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Controllability results for cascade systems of m coupled
parabolic PDEs by one control force
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Abstract. In this paper we will analyze the controllability properties of a linear coupled
parabolic system of m equations when a unique distributed control is exerted on the
system. We will see that, when a cascade system is considered, we can prove a global Carle-
man inequality for the adjoint system which bounds the global integrals of the variable
j ¼ ðj1; . . . ; jmÞ

� in terms of a unique localized variable. As a consequence, we will obtain
the null controllability property for the system with one control force.
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1. Introduction

Let WHRN be a bounded connected open set with boundary qW of class C2. Let

oHW be a nonempty open subset and assume T > 0. All along this work we will

denote Q ¼ W� ð0;TÞ and S ¼ qW� ð0;TÞ. For mb 1 given, we consider the

parabolic linear system

qty1 � L1y1 þ
Pm

j¼1 B1j � ‘yj þ
Pm

j¼1 a1jyj ¼ v1o in Q ¼ W� ð0;TÞ;
qty2 � L2y2 þ

Pm
j¼1 B2j � ‘yj þ

Pm
j¼1 a2jyj ¼ 0 in Q;

..

.

qtym � Lmym þ
Pm

j¼1 Bmj � ‘yj þ
Pm

j¼1 amjyj ¼ 0 in Q;

yi ¼ 0 on S ¼ qW� ð0;TÞ; yiðx; 0Þ ¼ y0; iðxÞ in W; 1a iam;

8>>>>>>><
>>>>>>>:
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where aij ¼ aijðx; tÞ a LlðQÞ, Bij ¼ Bijðx; tÞ a LlðQÞN ð1a i; jamÞ, y0; i a
L2ðWÞ ð1a iamÞ and Lk is, for every 1a kam, the self-adjoint second order

operator

Lkyðx; tÞ ¼
XN
i; j¼1

qi
�
ak
ij ðx; tÞqjyðx; tÞ

�
ð1Þ

(qi ¼ q=qxi ), where

ak
ij a W 1;lðQÞ; ak

ij ðx; tÞ ¼ ak
ji ðx; tÞ a:e: in Q; 1a i; jaN; 1a kam; ð2Þ

and, for all k : 1a kam, the coe‰cients ak
ij satisfy

max
i; j;k

kak
ijkW 1;l ¼ ~MM0;

XN
i; j¼1

ak
ij ðx; tÞxixj b ~aa0jxj2; Ex a RN ; a:e: in Q; ð3Þ

for positive constants ~MM0 and ~aa0.

Equivalently, the previous system can be written as

qty� Lyþ B � ‘yþ Ay ¼ Dv1o in Q;

y ¼ 0 on S; yðx; 0Þ ¼ y0ðxÞ in W;

�
ð4Þ

where L is the matrix operator given by L ¼ diagðL1; . . . ;LmÞ, y ¼ ðyiÞ1aiam

is the state, 1o is the characteristic function of the nonempty set o and ‘y ¼
ð‘yiÞ1aiam, and where

y0 ¼ ðy0; iÞ1aiam a L2ðWÞm; Aðx; tÞ ¼
�
aijðx; tÞ

�
1ai; jam

a LlðQÞm
2

;

Bðx; tÞ ¼
�
Bijðx; tÞ

�
1ai; jam

a LlðQÞNm2

and DC e1 ¼ ð1; 0; . . . ; 0Þ�

8<
:

are given. Let us observe that, for each y0 a L2ðWÞm and v a L2ðQÞ, system (4)

admits a unique weak solution y a L2
�
0;T ;H 1

0 ðWÞm
�
BC0

�
½0;T �;L2ðWÞm

�
.

The main goal of this paper is to analyze the controllability properties of (4).

It will be said that (4) is null controllable at time T if for every y0 a L2ðWÞm there

exists a control v a L2ðQÞ such that the solution y of (4) satisfies

yið�;TÞ ¼ 0 in W; Ei : 1a iam: ð5Þ

When m ¼ 1 (one equation and one control force) the null controllability

of parabolic problems has been studied by several authors (see for instance [18],

[17], [4], [10], . . . ). We also point out [14] and [15] where the null controllability

of system (4) at time T was established for every T > 0, A a LlðQÞ, B a LlðQÞN
and oHW, using a global Carleman inequality for the solutions of the corre-

sponding adjoint problem.
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There are few results on null controllability of system (4) when m > 1 and most

of them are proved for m ¼ 2. In [19] and [5] the authors consider a nonlinear

system of two heat equations, one of them being forward and the other one back-

ward in time, and show the null controllability of this system with sublinear

nonlinearities ([19]) or slightly superlinear nonlinearities ([5]). In [1] and [2], the

authors give a null controllability result for a phase-field system and for reaction-

di¤usion systems (two nonlinear heat equations). The results in [1] and [2] have

been generalized in [12] (see also [11]) in two directions: on the one hand, there

are not restrictions on the dimension N, and on the other hand, the authors con-

sider nonlinearities which depend on the gradient of the state. Finally, in [8] the

authors prove a result of local exact controllability to the trajectories for the

Boussinesq system (N þ 1 equations) when N (or N � 1) distributed controls are

exerted on the system.

All previous works have a common point: they deal with cascade systems. In

this work we want to generalize these works to the case of a general cascade sys-

tem of m linear parabolic equations. To this end, we will suppose that A and B

have the structure

A ¼

a11 a12 a13 � � � a1m

a21 a22 a23 � � � a2m

0 a32 a33 � � � a3m

..

. ..
. . .

. . .
. ..

.

0 0 � � � am;m�1 amm

0
BBBBBB@

1
CCCCCCA
; B ¼

B11 B12 � � � B1m

0 B22 � � � B2m

..

. ..
. . .

. ..
.

0 0 � � � Bmm

0
BBBB@

1
CCCCA ð6Þ

with aij a LlðQÞ, Bij a LlðQÞN ð1a ia jamÞ and ai; i�1 a LlðQÞ ð2a iamÞ,
for an open set o0 Ho, satisfy

ai; i�1b a0 > 0 or �ai; i�1b a0 > 0 in o0 � ð0;TÞ; Ei : 2a iam: ð7Þ

In order to study the null controllability of system (4), we will consider the

corresponding adjoint problem which, under assumption (6) (cascade system),

has the form

�qtji � L1ji �
P i

j¼1½‘ � ðBjijjÞ � ajijj� ¼ �aiþ1; ijiþ1 in Q;

ð1a iam� 1Þ
..
.

�qtjm � Lmjm �
Pm

j¼1½‘ � ðBjmjjÞ � ajmjj� ¼ 0 in Q;

ji ¼ 0 on S; jiðx;TÞ ¼ j0; iðxÞ in W; 1a iam;

8>>>>>>><
>>>>>>>:

ð8Þ

where j0; i a L2ðWÞ ð1a iamÞ.
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It is well known that the null controllability of system (4) (with L2-controls) is

equivalent to the existence of a constant C0 > 0 such that the so-called observabil-

ity inequality

kjð�; 0Þk2L2ðWÞm aC0

ðð
o�ð0;TÞ

jj1ðx; tÞj
2
dx dt: ð9Þ

holds for every solution j ¼ ðj1; . . . ; jmÞ
� to (8). Let us observe that in (9) we are

estimating the L2-norm of jð�; 0Þ by means of the L2-norm of the first component

of j localized in o� ð0;TÞ. We will prove inequality (9) as a consequence of a

global Carleman inequality for the adjoint system (8). This inequality is estab-

lished in our first main result:

Theorem 1.1. Let us suppose that Lk, A a LlðQÞm
2

and B a LlðQÞNm2

are given

by (1) and (6) and satisfy (2), (3) and (7). Let M0 ¼ max2aiamkai; i�1kl. Then,

there exist a positive function a0 a C2ðWÞ (only depending on W and o0), two

positive constants C0 (only depending on W, o0, m, ~aa0, ~MM0, a0 and M0) and

s0 ¼ s0ðW;o0;m; ~aa0; ~MM0;M0Þ and lb 3 (only depending on m) such that, for every

j0 a L2ðQÞm, the solution j to (8) satisfies

Xm
i¼1

I
�
3ðmþ 1� iÞ; ji

�
aC0s

l

ðð
o0�ð0;TÞ

e�2sagðtÞ l jj1j
2; ð10Þ

Esb s0 ¼ s0½T þ T 2 þ T 2 maxiajðkaijk2=ð3ð j�iÞþ3Þ
l þ kBijk2=ð3ð j�iÞþ1Þ

l Þ�. In inequal-

ity (10), aðx; tÞ, gðtÞ and Iðd; zÞ are given by: aðx; tÞC a0ðxÞ=tðT � tÞ, gðtÞC�
tðT � tÞ

��1
and

Iðd; zÞC sd�2

ðð
Q

e�2sagðtÞd�2j‘zj2 þ sd
ðð

Q

e�2sagðtÞd jzj2:

We will prove Theorem 1.1 from the corresponding global Carleman inequal-

ity satisfied by the solutions to the heat equation with a right-hand side in the

space L2
�
0;T ;H�1ðWÞ

�
(see [15]). To prove Theorem 1.1 we will follow the

same argument given in [19] and [12] and which allows to show (10) when m ¼ 2.

As a consequence of Theorem 1.1 we will obtain the null controllability at time

T of system (5). This is our second main result:

Theorem 1.2. Under assumptions of Theorem 1.1, given y0 a L2ðWÞm, there exists
a control v a L2ðQÞ such that Supp vHo0 � ½0;T � and the corresponding solution y

to (4) satisfies (5). Moreover, the control v can be chosen such that

kvk2L2ðQÞa eCH
Xm
i¼1

ky0; ik2L2ðWÞ; ð11Þ
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with C a positive constant, only depending on W, o0, ~aa0, ~MM0, a0 and M0, and

HC 1þ T þ 1

T
þmax

iaj

�
kaijk2=ð3ð j�iÞþ3Þ

l þ kBijk2=ð3ð j�iÞþ1Þ
l þ Tðkaijkl þ kBijk2lÞ

�
:

Let us remark that, thanks to the cascade structure of the coupling matrices A

and B (see (6) and (7)), we can control the system (4) (m functions) by means of

one control force v a L2ðQÞ (exerted in the right-hand side of the first equation of

the system). For general complete matrices, this is not possible, in general. In-

deed, let us consider m ¼ 3, L1 ¼ L2 ¼ L3 ¼ D (which, evidently satisfy (2) and

(3)), B ¼ 0 and A a LðR3Þ a constant matrix given by

A ¼
0 0 0

1 2 0

1 1 1

0
B@

1
CA:

Let l1 > 0 be the first eigenvalue of �D in W with Dirichlet boundary conditions

and let f1 be the associated eigenfunction with kf1kL2ðWÞ ¼ 1. If we now consider

j0ðx; tÞ ¼ ð0;�1; 1Þ�f1ðxÞ a L2ðWÞm in ð8Þ, it is not di‰cult to see that the corre-

sponding solution to ð8Þ is given by jðx; tÞ ¼ ð0;�1; 1Þ�eðl1þ1Þðt�TÞf1ðxÞ which,

evidently, does not satisfy inequality ð10Þ. In fact, the observability inequality

ð9Þ is also false and therefore, system ð4Þ is not null controllable. The null con-

trollability problem of system ð4Þ for general coupling matrices A and B is nowa-

days widely open.

Another important point to be underlined is that in our controllability problem

the control is exerted on a little part o of the set W (distributed control). The con-

trollability properties of cascade systems like (4) can fail if boundary controls are

considered instead of distributed controls. In [7] the boundary controllability of a

cascade system of two parabolic equations is studied and it was found that even

the boundary approximate controllability of the system is not in general true. To

be precise, let us consider the controlled system (N ¼ 1, m ¼ 2)

qty� Lyþ Ay ¼ 0 in Q ¼ ð0; 1Þ � ð0;TÞ;
y ¼ Dv on f0g � ð0;TÞ; y ¼ 0 on f1g � ð0;TÞ;
yð�; 0Þ ¼ y0 in ð0; 1Þ;

8><
>:

where v a L2ð0;TÞ is the control,

Ly ¼ yxx 0

0 nyxx

� �
; A ¼ 0 0

1 0

� �
; D ¼ 1

0

� �

and n > 0 (which evidently satisfy (2), (3) and (7)). Then, in [7] and by means of a

simple counterexample, it is proved that this system is not approximately control-

lable if
ffiffiffi
n

p
a Qnf1g.
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The rest of the work is organized as follows. In Section 2 we will prove

the Carleman inequality stated in Theorem 1.1. Theorem 1.2 will be proved in

Section 3. Finally, we will devote Section 4 to give some remarks and additional

results.

2. The global Carleman inequality. Proof of Theorem 1.1

We will devote this section to prove Theorem 1.1. To this end, we will suppose

that the coupling matrices A a LlðQÞm
2

and B a LlðQÞNm2

are given by (6) and

satisfy (7). The basic tool we will use is a global Carleman inequality satisfied by

the solutions to

�qtz� L0z ¼ F in Q;

z ¼ 0 on S; zðx;TÞ ¼ z0ðxÞ in W;

�
ð12Þ

with z0 a L2ðWÞ and F ¼ F0 þ
PN

i¼1
qFi

qxi
with Fi a L2ðQÞ, i ¼ 0; 1; . . . ;N, and L0 is

given by

L0yðx; tÞ ¼
XN
i; j¼1

qi
�
a0ijðx; tÞqjyðx; tÞ

�

where the coe‰cients a0ij a W 1;lðQÞ ð1a i; jaNÞ satisfy a0ijðx; tÞ ¼ a0jiðx; tÞ a.e.

in Q and

max
i; j

ka0ijkW 1;l ¼ M̂M0;
XN
i; j¼1

a0ijðx; tÞxixj b âa0jxj2; Ex a RN ; a:e: in Q;

for positive constants âa0 and M̂M0. One has:

Lemma 2.1. Let BHW be a nonempty open subset and d a R. Then, there exist a

function b0 a C2ðWÞ (only depending on W and B) and two positive constants ~CC0 and

~ss0 (which only depend on W, B, âa0, M̂M0 and d) such that, for every z0 a L2ðWÞ, the
solution z to (12) satisfies

sd�2

ðð
Q

e�2sbgðtÞd�2j‘zj2 þ sd
ðð

Q

e�2sbgðtÞd jzj2

a ~CC0

�
LBðd; zÞ þ sd�3

ðð
Q

e�2sbgðtÞd�3jF0j2

þ sd�1
XN
i¼1

ðð
Q

e�2sbgðtÞd�1jFij2
�
; ð13Þ
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for all sb~ss0 ¼ ~ss0ðT þ T 2Þ. In (13), LBðd; zÞ and the functions b and g are given

by

LBðd; zÞC sd
ðð

B�ð0;TÞ
e�2sagðtÞd jzj2; bðx; tÞ ¼ b0ðxÞ

tðT � tÞ ; ðx; tÞ a Q;

and gðtÞ ¼
�
tðT � tÞ

��1
, t a ð0;TÞ.

The proof of this result can be found in [15] although the authors do not

specify the way the constant ~ss0 depends on T . This explicit dependence can be

obtained arguing as in [9] (also see [6]).

Proof of Theorem 1.1. Given o0Ho, we choose o1 HHo0. Let a0 a C2ðWÞ be
the function provided by Lemma 2.1 and associated to W and BCo1, and let

aðx; tÞ the function given by aðx; tÞ ¼ a0ðxÞ=tðT � tÞ. We will do the proof in

two steps:

Step 1. Let j ¼ ðj1; . . . ; jmÞ
� be the solution to (8) associated to j0 a L2ðWÞm.

We begin applying inequality (13) with B ¼ o1 to each function ji ð1a iamÞ
with L0CLi, d ¼ 3ðmþ 1� iÞ and

F C
Xi

j¼1

½‘ � ðBjijjÞ � ajijj� � aiþ1; ijiþ1;

if 1a iam� 1, and F C
Pm

j¼1½‘ � ðBjmjjÞ � ajmjj�, for i ¼ m, obtaining

I
�
3ðmþ 1� iÞ; ji

�
a ĈC0

�
Lo1

�
3ðmþ 1� iÞ; ji

�
þM0I

�
3ðm� iÞ; jiþ1

�
þ
Xi

j¼1

s3ðm�iÞkajik2l
ðð

Q

e�2sagðtÞ3ðm�iÞjjjj
2

þ
Xi

j¼1

s3ðm�iÞþ2kBjik2l
ðð

Q

e�2sagðtÞ3ðm�iÞþ2jjjj
2
�
;

for every sb ŝs0 ¼ ŝs0ðT þ T 2Þ, with ĈC0 and ŝs0 two positive constant only depend-

ing on W, o1, ~aa0, ~MM0 (and m) (in the previous inequality we have taken jiþ1C 0

when i ¼ m). Now, it is not di‰cult to see that, for a new constant C (depending

on W, o1, ~aa0, ~MM0 and M0), one has
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Xm
i¼1

I
�
3ðmþ 1� iÞ; ji

�
aC

�Xm
i¼1

Lo1

�
3ðmþ 1� iÞ; ji

�

þ
Xm
i¼1

Xi

j¼1

s3ðm�iÞkajik2l
ðð

Q

e�2sagðtÞ3ðm�iÞjjj j
2

þ
Xm
i¼1

Xi

j¼1

s3ðm�iÞþ2kBjik2l
ðð

Q

e�2sagðtÞ3ðm�iÞþ2jjjj
2
�
;

Esb ŝs0. Finally, we can get rid of the two last sums in the previous inequality if

we take into account that tðT � tÞaT 2=4 in ð0;TÞ and we take

sb s0 ¼ s0
�
T þ T 2 þ T 2 max

iaj
ðkaijk2=ð3ð j�iÞþ3Þ

l þ kBijk2=ð3ð j�iÞþ1Þ
l Þ

�
; ð14Þ

with s0 ¼ s0ðW;o0; ~aa0; ~MM0;M0Þ > 0, obtaining, for a positive constants C1 ¼
C1ðW;o0; ~aa0; ~MM0;M0Þ,

Xm
i¼1

I
�
3ðmþ 1� iÞ; ji

�
aC1

�Xm
i¼1

Lo1

�
3ðmþ 1� iÞ; ji

��
; Esb s0: ð15Þ

Step 2. We will see that, thanks to assumptions (6) and (7), we can eliminate

in (15) the local terms Lo1

�
3ðmþ 1� iÞ; ji

�
for 2a iam. In order to carry this

process out, we will need the following result:

Lemma 2.2. Under assumptions of Theorem 1.1 and given l a N, e > 0, k a
f2; . . . ;mg and two open sets O0 and O1 such that o1HO1 HHO0 Ho0, there exist

a positive constant Ck (only depending on W, O0, O1, ~aa0, ~MM0, a0 and M0) and lkj a N,

1a ja k � 1 (only depending on l, m, k and j), such that if j is the solution to (8)

associated to j0 a L2ðQÞm and sb s0, one has

LO1
ðl; jkÞa e

	
I
�
3ðmþ 1� kÞ; jk

�
þI

�
3ðm� kÞ; jkþ1

�

þ Ck 1þ 1

e

� �Xk�1

j¼1

LO0
ðlkj; jjÞ: ð16Þ

(In this inequality we have taken jkþ1C 0 when k ¼ m).

We will finish the proof of Theorem 1.1 showing that it is an easy consequence

of Lemma 2.2. To this end, we consider open sets ~OOi Ho0, with 2a iam, such

that o1HH ~OOm HH ~OOm�1 HH � � �HH ~OO2 Ho0 and we begin by applying formula

(16) for O1 ¼ o1, O0 ¼ ~OOm, k ¼ m, l ¼ 3 and e ¼ 1=2C1 (with C1 the constant ap-

pearing in (15)). Thus, from (15), we obtain
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Xm
i¼1

I
�
3ðmþ 1� iÞ; ji

�
a ~CCm

�Xm�1

i¼1

L~OOm
ðlmi; jiÞ

�
ð17Þ

for all sb s0 with ~CCm a new positive constant only depending on W, o1, ~OOm,

~aa0, ~MM0, a0 and M0. Observe that in (17) we have eliminated in the right-hand

side the term that depends on jm. We can go on applying (16) for O1 ¼ ~OOm,

O0 ¼ ~OOm�1, k ¼ m� 1, l ¼ lm;m�1 and e ¼ 1=2 ~CCm and eliminate in (17) the

local term L~OOm
ðlm;m�1; jm�1Þ. By (a finite) iteration of this argument we obtain

(10). r

Proof of Lemma 2.2. For the proof of this result, we will reason out as in [19] and

[12]. All along the proof, C will be a generic constant that may depend on W, O0,

O1, ~aa0, ~MM0, a0 and M0, and also we will assume that s satisfies sb s0, with s0 given

by (14). In particular, sbCðT þ T 2Þ and then, for m; n a Z, nam, and for every

ðx; tÞ a Q one has

½sgðtÞ�naC½sgðtÞ�m; j‘½sne�2sagðtÞn�jaCsnþ1e�2sagðtÞnþ1;

jqt½sne�2sagðtÞn�j þ
PN

i; jb1 jq
2
ij ½sne�2sagðtÞn�jaCsnþ2e�2sagðtÞnþ2:

(
ð18Þ

Given o1 HO1 HHO0 Ho0, we consider x0 a ClðRNÞ such that 0a x0a 1

in RN , x0C 1 in O1, Supp x0 HO0 and

Dx0

x
1=2
0

a LlðWÞ and
‘x0

x
1=2
0

a LlðWÞN : ð19Þ

Let us consider k a f2; . . . ;mg. The coe‰cient ak;k�1 satisfies assumption (7)

and, for simplicity, let us assume ak;k�1b a0 in o0 � ð0;TÞ. We fix l a N and take

u ¼ sle�2sagðtÞ l . We multiply the equation satisfied by jk�1 by ux0jk and integrate

in Q. We get,

a0LO1
ðl; jkÞa ~LLðl; jkÞ ¼

ðT

0

3qtjk�1 þ Lk�1jk�1; ux0jk4 dt

�
Xk�1

j¼1

ðð
Q

ux0jkaj;k�1jj þ
Xk�1

j¼1

ðT

0

3‘ � ðBj;k�1jjÞ; ux0jk4 dt

¼
X4

n¼1

Kn; ð20Þ

where ~LLðl; jkÞ ¼ sl
Ð Ð

Q
e�2sagðtÞ lx0ak;k�1jjkj

2 and by means of 3� ; �4 we are denot-

ing the duality product between H�1ðWÞ and H 1
0 ðWÞ. Integrating by parts with

respect to t and having in mind the equation satisfied by jk (see (8)), we get

99Controllability for parabolic cascade systems

(AutoPDF V7 28/1/10 12:49) EMS (170�240mm) Tmath J-2232 PMS, 67:1 (idp) PMU:(KN/W)8/1/2010 AC1: WSL 22/01/2010 pp. 91–113 2232_67-1_05 (p. 99)



K1 ¼
ðT

0

3qtjk�1; ux0jk4 ¼ �
ðð

Q

utx0jkjk�1 �
ðT

0

3qtjk; ux0jk�14

¼ �
ðð

Q

utx0jkjk�1 þ
ðT

0

D
Lkjk þ

Xk
j¼1

�
‘ � ðBjkjjÞ � ajkjj

�
; ux0jk�1

E

�
ðð

Q

ux0jk�1akþ1;kjkþ1 ¼
X5

n¼1

K
ðnÞ
1 :

Let us remark that, when k ¼ m, in the previous equality the last term K
ð5Þ
1 does

not appear. Taking into account (18) and (7), if sbCðT þ T 2Þ, we obtain

jK ð1Þ
1 j ¼

��� ðð
Q

utx0jkjk�1

���aCslþ2

ðð
Q

e�2sagðtÞ lþ2x0jjkj jjk�1j

a d~LLðl; jkÞ þ
C

d
slþ4

ðð
Q

e�2sagðtÞ lþ4
a�1
k;k�1x0jjk�1j

2

a d~LLðl; jkÞ þ
C

d
slþ4

ðð
Q

e�2sagðtÞ lþ4x0jjk�1j
2;

with d > 0 to be chosen.

Observe that, integrating by parts in K
ð2Þ
1 , we get

K
ð2Þ
1 ¼ �

XN
i; jb1

� ðð
Q

jk�1x0a
k
ijqiuqjjk þ

ðð
Q

jk�1ua
k
ijqix0qjjk

þ
ðð

Q

ux0a
k
ijqijk�1qjjk

�
:

From (18) and (19), we also have

jK ð2Þ
1 jaCslþ1

ðð
Q

e�2sagðtÞ lþ1x0jjk�1j j‘jkj

þ Csl
ðð

Q

e�2sagðtÞ lx1=20 jjk�1j j‘jkj þ
ðð

Q

ux0j‘jk�1j j‘jkj

a
e

12
s3ðm�kÞþ1

ðð
Q

e�2sagðtÞ3ðm�kÞþ1j‘jkj
2

þ C

e

�
snþ2

ðð
Q

e�2sagðtÞnþ2x0jjk�1j
2 þ sn

ðð
Q

e�2sagðtÞnx0j‘jk�1j
2
�
; ð21Þ
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with n ¼ 2l � 1� 3ðm� kÞ. For K
ð3Þ
1 we get

K
ð3Þ
1 ¼

Xk�1

j¼1

ðT

0

3‘ � ðBjkjjÞ; ux0jk�14 dtþ
ðT

0

3‘ � ðBkkjkÞ; ux0jk�14 dt

¼ �
Xk�1

j¼1

ðð
Q

½‘ðux0Þ � Bjkjk�1jj þ ux0Bjk � ‘jk�1jj�

�
ðð

Q

‘ðux0Þ � Bkkjk�1jk �
ðð

Q

ux0Bkk � ‘jk�1jk

¼ M1 þM2 þM3:

Using (7), (18), (19) and taking into account that, if sbCkBkkk2lT 2, then,

kBkkk2laCsgðtÞ, it is not di‰cult to see that, for d > 0, one has

jM2 þM3ja d~LLðl; jkÞ þ
C

d

�
slþ3

ðð
O0�ð0;TÞ

e�2sagðtÞ lþ3jjk�1j
2

þ slþ1

ðð
Q

e�2sagðtÞ lþ1x0j‘jk�1j
2
�
:

Now, using again (19) and (18), we get (n ¼ 2l � 1� 3ðm� kÞ)

jM1jaC
�
sn

ðð
Q

e�2sagðtÞnx0j‘jk�1j
2 þ snþ2

ðð
O0�ð0;TÞ

e�2sagðtÞnþ2jjk�1j
2
�

þ 1

2

Xk�1

j¼1

s3ðm�kÞþ1

ðð
Q

e�2sagðtÞ3ðm�kÞþ1x0jBjkj2jjjj
2:

Since sbCT 2kBjkk2=ð3ðk�jÞþ1Þ
l , we also have kBjkk2laCðs=T 2Þ3ðk�jÞþ1

a

C
�
sgðtÞ

�3ðk�jÞþ1
. This implies that

jM1jaC
�
snþ2

ðð
O0�ð0;TÞ

e�2sagðtÞnþ2jjk�1j
2 þ sn

ðð
Q

e�2sagðtÞnx0j‘jk�1j
2
�

þ C
Xk�1

j¼1

s3ðm�jÞþ2

ðð
Q

e�2sagðtÞ3ðm�jÞþ2x0jjjj
2:

Summarizing,
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jK ð3Þ
1 ja d~LLðl; jkÞ

þ C

d

�
slþ3

ðð
O0�ð0;TÞ

e�2sagðtÞ lþ3jjk�1j
2 þ slþ1

ðð
Q

e�2sagðtÞ lþ1x0j‘jk�1j
2
�

þ C
�
snþ2

ðð
O0�ð0;TÞ

e�2sagðtÞnþ2jjk�1j
2 þ sn

ðð
Q

e�2sagðtÞnx0j‘jk�1j
2
�

þ C
Xk�1

j¼1

s3ðm�jÞþ2

ðð
Q

e�2sagðtÞ3ðm�jÞþ2x0jjjj
2:

Now, reasoning as we did with K
ð3Þ
1 , it is not di‰cult to deduce

K
ð4Þ
1 ¼ �

Xk�1

j¼1

ðð
Q

ux0jk�1ajkjj �
ðð

Q

ux0jk�1akkjk

aCsnþ2

ðð
Q

e�2sagðtÞnþ2x0jjk�1j
2

þ 1

2

Xk�1

j¼1

s3ðm�kÞ�1

ðð
Q

e�2sagðtÞ3ðm�kÞ�1jajkj2x0jjjj
2

þ d~LLðl; jkÞ þ
C

d
sl
ðð

Q

e�2sagðtÞ l jakkj2x0jjk�1j
2;

with d > 0. Again, kajkk2laC
�
sgðtÞ

�3ðk�jÞþ3
for every sbCT 2kajik2=ð3ðk�jÞþ3Þ

l .

This implies that

jK ð4Þ
1 jaCsnþ2

ðð
Q

e�2sagðtÞnþ2x0jjk�1j
2

þ C
Xk�1

j¼1

s3ðm�jÞþ2

ðð
Q

e�2sagðtÞ3ðm�jÞþ2x0jjjj
2 þ d~LLðl; jkÞ

þ C

d
slþ3

ðð
Q

e�2sagðtÞ lþ3x0jjk�1j
2:

As said above, if k ¼ m then K
ð5Þ
1 C 0. If kam� 1, we have,

K
ð5Þ
1 ¼ �

ðð
Q

ux0jk�1akþ1;kjkþ1a
e

12
s3ðm�kÞ

ðð
Q

e�2sagðtÞ3ðm�kÞjjkþ1j
2

þ 3M 2

e
snþ1

ðð
Q

e�2sagðtÞnþ1x0jjk�1j
2:
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Altogether we get

jK1ja 3d~LLðl; jkÞ þ
e

12

	
I
�
3ðmþ 1� kÞ; jk

�
þI

�
3ðm� kÞ; jkþ1

�

þ Cðd; eÞsJ

ðð
O0�ð0;TÞ

e�2sagðtÞJ jjk�1j
2

þ CðeÞsR
ðð

Q

e�2sagðtÞRx0j‘jk�1j
2

þ C
Xk�2

j¼1

s3ðm�jÞþ2

ðð
Q

e�2sagðtÞ3ðm�jÞþ2x0jjjj
2 ð22Þ

with J ¼ JðkÞ ¼ maxfl þ 4; nþ 2; 3ðm� kÞ þ 5g, R ¼ maxfn; l þ 1g and n ¼
2l � 1� 3ðm� kÞ. Let us remark that in inequality (22) the positive constants

Cðd; eÞ and CðeÞ are given by Cðd; eÞ ¼ C 1þ 1
d
þ 1

e

� �
and CðeÞ ¼ C 1þ 1

e

� �
.

Going back to the term K2 and integrating by parts, we get

K2 ¼ �
XN
i; j¼1

ðð
Q

�
jka

k�1
ij qiðux0Þqjjk�1 þ ux0a

k�1
ij qijkqjjk�1

�

On the other hand, if sbCðT þ T 2Þ, (see (18) and (19)),

jqiðux0Þja ujqix0j þ Cslþ1e�2sagðtÞ lþ1jx0aCslþ1e�2sagðtÞ lþ1x
1=2
0 :

Therefore

jK2ja d~LLðl; jkÞ þ
C

d
slþ2

ðð
O0�ð0;TÞ

e�2sagðtÞ lþ2jjk�1j
2

þ e

12
s3ðm�kÞþ1

ðð
Q

e�2sagðtÞ3ðm�kÞþ1j‘jkj
2

þ C

e
sn

ðð
Q

e�2sagðtÞnx0j‘jk�1j
2: ð23Þ

For the term K3 we obtain,

jK3ja d~LLðl; jkÞ þ
C

d

Xk�1

j¼1

sl
ðð

Q

e�2sagðtÞ l jaj;k�1j2x0jjjj
2;

with d > 0. Again, if sbCT 2kaj;k�1k2=ð3ðk�jÞÞ
l , we can deduce

jK3ja d~LLðl; jkÞ þ
C

d

Xk�1

j¼1

slþ3ðk�jÞ
ðð

Q

e�2sagðtÞ lþ3ðk�jÞx0jjjj
2: ð24Þ
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We now have that

K4 ¼
Xk�1

j¼1

ðT

0

3‘ � ðBj;k�1jjÞ; ux0jk4 dt

¼ �
Xk�1

j¼1

� ðð
Q

‘ðux0Þ � Bj;k�1jkjj þ
ðð

Q

ux0‘jk � Bj;k�1jj

�

Proceeding as before and having in mind that sbCT 2kBj;k�1k2=ð3ðk�jÞ�2Þ
l , we

obtain that

jK4ja d~LLðl; jkÞ þ
C

d

Xk�1

j¼1

slþ3ðk�jÞ
ðð

O0�ð0;TÞ
e�2sagðtÞ lþ3ðk�jÞjjjj

2

þ e

12
s3ðm�kÞþ1

ðð
Q

e�2sagðtÞ3ðm�kÞþ1j‘jkj
2

þ C

e

Xk�1

j¼1

s2l�3ðm�2kþjþ1Þ
ðð

Q

e�2sagðtÞ2l�3ðm�2kþjþ1Þx0jjj j
2; ð25Þ

with d > 0 to be chosen.

Coming back to (20), putting together inequalities (22), (23), (24) and (25), and

choosing the d ¼ 1=12, we obtain

1

2
~LLðl; jkÞa

e

4

	
I
�
3ðmþ 1� kÞ; jk

�
þI

�
3ðm� kÞ; jkþ1

�

þ CðeÞ

�
sJ

ðð
O0�ð0;TÞ

e�2sagðtÞJ jjk�1j
2

þ sR
ðð

Q

e�2sagðtÞRx0j‘jk�1j
2

þ
Xk�2

j¼1

sRjk

ðð
O0�ð0;TÞ

e�2sagðtÞRjk jjjj
2
�
; ð26Þ

with k a f2; . . . ;mg, CðeÞ ¼ Cð1þ 1=eÞ and

J ¼ maxfl þ 4; 2l � 3ðm� kÞ þ 1; 3ðm� kÞ þ 5g;
R ¼ maxfl þ 1; 2l � 3ðm� kÞ � 1g;

Rjk ¼ maxf3ðm� jÞ þ 2; l þ 3ðk � jÞ; 2l � 3ðm� 2k þ j þ 1Þg:

104 M. González-Burgos and L. de Teresa

(AutoPDF V7 28/1/10 12:49) EMS (170�240mm) Tmath J-2232 PMS, 67:1 (idp) PMU:(KN/W)8/1/2010 AC1: WSL 22/01/2010 pp. 91–113 2232_67-1_05 (p. 104)



Now we are interested in eliminating the term sR
Ð Ð

Q
e�2sagðtÞRx0j‘jk�1j

2 in

inequality (26). So as to do that, we define ~uu ¼ sRe�2sagðtÞR and we will use the

equation satisfied by jk�1:

�Lk�1jk�1 ¼ �ak;k�1jk þ qtjk�1 �
Xk�1

j¼1

aj;k�1jj þ
Xk�1

j¼1

‘ � ðBj;k�1jjÞ

Multiplying this equation by ~uux0jk�1 and integrating by parts in Q we get

XN
i; j¼1

ðð
Q

~uux0a
k�1
ij qijk�1qijk�1

¼ �
XN
i; j¼1

ðð
Q

ak�1
ij qið~uux0Þjk�1qjjk�1 �

ðð
Q

~uux0jk�1ak;k�1jk

þ
ðT

0

D
qtjk�1 �

Xk�1

j¼1

aj;k�1jj þ
Xk�1

j¼1

‘ � ðBj;k�1jjÞ; ~uux0jk�1

E
dt

¼
X5

n¼1

Hn:

Next we are going to estimate each term Hi. Using (18) and (19) it is easy to

deduce that, if sbCðT þ T 2Þ, jqið~uux0ÞjaCsRþ1e�2sagðtÞRþ1x
1=2
0 and

jH1jaCsRþ1

ðð
Q

e�2sagðtÞRþ1x
1=2
0 jjk�1j j‘jk�1j

a
~aa0
4

ðð
Q

~uux0j‘jk�1j
2 þ CsRþ2

ðð
O0�ð0;TÞ

e�2sagðtÞRþ2jjk�1j
2: ð27Þ

If we take ~dd > 0, we also have:

jH2ja ~dd~LLðl; jkÞ þ
C

~dd
s2R�l

ðð
Q

e�2sagðtÞ2R�lx0jjk�1j
2: ð28Þ

Proceeding as before and using (18), we get

jH3j ¼
1

2

��� ðð
Q

~uutx0jjk�1j
2
���aCsRþ2

ðð
Q

e�2sagðtÞRþ2x0jjk�1j
2: ð29Þ
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In order to estimate H4 we recall that if sbCT 2kaj;k�1k2=ð3ðk�1�jÞþ3Þ
l then

kaj;k�1k2laC
�
sgðtÞ

�3ðk�jÞ
. Thus, it is no di‰cult to check

ðð
Q

j~uux0ak�1;k�1j
2
k�1jaC

ðð
Q

e�2sa½sgðtÞ�Rþ3=2
x0jjk�1j

2;

ðð
Q

j~uux0aj;k�1jjjk�1jaC

ðð
Q

e�2sa½sgðtÞ�Rþ3=2x0jjk�1j
2

þ C

ðð
Q

e�2sa½sgðtÞ�R�3=2þ3ðk�jÞx0jjjj
2:

Therefore

jH4jaCsR�3=2þ3ðk�jÞ
Xk�1

j¼1

ðð
Q

e�2sagðtÞR�3=2þ3ðk�jÞx0jjjj
2: ð30Þ

Integrating by parts in H5 and taking into account assumption (18) and (19),

and that kBj;k�1k2laC s
T 2

� �3ðk�jÞ�2

, we can reason as before and obtain

jH5jaC
Xk�1

j¼1

sR�3=2þ3ðk�jÞ
ðð

O0�ð0;TÞ
e�2sagðtÞR�3=2þ3ðk�jÞjjj j

2

þ
Xk�1

j¼1

sRþ3ðk�jÞ�2

ðð
Q

e�2sagðtÞRþ3ðk�jÞ�2
x0jjjj

2 þ ~aa0
4

ðð
Q

~uux0j‘jk�1j
2: ð31Þ

Summarizing, taking into account (3), adding (27)–(31) and using again (18), we

deduce:

~aa0
2

ðð
Q

~uux0j‘jk�1j
2

aCsRþ2

ðð
O0�ð0;TÞ

e�2sagðtÞRþ2jjk�1j
2

þ ~dd~LLðl; jkÞ þ
C

~dd
s2R�l

ðð
Q

e�2sagðtÞ2R�l
x0jjk�1j

2

þ C
Xk�1

j¼1

sR�3=2þ3ðk�jÞ
ðð

O0�ð0;TÞ
e�2sagðtÞR�3=2þ3ðk�jÞjjjj

2: ð32Þ
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Finally, if we now choose ~dd ¼ ~aa0=4CðeÞ, with CðeÞ the constant appearing

in (26), i.e., ~dd ¼ ~aa0e
4Cðeþ1Þ , and we combine (32) with (26), we obtain the proof of

the result. r

3. Null controllability of system (4). Proof of Theorem 1.2

We will devote this section to show Theorem 1.2. As said above, it is well known

that Theorem 1.2 is equivalent to the observability inequality (9) satisfied by the

solutions j of the adjoint system (8) and, in fact, the constant eCH appearing in

(11) coincides with C0, the constant appearing in (9), (see for instance [9]). We

establish this observability inequality in the next result:

Proposition 3.1. Under the assumptions of Theorem 1.1, there exists a constant

C > 0 (which only depends on W, o0, ~aa0, ~MM0, a0 and M0) such that, for every

j0 a L2ðWÞm, the corresponding solution j to (8) satisfies

kjð�; 0Þk2L2ðWÞa eCH

ðð
o0�ð0;TÞ

jj1ðx; tÞj
2
dx dt; ð33Þ

where H is given in Theorem 1.2.

Proof. The proof of this result is standard (see e.g., [9], [6] and [12]) and it is a

consequence of (10) and the energy inequality satisfied by the solutions to (8):

kjð�; t1Þk2L2ðWÞm a eC½1þmaxia jðkaijklþkBijk2lÞ�ðt2�t1Þkjð�; t2Þk2L2ðWÞm ;

where 0a t1a t2aT and C > 0 is a new constant which depends on m, ~aa0 and

M0 ¼ max2aiamkai; i�1kl.

If j is a solution to (8), from the energy inequality, we deduce

Xm
i¼1

kjið�; 0Þk
2
L2ðWÞa

2

T
eC½1þmaxia jðkaijklþkBijk2lÞ�T

Xm
i¼1

ð3T=4

T=4

ð
W

jjij
2: ð34Þ

On the other hand, taking into account (10) and (18), one has

s3
Xm
i¼1

ð3T=4

T=4

ð
W

e�2sagðtÞ3jjij
2
aCsl

ðð
o0�ð0;TÞ

e�2sagðtÞ l jj1j
2;

for a new constant C ¼ CðW;o0; a0;MÞ > 0 and for every sb s0. Secondly, it is

not di‰cult to see
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s3e�2sagðtÞ3b 212

33
s3T�6 exp

�25M0s

3T 2

� �

b
1

33
2l

m0

� �3
exp

�25M0s

3T 2

� �
; Eðx; tÞ a W� ðT=4; 3T=4Þ;

sle�2sagðtÞ l a sl22lT�2l exp
�23m0s

T 2

� �
a

l

2em0

� �l
; Eðx; tÞ a Q;

if we choose sb ðl=8m0ÞT 2, with m0 ¼ min
W
a0ðxÞ > 0 and M0 ¼ max

W
a0ðxÞ.

Now, combining these three last inequalities, we readily deduce

Xm
i¼1

ð3T=4

T=4

ð
W

jjij
2
aCeCs=T

2

ðð
o0�ð0;TÞ

jj1j
2

for every sb s1 ¼ s1½T þ T 2 þ T 2 maxiajðkaijk2=ð3ð j�iÞþ3Þ
l þ kBijk2=ð3ð j�iÞþ1Þ

l Þ� and
s1 ¼ maxfs0; ðl=8m0Þg. Finally, by setting s ¼ s1 in the previous estimate and by

recalling (34), we end the proof. r

4. Further results and comments

We will finalize this work doing some remarks and establishing some additional

results.

1. It is possible to prove the null controllability of system (4) at time T if we

replace (7) with the hypothesis

ai; i�1b a0 > 0 or �ai; i�1b a0 > 0 in o0 � ðT0;T1Þ; Ei : 2a iam; ð35Þ

with 0aT0 < T1aT . Indeed, let ŷy a C0
�
½0;T �;L2ðWÞm

�
be the solution to

(4) for vC 0. Hypothesis (35) allows us to prove the existence of a control

v̂v a L2
�
W� ðT0;T1Þ

�
which drives system (4) (posed in the cylinder W� ðT0;T1Þ)

from the initial data ŷyð�;T0Þ (at time T0) to the rest at time T1. Now, if we take

vC 0 in the set ð0;T0ÞA ðT1;TÞ and vC v̂v on the interval ðT0;T1Þ, we have that

the solution y to (4) corresponding to the control v a L2ðQÞ satisfies (5). More-

over, the control v can be chosen such that (11) holds with H given by

HC 1þ T1 þ
1

T1 � T0

þmax
iaj

�
kaijk2=ð3ð j�iÞþ3Þ

l þ kBijk2=ð3ð j�iÞþ1Þ
l þ T1ðkaijkl þ kBijk2lÞ

�
:
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On the other hand, let us assume that A and B are complete matrices which

satisfy (35) and

aij C 0 in o0 � ðT0;T1Þ; Ei; j : ib j þ 2;

Bij C 0 in o0 � ðT0;T1Þ; Ei; j : ib j þ 1;

for a nonempty open subset o0 Ho and T0;T1 a ½0;T � with T0 < T1. Then, it is

also not di‰cult to check that Theorem 1.2 is still valid and Theorem 1.1 holds

with

Xm
i¼1

~II
�
3ðmþ 1� iÞ; ji

�
aC0s

l

ðð
o0�ðT0;T1Þ

e�2s~aa~ggðtÞ l jj1j
2;

instead of (10). In the previous inequality ~aaðx; tÞ, ~ggðtÞ and ~IIðd; zÞ are given by:
~aaðx; tÞ ¼ a0ðxÞ=ðt� T0ÞðT1 � tÞ, ~ggðtÞ ¼

�
ðt� T0ÞðT1 � tÞ

��1
and

~IIðd; zÞC sd�2

ðð
W�ðT0;T1Þ

e�2s~aa~ggðtÞd�2j‘zj2 þ sd
ðð

W�ðT0;T1Þ
e�2s~aa~ggðtÞd jzj2:

2. As a direct consequence of the Carleman inequality (10) we obtain the unique

continuation property:

Under assumptions of Theorem 1.1, if j a C0
�
½0;T �;L2ðWÞm

�
is solution to

(8) and satisfies j1ðx; tÞ ¼ 0 in o0 � ð0;TÞ, then jC 0 in Q.

It is well known that this unique continuation property for the adjoint problem (8)

implies the approximate controllability property at time T of system (4).

When m ¼ 2 and L1 ¼ L2, i.e., for two equations, it is proved in [16], that

the unique continuation property for the adjoint problem (8) is valid even when

a21 ¼ 0 in o but a21A 0 in ~oo an open subset of W. The problem remains open

for L1AL2.

3. Theorems 1.1 and 1.2 can readily be generalized to the case where v ¼
ðv1; v2; . . . ; vrÞ� (r control forces, rb 1) and the coupling and control matrices A,

B and D satisfies: B a LlðQÞNm2

is as in (6), A a LlðQÞm
2

is given by

A ¼

A11 A12 � � � A1r

0 A22 � � � A2r

..

. ..
. . .

. ..
.

0 0 � � � Arr

0
BBBB@

1
CCCCA; Aii ¼

ai
11 ai

12 ai
13 � � � ai

1; si

ai
21 a22 ai

23 � � � ai
2; si

0 ai
32 ai

33 � � � ai
3; si

..

. ..
. . .

. . .
. ..

.

0 0 � � � ai
si ; si�1 ai

si ; si

0
BBBBBBBB@

1
CCCCCCCCA
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with si a N,
Pr

i¼1 si ¼ m, ai
j; j�1 satisfying (7) for every ði; jÞ ð1a ia r; 2a ja siÞ,

and D a LðRr;RmÞ such that D ¼ ðeS1
jeS2

j . . . jeSr
Þ with Si ¼ 1þ

P i�1
j¼1 sj , 1a

ia r (ej is the j-th element of the canonical basis of Rm). Observe that matrix A

do not satisfy (7) for i ¼ S2; . . . ;Sr and even so, under the previous assumptions, a

null controllability result for system (4) can be proved if we add a control in each

equation where (7) does not hold. Indeed, let j ¼ ðj1; j2; . . . ; jmÞ
� be a solution

to the adjoint problem (8). Thanks to the structure of the coupling matrices A and

B, we can apply Lemma 2.2 to jk, for every kASi with 1a ia r, and obtain,

from (15),

Xm
i¼1

I
�
3ðmþ 1� iÞ; ji

�
aC0

Xr

i¼1

sli
ðð

o0�ð0;TÞ
e�2sagðtÞ li jjSi

j2; Esb s0;

with s0 as in Theorem 1.1, C0 ¼ C0ðW;o0; ~aa0; ~MM0; a0;M0Þ > 0 and li b 3

ð1a ia rÞ. Theorem 1.2 is a consequence of this last inequality.

4. Following the ideas of [4] (see Theorem 1.3.3, p. 156), from the Carleman

inequality (10) we can prove the null controllability of system (4) with controls in

LlðQÞ. To be precise, it is possible to show

Theorem 4.1. Under hypotheses of Theorem 1.1, there exists a control v a LlðQÞ
satisfying

kvk2la eCH
Xm
i¼1

ky0; ik2L2ðWÞ;

such that Supp vHo0 � ½0;T � and the corresponding solution y to (4) satisfies (5).

In this inequality, C is a positive constant only depending on W, o0, ~aa0, ~MM0, a0 and

M0, and H is as in Theorem 1.2.

Sketch of the proof. From (10) and using the regularizing e¤ect of problem (8),

it is possible to prove the refined Carleman inequality for the solutions j ¼
ðj1; . . . ; jmÞ

� to (8) (valid for sb s0, with s0 given in Theorem 1.1):

���sgðtÞ��K
e�saj

��2

l
þ
Xm
i¼1

I
�
3ðmþ 1� iÞ; ji

�
aC1s

l

ðð
o0�ð0;TÞ

e�2sagðtÞ l jj1j
2;

where C1 ¼ C1ðW;o0; ~aa0; ~MM0; a0;M0Þ > 0 and K ¼ KðN;mÞ a N are two new

constants. A duality argument allows us to obtain the proof from this refined

Carleman inequality. r
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Theorem 4.1 is crucial in order to study the exact controllability to the trajec-

tories of cascade nonlinear parabolic systems when the nonlinearities considered

depend on the state and its gradient and have a superlinear growth at infinity

(for the proof; see [13]).

5. When the coe‰cients aij and Bij of system (4) are regular enough (for instance,

if they are constants or only depend on t), it is possible to show Theorem 1.2 using

the strategy of fictitious controls developed in [11] and [12]. Briefly, this technique

consists in introducing a control function in each equation of our system (and,

therefore, the null controllability of the system is a consequence of the Carleman

inequality (15)) and, subsequently, eliminate the m� 1 fictitious controls using the

cascade structure of the system (see [12]). This strategy cannot be applied in the

case of system (4) due to a lack of regularity of the coe‰cients.

6. Boundary controls: In view of known controllability results for a linear heat

equation, it would be natural to wonder whether the null controllability result

for system (4) remain valid when one considers one control force exerted on the

boundary: y ¼ e1v1g on S, where gH qW is a relative open subset of qW. Never-

theless, there exist negative results for some 1-d cascade linear coupled parabolic

systems with m ¼ 2 (cf. [7]), which reveals the di¤erent nature of the controll-

ability properties for a single heat equation and for coupled parabolic systems.

7. In the present work we have provided a su‰cient condition on the matrices A,

B and D which ensures the null controllability of system (4) at time T . Let us

observe that when BC 0 and A is a constant matrix, under assumptions (6) and

(7), the exact controllability of the ordinary di¤erential system

y 0 þ Ay ¼ Dv in ½0;T �;
yð0Þ ¼ y0 a RN ;

�

holds with DC e1 since one has the so-called Kalman rank condition

rank½D jAD jA2D j . . . jAm�1D� ¼ m:

Thus, it would be very interesting to try to generalize this condition to the case of

coupled parabolic system like (4) and give a condition on the matrices A, B and

D which is equivalent to the null controllability at time T of system (4). At the

moment the general problem is open, but some results have been recently obtained

in [3].
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[5] O. Bodart, M. González-Burgos, and R. Pérez-Garcı́a, Existence of insensitizing
controls for a semilinear heat equation with a superlinear nonlinearity. Comm. Partial

Di¤erential Equations 29 (2004), 1017–1050. Zbl 1067.93035 MR 2097575

[6] A. Doubova, E. Fernández-Cara, M. González-Burgos, and E. Zuazua, On the
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