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Abstract. In this paper we consider the regularity of weak solutions and find some regular
criteria for 3D non-stationary Navier—Stokes equations. Moreover, we establish decay
rates for weak solutions in general domains by means of the spectral decomposition method
of fractional powers of the Stokes operator.
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1. Introduction and main results

Let Q be a general domain in R, and 0 < 7' < co. We consider the initial value

problem of the Navier—Stokes equations

{8,u—Au+(u~V)u+Vp—f inQx (0,7), (1.1)
Veu=0,ul0.07) =0, u(x,0) =aq, .

where u = (u;(x, 7),u2(x, 1), u3(x, 7)) and p = p(x, 1) denote the unknown velocity

vector and the pressure respectively, while ¢ = a(x) is a given initial velocity vec-
tor field, and f = (fi(x, 1), f2(x, 1), f3(x, 1)) is the given external force.

Definition 1.1. u is called a weak solution of (1.1) if u e L°°(O, T Lg(Q)) A
L120c<[0a T); H()l (Q)) satisfies
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T

T T
—J J u@rvdxerrJ J Vu~Vvdxdr+J
Q Q

J u-Vu-vdxdr
0 0 0 Jo

T
= J av(0) dx + J J fodxdr  forallve C;°([0,T); Ci,(Q)),
o 0 Jo ’

where a € L2(Q) and f e L'(0,T;L*(Q)), d.v=2<v(x,7). Furthermore, we
say that u is a strong solution of (1.1) if u e L*(0,T;L4(Q)), %—i—%] <1 with
2<s< o, 3<qg<oo. In addition, the weak solution u is said to satisfy the
energy inequality if

t t
()| +2j0 IVu(2)|E dr < |al +2j0 Jgfudxdf (12)

fora.e. te [0, 7).

The weak solution of (1.1) is so far known to be unique only if it belongs to
a certain class of functions which, however, does not cover the whole space
L*(0,T; L2(Q)) n LE. ([0, T); H}(Q)). The results of G. Prodi [15], J. L. Lions
and G. Prodi [10], Foias [6], Serrin [17], Kozono and Sohr [9] and others showed
the uniqueness in L*(0, 7; LY(RY)) with %—1—% <1, N < g < o for weak solu-
tions of (1.1) satisfying (1.2). That is, if u is a weak solution of (1.1) satisfying
(1.2), and if v is another weak solution of (1.1) in L5(0, 7;LY(RY)) with s, ¢
as above, then u = v in RY x [0, T). In fact, the uniqueness result also holds
for any unbounded domain Q, see [18], [19]. Recently Escauriaza et al. [5]
proved that if Q = R and f =0, then each suitable weak solution in the class
L*(0, T; L3(RY)) is unique and smooth in R* x (0, 7).

It is well known that any weak solution of (1.1) is regular in the Serrin class
(see [16], [18], [19]). We try to establish another regular class for the 3D Navier—
Stokes system:

w0 mRcon,

V-u=0,u(x,0)=a in R?.

Recently, Chae and Choe [3] proved regularity by imposing conditions on the gra-
dients of two components of the velocity. Subsequently, Beirdo da Veiga [1] also
reduced Serrin’s condition to two components of the velocity field. Neustupa and
Penel [13] verified the regularity for suitable weak solutions of (1.3) if one velocity
component is essentially bounded. The regularity with respect to one component
of the velocity was also proved by Neustupa et al. in [12]. Here for the first time
the authors came up with the inequality 2 —l—% < 1in connection with one compo-
nent of the velocity. Subsequently, He [7] and Zhou [21] also imposed the regular-
ity criterion on one component of the weak solutions of (1.3). In the following we
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find a new regularity criterion for weak solutions of (1.3), which can be viewed as
another form of Serrin’s condition.

Theorem 1.2. Suppose that a € H}(R*) and 0 < T < co. Assume that u is a weak
solution of (1.3) satisfying the energy inequality (1.2) with f =0. Let u = (uy,u, u3)
satisfy one of the following conditions:

for some s € [2,00), q € (3, 0] with{+7 <1,

up e L*(0,T; L3 (RY),  wup,us e L*(0, T; LY(R?)), (1.4)
or
u,uy € L7 (0, T; L*(R?)), us € L*(0, T; LY(R?)); moreover
letll oo, 7 3@y + 2ll Lo o, 7 3 @3y < 10 for some small

number 1y > 0. (1.5)

Then u is regular on R* x (0, T).

Remark. Neustupa and Penel [14] also formulated criterions for regularity (see
Theorem 1 in [14]) by means of different assumptions on the first two and on the
third component of velocity, where the authors need ¢ > 6, however without a
smallness condition. Some ideas (taking curl on both sides of the equations of
(1.1) for example) in the proofs are similar or even identical, but the corresponding
results do not overlap in [14] and the present paper.

In recent years, much attention has been paid to the decay properties of
solutions for problem (1.1) in general unbounded domains. Kozono and Ogawa
8] proved that if @ € D(A'/4) A R(A*) with 0 < u < 1, there is a strong solution
u of (1.1) with /=0 such that if 0 <<y, then |[4%u(r)||, = O(r*#*) for
0<oa<l, and if } <u <, then ||[4%u(r)||, = o(r#7*) for 0 <a < 1. Mare-
monti [11] also considered the time decay of some strong solution for (1.1) in
unbounded domains, and obtained similar results. Crispo and Tartaglione [4]
studied the asymptotic stability in the L2-norm of solutions of (I.1) in three-
dimensional unbounded domains with non-compact boundary, that is, they con-
sidered the perturbations to the rest state and to the stationary motions. Borchers
and Miyakawa [2] considered the L?-decay for weak solutions of (1.1) in general
domains. By using a specific approximate scheme, they first showed the decay of
the time average ! fé |lu(s)||, ds for the general weak solution u, which satisfies
the energy inequality, and then proved Theorem 1.3 below. However, the authors
in [2] believed that it was difficult to obtain the decay properties for weak solutions
of (1.1) by applying the spectral decomposition. In this paper, we give an alterna-
tive proof of Theorem 1.3 by employing the spectral decomposition method which
is simpler and easier than the one in [2].
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Theorem 1.3. Let Q = R® be any general C*-domain, and let T = oo. If
aeL2(Q), feL'(0,00; V"), and if [ (s+1)|f(s)|,ds < co, then there is a
weak solution u of (1.1) satisfying (1.2) such that if ||e~"1al|, = O(r™*) for some
o> 0ast— oo, then

™) ifa<i,
Juto)l, = {OE;LZ) i (16)

where ¢ € (0,3), V* is the dual of V = fIOI’H(Q).

Throughout this paper, we denote the norms of L/(Q), LS(O T;L"(Q))
/ 1/¢ i
(1<s.¢< ) by |lul, = (Joluld)"" and |[ullo 7. @) = (Jy lu()]} di)"”
respectively, and positive constants (possibly different from hne to line) by C.

2. Regularity criteria for weak solutions of (1.3)

In this section we first state two technical lemmas and then give the proof of
Theorem 1.2.

Lemma 2.1. Suppose that a € H)(R?). Assume that u = (uy,up,u3) is a strong
solution of (1.3) with Vu e L* (0, T; L*(R*)) and Au e L*(R* x (0,T)). If us e

(O,T,L‘](R )) with §+q <L,2<s<ow,3<qg< oo, then forany 0 <t < T,
the vorticity w = curlu = (w1, w2, w3) satisfies

t
leos (0) 2 + jo |Veos(2)2 dx

2 2 4 6 .
o3 O) 1+ Cllus. g o IV o AU 0y 03 < 0 < o0
2 2 .
< Qs (0113 + ClluslZa(o, s o gy IVl 2o 0,1 2268 if q=oo
Ha)3(0)||2 + C||”3||L£ 0,6 L3 (R ||A“||L2 R3x(0, 1)) if q=3.

Proof. We first consider the case when 3 < ¢ < co. After a direct calculation, we
find out that w = curl u = (w1, w,, w3) satisfies

86_6:_ Ao+ (u-V)o—(0-Viu=0 inR>x(0,7T). (2.1)

By multiplying both sides of the equation on wj3 in (2.1) by w3, and integrating by
parts over R® x (0,7), we get
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2 ! 2
lon(o)li+2 | Voo ds
5 t
< [Jew3(0)]]5 + 2J J . |(w - V)wsus| dxdzt
0JR
2 ! 2 ! 2112
< w3 (0)[)5+ | [[Vews(o)|l3dz + eol*us|" dx dz
0 0 JR?
t t
< ||w3(0)\|§+J ||Vw3(f)||§dr+cj J VP lusP dxdr,(22)
0 0 JR’

where we have used the fact that || < C|Vu|. In the following we willl rather use

the notation ! for s~!, for any s > 0. Next we observe that 2(1 - %)7 € (2,6) for
any ¢ € (3, ), and so

t
J J V| *us|* dx d
0 JRr?
t
2 2
< Jo ||u3Hq”V“”z(le/q)’l dr
t
) 2(1-3
= L s 31Vl 3 |Vl e

t
(1-3 2(1-2/s-3 2(1-2/s-3 6
< CVullyt o L|u3||2||w||2< P30 a3 de

! sy (1 (1-2/s=3/q) s (! 3/q
4/s s
< CIVU g o >(j ||u3|\qdr) (], 1wtz =) (j A )

(1-2/s—

3 4 6
< Cllal3* sl ooy IVul Y o 1Al (2.3)

L= (0,6, L2(R L2(R*x(0,1))"
By inserting (2.3) into (2.2) we complete the proof of Lemma 2.1 in the case when

3 < ¢ < 0. Following the above arguments, we easily verify the remaining cases
when ¢ =3 or ¢ = 0. O

Lemma 2.2. Suppose that a € H!(R?). Assume that u is a strong solution of (1.3)
with Vu e L* (0, T; L*(R?)) and Au e L2(R* x (0,7)). Ifu= (uy,us,u3) satisfies
the assumption (1.4) or (1.5), then

T
sup IVu(H)|l2 + jo lAu()|2dz < C.

0<t<T

Here C = C(||all 1), T q,s) if (1.4) holds, and C = C(||a|| 1w, T4, 5:10) if
(1.5) holds.
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Proof. The equation in (1.3) can be rewritten as follows:
1
atu_Au+wxu+§V|u|2+Vp:0 in R* x (0, 7). (2.4)
By multiplying both sides in (2.4) by Au and integrating by parts, we obtain

t
Va0 +2 | 18u(e) e

t
:2J J (0 x u) - Audx dr + |V |3
0 JR?

t

= 2J J \ ((w2u3 — a)3u2)Au1 + (w3u1 — a)1u3)Au2
0JR

+ (wiur — wouy)Aus) dx dt + | Val|3. (2.5)

Case 1. Asssume (1.4) holds. Then we obtain
t
’2J J ((wouz — w3ur) Auy — wyuzAus + wyurAu3) dxdr’
[R3
t
ng J s (|| | A | + ] |Aua]) dx e
0Jr?
t
+ ZJ J [tz |(Jeos| | Auy | + |01 | |Aus|) dx d
0 JR?

t
< ZJO sl Qo2 1 s gy I8t + ot oy -1 Atal]) e

t
+ 2Jo llzlly (sl g oy g1 1A ]y + Nlonll g oy )1 [Au3]l5) d

t
<cl(
0

el + lesll )1Vl 512 1At

1-3/¢ 3
< C | (lually + Nl JIVally ™| Vel [§')| Aut] dx

t
Jo

1-3 143
< C | (lually + sl )| Vally ™| Al e

t
0
! 2 ! 2(1-3/¢9)"" 2
< sjo |Au|dz + Ce) J0(||“2||q + Jusll,) 1Vul2 d
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t
2 2-2(1-3 (1-2/s-3
< llAulzdz + C(o)l|Vu lf} 20

t
2(1-3/¢)"" 2(1-3/¢) ' (1-2/5—3
0<||uz||q+||u3uq>< 107|307 7217300 g

L= (0, 1; L2(R%))

t
2 (4/5)(1-3/¢)"!
< llAulzdz + C(e)]|Vu [

2(1-3/¢)™"
X (w2l o, 1 Lacey) + N3l a0, 1 Lare )))< [0

(1-3/q)"(1-2/5-3/q)
(J IIVu||§df)
0
t
(4/s)(1-3 1
<o | 14wl de+ Cllall 19l o)

2(1=3/¢)""
eallpogo.n Loy + sl oo, szamey) (2.6)

By Lemma 2.1, we conclude

t
)ZJ J uy (w3Auy — wyAus) dx dr
0 JR3

IA

t
2J J |u1|(|os| |Auz| + || |Aus|) dx dt
0JR3
t
< 2J0 (1[5 ([|ewslgl|Auz |y + [cwallgl|Aus|l,) dz

t
< Clullp=o, 7.5 J (IVorll, + [[Ves|l) | Aull, d7

< C(HVCUZHLZ R3x(0,7)) T ||Va’3||L2 R3x(0,1)) )HA”HLZ R3x(0,1))
< C([l2(0)[l; + w3 (0)l]2) [Aull 2 g3 0,0
+ C(||u2||u(o.,z;u(uq<3)) + ||”3||1_x(o,z;m(R3)))

2 143
NVl 2oy AU 0.0

< ejo | Aull3 dz + C(e) (|2 (0)]]3 + [[ew3(0)]3)

_ -1
+ CE 2l oo, s oy + 1l ego, ooy
(4/s)(1— 3/q)
a0 .
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By inserting (2.6) and (2.7) into (2.5) and taking & = 1 we obtain, forall0 <7< T
and 0 > 0,

||Vu<r>||§+j | Au(z) |2 dz

ClIVall3 +6|1Vull 7. g 1 12y + CONall oo, e om))
1-2/s-3/¢)"" .
+ sl Lo, Lomdy) 2( /s ™ f %—i—% <1,

5 P
C||Vall; + C(”“ZHSLA 0,1, L4(R?))

+ ||“3||LA 0,6 L4(R )”V””U 02wy I %"‘%: L.

Set
g(t',t) = Cllluallpoier . Loy + 131 o poey)  Withany 0 </ <t < T,

where C is given in (2.8) with 3+ = 1.

From the assumption that uz,ug e L*(0, T; LY(R%)), we infer that g(¢',7) is
continuous on ¢/, 7, and nondecreasing on time ¢ € (¢, 7). We assume that
g(0,T) > 3, otherwise (2.9) below holds in the case 2+ 3 = 1. Since ¢(0,0) =0,

there exists 7 € (0, 7) such that ¢(0,7) = 3. So from (2.8) with 3 +2 = 1, we get

)
sup IVu(t)||§+J0 |Au(z)||3 d < C||Vall3.

0<1<ty

From 7, with u(z) as the initial value for (1.3), we can find ¢, € (¢, T) such that
g(to,11) =%, and

n
sup ||Vt >||§+j [Au(z)|[3 de < C||Vu(ty)||; < C|| Va3
ty

hh<t<t

By repeating the above process, we obtain an increasing sequence {7 },~, satisfy-
ing g(tx—1,1%) =1 (here we always assume g(7, T) >3, otherwise (2.9) below
holds in the case %—l—gz 1). Moreover, the following inequality holds for any
k>1:

173

sup I\Vu(t)||§+J 1Au(z)3 d7 < Ci|Vall3.

1 <t<t lr—1

Denote the lengths of intervals (#;_1, ;) by di, that is d =t — ty—y. If dp — 0
as k— oo then g(ti_1,1) — 0 as k — oo, which is a contradiction with
g(te—1,te) =5 for any k > 1. Therefore, d;, +— 0 as k — co. Since 0 < T < o0,
after a finite number of steps we obtain that
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T
sup \|Vu<z>||§+j0 lAu(o)|2dz < C. (29)

0<i<T

If 2 +§ < 1, from (2.8), we immediately infer that (2.9) also holds.
Case 2. We now assume that (1.5) holds. Following the proof in Case 1 we
know that, for any ¢ > 0,

t
‘ZJ J uz(wAuy — w1Auy) dx dt
0JRr3

t
(1-3/q)" (4/5)(1=3/¢)"
J I Aul3de+ Clally,e) sl 2 0 o IVl 205 (2.10)

and
t
‘2J J (ul(a)gAuz — szu3) + ng(CO]ALQ — w3Au1)) dxdr‘

0JR3

t
< | | (unl(on] 1] + ] ]
0 Jr?
+ [ua|(lon | [Aus| + |eos| |Aun])) dx d

t
< jo(||u1||3<||w3||6|Auz||2 + lnlllAuslly)

+ llual3(lleon ]| Auslly + [leos | A ]],)) dz
< Cllurll =0, 7, 3wy + 12ll =0, 703w )J |Au|[3 d. (2.11)

By inserting (2.10) and (2.11) into (2.5) we obtain, for every 0 <7< T,

t
1Vu()| +zj0 | Au(z)|2 de

t
(1-3 (4/5)(1-3/q)""
< 1Val} + e | 18l e+ Ol o 1V e
(”ulHLL 0.7:L3®Y) T ||”2||Lr 0,T; L3(R? )J ||A”||sz (2.12)

Thanks to assumption (1.5), we can choose 7, € (0,5) such that

(2.13)

l\)\'—‘

Clllwrll oo, 723wy + 12ll 120, 7 3 w3)) < Cro <

Then, by taking ¢ =3 in (2.12) and using also (2.13), we conclude that, for
0<tr<Tandos >0,
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t
Va2 + jo lAu(@) |2 de

2 2 2(1-2/s=3/9)"" .
IVall3 +8IVullZ o 1 2oy + COMlsllyg 7 pondy, i 2+2<1,
1.

2 K 2 .
[Vall3 + C||u3||z»"(0,t;Lfl([R3))Hvu||L’°(0,I;L2(R3)) if %""3

The next proof is the same to the one in Case 1. So (2.9) also holds in Case 2.
From the above arguments in both two cases, we complete the proof of Lemma
2.2. O

Proof of Theorem 1.2. Tt is well known that for any a € H!(R?) there is a
unique strong solution & of (1.3) with @ € L* (0, To; H'(R?)) n L*(0, Ty; H*(R?))
for some T, € (0, 7). Since u is a weak solution of (1.3) satisfying the energy
inequality

2 7 2 2
[[u(m)llz +2 . Vu(z)|ly de < |all3,

for any 0 < # < Ty, we can conclude (by means of Serrin’s uniqueness theorem)
that u = &2 in R x (0, Ty). By the a priori estimate in Lemma 2.2 and a continua-
tion argument, we can extend the local strong solution u to the whole interval
0, 7). O

3. Decay rates for weak solutions of (1.1) in general domains

Before giving the proof of Theorem 1.3, we introduce some notations and useful
lemmas, which can be found in [18], [20].

Set
Cor(Q) ={u e CF(Q) : divu = 0},
L2(Q) = the closure of C°,(Q) in L*(Q),
H; ,(Q) = the closure of Cy’,(Q) in Hy(Q),
ﬁlﬁo(Q) = the closure of Cj”,(Q) in H(Q).

Let Q < RY (N > 2) be any domain, and 4 = —PA : D(A) — L2(Q) be the
Stokes operator for Q, where P: L?(Q) — L2(Q) is the Helmholtz projection
operator. Then A is positive self-adjoint operator with dense domain D(A4) <
L2(Q), Cf,(Q) = D(4) = Hj ,(Q). Moreover, N(A) ={ve D(A): Av =0} =
{0}. Since 4 is a positive self-adjoint operator, there exists a uniquely determined
resolution {E; : 2 >0} of the identity in L2(Q) such that A has the spectral
representation
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A= J 4dE; with domain D(4) = {v € LX) « | ]} = J Pd| Bl < o0 ).
0 0

More generally, for 0 < o < 1, we define the positive self-adjoint operator

A% = J J*dE;  with domain D(A%) = {1) e LX(Q): J 2| Ep? < oo}.
0 0

Moreover,
N(A*) ={ve D(4%) : A% = 0} = {0}.
We define the Yosida approximation of the identity / by

1 Lo
Jmé<l+—A1/2> :J (1+m ') dE,, m=1,2,....
m 0

Then J,,v € D(4'/?) for all v e L2(Q), and the Yosida approximation operator
norm is given by

1ol 2 piarey = sup(1+m ')~ < 1.
=0

In addition,

A2, = J 1+ m2) dE;
0

is also a bounded operator with the norm

A2 Tl 2pe = sup(A(1 +m~'2) ") < m.
77 >0

Moreover, A'/2J, v = J,,A'/?v for all v € D(A4'/?), and
lim ||J,,0 —v|l, =0 forallve L}(Q),
m— oo

lim ||4'2J,0— 4?0, =0 forallve D(4'?).

m— o0

Lemma 3.1 Set fy = min{x,}, 4}, ;= min{2, 1,4+ %}, and

—|—[);"}, n=0,1,....

Bl —

) 1
ﬁn-H = mln{a727
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Then we have
(i) limy—o, B, =3, and 0 < B, <1 foranyn=0,1,...ifa > 1,
(i) lim, o, B, = o, and 0 < B, <o foranyn=0,1,...if 0 <a < 1.

Proof. We first prove (i). Obviously, f, = min{o, 3,1} =1 <1lifo > 1 and

g minda L L L Y3 ]
1= %237 274( T8

Assume f3, < 3 for any fixed n > 1. We conclude

[ S
4 2 "4 272 2
and then
. 11 g1 1 B, 1
ﬁn+1—m1n{“7§71+?}—1+?<§.

From the above arguments, we conclude that, for any n = 0,1, ...,

1
+ﬁn

1
0< ﬂn < 5 and ﬁn+1 = Z DY

Therefore, after an elementary calculation, we find that

1 1 n+1 1 1/1 n+1
Bui1 = (ﬂo ><2> :§Z<§> :

Hence we immediately get lim,_... §, =1
The proof of (ii) is a little more complicated. We first show that {f,} is an
increasing sequence. Note that

: | , ;
ﬁ1=min{a,%+%}={a. ; %f?<a<4l’:{a %f0<°‘<8’

3 1 1 3 3 1
min{e, 3} if I <a<i, 3 if 3 <<,

5 = mln{ 1 /)’1} min{o,;+5}  if0<a<i, Jo if0O<a<df,
i 472 min{o, 1 +1-3} if 2 <a<d, | &

Therefore, f, < 8, < f,. Assume that 8, ; < f, for any fixed n. Then

po-minfod 1) <minfs 5}
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and this shows that {f,} is an increasing sequence. Since f, < o for every
n=0,1,2,..., we infer that lim,_,., #, = f for some f € (0, «].

2

. 1 o if0<(x£l+ﬁ,
l)’—mln{%—Jré}— B ] L
4 45 if 145 <a<d.

Passing to the limit in the equality 8, = minq o, § + Py }, we obtain

Now in case f8 :}ﬁrg it follows that § =1, which contradicts the fact that
s> 1481 Thus, lim, ., 8, = 2if 0 <o <1 O

Lemma 3.2. Let Q = R? be any domain. Then, for every u € HOIJ(Q), we have
that

| E:P((Jn) - Vi) ||, < CA2 (Va3 m=1,2,.., (3.1)

where C is independent of m and u.
Proof. For any ¢ € Ci,(Q), we have
|(E,P((Jnte) - V), )| = | (E,P div((Jmu) @ u), ¢)|
= | ((Jntt) ® u, VE;9)]

< oty ull 4| VE; 6
1
< C(|[ el l|ull ) A IV Tal || Vatl|,) 7 * | AV E 4

ke 1/2
1/2 3/4 2
< Cllully (14 2T, 4" 2ull,) (L ﬂdul\EﬂEmllz)

) 1/2
1/2

< CAV2|u))Y <||JmA1/2u||2||Al/zuuz)”“(JO ALy
1/2 3/2

< CAM2lully | Vall3 Il

which yields that (3.1). Here we use the fact that

o0 ) A )
L | E, B2 = jo | E I,

and that [|E,¢[, < ||¢ll, for all ¢ € Ci,(€Q); the latter follows by observing that

IEupl3 = (Eud, Eud) = (¢, EuEud) = (6, Eud) < ||IEu 114 O
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Proof of Theorem 1.3. Tt is well known that (see e.g. [18]) that there exists a strong
solution u = u,,(x, t) of the problem

{@u —Au+ ((Ju) - VIu+Vp=f inQx(0,00),
(3.2)
V-ou=0,ulq=0,u0)=Jya
Moreover, u = uy,(x, t) satisfies
(u(t), ¢(Z)) +J ((Vu(r), V¢(T)) + (Jmu(r) - Vu(z), ¢(r))) dt
= (u(9).9)) + | ((0(e).0000) + (b)) dr ()

for all 0 <s <7< o0 and any ¢ € C([0,0); Hy ,(Q)) N C'([0,0); L*(Q)). In
addition, the energy equality holds, namely

[u(t)|]3 + 2]0 IVu(t)|[3 de = [|u(0)])3 + 2J0(f<r>, u(v)) dz, (3.4)

for all 1 > 0. From (3.4) we have

@)1+ 209u0) B = 2(7(2), u(0). (35)

We observe that, for any p > 0,
IVu(0)[l5 = (14" 2u(2)|3

- j 2| Esu(0)|2

> pj d|Ezu()|2

— JO” A Bt~ j:dnEw)né)
= p(lu(0)|3 = | E,u()]13)- (3:6)

By inserting (3.6) into (3.5), we get
d
2 11Ol + pllu(@)lly < pIEu(@)]l + 17 (0], (3.7)

By taking ¢(r) = e ""PME, ) in (3.3), with y € Ci",(€), we obtain
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(E,u(t),y) = (E,,e*’Au(O),t//) —J (E/)e*(’*“')APJmu(s) - Vu(s), ) ds

0
+ J; (Epe "1 Pf (5),) ds. (3.8)
From (3.8) and Lemma 3.2, we infer
1Eu(1)ll; < lle~*u(0)]|, + Cp'? J; 1/ ()l ds
' [ ) 1Vt s (39)

By combining (3.7) and (3.9) we deduce that
d A [
1Ol + pllu())lly < 1L/ (D)l + CP{IIé’*’ u(0)|l, +p"/ JO £ () - ds

t
1
Sl N OIS YOI H R EA T
Next we observe that
e uO)]l, = lle”nall, = Ve all, < leall, < C(t+ 1)

So, by setting p = k(¢ + 1)_l with some large positive integer k, and by multiply-
ing both sides of (3.10) by (z + 1)*, we obtain

L+ DM u)]) = €+ VIOl + (4D 4 (1))
+Cle+ 1) 3/2(J Ju ()\|§ds)l/4
<([ wutszas)™ (1)
and then

(), < llally(r+ D7 + e+ 1) J: (s + DI/ ()l ds

1

+C(t+ 1)* JO((S+ Dt (s + l)k—s/z +(s+ 1>k—l—1/4) ds

<C(t+ 1)+ @+ 1) 4 (e +1)7Y). (3.12)

Let By = min{o,%,1}. Then from (3.12) we have
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72 P. Han
u()||, < Co(t+ 1), (3.13)
By inserting (3.13) into (3.11), we get
d ey 1
(D u()],) < C+ DO+ + D77+ @+ )77
+ C(t+ 1)k,
Then,
[u(®)]l, < C((t+ 1)+ (14 1) 4 (e 1)), (3.14)
- . ﬁo .
Let g, = mm{ o011+ } Then (3.14) can be rewritten as
lu(t)|l, < Cr(z+ 1) (3.15)
By inserting (3.15) into (3.11) and after a direct calculation, we get
y g (3.15) (3.11) , we g
()|, < Co(r+ 1),

where f3, :min{ ,2,4+ }
By iterating the above arguments, we obtain for any n =0,1,2, ...

(), < Calt+ 1), (3.16)
where
—mind, 1L L1 B (11 B,
ﬂo_mln{a,2,4}, p = mm{ Ezl 2} ﬁn+1_mln{oz,2,4—|—2},
and forn=0,1,...

Cup1 = Ao+ BoC)2(1 =28,)""*  with 4y, By > 0 independent of n. (3.17)

Recall that v =u,, in the above arguments satisfies (3.2) and (3.4). By using
the convergence properties on J,, we can easily construct a weak solution u of
(1.1) satisfying (1.2). Moreover, from Lemma 3.1 we know that if 0 < « < } then
lim, . B, = o and 0 < 8, <3 for any n> 1. So, according to (3.17), the limit
lim,_,, C, is finite. By passing (3.16) to the limit as n — oo we infer that (1.6)
holds for 0 <o <1. If o> 1, then lim, .. 8, =1 and 0 <p, <1 for every
n> 1. So, for any given ¢ € (0 ) there exists a large number n, > 0 such that
B, >1—¢ and from (3.16) we get that
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()]s < Gy (t+1) P < G (24 1)1/

that is, (1.6) holds for « > % This completes the proof of Theorem 1.3. O

Remark. We cannot take ¢ = 0 in (1.6). Indeed, since the constant C, in (3.16)
satisfies C, > BoAé/ *(1 =28, ,)""* and by also taking Lemma 3.1 into account,
we immediately infer that C, — oo as n — oo in case o > % So, in case o > %we
cannot insure that |ju(z)||, < C(t+ 1)~'/* by means of passing (3.16) to the limit.
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