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Controllability results for cascade systems of m coupled
parabolic PDEs by one control force
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Abstract. In this paper we will analyze the controllability properties of a linear coupled
parabolic system of m equations when a unique distributed control is exerted on the
system. We will see that, when a cascade system is considered, we can prove a global Carle-
man inequality for the adjoint system which bounds the global integrals of the variable
o= (¢1,...,9,) " interms of a unique localized variable. As a consequence, we will obtain
the null controllability property for the system with one control force.
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1. Introduction

Let Q = RY be a bounded connected open set with boundary 0Q of class C2. Let
w < Q be a nonempty open subset and assume 7" > 0. All along this work we will
denote Q =Q x (0,7) and £ =0Q x (0,T). For m > 1 given, we consider the
parabolic linear system

Oy1 — Lyt + 3302 By - Vy + 3 ayyy = vl, inQ=Qx(0,T),
0:y2 — Loys + Z,’il By -Vy; + Z/”:ll ayy; =0 in Q,

5;J/m - Lmym + Z;Zl ij : Vyj =+ Z]m:1 Anj)j = 0 in Q7
yi=00onX=0Q x (0,7), yi(x,0) =yoi(x) inQ, 1<i<m,
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92 M. Gonzalez-Burgos and L. de Teresa

where a; = a;(x,1) € L*(Q), Bj = Bjj(x,t) € L)Y (1 <i,j<m), Yoi €
L*(Q) (1 <i<m) and Ly is, for every 1 < k < m, the self-adjoint second order
operator

N

Lov(e, ) = 3 0 (o (v, ), 1) (1)

ij=1
(0; = 0/0y,), where
oc{l‘- e Wh(Q), oc;;(x, 1) = oc_;l‘-(x, fHaeinQ, 1<i,j<N, 1<k<m, (2)
and, for all £ : 1 < k < m, the coefficients oc{]‘. satisfy
N
ak(x, 08 = aé”,  VEe RN ae.inQ, (3)

. i
{gﬁgﬂaijllwm = Mo, i

i,j=1
for positive constants My and a.

Equivalently, the previous system can be written as
0y—Ly+B-Vy+ Ay =Dvl, inQ, (4)
y=0o0nZX, y(x,0) = yo(x) in Q,

where L is the matrix operator given by L =diag(Li,...,Ly), ¥y = (Vi)i<icm
is the state, 1, is the characteristic function of the nonempty set @ and Vy =
(Vyi)| <i<m> and where
s 2
Yo = (y(),i)lgigm € LZ(Q)mv A(.X, t) = (aij(xa t))lgi,jgm € Lo{v(Q)m P
B(x,1) = (By(x,0)),_; ;= € L*(Q)M” and D = ¢, = (1,0,...,0)"

are given. Let us observe that, for each yy € L?(Q)” and v € L*(Q), system (4)
admits a unique weak solution y € L?(0, T; Hj (Q)") n C°([0, T]; L*()"™).

The main goal of this paper is to analyze the controllability properties of (4).
It will be said that (4) is null controllable at time 7 if for every yo € L*(Q)" there
exists a control v € L*(Q) such that the solution y of (4) satisfies

yi(nT)=0 1nQ, Vi:l<i<m. (5)

When m =1 (one equation and one control force) the null controllability
of parabolic problems has been studied by several authors (see for instance [18],
[17], [4], [10],...). We also point out [14] and [15] where the null controllability
of system (4) at time 7" was established for every T > 0, 4 € L*(Q), Be L*(Q)"
and w < Q, using a global Carleman inequality for the solutions of the corre-
sponding adjoint problem.
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Controllability for parabolic cascade systems 93

There are few results on null controllability of system (4) when m > 1 and most
of them are proved for m = 2. In [19] and [5] the authors consider a nonlinear
system of two heat equations, one of them being forward and the other one back-
ward in time, and show the null controllability of this system with sublinear
nonlinearities ([19]) or slightly superlinear nonlinearities ([5]). In [1] and [2], the
authors give a null controllability result for a phase-field system and for reaction-
diffusion systems (two nonlinear heat equations). The results in [1] and [2] have
been generalized in [12] (see also [11]) in two directions: on the one hand, there
are not restrictions on the dimension /N, and on the other hand, the authors con-
sider nonlinearities which depend on the gradient of the state. Finally, in [8] the
authors prove a result of local exact controllability to the trajectories for the
Boussinesq system (N + 1 equations) when N (or N — 1) distributed controls are
exerted on the system.

All previous works have a common point: they deal with cascade systems. In
this work we want to generalize these works to the case of a general cascade sys-
tem of m linear parabolic equations. To this end, we will suppose that 4 and B
have the structure

ap  di2 a3 Aim

o N . Bii Bip -+ B
21 a2 an 2m 0 By --- By,
A=| 0 an a3 - wm | p= o : (6)
0 0 - B
0 0 o Amom—1 Amm "

with a; € L*(Q), By e L*(Q)Y (1 <i<j<m)anda;;, 1 € L*(Q) 2 <i<m),
for an open set wy < w, satisfy

ai—1=ay>00r —a;;—1 >ap >0 inwyx(0,T), Vi:2<i<m. (7)

In order to study the null controllability of system (4), we will consider the
corresponding adjoint problem which, under assumption (6) (cascade system),
has the form

—01p; — L1p; — Z}:l V- (Bji?/) - ajz’(”_/] = —i1,i9i 0 Q,

(l<i<m-—1)

=0 — Lingy, — Z;il V- (Bjm(”j) - ajmﬂﬂj} =0 inQ,
g =00n% ¢(x,T) =¢py,;(x)inQ, 1<i<m,

where ¢, ; € L*(Q) (1 <i <m).
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94 M. Gonzalez-Burgos and L. de Teresa

It is well known that the null controllability of system (4) (with L?-controls) is
equivalent to the existence of a constant Cy > 0 such that the so-called observabil-
ity inequality

(-, 0)[1 72y < Co ” o, (x, 1)|* dx dr. (9)

wx(0,T)

holds for every solution ¢ = (¢y,...,¢,,)" to (8). Let us observe that in (9) we are
estimating the L?-norm of ¢(-,0) by means of the L>-norm of the first component
of ¢ localized in w x (0, 7). We will prove inequality (9) as a consequence of a
global Carleman inequality for the adjoint system (8). This inequality is estab-
lished in our first main result:

Theorem 1.1. Let us suppose that Ly, A € L°°(Q)m2 and B € L*(Q) N are given
by (1) and (6) and satisfy (2), (3) and (7). Let My = maxy<;<m|laii-1|.. Then,
there exist a positive function oy € C*(Q) (only depending on Q and wy), two
positive constants Cy (only depending on Q, wo, m, dy, Mo, ay and M) and
o0 = 00(Q, wo, m, dy, My, My) and 1 > 3 (only depending on m) such that, for every
@0 € L*(Q)", the solution ¢ to (8) satisfies

m

S S Bm+1-0),p) < Cos' ” R GO (10)
o X (U,

i=1

Vs > so = ao[T + T? + T? max,-gj(||a,-j||1(3(-/7i>+3) + ||B,~j||f2,v/‘(3(j*i)+1))]. In inequal-
ity (10), a(x,1), p(t) and F(d,z) are given by: oa(x,t) = oo(x)/t(T —1), y(t) =
(«(T — t))_1 and

J(d,z) = §92 JJQ e_my(l) d72|Vz|2 + 54 JJQ e_zs“y(t)d|z|2.

We will prove Theorem 1.1 from the corresponding global Carleman inequal-
ity satisfied by the solutions to the heat equation with a right-hand side in the
space L*(0,T; H™'(Q)) (see [15]). To prove Theorem 1.1 we will follow the
same argument given in [19] and [12] and which allows to show (10) when m = 2.

As a consequence of Theorem 1.1 we will obtain the null controllability at time
T of system (5). This is our second main result:

Theorem 1.2. Under assumptions of Theorem 1.1, given yy € L*(Q)™, there exists
a control v e L*(Q) such that Suppv < @y x [0, T] and the corresponding solution y
to (4) satisfies (5). Moreover, the control v can be chosen such that

m
2 / 2
[0l172(0) SeC%Z”)}O,iHU(Q)v (11)
P
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Controllability for parabolic cascade systems 95

with C a positive constant, only depending on Q, wy, ay, Moy, ay and My, and
1 2/(3(j—i)+3 2/(3(j—i)+1 2
A= 1+ T+t max (a0 1By 00 4+ T (gl +11B5)15))-

Let us remark that, thanks to the cascade structure of the coupling matrices 4
and B (see (6) and (7)), we can control the system (4) (m functions) by means of
one control force v € L?(Q) (exerted in the right-hand side of the first equation of
the system). For general complete matrices, this is not possible, in general. In-
deed, let us consider m =3, L; = L, = Ly = A (which, evidently satisfy (2) and
(3), B=0and 4 € Z(R?) a constant matrix given by

0 0 0
A=|1 2 0
I 11

Let 4; > 0 be the first eigenvalue of —A in Q with Dirichlet boundary conditions
and let ¢, be the associated eigenfunction with [|¢;[|>q) = 1. If we now consider
po(x,1) = (0,—1,1)"¢,(x) € L*(Q)™ in (8), it is not difficult to see that the corre-
sponding solution to (8) is given by ¢(x,7) = (0, —1,1)" e *+D=T)g (x) which,
evidently, does not satisfy inequality (10). In fact, the observability inequality
(9) is also false and therefore, system (4) is not null controllable. The null con-
trollability problem of system (4) for general coupling matrices 4 and B is nowa-
days widely open.

Another important point to be underlined is that in our controllability problem
the control is exerted on a little part w of the set Q (distributed control). The con-
trollability properties of cascade systems like (4) can fail if boundary controls are
considered instead of distributed controls. In [7] the boundary controllability of a
cascade system of two parabolic equations is studied and it was found that even
the boundary approximate controllability of the system is not in general true. To
be precise, let us consider the controlled system (N = 1, m = 2)

0y—Ly+Ay=0 inQ=(0,1)x(0,7),
y=Dvon {0} x (0,7), y=0o0n {1} x (0,7),
y('ao):yo in (071)3

where v € L?(0, T') is the control,
Yoo 0 0 0 1
4 < 0 vy> (1 0)’ <o

and v > 0 (which evidently satisfy (2), (3) and (7)). Then, in [7] and by means of a
simple counterexample, it is proved that this system is not approximately control-

lable if \/v € Q\{1}.
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96 M. Gonzalez-Burgos and L. de Teresa

The rest of the work is organized as follows. In Section 2 we will prove
the Carleman inequality stated in Theorem 1.1. Theorem 1.2 will be proved in
Section 3. Finally, we will devote Section 4 to give some remarks and additional
results.

2. The global Carleman inequality. Proof of Theorem 1.1

We will devote this section to prove Theorem 1.1. To this end, we will suppose
that the coupling matrices 4 € L*(Q) " and B e L*(Q) N are given by (6) and
satisfy (7). The basic tool we will use is a global Carleman inequality satisfied by

the solutions to
—0;z—Loz=F in Q,
0+ ; (12)
z=0onZX z(x,T) =z"(x) in Q,

with 20 € L2(Q) and F = Fy + Y)Y, & with F; € L*(Q),i=0,1,..., N, and Ly is
given by

N

Loy(x,t) = Z 5,’(0!8-()6, 1)0;y(x, t))

i,j=1

where the coefficients o) € W (Q) (1 <i,j < N) satisfy o (x, 1) = o«(x, 1) a.e.
in Q and

N
max [l = Mo, S ad(x, & > ald?,  VEeRY,  ae.inQ,
i,j=1

for positive constants ay and M,. One has:

Lemma 2.1. Let # = Q be a nonempty open subset and d € R. Then, there exist a
function By € C*(Q) (only depending on Q and ) and two positive constants Cy and
&o (which only depend on Q, B, ay, My and d) such that, for every z° € L*(Q), the
solution z to (12) satisfies

g2 JJ e 2Py(0) 2|V 4 5 JJ B0y
¢ Q
—60(3@(61,2)+3d*3jj e 2P ( )d 3|F|
(Y

dlZJJ 72g/; d1|F|> (13)
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Controllability for parabolic cascade systems 97

forall s >3y = 6o(T + T?). In (13), Z4(d,z) and the functions  and y are given
by

and y(t) = ((T — 1)), te (0,7).

The proof of this result can be found in [15] although the authors do not
specify the way the constant 5y depends on 7. This explicit dependence can be
obtained arguing as in [9] (also see [6]).

Proof of Theorem 1.1. Given wy = w, we choose w; == wy. Let ag € C*(Q) be
the function provided by Lemma 2.1 and associated to Q and %4 = w,, and let
o(x,t) the function given by a(x,?) = ao(x)/t(T —t). We will do the proof in
two steps:

Step 1. Let g = (¢y,...,9,,)" be the solution to (8) associated to ¢, € L*(Q)".
We begin applying inequality (13) with Z = w; to each function ¢; (1 <i<m)
with Ly = L;, d =3(m+ 1 —i) and

i
F = E ,1(17] aji(ﬂj] — it 1,iPit1s
j=1

ifl<i<m—1,and F = 37" [V (Bjnp;) — ame,], for i = m, obtaining

A

S (B0m+1=1),0) < Co( Loy (30m+ 1= 1),0,) + Mo (30m — i), 9:11)

+ZS m—i) |aﬂ|| JJ —2s0. ()3(m—i)|g0j|2
+Z 3(m— l+2Hle|| JJ —2su (1)3(m t+2| ]| )

for every s > §g = 6o(T + T?), with Cy and 6, two positive constant only depend-
ing on Q, wy, d, My (and m) (in the previous inequality we have taken ¢, = 0
when i = m). Now, it is not difficult to see that, for a new constant C (depending
on Q, wy, dy, M, and M), one has
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98 M. Gonzalez-Burgos and L. de Teresa

m

Zﬂ(3(m+1—i),goi) < C(Zm:$u1(3(m+1_i)v¢i)

i=1
+Zzs m— IHale JJ —2s0 () (m— l|(PJ|

i=1 j=
— m—i)+2
+lesm’”||3ﬂ|| J] i),
i=1j

Vs > 5. Finally, we can get rid of the two last sums in the previous inequality if
we take into account that #(7 — ¢) < T?/4 in (0, T) and we take

s>s0—ao(T+T2+T2max( |2 CURIT 4 gy | 2/ CUTIFINY o (14)

with o :O'()(Q,wo,deo,Mo) > 0, obtaining, for a positive constants C; =
Cl (Q7 o, glOa M07 MO);

iﬁ(S(m—i— 1—1i),p) <C (igﬂ'l (Bm+1— i),go,-)), Vs > s0. (15)
P

i=1

Step 2. We will see that, thanks to assumptions (6) and (7), we can eliminate
in (15) the local terms %, (3(m+1—1i),¢;) for 2 <i <m. In order to carry this
process out, we will need the following result:

Lemma 2.2. Under assumptions of Theorem 1.1 and given 1€ N, ¢ >0, k €
{2,...,m} and two open sets Oy and Oy such that o, = O; == Oy = wy, there exist
a positive constant Cy (only depending on Q, Oy, 01, ay, My, ag and My) and I eN,
1 < j<k—1 (only depending on |, m, k and j), such that if ¢ is the solution to (8)
associated to g, € L*(Q)" and s > sy, one has

Lo, (o) < g[f(3(m +1—k),p) +f(3(m - k)7€0k+1)]

1 k—1
n ck(l +8) > Zallyo) (16)

(In this inequality we have taken ¢ | = 0 when k = m).

We will finish the proof of Theorem 1.1 showing that it is an easy consequence
of Lemma 2.2. To this end, we consider open sets 0; < wy, with 2 < i < m, such
that w; c< 0,, cc 0,,_; c< --- == 05 = wy and we begin by applying formula
(16) for O = wy, Oy = Op, k =m, | =3 and ¢ = 1/2C, (with C) the constant ap-
pearing in (15)). Thus, from (15), we obtain
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Controllability for parabolic cascade systems 99

m m—1

ST sBmA1—i (Z% nu,(/),) (17)

i=1 i=1

for all s> sy with C,, a new positive constant only depending on Q, w;, 0,,,
o, My, ap and M,. Observe that in (17) we have eliminated in the right-hand
side the term that depends on ¢,. We can go on applying (16) for ¢} = 0,
Oy=0p1, k=m—1, | = lpmm—1 and &= I/ZC’m and eliminate in (17) the
local term % (ly,m-1,9,-1)- By (a finite) iteration of this argument we obtain
(10). O

Proof of Lemma 2.2. For the proof of this result, we will reason out as in [19] and
[12]. All along the proof, C will be a generic constant that may depend on Q, @,
Oy, do, My, ap and My, and also we will assume that s satisfies s > so, with so given
by (14). In particular, s > C(T + T?) and then, for u,v € Z, v < u, and for every
(x,1) € Q one has

{[m )" < Clsy(0)]*, [V[s"e 2%(1)"]| < Cs"Hle27p(1)"*,

— 250 Vv ,—2s50 v V. —2s0 v (18)
10/[5" e 29(0)"]| + 32w 1 10557 e27(1)"]] < Cs™2em2%y(1) "2,

Given w; < O) cc 0y = wy, we consider &, € C*(R"Y) such that 0 < & < 1
in RY, & = 1in O, Supp &, < 0y and

Af/‘; eL”(Q) and Vf/‘; e L7 ()" (19)
0 0
Let us consider k € {2,...,m}. The coefficient a; ,_; satisfies assumption (7)
and, for simplicity, let us assume ay x—; > ap in wo x (0, 7). We fix / € N and take
u = sle 2%y(1) ! We multiply the equation satisfied by ¢,_; by uyp, and integrate
in Q. We get,

e

T
av Lo, (L, o) < L(1,9,) = Jo 01 + L9y, ulopy > dt

k—1 k—1

T
-3 “Q w19, + S JO V- (Byx1)), uopy > di
=

= 24: K, (20)

where L(I, ¢;) = s ” e 2%(7)’ Eoar, k 1|¢x|* and by means of (-, -> we are denot-
ing the duality product between H'(Q) and H}(Q). Integrating by parts with
respect to ¢ and having in mind the equation satisfied by ¢, (see (8)), we get
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T

T
K = Jo 0y, ulopr) = — ”Q uCoPrPr—1 — J 01pres uCoPr—1

=_ ”Q UCoPkPr—1 + J <Lk(ﬂk + Z (Bio;) ajk(oj),ufo¢k71>

- “Q UCOPp— 1 A1,k Phr = Z K"

n=1

Let us remark that, when k = m, in the previous equality the last term K ) does
not appear. Taking into account (18) and (7), if s > C(T + T?), we obtaln

K =[] wéomo| = o5 [[ @m0 alnl o
0 0
T C —2sa —
<oLltg) + 50 || e et eloia

T C —2sa
<OL(l,¢;) + 5 st “Qe : ()l+4f [ 1|

with & > 0 to be chosen. o

Observe that, integrating by parts in K;~, we get
) .
K" =~ Z (” (”k—lfoa,{;ai”aj(/’k + ” €0k—1“°‘ilf‘3ifoaj¢k
i,j>1 0 0

+ ” u&oa,{;ai(”k—lajgﬂk)'
0

From (18) and (19), we also have

kP < st ”Q () ol | Ve
Cs! 250 1/2 v, \v} \V
+ Cs Qe V() Pk_1] V| + Qufo| Pr—1] [Vorl

< £ Bm—io+1 ” 672&1}}(1‘)3(111—1{)-‘—1‘V(pk|2
12 0

L G | R C R TR | R ORI RC

&
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Controllability for parabolic cascade systems 101

withn =2/ —1—-3(m—k). For K1<3) we get
o el T
K= 3| - B cop et |- (B ucoo > d

= - ”Q[ (u&o) - Bixpy_19; + uoBjx - Vo1 9)]

- “Q V(o) - Beky—19x — ”Q uCoBik - Vor_ 191

= M; + M, + M;.

Using (7), (18), (19) and taking into account that, if s> C||Bkk||§oT2, then,
||Bkk||§o < Csy(1), it is not difficult to see that, for 6 > 0, one has

- C
Mt ¢l <L) +5 (e e P
5 CoX(O T)
+ Sl+1 JJ e_zmy(l)lﬂfoW(ﬂk_] |2)
0
Now, using again (19) and (18), we get (n =2/ — 1 — 3(m — k))

— 2
(1) g |?)
60X(0,T)

oy < (s HQ |

k
EZ (m—k)+1 JJQ 6’_23“})(!)3('"7]()“fo|Bjk|2\(/)j|2.

Since s> CT2||By||YC* "D we also have |Byl2 < C(s/T2)** 7! <
C(sy(t ))3<k_] 1 This implies that

|M;| < C(s’“r2 ” (; )”+2|(p _ | + 5" ” efzs“y(t)"éo|V(pk,l|2)
0ox(0,T) 0

k=1
+ CZS3(m7j)+2 JJQ efz‘”‘y(z) m—j +2€ |¢j| )
=1

Summarizing,
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(K| <SL(1L, )

C —2sa —<sa
e | Rt i S | I TORN Oy
0o x(0,T) (%

ve(er || e e P[] e alveol)
0ox(0,T) 9

k—1
+ CZS3(m7j)+2 JJQ e’zmy(t)3 m—j +2§ |(Pj|
Jj=1

Now, reasoning as we did with KI(S), it is not difficult to deduce
k-1

— Z ” ulopr_1ajp; — ” UCoPk—1 Ak Pk
0 o]

J=1

< C5? ”Q (1) g

1 2 k) —

5 E 3(m—k)—1 JJQe 2 y(t)3( k) l|ajk|25(]|¢j|2

5” ] g ! —2s0 ! 2 2
+0L(1, ) + 573 Qe () lark]“Solor_117

with 6 > 0. Again, |ja|2 < C(sy(t))S(k*j)+3 for every s > CT2||ay|| 2/ C*+3).
This implies that

K| < 52 HQ (1) 2ol |

k—1
+CY P ” e 210> "2 > +OL(L, 9y
— 0 ’

C — 850
#5350 e el
0
As said above, if kK = m then KI(S) =0. If k <m—1, we have,

€ _ by
KI(S) = —” U0 P11,k Prs1 < 553("4 Y ” e 2”3’(1) "o ‘(ﬂk+1|
0 0

3M? "
+ " ”Qezm (1) +lfo|fﬂk 1|
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Altogether we get
- E
|Ki| < 30L(1, ) +E [j(3(m +1- k),(ﬂk) + f(3(m - k)v¢k+1)]

c<a,e>s’“ 2 9(1) [pr 2
(ﬁ()><<07 T)

+C (3)5R “Q eimy(f) R§0| Vo |2
22
0 ( )

max{/+4,n+2,3(m—k)+ 5}, R=max{n,/+1} and n=
2/ —1—3(m—k). Let us remark that in inequality (22) the positive constants
C(d,¢) and C(e) are given by C(d,¢) = C(1 +1+1) and C(e) = C(1 +1).

Going back to the term K, and integrating by parts, we get

k=2
+ CZS3(H1*IJ+2 JJ efzmy(t)s m—j +2§ |(ﬂj|
=1

with J = J(k) =

N
K= - Z ”Q ((ﬂko‘k '9; (uCo)0jpp 1 + ufo“ilj_lai(ﬂkaj(pk—l)

ij=1
On the other hand, if s > C(T + T?), (see (18) and (19)),
ou(uo)| < uldico] + G5 ey (1) g < Cs'He () g

Therefore
C — 280
Kl <olllp) + 5o [ e e
0ox(0,T)

+is3(m7k)+1 ” 672so¢y(t)3(m7k)+l|v¢k|2
12 0

C
o | KU 3)
For the term K3 we obtain,
C k
K| <0L(l.p,) gz | e i Pl
with § > 0. Again, if s > CT?||a; 41 ||27f(3<k7-’)>, we can deduce
(24)

Ck 3(k— 1+3(k
gz ) ” e 2y() e g .

|Ks| < OL(, ;)
0
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104 M. Gonzalez-Burgos and L. de Teresa

We now have that

k—1
K4:ZJ <V ( i k— 1(0/) u50¢k>dt

k—1

- _ l(”Q (uo) - Bj k100 + ”Q”&)V(”k B WJ)

Proceeding as before and having in mind that s > CT?||B; 1|7/ =072 we

obtain that

|Ks| <6L(, ;)

QOIG

k—
Z wn [l e
: (C(}X(O7 T)

_|_is3(m—k)+] JJ e—2soty([) m— k+l|V(ﬂk|
2 0

C k-1 ) ' )
~ Z S2173(mf2k+_/+1) JJ 6723053)(1)21—3(}11—2k+]+1)éfo‘(ojl27 (25)

4
0

& =

with 0 > 0 to be chosen.
Coming back to (20), putting together inequalities (22), (23), (24) and (25), and

choosing the 6 = 1/12, we obtain

1

Ez’(lv(ﬂk) = [](3(}7[—0— 1 - k)v(pk) +J(3(m _k)7(ﬂk+1)]

co (s [| e ol
0ox(0,T)

+sR“Q (1) RE Vg2

k-2
2 ” e y(1) " g, 2), 26
> o () o] (26)

J=1

+ Ao

with k € {2,...,m}, C(e) = C(1 + 1/¢) and

J =max{/+4,2] —3(m—k)+1,3(m — k) + 5},
R =max{/+ 1,2/ —3(m — k) — 1},
Ry = max{3(m — j) +2,1+3(k —j),2l =3(m —2k + j+1)}.
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Now we are interested in eliminating the term s% ” e 2y(1) R |V, in
inequality (26). So as to do that, we define &z = s efz‘“y(t) and we will use the
equation satisfied by ¢, _;:

—Li 1@ = —ar k19 + Oy — Za; k=195 + ZV B k- 1(0,

Multiplying this equation by u&y¢,_; and integrating by parts in Q we get

N

Z “Q ool 0ipr_1 0ipp

ij=1
= - Z” o 0i(0) Pr—10Pr—1 — ”Qﬁfomlak.kl(ﬂk

i,j=1

T
+J <5z<ﬂk 1 Za/k 1¢,+ZV Bj j—19;), uopy 1>df

0

I
M-

H,.
1

3
I

Next we are going to estimate each term H;. Using (18) and (19) it is easy to
deduce that, if s > C(T + T?), |0;(a&y)| < CSR+le—2so:y([)R+léé/2 and

_ 1.1/2
)| < CsRH ”Q 29, () R g 1| (V|

d ~ — 280
< D] aowa it et [ et @)
0 0o%(0,T)

If we take 6 > 0, we also have:

ST C - —2s0
2] <311, + 55" ’”Qe 20 (2R g2 (28)

Proceeding as before and using (18), we get

1 ~ —2s0
=5[], wlo P = 52 | e aio 09

(AutoPDF V7 28/1/10 12:49) EMS (170x240mm) Tmath J-2232 PMS, 67:1 (idp) PMU:(KN/W)8/1/2010 AC1T: WSL 22/01/2010 pp. 91-113 2232_67-1_05 (p. 105)




106 M. Gonzalez-Burgos and L. de Teresa

3(k—1-j)+3)

In order to estimate H4 we recall that if s > CT?||a; k1 || then
llaj, k- 1H < C(sy(r ))3(k_] . Thus, it is no difficult to check
” |aoak—1k-105_1| < C” eizm[sy(t)]R+3/250|(ﬂk71|27
0 0
” uodj k—19;05—1] < C” e 2 sp(n)] gy P
0 0
|| o) g g
0 .
Therefore
k-1
|Hy| < CsR-3/243k) j J &2y (1) D g 12, (30)
j=1770

Integrating by parts in Hs and taking into account assumption (18) and (19),

3(k=j)—2 .
and that || B; 12 <cC (%) , we can reason as before and obtain

=~

—1
|Hs| < C R=3/243(k—j) “ e—zmy(t)R 3/2+43(k |(/)J|
- 0px(0,T)

~.

b
—

—j)— —2s00 —J)— a ~
+ SR+3(k J)—2 JJQe 2 ,y(t) R+3(k—j) 260|§0]’|2 +ZOJJQ ufo|V§0k71|2. (31)
1

~.
I

Summarizing, taking into account (3), adding (27)—(31) and using again (18), we
deduce:

ao _
3” |V |’
9]
< CSR+2 JJ 8723'0(})( )R+2| O 1|
@()X(O T)

~ C
+Mﬂwm+gﬁRﬂLe%“o”’@wl|

k—1
4 CZSR73/2+3(1€7]') JJ e*Z‘YOLy(Z)R 3/243(k—j) | | ) (32)
j=1 Oyx(0,T) j
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Finally, if we now choose 0 = dy/4C(¢), with C(e) the constant appearing

in (26), i.e., 0 = 4C?gil)’ and we combine (32) with (26), we obtain the proof of

the result. O

3. Null controllability of system (4). Proof of Theorem 1.2

We will devote this section to show Theorem 1.2. As said above, it is well known
that Theorem 1.2 is equivalent to the observability inequality (9) satisfied by the
solutions ¢ of the adjoint system (8) and, in fact, the constant e“* appearing in
(11) coincides with Cy, the constant appearing in (9), (see for instance [9]). We
establish this observability inequality in the next result:

Proposition 3.1. Under the assumptions of Theorem 1.1, there exists a constant
C > 0 (which only depends on Q, wy, ag, My, ay and My) such that, for every
@y € L*(Q)", the corresponding solution ¢ to (8) satisfies

IOl < e[| P v, (33)
CO[)X(O, T)

where H is given in Theorem 1.2.

Proof. The proof of this result is standard (see e.g., [9], [6] and [12]) and it is a
consequence of (10) and the energy inequality satisfied by the solutions to (8):

2 axi< (|| » 2 _ 2
H(ﬂ('atl)HLl(Q)’” < eC[l+de17](||aj“:ﬁ+“3j||o:)]([Z t')||¢(';12)||L2(Q)”’7

where 0 <t <t < T and C > 0 is a new constant which depends on m, d, and
MO = mastisnzHai,i—l Hw
If ¢ is a solution to (8), from the energy inequality, we deduce

m

Y072 <

cu Qg +181207 5= [T 2
e ClImaxi<;(flayllo + Byl J J lp:|” (34)
i=1 ; Q I

T/4

N

On the other hand, taking into account (10) and (18), one has

3 (3T —2s0, 3 2 Cl —2s0 ! 2
sy e ") pl” < Cs e (1) lo |7,
= J1/4 Jo wx(0,T)

for a new constant C = C(Q, wy, ayp, M) > 0 and for every s > 59. Secondly, it is
not difficult to see
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212 —25Mys
3,-2 3 36 0
s7e 7 y(8)” = R T exp< 372 )

3 A5
> 55 (2] ew(ZH2). vimneax (/T

Mo

_03 !
sle_zs“y(t)l < sl exp< mos> < ( ! >7 V(x,1) € 0,

T2 2emy

if we choose s > (//8m)T?, with my = ming ag(x) >0 and My = maxg o (x).
Now, combining these three last inequalities, we readily deduce

m 3T/4 )
Zj j 92 < CeI T ” ol
' Jra Ja wox(0,T)

for every s > 51 = [T + T? + T? max,gj(|\a(,||§f(3(‘i_i)+3) + ||B,~j||§f(3(j_i)+l))] and
a1 = max{ay, (//8my)}. Finally, by setting s = s; in the previous estimate and by
recalling (34), we end the proof. O]

4. Further results and comments

We will finalize this work doing some remarks and establishing some additional
results.

1. It is possible to prove the null controllability of system (4) at time 7 if we
replace (7) with the hypothesis

aij-1=ay>00r —a; ;-1 >a9p>0 inwyx (Ty,Ty), Vi:2<i<m, (395)

with 0< Ty < Ty < T. Indeed, let j e C°([0,7]; L*(©)") be the solution to
(4) for v=0. Hypothesis (35) allows us to prove the existence of a control
o e L*(Q x (Ty, T1)) which drives system (4) (posed in the cylinder Q x (To, T}))
from the initial data y(-, T)) (at time Tp) to the rest at time 7. Now, if we take
v =0 in the set (0, Ty) v (T}, T) and v = ¥ on the interval (Ty, 7)), we have that
the solution y to (4) corresponding to the control v e L?(Q) satisfies (5). More-
over, the control v can be chosen such that (11) holds with # given by

H=1+T +

T —-T
2/(3(j—i)+3 2/(3(j—i)+1 2
o+ max (flay |5V BV + Tyl + 11Bl)-
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On the other hand, let us assume that 4 and B are complete matrices which
satisfy (35) and

Cl,‘jEO iIla)QX(To,Tl), ‘v’z,112]+2,
BUEO ina)oX(To,Tl), \V’l,]lZ]"i‘l7

for a nonempty open subset wy = w and Ty, T} € [0, T] with Ty < Ty. Then, it is
also not difficult to check that Theorem 1.2 is still valid and Theorem 1.1 holds
with

> 5 (3 +1-1).) < Co' || e255(0) |y ,
wox(To, T1)

i=1

instead of (10). In the previous inequality &(x, ), 7(¢) ancll #(d,z) are given by:
a(x, 1) = og(x)/(t = To)(T1 — 1), (1) = ((t — To)(T) — 1)) and

(d,z) =572 ” e 255(1) 2|V + 5 “ R TOME(S
Qx(Ty, Th) Qx(Ty, Th)

2. As a direct consequence of the Carleman inequality (10) we obtain the unique
continuation property:

Under assumptions of Theorem 1.1, if ¢ € C°([0, T]; L*(€2)™) is solution to
(8) and satisfies ¢, (x,7) = 0 in wy x (0, T), then ¢ =0 in Q.

It is well known that this unique continuation property for the adjoint problem (8)
implies the approximate controllability property at time 7 of system (4).

When m =2 and L; = Ly, i.e., for two equations, it is proved in [16], that
the unique continuation property for the adjoint problem (8) is valid even when
a>y =0 in w but ay; # 0 in @ an open subset of Q. The problem remains open
for L1 #* Lz.

3. Theorems 1.1 and 1.2 can readily be generalized to the case where v =
(v1,02,...,0,)" (r control forces, r= 1) and the coupling and control matrices 4,
Band D satisfies: B e L*(Q)"" isasin (6), 4 € L*(Q)" is given by

i i i i
ay dp dp ap
A A - Ay 4 a i i
22 a .« .. a .
21 23 2,5
0 Ay -+ Ay 0 ; ; ;
A= . R o Ai= 3 dzz 0 A3y
0 0 A, :
1 1
0 0 aA\'i-»‘fi*1 aS[-,Si
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withs; e N, >0 s = m, aj{j_l satisfying (7) forevery (i, j) (1 <i<r,2<j<s),
and D e Z(R",R™) such that D = (es,les,|...|es,) with S;=1+Y1 s, 1<
i <r (e is the j-th element of the canonical basis of R™). Observe that matrix 4
do not satisfy (7) for i = Ss,..., S, and even so, under the previous assumptions, a
null controllability result for system (4) can be proved if we add a control in each
equation where (7) does not hold. Indeed, let 9 = (¢;,0,,...,0,,)" be a solution
to the adjoint problem (8). Thanks to the structure of the coupling matrices 4 and
B, we can apply Lemma 2.2 to ¢, for every k # S; with 1 <i <r, and obtain,
from (15),

r

m
Y IBm+1—i)0)<C Y s ” () ps|? Vs = s,
i=1 i=1 x(0,T)

with sy as in Theorem 1.1, Cy= Co(Q,a)o,ﬁo,Mo,amMo) >0 and ;>3
(1 <i<r). Theorem 1.2 is a consequence of this last inequality.

4. Following the ideas of [4] (see Theorem 1.3.3, p. 156), from the Carleman
inequality (10) we can prove the null controllability of system (4) with controls in
L*(Q). To be precise, it is possible to show

Theorem 4.1. Under hypotheses of Theorem 1.1, there exists a control v e L*(Q)
satisfying

m
2 cH 2
||v||oo <e d Z ||y0,i||L2(Q),
i=1

such that Suppv < @o x [0, T] and the corresponding solution y to (4) satisfies (5).
In this inequality, C is a positive constant only depending on Q, wy, ay, My, ay and
My, and H is as in Theorem 1.2.

Sketch of the proof. From (10) and using the regularizing effect of problem (8),
it is possible to prove the refined Carleman inequality for the solutions ¢ =
(@1,--.,0,)" to(8) (valid for s > 59, with sy given in Theorem 1.1):

(s7(0) e 0l2 + 3. #(3m+1-i).9,) < Crs’ ” R O
i=1 o X (U,

where C; = Ci(Q, wo, dy, My, ap, My) >0 and K = K(N,m) € N are two new
constants. A duality argument allows us to obtain the proof from this refined
Carleman inequality. O
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Theorem 4.1 is crucial in order to study the exact controllability to the trajec-
tories of cascade nonlinear parabolic systems when the nonlinearities considered
depend on the state and its gradient and have a superlinear growth at infinity
(for the proof; see [13]).

5. When the coefficients a;; and Bj; of system (4) are regular enough (for instance,
if they are constants or only depend on ¢), it is possible to show Theorem 1.2 using
the strategy of fictitious controls developed in [11] and [12]. Briefly, this technique
consists in introducing a control function in each equation of our system (and,
therefore, the null controllability of the system is a consequence of the Carleman
inequality (15)) and, subsequently, eliminate the m — 1 fictitious controls using the
cascade structure of the system (see [12]). This strategy cannot be applied in the
case of system (4) due to a lack of regularity of the coefficients.

6. Boundary controls: In view of known controllability results for a linear heat
equation, it would be natural to wonder whether the null controllability result
for system (4) remain valid when one considers one control force exerted on the
boundary: y = ejvl, on X, where y = 0Q is a relative open subset of 0Q. Never-
theless, there exist negative results for some 1-d cascade linear coupled parabolic
systems with m = 2 (cf. [7]), which reveals the different nature of the controll-
ability properties for a single heat equation and for coupled parabolic systems.

7. In the present work we have provided a sufficient condition on the matrices A4,
B and D which ensures the null controllability of system (4) at time 7. Let us
observe that when B =0 and 4 is a constant matrix, under assumptions (6) and
(7), the exact controllability of the ordinary differential system

{y’+Ay:Dv in [0, 77,
»(0) = yo € RY,

holds with D = ¢; since one has the so-called Kalman rank condition
rank[D |AD | A’D|...| A" 'D] = m.

Thus, it would be very interesting to try to generalize this condition to the case of
coupled parabolic system like (4) and give a condition on the matrices 4, B and
D which is equivalent to the null controllability at time 7" of system (4). At the
moment the general problem is open, but some results have been recently obtained
in [3].
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