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Sums of (2" + 1)-th powers in the polynomial ring F;»[T]
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Abstract. Let F be a finite field with 2 elements and let k = 2" + 1. We study representa-
tions and strict representations of polynomials M € F[T] by sums of k-th powers. A repre-
sentation

M=M+- 4+ MF

of M € F[T] as a sum of k-th powers of polynomials is strict if k deg M; < k + deg M.
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1. Introduction

Let F be a finite field of characteristic p with p” elements and let k > 1 be an
integer. The similarity between the ring Z of rational integers and the polynomial
ring F[T] had led to investigate an analogue of the Waring problem for F[T],
([18], [10], [15], [4], [16], [6], [2], [L1]). Roughly speaking, Waring’s problem over
F[T)] consists in representing a polynomial M € F[T] as a sum

M=Mf+- -+ Mf (1.1)

with M;,..., M, e F[T]. Some obstructions to that may occur which led to
consider Waring’s problem over the subring & (F, k) formed by the polynomials
of F[T] which are sums of k-th powers. Two variants of Waring’s problem over
S (F,k) have been considered. The unrestricted Waring’s problem ([15], [16]),
consists in proving the existence of an integer w = w(p™, k) with the property
that whenever M € % (F,k) and s > w(p™, k), the equation (1.1) is solvable.
Without degree conditions in (1.1), the problem of representing M as sum (1.1) is
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14 M. Car

close to the so called easy Waring’s problem for Z. In order to have a problem
close to the non easy Waring’s problem, the degree conditions

degM; <n (1.2)
are required with n defined by the condition
k(n—1) < degM < kn. (1.3)

With such degree conditions, the representation (1.1) is strict in opposition to rep-
resentations without degree conditions. For the strict Waring’s problem, analogue
of the classical numbers gn(k) and Gy(k) have been defined as follows. Let
g(p™, k) respectively G(p™, k) denote the least integer s, if it exists, such that every
polynomial M € ¥ (F, k), respectively every polynomial M € & (F, k) of suffi-
ciently large degree, may be written as a sum (1.1) satisfying the degree conditions
(1.2) and (1.3). Otherwise, g(p™, k) respectively G(p™, k) is equal to co. This
notation is possible since these numbers only depend on p™ and k. Waring’s
problem consists in determining or, at least, bounding the numbers g(p™, k) and
G(p™, k). In[11], it was announced without proof that

if k and p™ are such that p™ > 9k, then G(p™. k) < klogk — 1 logk + 7.

Proposition 4.5 in [1] and Corollary 3.8 below give examples of pairs {k, p™} for
which these bounds are not valid. Bounds for g(p”, k) and G(p™, k) were given in
[1] where the author described a process intoduced in [6] and performed in [2] to
deal with the polynomial Waring’s problem for cubes.

Some notations and definitions are necessary before stating the main results
proved in [1].

If every a € F is a sum of k-th powers, the field F is called a Waring field for
the exponent k or briefly, a k-Waring field. If F is a k-Waring field, let Z(p™, k)
denote the the least integer / such that every element of F is the sum of / k-th
powers. Let A(p™, k) denote the least integer s such that —1 is the sum of s k-th
powers. Let A(p™”, k) = ged(p™ — 1,k).

Let v(p™, k) denote the least integer v, if it exists, such that 7 may be
written as a sum (a; T + bl)k +-+ (a0, T + bv)k with a;,b; € F. Otherwise, let
v(p™, k) = co. Ifv(p™, k) is finite, every P € F[T] may be written as a sum

P: (a1P+b1)k+'+(av(pm’k)P—i_bv(pm‘k))k

so that #(F,k) = F[T) and F is a k-Waring field.
The two following theorems were proved in [1].
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Sums of (2" + 1)-th powers in the polynomial ring Fon [T 15

Theorem 1.1. Let k > 3 be coprime with p. Let F be a k-Waring field with p™
elements and characteristic p. Suppose that p™ > k. Then S (F k) = F[T],

v(p™ k) < k/A(p" k) +/(p™ k) (k — k/A(p™, k), (1.4)
G(p" k) < %—i—max(/(pmm,k),i(pm,k) + 1) +o(p™ k), (1.5)
so that
G k) < — 8K s k) 42
" log(k/(k - 1)) ’
<kloglk —1)+kt/(p™ k) + 3. (1.6)

Theorem 1.2. Let k > 3 be coprime with p. Let F be a k-Waring field with p™
elements and characteristic p. If p > k, then

g(p™ k) < /(p™ k) (kK> = 2k* — k + 1). (1.7)

The same result remains true in the case where k = hp® — 1 < p™, for some positive
integers v and h < p.

The case of exponent k = p" + 1 is not covered by these theorems. The aim of
this paper is the study of Waring’s problem in the case where p =2, k = 2"+ 1.
In this case, it is posible to compute the exact value of v(2™,2" 4 1). This yields
an improvement for the bounds given in [1], see Corollary 3.5 below. The case of
odd characteristic p is more difficult and will be studied further. It will appear
that the numbers g(p™, k) and G(p™, k) are not sufficient to describe every pos-
sible case. Thus, we introduce new parameters.

From now on, F is a finite field with 2" elements.

Let *(F, k) denote the set of polynomials in F[T] which are strict sums of
k-th powers. Let g*(2™, k), respectively G*(2™, k), denote the least integer s, if it
exists, such that every polynomial M € &*(F, k), respectively, every polynomial
M e &*(F,k) of sufficiently large degree, may be written as a strict sum

M =M+ + M
The main results proved in this work are summarized in the following theorems.

Theorem 1.3. Suppose that k =2" +1 > 3.
(I) If m/ged(m, r) = 3, then the set & (F, k) is equal to the whole ring F[T],

k=3
S (F k) :MOU%WU<NQI&¢N),
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16 M. Car

where
Ay=F, oA, ={AeF[T]|degd > k(k—-3)},
N N A
Ay = {A e FIT]| A = sz,,,iT'W“}
n=0 i=0
with x, ; € F.

(II) If m divides r, then
S*(F,k) =S (F,k) ={A e F[T]|A* + A=0 (mod T* + T)}.
(IIT) If m/ged(m, r) = 2, then
S (F,k)={A e F[T]|A* + 4 =0 (mod T* + T)}
and 9" (F,k) is the set formed by the A € & (F, k) such that either deg A is not
multiple of k, or deg A is multiple of k and the leading coefficient of A is in the
subfield of F of order 284(m:7),

This theorem is a consequence of Corollaries 3.3, 5.2 and 5.6 below.

Theorem 1.4. Suppose that k =2"+1 > 5.
(I) (@) If m/ged(m,r) = 3, then g(2™, k) = .

(ii) If m/ged(m,r) = 3 and m/gcd(m,r) # 4, then
GQ22" k)= G"(2" k) <3k + 2,
(i) if m/ged(m,r) =4, then
G(2" k) =G" (2" k) <3k +3,
(iv) if m/ged(m,r) is odd, then
g (2", k) < 6k — 6,
(v) if m/ged(m,r) is even and > 4, then
g (2" k) <6k — 5,
(vi) if m/ged(m, r) = 4, then

g 2" k) < Tk —1.
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Sums of (2" + 1)-th powers in the polynomial ring Fyn[7] 17
(I1) If m divides r, then
G2" k)=G"(2" k) <3k—-3, ¢g(2"k)=g"(2" k) <3k —3.
(IIT) If m/ged(m, r) = 2, then
GQ2™ k) =9g(2" k) =00, G*(2" k) <g*(2" k) < 2k.

This theorem is a consequence of Corollary 5.6 below. It shows that the
analogy with the rational integers does not work completely since the following
bounds hold for large exponents & ([19], [5], [9], ch. 21):

Gn (k) < k(logk +log(logk) + O(1));
2 +[3/2)"1 -2 < gulh) <2* +[3/2) "]+ [4/3)] - 2

The case k = 3 is covered by Corollaries 3.3, 3.5, 5.2 and Proposition 5.5 below.
Results given by Corollaries 3.3, 3.5, 5.2 and Proposition 5.5 do not improve those
results that were already proved in [7] or [8]. In the case k = 5, we show:

Theorem 1.5. (1) (i) If m/ged(m,2) > 3, then g(2™,5) = oo.
(1) If m/ged(m,2) = 3 and m/ged(m,2) # 4, then

G(2",5) = G*(2™,5) < 12,
(i) if'm/ged(m,2) is odd and > 1, then
g(2™ 5) =00, ¢g*(2™,5) <24,
(iv) if m/ged(m,2) is even and > 4, then
g*(2™,5) <25,
(v) if m =8, then
g (2m,5) <28, G(2™5) =G*(2",5) < 13.
(I1) If m = 4, then
G(2",5) =g(2™,5) = w0, G*'(2™,5) < g'(2™,5) < 10.
(1) If m = 1 or 2, then

G(2™,5) = G*(2",5), g(2M,5)=g¢"(2",5) < 12.
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This theorem is a consequence of Corollaries 3.5, and 5.6 below. For the
positive integers, the corresponding bounds are Gy (5) < 17, gn(5) < 37 ([17], [3])-

The paper is organized as follows. In order to get the exact value of v(2™ k)
we have to prove that some algebraic equations have solutions in F. This is done
in Section 2. In Section 3 we compute the numbers v(2”, k). Bounds for the num-
bers G(2", k) follow. In Section 4 we prove some identities involving a caracteri-
zation of strict sums of small degrees. In Section 5 we describe a descent process
and we conclude the proof.

We fix an algebraic closure F of the field F and for any positive integer n we
denote by F,. the subfield of F with 2" elements, so that F = F,n. Our proofs
often use the following facts:

The field F contains exactly A(2™, k) = ged(2” — 1,k) = ged(2” — 1,2" 4+ 1)
k-th roots of 1. We introduce the notations

0=2"=k-1, ¢=2¢dmn, (1.8)
d = ged(m,r), (1.9)

so that
g =29 (1.10)

If x is a real number, we denote by [x] its integral part and by [x] the least integer
nz=Xx.
Since ged(g + 1,9 — 1) =1, every x € [, is a (¢ + 1)-th power.

2. Equations

Since a k-th power in F is a ged(2” — 1,k)-th power, we begin this section by
computing A = ged(2” — 1,k). We continue by studying a sum of characters
related to sums of A-th powers.

2.1. The greatest common divisor. I think that the results contained in the fol-
lowing proposition are well known, althought I am unable to give any reference
for them, Lemma 4 in [12] only giving incomplete results. The proof given here
differs from the original one. Its present simplified form is due to the referee.

Proposition 2.1. (i) We have
ged(2™ —1,2" = 1) =29 1. (2.1)

(i) The numbers 2™ — 1 and 2" + 1 are not coprime if and only if m/d is even
and, in that case,

C — +1)=2"+ 1. .
ged(2™ —1,2"+1)=29+1 (2.2)
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Sums of (2" + 1)-th powers in the polynomial ring Fon [T 19

Proof. (i) Let a and b be positive integers with a >b. If a=bc+p with
0 < p < b, then

24 _ 9P — 2/)(2hc _ 1) — 2/)(2}7(071) N 2}) + 1)(217 _ 1)7
so that
20 1 =020 -1)C+2/—1,

with C a positive integer and 2” — 1 < 2” — 1. The euclidean algorithm for
gcd (2™ —1,2" — 1) exactly mimics that for ged(m, r). Thus,

ged(2™ — 1,27 — 1) = 2&edmn) _ 1,
(i) Since ged(2"+1,2" — 1) = 1, we have
ged(2™ —1,2% — 1) = ged (2™ — 1,2" + 1) ged(2™ — 1,2" — 1).

From part (i),

2gcd(m,2r) -1

ged@" = L2+ 1) =S — 1

Let v, denote the 2-adic valuation. We have

ged(m,r)  if va(m) < va(r),

ged(m, 2r) = {2gcd(m,r) if vy (m) > va(r).

Therefore, ged(2™ — 1,2"+ 1) # 1 if and only if m/ged(m, r) is even, and in that
case,

ng(zm _ 1’2r + 1) _ 2gcd(m.r) +1. .
2.2. The system &(u,v,a, b)

Lemma 2.2. Let (u,v) € F2 be such that uv # 0 and u? =" #v2*~'. For every
ordered pair (a,b) € F?, the system & (u,v,a,b):

. 0
{a u®x + 0%y, (23)

b =ux? +vy?
has a unique solution in F.

Proof. Immediate. |
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20 M. Car

2.3. Exponential sums. In this subsection, we suppose that m/d is even, so that
F,, = F. Let

n=m/2d, (24)
so that
F = [Fq2n. (2.5)

Let tr : F — [, denote the absolute trace on F and let i be the character of the
additive group of F defined by

P(x) = (—1)". (2.6)
Then  is not trivial. For a and b elements of F, let
a(a,b) = Z Y(ax? + bx). (2.7)
xeF
Proposition 2.3. Let a,b € F. Then
(i) o(a,b) € {0,2™},
(i) a(a, b) = 2™ if and only if a = b1.

Proof. Since ¢ is a power of 2, the map y : x — (ax? + bx) is additive and o y is
a character of the additive group of F. This proves (i). Let b € F. Then

> ola,b) = "> ylaxt + bx).

aelF aeF xeF

Inverting the order of summation gives

Z a(a,b) = Z W(bx) Z W(ax?).

aeF xeF aeF

Since y is not trivial, the last inner sum is 0 if x # 0 and |F| = 2" if x = 0. Thus,

Z a(a,b) =2".

aeF

In view of the part (i), there exists one and only one a € F such that g(a,b) = 2™.
For every x € F, tr((hx)?) = tr((bx)*") = tr(bx) so that y(h9x4 + bx) = 1. Thus,
a(b?,b) = 2" and b is the unique a € F such that o(a,b) = |F|. O]
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Sums of (2" + 1)-th powers in the polynomial ring Fon [T 21

Let B denote the set of non-zero k-th powers in F. From Proposition 2.1 and
(1.10),

2m—1
|B| = i1 (2.8)
Forte F, let
[0 = p(xtth). (29)
xeF

Proposition 2.4. (1) We have f(0) =2
(IT) Let t € F*.

() If t € B, then f(1) = f(1) and f(1)* = 2"¢>.
(ii) If 1 ¢ B, then f(1)* = 2.
(iii) If r ¢ B, then qf (1) + f(1) = 0.

Proof. (1) is obvious. Let t € F*. Then

SO =33 w (™ + (e ) Th) = D) Y w(e(xty + xp?)).

yeF xeF xeF yeF

From the previous proposition, the inner sum is 0 or 2" and is equal to 2™ if
and only if 7x = rx4". The inner sum is equal to 2 if and only if x € X (1), where

X(f)={xeF|x=1""x"}.

If ¢ is not a (¢ + 1)-th power, then X(z) = {0} and f(r)* = 2", proving (Il-i).
Suppose that ¢ = u4t! with u € F. The map x — ux is a permutation of the field
F. Thus,

L0 =)™ =Dy = £(1).

xXeF yeF

Let x € F*. Then

xeX(l) & 1=x""" o xe (Fpo)™.
There are exactly (¢> — 1) non-zero elements x € X(1) and if x is one of them,
then x?™! e F, so that tr[qunFq(xq“) =0. Thus, tr(x?") =0 and y(x9*!) = 1.
Therefore, if ¢t € B, then
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This proves (I1)(i).
Let B’ denote the set of non (¢ + 1)-th powers in F. Then by (2.8),

p_q@2m—1)
|B'| = A (1)

If r € B, then f(f) = f(1). Letce B'. Ifte B', then |f(¢)| = |f(c)|. Set f(¢) =
&f(c). Observe that ¢, = +1. We compute the sum

=" f(1)

teF*

by two different ways. Firstly,

=)L) =2 =)0 p(x ety -2,

teF teF xeF
Inverting the order of summation gives
2 =0. (2)

On the other hand,

= fO+> [0

teB teB’

Thus,

=B/ + ()Y e G)

teB’

By (2.8), (2) and (3),
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Hence, for each 1 € B’ ¢, = ¢. and f (1) = f(c¢). From (2) and (3),

Therefore, for every t € B,

2m _ q2m —1)
q+1

proving (II) (iii).

23

O

For our purpose a knowledge of the values of f(z) for all ¢ is not necessary. It
is sufficient to know the value of f(1) in the case where |F| = ¢*. This is done
below. The proof provides the value of f(1) in all cases. We have to introduce

some new notations.

Let #;,; denote the trace from F,. to F,. For i e {1,2,2n} let 7; denote the
absolute trace of F,i. For i e {1,2,2n} let y; be the character of the additive

group of the field [, defined by
bilx) = (=)™,

Observe that the characters y; are not trivial and

Ty =7T100h, =71y,

so that

l// = l//2}1'
Fori=1,2,2n, let

Sl - Z lp[(qurl)'

Xe [Fqi

Note that
S(1) = S
Proposition 2.5. We have
S1=0

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)
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and
Sop = (—1)" g1, (2.16)

forn>1,

Proof. (1) Since ¢ — 1 and ¢ + 1 are coprime, the map x + x?*! is a permutation
of the field F,. Since y is not trivial,

= Zlﬂl(x) =

xely

(II) If x € F,2, then x7*! € F,. Moreover, if z is a non-zero element in F,, there
are exactly (¢ + 1) elements x € F . solutions of the equation xt1 = z. Thus,

Si=1+ Y ™) =1+(g+ 1) ¥ =g+ (@+1) ) ()

‘CE[FZ ye[Ft, )’E[F(/
x¢o y#0

With (2.10) and (2.11) we obtain

S2 _ _q+ (q+ 1) Z(_I)TZ(J’) — _q+ (q+ 1) Z(_l)fl(tz.l(y)) — q2.

yely, yely
This proves (2.16) in the case where n = 1.

(III) From [13], formulas 4.13, 4.14, p. 119, there exist algebraic integers
Al,-..,Aq of modulus ¢ such that

q

n

So=— > A
i=1

We have S> = ¢>. Thus, for each index i, 4; = —g. Therefore,

Sow = —q(—¢)" = (=1)"g""". O

2.4. Sums of k-th powers in F. Let i be a positive integer. For a € F, let v;(a)
denote the number of solutions (xy, ..., x;) € F' of the equation

a=xy+ - +xk. (2.17)

Proposition 2.6. Suppose that m/d odd. Then, for any positive integer i and for
anyaeF,

V,‘(a) _ 2m(i71)-
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Sums of (2" + 1)-th powers in the polynomial ring Fon [T 25

Proof. From Proposition 2.1, ged(k, |F| — 1) = 1, so that the map a +— a* is a

permutation of F. O
Proposition 2.7. Suppose m/d even. Then

n(0) =1, »0)=(+1)2"—q,  v(0)=2""+f(1)(g—1)2" - 1)
and for a € F* we have

q+1 ifaeB,
O A
va(a) =2" —q+(q—1)f(a),
(@) =22 = 2" — (g = 1)f(1) + (g — 1) f(1) £ (a) + 2"V (a).

Proof. Observe that a k-th power in F isa (¢ + 1)-th power. Leta € F*. Ifa ¢ B,
then v;(a) = 0. If @ € B, then v (a) is equal to the number of (¢ + 1)-th roots of 1
in F, thatis, vi(a) = ¢+ 1. Leti=1,2,3. By orthogonality,

=] Z¢ (fla+x{™ 4+ xf).

XEF teF

Thus, after inverting the order of summation, we get with (2.9),
a) ="y wlanf()" (1)
teF
Let i =2,3. From Proposition 2.4,
2"yi(a) = 2"+ g?2" > p(an) ()7 2"y wlan) f(

teB teF*
t¢B

vi(a) = 2070m —20=2m 4 (2 — 1) N (an £(1) 72+ lan £ (2)

teB teF

Suppose that i = 2. Then with (2.8),

2" = 1(g> 1)
—om_ om _— gom om _
Vz(O) + q+1 + q + q
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Leta € F*. From (2),

va(a) =2" =14 (> = 1) _p(ar).

teB

If ¢ € B, the equation ¢ = u?*! has ¢ + 1 solutions. Thus,

@) =2" =1+ (g—1) > Ylau'™) =2" =g+ (¢—1)>_p(au’™),

ueF* uelF
so that
v(a) =2"—q+(q—1)f(a).

Suppose that i = 3. Then from (2) and (1),

vi(a) =27 = 2"+ (¢* = 1) Y wlar) (1) +2"vi(a),

teB

so that

va(a) =27 = 2" 4 (g = 1) > laut) f (™) + 2" v (a).

ueF*

From Proposition 2.4,

v3(a) =27 = 2"+ (g = 1) (1) Y Ylau™™) +2"v(a),

ueF*

so that with (2.6),

vi(a) = 22" 2" — (¢ = 1)f(1) + (¢ — DS (1) f(a) +2"vi(a). O

The following proposition completes Small’s theorem ([14]), which states that
if m > 4r, then F is a k-Waring field with /(2" k) < 2.

Proposition 2.8. (1) F is a Waring field for the exponent k if and only if "} # 2.
(IT) If' % is odd, then /(2" k) = 1.
(IOL) If % is even and if "y > 4, then /(2" k) = 2.
(IV) If % = 2, every x € F which is a sum of k-th powers is a k-th power.
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Proof. From Proposition 2.1, if % is odd, then A(2",k) =1 and F is a k-Waring
field with /(2" k) = 1. Now we suppose 2 even. Then A(2" k) =1+ 2. Let
n=m/2d. Since A(2™ k) > 1, we have /(2" k) > 2. We prove that, with the
exception n = 1, F is a k-Waring field with /(2™ k) < 2. Let a € F be different
from a k-th power. From Propositions 2.7 and 2.4,

v(a)=2"—q+(q—1)f(a) 22" —q—(q— 12" =¢" —q—¢""" + ¢".

If n > 1, then vy(a) > 0, so that a is the sum of two k-th powers. Thus, if a € F,
either a is a k-th power, or @ is a sum of two k-th powers. Hence, /(2™ k) =
((F, k) <2.

Now suppose that F = F.. If x € F is a (¢ + 1)-th power, say x = y7*! with
yeF. Then x =x and xe F,. If ae F is a sum of (¢ + 1)-th powers, then
a € F,and ais a (g + 1)-th power. O

Proposition 2.9. For a € F, let N3(a) denote the number of (x, y,z) € F* such that

xk+yk+zk:a, (er)
xy #0, (e2) (7 (a))
x@ 1 pO ()

(I) Suppose that m/d odd. Then, for a € F, we have
Ni(a) = 2" - 1)(2" - ¢).
(IT) Suppose that m/d even. Then
N3(0) =2 =2"(¢* + 1) + ¢* + (¢ — 1)(2" = 1)/ (1),
and for a € F*, we have

22 4 2"(q} = 3q> = 1)+ 2¢° — (¢ — 1)(¢> —q+1)f(1) if aeB,
22 —2m(2g* =2+ 1)+ ¢* —¢* + (g —1)(qg—2)f(1) if a¢B,

where fis as in (2.9).

Ni(a) = {

Proof. (1) Suppose that m/d odd. From Proposition 2.1, ged(k,2™ — 1) =1, so
that the map x +— x* is bijective. Thus, for each pair (x, y) € F? satisfying (e,)
and (e3), there is one and only one z € F such that (x, y, z) is solution of (7 (a)).
Therefore, N3(a) is the number of (x, y) € F? satisfying (e;) and (e3). Let (x,y) €
F* x F*. Then (x, y) does not satisfy (e3) if and only if (y/x) ol 1, that is, if
and only if (y/x) € F n[Fy:. Thus,

Ny(a) = [F*]* = |F*|(g = 1) = 2" = 1)(2" — q).
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(IT) Suppose that m/d even. Let o/(a) denote the set formed by the
(x,y,z) € F? satisfying conditions (e;), (e;) and (e3). Then

Ni(a) = |</(a)l. (1)
Let
Ho(a) = {(x,y,2) € FP[x* + " + 28 =a,xp = 0}
and
Bi(a) ={(x,p.2) € F}|x + y* 4 2K =a,xp £0,x97 = y@1).
Then

vi(a) = | (a)| + |%o(a)| + |B1(a)]. (2)
Firstly, we deal with %y(a). We have

Bo(a) = Bo.o(a) U Bo.1(a) U B.0(a), (3)
with the %; ;(a) defined as follows. For (x, y,z) € %(a),

(x,3,2) € Boola) < (x,)=(0,0),
(X, 9,z) € Bo1(a) & y#0,
(x,,2) € B10(a) & x#0.

Now (0,0,z) € %o.0(a) < a=z¥, so that
[%0,0(a)| = vi(a) (4)
and (0, y,z) € %o.1(a) & a = y* + zF with y # 0, so that
1%0.1(a)| = va(a) = vi(a). (3)
By symmetry, with (3), (4) and (5),
1%0(a)| = 2v2(a) = vi(a). (6)

Now we deal with 4, (a). Let (x,y) € F* x F*. Then x2! =yl & p = ux
with #2 -1 = 1. Thus,

B1(a) = > ma),
ueF
w121
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where n,(a) is the number of (x,z) € F* x F such that
a=x"(14u*) + 2" (7)

Letu e F*. Thenu? ' =1lifand onlyifu € F* nFyp = (F,)". Thus,

B1(a)| = Y mla). (8)

VG[F(]Z
u#0

Ifue (Fp)*, then @)% =1, so that u¥ = u®*! € Fp nF. Thus, u* e (F,)".
Since ged(g — 1,0+ 1) =1, there exists a unique element w(u) € [, such that
wu)* =1+u*. Letxe F*andletue (Fp)*. If uf = 1, then (x,z) satisfies (7)
if and only if @ = z¥, so that

ny(a) = |F*|vi(a).

If uk # 1, then (x,z) satisfies (7) if and only if @ = xFw(u)* + z¥, so that n,(a) =

va(a) — v (a).

There are exactly ¢ + 1 elements u € (F,2)" such that u* = 1. Therefore, by

(8),
#1(a)| = (¢ =g —2)na(a) + (g + Q" = 1) = (¢* =g =2))n(a). (9
Combining (1), (2), (6) and (9), we get
N3(a) = vs(a) = (¢% = g)va(a) = (q2" +2" = ¢*)ni(a).
We conclude using Propositions 2.4 and 2.7, 0

Corollary 2.10. Leta € F.

(1) If a # 0 and m/d > 3, or if a =0 and m/d > 3 with m/d # 4, then (F (a))
has solutions in F?.

(II) If m/d < 2, then (F (a)) has no solutions in F?.

(IIT) Suppose that m = 4d. Then (F(0)) has no solutions in F*. Let a € F.
Then there exists (x, y,z,u) € F* such that

xy # 0, (e2), (dj(a))

Proof. Let a € F. Suppose that m/d odd. From the previous proposition, part
(I), N3(a) > 0 < m > d. Thus (#(a)) has solutions if and only if m/d > 1.
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Suppose that m/d even, say m = 2nd. The case n =1 is obvious since the
condition (e3) is not satisfied in a field with ¢> = 2?7 elements. For every a € F,
(97 (a)) has zero solutions. Suppose that n > 1. From the previous proposition,
(2.14) and (2.16),

N3(0) = 2" = 1)(¢” = ¢’ + (=9)" (g - 1)).

If n > 2, then N3(0) > 0, so that (#(0)) has solutions. If n = 2, then N3(0) = 0,
so that (#(0)) has zero solutions. Let a € B. From Propositions 2.4 and 2.9,
Ns(a) = 2" +2"(¢ =3¢ = 1) +2¢° — (¢ = 1)(¢* — ¢ + 1)g2""
>2"+2"(¢* =3¢ = 1 —q(g - 1)(¢* — g+ 1))
_ 22m _ zm(q4 _ 3q3 + 5q2 —q+ 1) > q4n _ q2n+4 > 0.
Thus, (# (a)) has solutions. Let a € F* — B. From Propositions 2.4 and 2.9,
Ni(a) = 2% =2"(2¢° = 2¢ + 1) + ¢* — ¢* = (¢ = 1)(q — 2)¢2""
> 22m o 2n1(q3 o q2 + 1)
> 22m _ 2mq3 — q4n _ q2n+3 > 0.

If n > 2, then N3(a) > 0. Thus, (# (a)) has solutions.

Suppose that n = 2. If a # 0, for each (x, y, z) solution of (F ( a)) (x,y,2,0) is
a solution of (%(a)); if a = 0, for each (x, y, z) solution of (# (1)), (x,y,z,1)isa
solution of (%(a)). ]

3. The numbers v(2™, k)

Proposition 3.1. We have v(2",k) =3.  Moreover, if m divides 2r, then
v(2™ k) = oo.

Proof. Suppose that v(2”,k) =s. Then there exists (uy,v1,...,us, vs) € F> such
that

N
T = Z(uiT + ;) et
i=1

so that

0= Zsjuigvi (1)
i=1
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and
1= Z uiviQ. (2)
i=1

Raising (1) to the power Q gives

N
0= Z uiQZUiQ.
i=1

If m divides 2r, that is, if F' < [, then ul-Q2 = u; for all i, contradicting (2).
Suppose that s = 2. In that case there exists (x, y,u,v) € F* such that

0= x* +uk, (3)
0=x% +u, (4)
1 =xp2 + uw?. (5)

If xu =0, (3) yields that (x,u) = (0,0) so that (5) is not satisfied. Thus, xu # 0.
From (3), u = xz with z a k-th root of 1, so that with (4), v = zy, and by (5),
1 = xy2 + zx(zp) ¢ = 0, leading to a contradiction. O

Proposition 3.2. (I) If m/d ¢ {1,2,4}, then v(2" k) = 3.
(II) If m/d = 4, then v(2™ k) = 4.

Proof. (1) Suppose that m/d ¢ {1,2,4}. From Proposition 3.1, it is sufficient to
prove that v(2™ k) < 3.
By Corollary 2.10(I), there exists (a1, a»,a3) € F* such that

(@)* + (@)" + (a3) =0,
ajay # 0,
(@)@ # (@)

Let (b1,b,) € F? be a solution of (&(ay,a2,0,1)) with (&(x, y,u,v)) defined by
(2.3). Then

(a1)Qb1 + (a2) %p, = 0,
a1 (b)) + ay(hy)? =1,
so that

(@ T +b)* + (@T + b))+ (@T)* =T+ (b)* + (b)".

Thus, T + (b1)* + (b,)* is sum of three k-th powers of linear polynomials. There-
fore, v(F,k) < 3.
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(IT) Suppose that m/d = 4. We first prove that v(2™, k) > 3. Indeed, suppose
v(2™ k) = v(F,k) = 3. Then there is (a1, i}, %, B, %3, ;) € F° such that

T = (T +B)"+ (T +B) + (5T + B3)".

If o3 =0, the change of the variable U = T + ﬁé‘ shows that v(2", k) =2 and
leads to a contradiction. Thus, a3 # 0. Now, the change U = T + ﬂ3oc3’l shows
that there exists (ay,as, by, by,a3) € F* such that

T =(aiT+b)"+ (T + b2)* + (a3T)",

so that the system (97 (O)) has a solution, contradicting Corollary 2.10. Thus,
(2™ k) > 3.
By Corollary 2.10(IT), there exists (aj, a2, a3,as) € F* such that

k

(@) + (a2)* + (@3)* + (a)* =0,

ajay # 0,
(@) # ()2

Let (by,b,) € F? be solution of (&(ay,a,,0,1)). Then
(@ T+ b)) + (@T +b2)* + (a3T7)* + (@T)* = T+ (b)* + (b)",

so that 7 is sum of four k-th powers of linear polynomials. Therefore, v(F, k) < 4.
O

Corollary 3.3. We have & (F,k) = F[T] if and only if m/d > 3. More precisely, if
either m/d is odd and m # d, or if m/d is even and m/d > 4, then every A € F[T) is
sum of three k-th powers; if m = 4d, then every A € F[T] is sum of four k-th powers.

We are ready to present our first result.

Proposition 3.4. We suppose that m does not divide 2r.
(I) Let s> [%] Then every P e F[T| of degree>d(s, k)=

log(k/(k—1))
k2—2k—k2(1-1)"
k k(—l)ﬁkl — k + 1 is the strict sum of (S +0(2™ k) + 2) k-th powers.
1-k(1-1

Moreover, if s > —1C5_ then (s, k) < k* — 3k3 + 2k* — 2k + 1.

log(k/(k—1))’
(IIT) Let s > %. Then every P e F[T] of degree > k* — 3k + 1 is the

strict sum of (s + v(2™, k) + 2) k-th powers.

3logk 2
(I1) Let s > m — 1. Then every P e F[T)] such that k* —2k?> —k + 1

< deg P < k* — 3k is the strict sum of (s +v(2™,k) + 2) k-th powers.
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Proof. From Propositions 2.8 and 3.2, F is a k-Waring field and v(2™, k) is finite.
Let w(m, k) = v(2™, k) +max(/(2™,k),1 + A(2™,k)). From [1], Proposition 5.3,
we have:

(I) Let s> [%} Then every P e F[T| of degree >d(s, k)=

log(k/(k—1))
k2—2k—k2(1-1)"" , ,
k|————%—| —k+1is a strict sum of s+ w(m, k) k-th powers. Moreover,

l_k(l_%)ﬁrl
ifs > iy then (s, k) < k* = 3k% + 22 — 2k + 1.
(IT) Let s > %. Then every P € F|T) of degree > k3 — 3k + 1 is the

strict sum of s + w(m, k) k-th powers.

3logk
(IIT) Let s > m — 1. Then every P € F[T] such that
kY —2k* —k+1<degP <k’ -3k

is the strict sum of s + w(m, k) k-th powers.
From Proposition 2.8, /(2",k) < 2. We conclude the proof by noting that
(27 k) = 1. U

Corollary 3.5. (I) If m does not divide 2r and m # 4d, then G(2", k) < klogk + 5.
(II) If m = 4d, then G(2",k) < klogk + 6.

Proof. Given by Proposition 3.4 (I). O

Corollary 3.6. For odd m > 1 or for even m = 2n with odd n > 1, or for m = 4n
with n > 2, we have G(2™,5) < 12 and we have G(256,5) < 13.

The proof of the following proposition uses an argument already used in the
proof of Proposition 4.4 in [1].

Proposition 3.7. Suppose that m = 2d. Let a € F be such that a ¢ F,. Letb e F
be such that b = a. Forn > Q, let

B, = aT"* 4 pT"+1-0",
Then By, is sum of three k-th powers and is not a strict sum of k-th powers.
Proof. We have
By = (bT"" + T )" 4 (b1 )* 4 (17 9)%.

Since m = 2d, the field F has ¢* elements and a sum of k-th powers in F is in the
subfield F,. Since a is not in [, and B, has degree multiple of k, B, is not a strict
sum of k-th powers. |

Corollary 3.8. If m = 2d, then G(2" k) = co.
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4. Identities and strict sums of small degree
First we begin by stating two simple and useful lemmas.

Lemma 4.1. For each a € [, there exists o € Fp such that a = a9 +o. Let 0 € F e
be such that

07+60=1. (4.1)

Suppose that F,» = F. Then for every positive odd integer j and every pair (X,Y)
of polynomials in F|T), we have

07 +6 =1 (4.2)

and
XY+ xY7 = (0X + V)" 4 (0+ DX + 7). (4.3)
Proof. The trace map x — x7+ x from [, to its subﬁeld F, is onto. There is
0 € F,> such that 07 + 0 = 1. On the other hand, 07 = 0, 50 that, by induction,

for every positive integer s, we have 07" =0 and 9‘12\+1 = (Hq NV =01=0+1.
Identity (4.3) is an immediate consequence of (4.2). O

Lemma 4.2. Forie{0,...,Q0— 1} and X € F[T), let
Li(X)=X°T + X179 (4.4)
Then the map X — L;(X) is additive, and the following identities are satisfied:
Li(X) = (X + TH2 4 x 0+l 4 e+, (4.5)
For every b € F,
Li(X +bT") = Li(X) + (b2 + b)T"O*D, (4.6)

Moreover, if F < Fp, then, for every c € F*,

) 1 ) O+1 1 0+1
Li(X) + 2t T@rhi — (C—QX + ch> + (C—Q X) ; (4.7)

IfF 2 c F, then

Li(X) = (0X + T2 + (0x + X + T")¢"" (4.8)
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Proof. The proof of (4.5) and (4.6) is immediate. The proof of (4.7) follows from
observing that ¢2° = ¢. We use (4.3) to prove (4.8). O

Proposition 4.3. Suppose that m/d > 3.
(I) Let 0 < N < k — 2 and let

kN
A= ZanT”

n=0

be a polynomial of F|T| such that
k(N —1) <degd < kN.
Then A is a strict sum of k-th powers if and only if a, =0 for each ne
UM IO+ N+1,(i+ 1)@ = 1) Thus, if k > 3, then S (F,k) # 9*(F,k) and
g(2™ k) = co.
(IT) Let A € F[T) be such that
k(k—3) <degd < k(k—2).

Then A is a strict sum of k-th powers.

(IIT) Let A € F[T) of degree < k(k — 2) be a strict sum of k-th powers. Then A
is a strict sum of v(2™, k) [de]f ﬂ + /(2™ k) k-th powers.

(IV) Let A € F[T] of degree < k(k —2). Then

A= i(%)k
i=1

with s = v(2", k)(k —=2) + /2", k) and deg X; <k -2 fori=1,...,s.

Proof. By Propositions 2.8 and 3.2, the numbers /(2™ k) and v(2", k) are finite.
Let N be a positive integer such that N < Q. Let 4 € F[T] with k(N — 1) <
deg A < kN be a strict sum of s k-th powers. Thus,

N
A - Z(K)QJA?
i=1
where fori=1,...,s,
N
}/i - Zyi,nTn
n=0
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with y;, € F. Then

s N K

A=3"3"(nn)T?Y, = ZTQ”(Z(y,»,n>QY,-).
i=1 n=0 n=0 i=1
Let
S
X, =Y (yin)?Y:
i=1
Then

N
A= ZX,,T”Q.
n=0

If N < Q — 1, in the above sum, there are no monomials «; 7" with exponent
i in the intervals [N+1,0—-1,[0+N+1,20—1],....,[((N-1) 0+ N +1,
NQ —1]. The necessary condition in (I) is proved. Moreover, if Q # 2, there
exist polynomials of degree < k(Q —2) which are not strict sums of k-th
powers. By Corollary 3.3, & (F,k) = F[T]. If k >3, then S (F,k) # %" (F,k)
and ¢g(2" k) = o0.

Now let 4 € F[T] with deg 4 < k(k — 2), that is, deg4 < Q> — 1. Let N be
defined by

k(N — 1) < deg A < kN. (1)

Let
0-1
A= Z a,T
n=0
In addition, if N < Q — 1, we suppose that @, = 0 for each n € Ulﬁgl J; with

Ji=[iQ+N+1,(i+1)Q—1]

In order to prove parts (I) and (II), we shall prove that there is a positive
integer s and, for i = 1,...,s, there are polynomials

X, = Zx,nT”
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such that
4= (x)¢. (2)
i=0

The proof will show that (2) is solvable when s = v(2" k)N + /(2™ k), proving
the part (III) of the proposition.
Let

{0,...,0°— 1} ifN=0-1,

IZI(N):{{O,...,kN}Ung‘J,- itN<Q—1.

Observe that
I={n=0f+p|l0<B,p<N}

We begin by proving that there is a positive integer s such that the system
(*n),; 1s solvable, where (r,) denotes the equation

S

a = > (xip)°xi, (ra)

i=1 n=0p+p
0<B<N
0<p<N

with unknowns x; g € F, 1 <i<s, 0<f <N.
Let v = v(2™ k). From Proposition 3.2,

3 ifm/d #4,
4 ifm/d =4

For each non negative integer n < Q> — 1, there is a unique ordered pair (8, p)
such that

n=0f+p, 0<f<Q0-1,0<p<Q-1,

and a unique 77 < Q% — 1 with 7 = Qp + f. The map n — 7 is bijective with fixed
points the integers » which are divisible by O + 1 = k. We distinguish two classes
of equations (r,), the special ones and the ordinary ones. The special equations
are the equations (r,) with index n multiple of @ + 1. The ordinary equations
will be considered by pairs {r,,r;}. We introduce a notation. Let (u, w) € F? be
such that ww # 0 and 2! # w2 ~!. By Lemma 2.2, for each («, f§) € F2, there
exists a unique (x, y) € F? solution of &(u, w, «, f), that is (x, y) satisfies

{oz = uZx +wy,
B=ux?+wy?.
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We put
(x,¥) = o(u, w, o, ).

We construct a solution recursively. At each step, we consider a special equa-
tion together with some pairs of ordinary equations. If v = 3, we denote (97 (a))
by (#(a)), and if v = 4, we denote (%(a)) by (#(a)), with (# (a)) and (%(a))
defined as in Corollary 2.10.

Level N: Corollary 2.10 implies the existence of (x| y,...,X, n) solution of
(A (ary)), that is,

by = apy = (xlyN)k + -+ (xv,N)k

with
X, nxa,n # 0
and
07-1 0’-1
(xi,v)%  # (an)”
For j= I,...,N, let (xlﬁN_j,x;N_j) = (p(xl,N,xz,N,akN_j,am), and let

xiny—j = 0for 2 <i<wv. At this step, with s = v, equations (r,) and (rj) are satis-
fied by (xi;);.;-, forn e {ON,... ,kN}. Observe that for each j =1,..., N, we
have kN — j = Q(N — j) + N, so that k(N — 1) is the greatest n € I for which the
exponent # has not been considered.

Level N —1: Set

v

by = axv-1) + Z(xi,Nfl)k-

i=1

Corollary 2.10 implies the existence of (Xyi1 y_1,...,X2, y—1) solution of
(#(bv-1)).  For j=1,....,N—1, let (Xpp1,v-1-j,Xps2.N-1—) = @(Xos1, N1,
Xv42,N—1; OC7[3) WIth

o= (XI,N—I)QXI,N—I—j + (x2,N71)Qx2,N717j + dpN-1)-js
B =x1n-1(x1v-1-) @ + Xono1 (ko n-1-) @ + sy

and let x; y—; =0 for 2+ v <i<2v. At this step, with s = 2v, equations (r,)
and (rz) are satisfied by (x;;), .o, for n€ {ON,....kN} U{O(N —1),...,
k(N —1)}. Observe that for each j=1,...,N—1, we have k(N —1)—j=
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O(N —1—j)+ N — 1, so that k(N — 2) is the greatest n € I for which the expo-
nent 7 has not been considered.

Levels N —2, ..., N —h, with h < N: The level N — h deals with exponents n
and iz forne {Q(N —h),...., k(N —h)}.

Suppose that the previous steps have given (x; ;) -, satisfying equations (r,)
and (r;) with s = hv and n running through U[ZN_hH{Qi, ..., ki}. Let

vh
byn = arv-m + > (xixn-n)".

i=1

Let (Xpot1,N—iis - - - s X(hs1)0, N—n) be solution of (A#(by_s)). For j=1,...,N —h,

let
(xhv+l,th7j; xhv+2,th7j) = (ﬂ(xlerl.th, Xho+2, N—hy %, ﬂ/)
with
vh
% = ag(n—n-j + Z(mefh) va,thfja
v=1

vh
B = i + ZX"‘N*h (¥uv--) %,
v=1

and let x; y_; =0 for 2+ hv <i < (h+1)v. At this step, with s = (h+ 1)v, we
have obtained (x;;),_,., satisfying equations (r,) for n and (r;) with n run-
ning over Ui]ith{Qi, ..., ki}. We note that for each j=1,..., N — h, we have
ON—h)—j=k(N—h—j)+ N —h, so that k(N —h — 1) is the greatest n € I
for which the exponent n has not been considered. Thus, the process goes on.

After level 1, with s = vN, we have obtained (x; ;),_,_, satisfying the equa-
tions (r,) for all n € I apart from n=0. Fori=1,...oN, let

N
Xi=> x,T" (3)
v=0
Level 0: Let
Nv i
by = ap + Z(xi,o) .
=1

Then by (3),
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Nv
A+ (X)" =bho. (4)
i=1

Since F is a k-Waring field, by is sum of / = /(2™ k) k-th powers, say
bo = (21)" + -+ + (z)". (5)
From (4) and (5),
Nov 2
A= (X)) + ="
i=1 i=1

From (1) and (5), 4 is a strict sum of (vN + /) k-th powers.
Observe that, if deg 4 < k(k — 3), the same process works with Q — 1 at the
place of N. In that case we get that

0-1l)v /

( )
A= 3 (0)f+ @)

i=1 i=1

with degX; < Q— 1 fori=1,...,(Q — 1)v. This remark proves the part (IV).
O

Lemma 4.4. Suppose that F < Fy.. Let A € F[T] be a sum of k-th powers. Then
T + T divides A2 + A.

Proof. Let x € Fpa. Since 4 € Fp2[T], A(x) is a sum of k-th powers in Fy2, so that

A(x) € Fo. Thus, 4(x)¢ 4+ A(x) = 0. Therefore, 42 + 4 is divisible by (T + x)
for each x € Fy> and

divides A9 + A4. m
Proposition 4.5. Suppose that F < Fy>. Let
0’-1

A= Z a,T"
n=0

be a polynomial of F|T) with deg A < Q? such that A° + A is multiple of T 4+ T.
Then

(AutoPDF V7 28/1/10 12:48) EMS (170x240mm) Tmath J-2232 PMS, 67:1 (idp) PMU:(KNA7/1/2010 AC1: WSL 22/01/2010 pp. 13-66 2232_67-1_02

(p. 40)




Sums of (2" + 1)-th powers in the polynomial ring Fon [T 41

(1) for everyn=Qj+iwith0 < j< Q,0<i< Q, we have

an = (az)?,

where n = Qi + j;
(II) if F < Fo, then A is a strict sum of (3k — 5) k-th powers;
(IIT) if F & Fg, then A is a strict sum of (2k — 3) k-th powers.

Proof. Let
A= Ao+ AT+ + Ap1TO V2
be the expansion of 4 in base T€. Thus, for j=0,...,0— 1,
Aj=agj+agi T+ +agjo 1T

Then

—1
A2 =" AT + 1) + Y (4) 0T

T
©

~
Il
-
~.
Il
o

For j=1,...,0—1, T/9 + T is congruent to 0 (mod 72" + T). Thus,

0-1
A2=3"(4)%T/  (mod T +T)
j=0

and

0-1
A+A4° =) ((4)°T/ + 4, TY)  (modT% +T). (1)
j=0

For j=0,...,0— 1, deg((4)°T/ + 4,T%/) < Q*> — 1, so that by (1),

0-1
> ((4) 917 + 4,1%) =0,
=0
that is,
((agj+1) TV +ag; TV = 0. (2)
j=0 i=0

Letn € {0,...,0Q% — 1}. Then n is uniquely written as n = Qu + p, with o, p < Q.
By (2),
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ap = dQu+p = (an+oc)Q = (aﬁ)Q' (3)

This proves (I).
Let ne{l,...,0* -2} be non-divisible by Q+1. If n= Qj+i, with
0<i<0,0<j<Q,then

a,T" + a;T" = (agie) °T M + (agi+y) T = Li(agis;T”)

and so
0-1 ‘ 0-2 0-1 '
A= a(QH)iT’(QH) + Z Z Li(agi;T7). 4)
i=0 i=0 j=it1

For n divisible by Q + 1, equality (2) gives a, = (a,,)Q, proving that a, € Fp,
this fact being obvious when F' < Fy.

(A) Suppose that F < [y, that is F = [, or equivently, m|r. By Proposition
2.1, A2™ k) =1. Foreveryi=0,...,0 — 1, there is ¢; € F such that

ao+1)i = (Ci)k = (Ci)Q+l~
Therefore, by (4),
0-1 -2 01
A= (T Q“+ZZL agi;T
i=0 i=0 j=i+1

0-2
= (co T2+ ((aTH 2™ + Li(By),

with
0-1 '
Bl‘ = Z an‘Jro]. (5)
j=itl
y (4.5) and (4.7),
0-2 )
A=(cg T2  + Z ((Bi + T  + (B)* + (T)")
a(le =0

0-2 k : k
—l—Z(AB%—cl >+<?B,->, (6)

so that 4 is sum of (1+ 3(Q — 1)) k-th powers of polynomials.
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We consider the degrees. Suppose that
degd =d=(Q+1)N —p. (7)
with
0<p<N. (8)

We have g(g.1); = 0 for i > N. Thus, the monomials ¢;7" which occur in (6) have
degree < N. For j> N or for j =N and i > N — p, we have ag;; = 0 so that,
by part (I), agir; =0. Leti> N. From (5), we have B; = 0, so that the terms
(B; + T")* + (T")* which occur in (6) cancel. By (7) and (8), the sum (6) is
strict. This proves (II) in the case where F'  Fyp.

(B) Suppose that ' # Fg. Since F' < Fp2, we have F = [F .. Thus, m = 2d and
r/d is odd. The trace map x +— x¢ + x from F = [F, to [, is onto. For every
i=0,...,0-2, a1 € FnFg =T, so that there is b; € F such that

a1y = bi' + bi.
For every y € F,2, we have yq2 =y, so that, by induction, for every positive inte-
ger j, we have y¢” = y and y?”"' = y4. Since Q = ¢'/? with r/d odd, for every
i=0,...,0—2, we have

a1 =bP +bi

Moreover, since ag:_; € Fo, ag>_; is a k-th power of an element cg_| € Fp> = F.
Thus,

a(QJrl)l'T(QJrl)i = ((b,)Q + b,‘)T(Q+1>i for0<i< Q -2,

and
an ITQ = (CQ ITQ l)k

Therefore,

0-2 ool )
A=(cogT?2 " + (((bi)Q +b) T N Li(aQi+_jT'/))
i=0 J=it+1
Q-2 )
= (co 1 T2 + Y " (((6:) ¢ + b)) T'OV 1 Ly(By)),

i=0

with B; defined by (5). By (4.6),
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Let 0 € Fy> be as in Lemma 4.1. In view of identity (4.8), identity (6) above may
be replaced by

A= (CQflTQil)k
0-2 . Nk
+Y ((0B; + (0b; + 1)T')" + (0B; + B; + (0b; + b; + 1)T")"),  (6')
i=0

so that A4 is sum of 1 4+ 2(Q — 1) k-th powers of polynomials. We finish the proof
of the part (II) proving as above that (6') is a strict sum. O

5. The descent

In this section we generalize a descent process used in [§] and [7] to deal with the
case k = 3. Using formula (4.5), for a given polynomial

N
X =) xT'
i=0

we replace the monomial xy7" by the sum of an appropriate L;(Y) and two
monomials of lower degree. Then we repeat the process. The method is described
in the following proposition.

Proposition 5.1. Let n be a positive integer and let X € F[T)| with degree < Qn.
Then there exist Yy, Y1,...,Yo_1, R € F[T] such that

0-1
X = L(Y)+R, (5.1)
i=0
deg(Y))<n if0<i<Q-—1, (5.2)
degR < 07,
Q_l J PR
R=>"> agjT", (5.4)
i=0 j=0

with ay, ..., ag>_| € F.
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Proof. Set
On—1

X=73 5T’
=0
with x; € F for j=0,...,0n—1. For j=0,...,0n—1,let {; € F be defined by
é./‘Q:xf'

(I) Suppose that n < Q. Put x; =¢&; = 0if j > On. Then

-2 0-1
SSr(S g N+ (s0nT?)
r=0 J=r+1 r=0
and by (4.4)
0-2 0-1 0-1
* ( ( Z éQ]+rT + Z éQj+rTQr j) + xQ]+rTQ]+r
r=0 j=r+1 Jj=r+1 r=0 j=0
that is
0-1
X =) L(Y(X))+R(X) (1)
r=0
with R(X) of the form
o-1 r
R(X) = agj, T (2)
r=0 j=0

with Yp_; =0 and

0-1
X)= Z CojmrT

Jj=r+1

for r=0,...,0—2. If n< Q, then for each r and for each j > n, we have
Qj+r=>0nandsolp; ., =0so that deg V,(X) < n.
(IT) Suppose that n = Q + 1. Then

0-1
X — X/ + Z xQ2+rTQ2+;.
r=0
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with
deg X' < Q% (3)

Thus with (4.4),
2 O
X=X+ XQzTQ + Z(Ll‘(éQerrTQ) + 5Q2+rTQ<r+l))7
r=1
so that
2 2
X=Xx" + (XQz + fQ2+Q,1)TQ + Z Lr(éQZJrrTQ)v (4)
r=1

with
deg X" < 0°. (5)
Set (xg2 + £p240-1) =72, Then
(xp2 +Egeio-1)TY = Lo(nT?) + T2,
so that with (4) and (5),
0-1
X =Y+Lo(T? + Y Li(égey, T?).

r=1

From (3), we have deg Y < Q. By (1) and (2),

—1
X =) L(Y(X))+R(X), (6)

Q

=
Il
(=]

with R(X) of the required form (2) and deg Y,(X) < Qforr=0,...,0 — 1.
(IIT) Suppose that n > Q + 1. Let (n;) be the sequence of integers defined by
the conditions:

nj—1

nygp —=n, I’lj_’V‘Q-“FQ_l, (7)
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If n; > Q + 1, then n; > n;;;. Let s denote the least integer such that n, < Q + 1.
We set Xy = X and we shall prove by induction on j, that for every j > 0,

—1
Lr<Br,j) + X} (8)

b
|

i e}

(=}

where By j,...,Bg-1j, X; € F[T] satisty the degree conditions
deg X; < On;, degB,; <n. )
Then we shall conclude the proof, taking j = s.
We start taking Xo = X and Byo=---=Bp-1,0=0. Let je{0,...,5s—1}.
We suppose that relations (8) and (9) are satisfied. We set v = n; and
Ov—1
X=2 "
a=0

Fora=0,...,0v—1, letnaeresuchthatya:(;ya)Q. Forr=0,...,0—1,
let

v—1
Z, = ZnQHrT“
a=0

and
0-1
/Y_/Jrl = Z ZVTQr7
=0
so that
degZ, <v, degXj, <v+ 0*-0-1. (10)
By (8) and (4.4),
0-1
X = LB, j+Z:)+ Xji1.

0

T

We consider the degrees. We have deg(B, ; + Z,) < max(n,n;) = n, and, by (7),
deg X1 <nj+Q*— Q0+1< Onjyy. O
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Corollary 5.2. Suppose that F < Fp.. Then S (F, k) is the subset of F[T] formed
by the polynomials A such that T2 + T divides A2 + A.

Proof. From Lemma 4.4,
S(F.k)=S(F,0+1)<{deF[T]: (T2 +T)| A2 + 4}.

Conversely, let X € F[T) be such that 72" + T divides X2 + X. From (5.1) and
(5.3), X may be written as a sum

0-1
r=0
with Y7p,..., Yo_1, R e F[T] and
degR < Q°. (2)

By (4.5), for r=0,...,0, L, is a sum of k-th powers and by Lemma 4.4,
(Lr(Y,.))Q—i-Lr(Y,.) is multiple of 72"+ 7. By (1), R+ R is multiple of
T2 + T. From (2) and Proposition 4.5, R is a sum of k-th powers so that X is
a sum of k-th powers. ]

Lemma 5.3. Let n be a positive integer and let H € F[T| be such that
k(n—1) < degH < kn. (5.5)

In addition, in the case where m = 2d and deg H = kn, we suppose that the leading
coefficient of H is a k-th power. Then we have

0-1
H=B{+By+> L(Y)+R, (5.6)
i=0

where By, B>, Yy, ..., Yo_1, R € F[T) with

deg By, deg B, < n, (5.7)
deg Yy,...,deg Yp_1 <n, (5.8)
degR < 07, (5.9)
0-1
R=>" "x0;iT%", (5.10)
i=0 j=0

with xgjy; € F for all i and j.
Moreover, if deg H = kn, and if either m divides 2d, or m/d is odd, then By = 0.
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Proof. Suppose that m/d > 3. From Proposition 2.8, F is a k-Waring field with
/(2™ k) < 2, so that max (/(2",k) — 1,1) = 1. By [l], Lemma 5.1, there exist B,
P € F[T] such that
H=Bf+P (1)
with
deg By <n, degP = kn,

the leading coefficient of P being a k-th power.

Suppose that m/d < 2. From Proposition 2.8, if m = d, then F is a k-Waring
field with Z(2™ k) = 1, so that the leading coefficient of H is a k-th power. If
m = 2d and if deg H = kn, by hypothesis, the leading coefficient of H is a k-th
power. Let P € F[T] be defined by

H = ¢(H)T" + P, (2)
where

0 if degH = kn,

8(H):{1 if deg H < kn. 3

We note that the leading coefficient of P is a k-th power and that (1) is true with
B = 0 in the case where deg H = kn.
By [1], Lemma 5.2, there exists By, X € F[T] such that

P=Bi+X, degX < (k—1)n=0n,degB, =n. (4)

By Proposition 5.1, there exist Yy, Y1,..., Yo_1, R € F[T] such that

0-1
X=) L(Y)+R, (5)
i=0
with
deg(Y:) <n
for0<i<Q,
degR < 02,
and R of the form
o-1 i
R= ij+iTQj+
i=0 j=0

We get (5.6) from (1), (4) and (5), the degree conditions (5.7) being satisfied. []
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We are now ready to present our second result.

Proposition 5.4. Suppose that m/d > 3. Then the following holds:

(I) Every polynomial H € F|T] with degree > k> — 2k* + 1 is the strict sum of
3k +v(2™ k) — 1 k-th powers.

(I1) Every polynomial H € F[T] with degree > k* — 3k + 1 is the strict sum of
(k=2)v(2" k) 4+ 3k + /(2" k) — 1 k-th powers. Moreover, if H € F[T) is such
that k* — 3k +1 < deg H < k* — 2k, then H is the strict sum of (k — 2)v(2™ k) +
(2™ k) k-th powers.

Proof. The last claim in (IT) is given by Proposition 4.3 (IIT). We prove the other
ones. Let H € F[T] and let n be the integer defined by

k(n—1) <degH < kn.
From (5.6)—(5.9),
0-1
H=Bf+B5+> L(Y;)+R,

i=0

where By, B>, Yy, ..., Yo_1, Re F[T] with

deg By, deg B, <n, degYy,...,deg Yo 1 <n, (1)
degR < 0% (2)
By (4.5),
Li(Yy) = (Yi+ 1" + vl (T,
Thus,
0-1
H=Bf+Bf+Y ((Z)" + (Zi2)" + (Zi3)") + R, (3)
i=0

with Z; {, Z; », Z; 3 polynomials such that
degZ; i,degZ; >, deg Z; 3 < max(i,n—1). (4)
Set v = v(2", k). Then there exist a1, by,...,a,, b, in F such that

R=(a\R+b)" + -+ (a,R+b,)". (5)
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By (3) and (5),

0-1

H=Bf +BS+ 3 ((Zi) + (Z)* + (2:3))
i=0
+(G1R+b1)k+"'+(avR+bL‘)k7 (6)

so that H is a sum of 2 + v+ 3Q k-th powers of polynomials. By (1), (2), (4)
and (5), these polynomials have their degrees bounded by max(n, Q> —1). If
n> Q? — 1, then (6) is a strict sum. This proves (I).

By Proposition 4.3 (IV), since deg R < 02, R is a sum of

s= (0 — Do™, k) + £(2" k)

k-th powers VK ..., V¥ with degV; < Q—1. Thus, by (3), H is a sum of

2430+s=(k—2)v(2" k)+3k+ /(2" k) — 1 k-th powers. If n > Q — 1, this
sum is strict. This proves (II). O

Proposition 5.5. (1) If m divides r, then every H € &(F, k) with degree multiple of
k is a strict sum of (3k — 4) k-th powers.

(I1) If m divides r, then every H € & (F, k) with degree non multiple of k is a
strict sum of (3k — 3) k-th powers.

(IIT) If m/d = 2 every H € & (F, k) with degree multiple of k and whose leading
coefficient is a k-th power in the field F is a strict sum of (2k — 1) k-th powers.

(OIV)If If m/d = 2, every H € S (F, k) of degree non multiple of k is a strict sum
of (2k) k-th powers.

Proof. Suppose that F = Fy>. Then m divides 2r. If m does not divide r, then
mjd =2.
Let H € &(F, k) be such that
k(n—1) < degH < kn. (1)

In addition, in the case where m = 2d and deg H = kn, we suppose that the lead-
ing coefficient of H is a k-th power. From (5.6)—(5.10),

0-1
H=B"+Y"+Y L(¥;)+R
i=0

where B, Y, Yy, ..., Yo_1, R € F[T] with
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degB<n, degY =n, (2)

deg Yy,...,deg Yp_1 <m, (3)
o-1 i

R= xgji T/ (4)
i=0 j=0

Moreover, from Lemma 5.3, if deg H = kn, we have B=0. In view of (4.5),
R+ H is a sum of k-th powers. Since H € S (F,k), R is also a sum of k-th
powers. From (4) and Proposition 4.5(1), if v € {0,..., Q> — 1} is not multiple
of (Q+1), then x, =0, and if ve {0,...,0% — 1} is multiple of Q+ 1, then
x, € FnFgp. Thus,

0-1
H=B"+ YY"+ " (Li(Y) + x(011) T¢) (5)
i=0
with

X+ €Fgp  for0<i< Q-1

(A) Suppose that m divises r so that F = F, = Fp. Then for each i =0,...,
0-1,

Xioeni = yE (6)
Let u,v € F be defined by
u2:xQ+1+1, 02:X0—|—1 (7)
and let
Z=Y+uT +v. (8)

Observe that u¢ = u and v? = v. Then
ZF =79 = Y 4 YOuT +v) + YT +v) + > T2 4 wT? + woT + v°.
From (5), (6) and (7), if Q > 2,
0-1

H=B"+Z"+ (L(Y) + x4 T")
i=2

+ Lo(Yo+ oY)+ 1+ Li(Yy +uY +uw) + Tk,
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and if Q = 2, then
H=B"+Z7Z" 4+ Lo(Yo+ oY)+ 1+ Li(Yy +uY +uv) + T".

Suppose that Q > 2. Then by (6),

0-1 .
H =B+ 75+ 3" (Li(vy) + peTViTerhiy
i=2

+ Lo(Yo+vY) + 14+ Li(Y) +uY +uw) + T2 9)

Let i=2,...,0—1. From (4.5) or (4.7), according as y; =0 or y; #0,
Li(Y:) + p! @V T(@Di is 3 sum of three or two k-th powers of polynomials. By
(3), these polynomials have degree < y# = max(n,Q —1). By (4.7), (2) and (3),
Ly(Yo+vY)+1and Li(Y), +uY 4+ uwv) + Tk are also sums of two k-th powers
of polynomials of degree < p.

By (9) and (2), H is a sum of (x(H)+3(Q —2) + 5) k-th powers of polyno-
mials with degree bounded by u with y(H) = 0 or | according as deg H = kn or
deg H # kn. In view of (1), when n > Q — 1, this sum is strict. This remains true
if 0 =2. Now, ifn < Q — 1, then deg H < Q> — 1. From Proposition 4.5(II), H
is a strict sum of (3Q — 2) k-th powers.

(B) Suppose that m = 2d. Then Q is an odd power of ¢ and F,. = F. For
i=0,...,0—1, we have x(p,1); € Fy, so that there is y; € F,» such that xp1);, =
yi+ (3)7=yi+ (y)°. Thus, by (4.6), Li(Y) + x(ge1) T @V = Li(Y; + 3 T").
From (4.8) we get that L;(Y;) + x(g41; 7"V is sum of two k-th powers. By (5),
H is a sum of ()((H) +20+ 1) k-th powers. In the case where n < Q — 1 we con-
clude with Lemma 4.4 and Proposition 4.5. O

Corollary 5.6. Suppose that k > 3.
(I) Suppose that m does not divide 2r. Then

k=3
SHEK) = Ay 0 Aoy u< U Q/N)
N=1
where

dy=F, Ay, ={A€F[T|:degd >k(k—23)},

N

N
Ay = {A eF[T]: A=Y x,,,,-T'*"Q}
0

n=0 i=

with x,; € F. Moreover:
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() If m/d =3 and m/d # 4, then
G2 k)=G"(2" k) <3k +2.
(ii) If m/d = 4, then
G(2" k)= G* (2", k) < 3k + 3.
(iii) If m/d is odd and > 1, then
g™ k) =0, g¢g*(2" k) <6k —6.
(iv) if m/d is even and > 4, then
g™ k) =0, g*(2" k) <6k —5.
(V) If m/d = 4, then
g™ k)=, g (2" k) <Tk-1T.
(I1) Suppose that m divises r. Then

SHF k) =S (F,k)={AeF[T]: A2+ A =0 (mod T + T},
G(2". k) = G*(2" k) < 3k — 3,
g(2". k) = g* (2", k) < 3k - 3.

(III) Suppose that m/d = 2. Then
S(Fk)y={A4eF[T]: 424+ A =0 (mod T2 + T)},

S (F k) is the set of A € S(F, k) such that either deg A is not multiple of k, or
deg A is multiple of k and the leading coefficient of A is in the field T,

GR2",K) = g(2" k) = 00, G*(2",k) < g"(2", k) < 2k.
Proof. Apply Propositions 4.3, 4.5, Corollary 5.2, Propositions 5.4 and 5.5. []

Remarks. (1) In the case Q = 2, Proposition 5.5 gives ¢(2,3) < 6, which is the
upper bound proved in [§].

(2) In the case Q =4, Corollary above gives ¢(2,5) <12, ¢(4,5) < 12,
g(16,5) = oo and ¢g*(16,5) < 10.

(3) For kK = 2" tending to oo, we have G*(2™ k) « k as well as g* (2", k) « k
unlike to the classical Waring numbers Gy (k) and gn (k). Indeed, by [5] or [9], we
have gn (k) > 2%, while by [19], we have Gy (k) < klogk.
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