232_67-1_02 (p. 53)

(i) If $m/d \ge 3$ and $m/d \ne 4$, then

$$G(2^m, k) = G^*(2^m, k) \le 3k + 2.$$

(ii) If m/d = 4, then

$$G(2^m, k) = G^*(2^m, k) \le 3k + 3.$$

(iii) If m/d is odd and > 1, then

$$g(2^m, k) = \infty, \quad g^*(2^m, k) \le 6k - 6.$$

(iv) if m/d is even and > 4, then

$$g(2^m, k) = \infty, \quad g^*(2^m, k) \le 6k - 5.$$

(v) If m/d = 4, then

$$g(2^m, k) = \infty, \quad g^*(2^m, k) \le 7k - 7.$$

(II) Suppose that m divises r. Then

$$\begin{split} \mathscr{S}^*(F,k) &= \mathscr{S}(F,k) = \{A \in F[T] : A^{\mathcal{Q}} + A \equiv 0 \; (\text{mod} \; T^{\mathcal{Q}^2} + T) \}, \\ G(2^m,k) &= G^*(2^m,k) \leq 3k - 3, \\ g(2^m,k) &= g^*(2^m,k) \leq 3k - 3. \end{split}$$

(III) Suppose that m/d = 2. Then

$$\mathscr{S}(F,k) = \{A \in F[T] : A^Q + A \equiv 0 \pmod{T^{Q^2} + T}\},\$$

 $\mathscr{S}^*(F,k)$ is the set of $A \in \mathscr{S}(F,k)$ such that either deg A is not multiple of k, or deg A is multiple of k and the leading coefficient of A is in the field \mathbb{F}_a ,

$$G(2^m, k) = g(2^m, k) = \infty, \qquad G^*(2^m, k) \le g^*(2^m, k) \le 2k.$$

Proof. Apply Propositions 4.3, 4.5, Corollary 5.2, Propositions 5.4 and 5.5.

Remarks. (1) In the case Q = 2, Proposition 5.5 gives $g(2,3) \le 6$, which is the upper bound proved in [8].

(2) In the case Q = 4, Corollary above gives $g(2,5) \le 12$, $g(4,5) \le 12$, $g(16,5) = \infty$ and $g^*(16,5) \le 10$.

(3) For $k = 2^r$ tending to ∞ , we have $G^*(2^m, k) \ll k$ as well as $g^*(2^m, k) \ll k$ unlike to the classical Waring numbers $G_{\mathbb{N}}(k)$ and $g_{\mathbb{N}}(k)$. Indeed, by [5] or [9], we have $g_{\mathbb{N}}(k) \gg 2^k$, while by [19], we have $G_{\mathbb{N}}(k) \ll k \log k$.

References

- M. Car, New bounds on some parameters in the Waring problem for polynomials over a finite field. In *Finite fields and applications*, Contemp. Math. 461, Amer. Math. Soc., Providence, RI, 2008, 59–77. Zbl 05575551 MR 2436325
- M. Car and L. Gallardo, Sums of cubes of polynomials. Acta Arith. 112 (2004), 41–50.
 Zbl 1062.11078 MR 2040591
- [3] J. Chen, Waring's problem for g(5) = 37. Sci. Sinica **13** (1964), 1547–1568; also appeared as Chinese Math. **6** (1965), 105–127. Zbl 0146.27303 MR 0200236
- [4] G. W. Effinger and D. R. Hayes, Additive number theory of polynomials over a finite field. Oxford Math. Monogr., The Clarendon Press, Oxford 1991. Zbl 0759.11032 MR 1143282
- [5] W. J. Ellison, Waring's problem. Amer. Math. Monthly 78 (1971), 10–36.
 Zbl 0205.35001 MR 0414510
- [6] L. Gallardo, On the restricted Waring problem over $\mathbb{F}_{2^n}[t]$. Acta Arith. 92 (2000), 109–113. Zbl 0948.11034 MR 1750311
- [7] L. H. Gallardo, Every strict sum of cubes in $\mathbb{F}_4[t]$ is a strict sum of 6 cubes. *Port. Math.* **65** (2008), 227–236. MR 2428416
- [8] L. Gallardo and D. R. Heath-Brown, Every sum of cubes in $\mathbb{F}_2[t]$ is a strict sum of 6 cubes. *Finite Fields Appl.* **13** (2007), 981–987. Zbl 1172.11045 MR 2360534
- [9] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers. 4th ed., Oxford University Press, Oxford 1960. Zbl 0086.25803
- [10] R. M. Kubota, Waring's problem for $\mathbf{F}_q[x]$. Dissertationes Math. (Rozprawy Mat.) 117 (1974). Zbl 0298.12008 MR 0376581
- Y.-R. Liu and T. D. Wooley, The unrestricted variant of Waring's problem in function fields. *Funct. Approx. Comment. Math.* 37 (2007), 285–291. Zbl 05257399
 MR 2363827
- [12] R. E. A. C. Paley, Theorems on polynomials in a Galois field. *Quart. J. Math. Oxford Ser.* 4 (1933), 52–63. JFM 59.0929.01 Zbl 0006.24703
- [13] J.-P. Serre, Majorations de sommes exponentielles. Astérisque 41–42 (1977), 111–126.
 Zbl 0406.14014 MR 0447142
- [14] C. Small, Sums of powers in large finite fields. Proc. Amer. Math. Soc. 65 (1977), 35–36. Zbl 0328.12016 MR 0485801
- [15] L. N. Vaserstein, Waring's problem for algebras over fields. J. Number Theory 26 (1987), 286–298. Zbl 0624.10049 MR 901241
- [16] L. N. Vaserstein, Ramsey's theorem and Waring's problem for algebras over fields. In *The arithmetic of function fields*, Ohio State Univ. Math. Res. Inst. Publ. 2, Walter de Gruyter, Berlin 1992, 435–442. Zbl 0817.12002 MR 1196531
- [17] R. C. Vaughan and T. D. Wooley, Waring's problem: a survey. In *Number theory for the millennium III*, A K Peters, Natick, MA, 2002, 301–340. Zbl 1044.11090 MR 1956283

- [18] W. A. Webb, Waring's problem in GF[q, x]. Acta Arith. 22 (1973), 207–220.
 Zbl 0258.12014 MR 0313190
- [19] T. D. Wooley, Large improvements in Waring's problem. Ann. of Math. (2) 135 (1992), 131–164. Zbl 0754.11026 MR 1147960

Received November 26, 2008; revised April 4, 2009

Mireille Car, Laboratoire d'Analyse, Topologie, Probabilités UMR 6632, Université Paul Cézanne—Aix-Marseille III, Faculté des Sciences et Techniques, Avenue Escadrille Normandie-Niemen, 13397 Marseille Cedex 20, France E-mail: mireille.car@univ-cezanne.fr