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Abstract. In the same way that a contact manifold determines and is determined by a sym-
plectic cone, a Sasaki manifold determines and is determined by a suitable Kähler cone.
Kähler-Sasaki geometry is the geometry of these cones.

This paper presents a symplectic action-angle coordinates approach to toric Kähler ge-
ometry and how it was recently generalized, by Burns–Guillemin–Lerman and Martelli–
Sparks–Yau, to toric Kähler–Sasaki geometry. It also describes, as an application, how
this approach can be used to relate a recent new family of Sasaki–Einstein metrics con-
structed by Gauntlett–Martelli–Sparks–Waldram in 2004, to an old family of extremal
Kähler metrics constructed by Calabi in 1982.
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1. Introduction

This paper presents a particular symplectic approach to understand the work of

Boyer–Galicki [9], Lerman [21], Gauntlett–Martelli–Sparks–Waldram [17, 18],

Burns–Guillemin–Lerman [11] and Martelli–Sparks–Yau [26], regarding the fol-

lowing general geometric set-up:
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The basic example is given by B ¼ CPn with the Fubini-Study metric,

N ¼ S2nþ1 with the round metric and M ¼ R2ðnþ1Þnf0g with the flat Euclidean

metric.

Let us start with a few comments on the top row of this diagram. A contact

manifold determines, via symplectization, and is determined, via R-quotient, by a

symplectic cone. Hence, contact geometry can be thought of as the R-invariant or

R-equivariant geometry of symplectic cones. Similarly, a Sasaki manifold deter-

mines and is determined by a suitable Kähler cone. Hence, Sasaki geometry can

be thought of as the R-invariant or R-equivariant geometry of these cones and

that is what we mean by Kähler–Sasaki geometry.

Recall that the symplectization M of a (co-oriented) contact manifold N is dif-

feomorphic to N � R, but not in a canonical way. The choice of a contact form

on N gives rise to a choice of such a splitting di¤eomorphism. Since any Sasaki

manifold comes equipped with a contact form, any Kähler–Sasaki cone comes

equipped with a splitting di¤eomorphism.

In our symplectic approach, a suitable Kähler cone is a symplectic cone

equipped with what we will call a Sasaki complex structure, i.e., a suitable compat-

ible complex structure. Such a cone will be called a Kähler–Sasaki cone and the

corresponding Kähler metric will be called a Kähler–Sasaki metric.

When a Kähler–Sasaki metric is Ricci-flat, the associated Sasaki metric is Ein-

stein with positive scalar curvature. There is a lot of interest on Sasaki–Einstein

metrics due to their possible relation with superconformal field theory via the con-

jectural AdS/CFT correspondence. For example, the above mentioned work of

Gauntlett–Martelli–Sparks–Waldram, a group of mathematical physicists, is mo-

tivated by this.

Regarding the left column of the above diagram, recall that a choice of a con-

tact form on a contact manifold N gives rise to a Reeb vector field K . Denote also

by K the contact R-action given by its flow. The quotient B :¼ N=K , when suit-

ably defined, is a symplectic singular space. When N 2nþ1 is Sasaki (resp. Sasaki–
Einstein with scalar curvature ¼ nð2nþ 1Þ), the Reeb vector field K generates an

isometric flow and the quotient B2n is Kähler (resp. Kähler–Einstein with scalar

curvature ¼ 2nðnþ 1Þ).
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As Boyer–Galicki point out in the Preface of their recent book [10], Sasaki ge-

ometry of N is then naturally ‘‘sandwiched’’ between two Kähler geometries:

(i) the Kähler geometry of the associated symplectic cone M;

(ii) the Kähler geometry of the base symplectic quotient B.

As it turns out, there is a direct symplectic/Kähler way to go from (i) to (ii):

symplectic/Kähler reduction. That is why the symplectic approach of this paper

will mostly forget N and use only the diagonal part of the above diagram, i.e.,

M, B and the reduction arrow between the two.

The word toric implies that M and B admit a combinatorial characterization

via the images of the moment maps for the corresponding torus actions:

(i) a polyhedral cone CHRnþ1 for the toric symplectic cone M 2ðnþ1Þ;

(ii) a convex polytope PHRn for the toric symplectic space B2n.

The symplectic reduction relation between M and B corresponds to C being a cone

over P.

The word toric also implies that, in suitable symplectic action-angle coordi-

nates, the relevant compatible complex structures on M and B can be described

via symplectic potentials, i.e., appropriate real functions on C and P. It follows

from a theorem of Calderbank–David–Gauduchon [13] that the Kähler reduction

relation between M and B gives rise to a direct explicit relation between the corre-

sponding symplectic potentials on C and P. As an application, we can use this to

show that a particular family of Kähler–Einstein spaces, contained in a more gen-

eral family of local UðnÞ-invariant extremal Kähler metrics constructed by Calabi

in 1982 [12], gives rise to Ricci-flat Kähler–Sasaki metrics on certain toric sym-

plectic cones.

More precisely, let n, m and k be integers such that

nb 2; kb 1 and 0am < kn:

Consider the cone Cðk;mÞHRnþ1 with nþ 2 facets defined by the following

normals:

ni ¼ ð~eei; 1Þ; i ¼ 1; . . . ; n� 1;

nn ¼
�
ðmþ 1Þ~een �~dd; 1

�
;

n� ¼ ðk~een; 1Þ;
nþ ¼ ð�~een; 1Þ;

where~eei a Rn, i ¼ 1; . . . ; n, are the canonical basis vectors and ~dd ¼
Pn

i¼1~eei a Rn.

Each of these cones Cðk;mÞHRnþ1 is good in the sense of Definition 3.9, hence
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defines a toric symplectic cone M
2ðnþ1Þ
k;m . Because their defining normals lie on a

fixed hyperplane in Rnþ1, the first Chern class of all these symplectic cones is zero.

Theorem 1.1. When

ðk � 1Þn
2

< m < kn ð1Þ

the toric symplectic cone M
2ðnþ1Þ
k;m has a Ricci-flat Kähler–Sasaki metric. The corre-

sponding reduced toric Kähler–Einstein space belongs to Calabi’s family.

Let N 2nþ1
k;m denote the corresponding toric Sasaki–Einstein manifold. Using a

result of Lerman [24], one can easily check that N 2nþ1
k;m is simply connected i¤

gcdðmþ n; k þ 1Þ ¼ 1: ð2Þ

When n ¼ 2 one can determine an explicit relation between N 5
k;m and the simply

connected toric Sasaki–Einstein 5-manifolds Y p;q, 0 < q < p, gcdðq; pÞ ¼ 1, con-

structed by Gauntlett–Martelli–Sparks–Waldram [17]. In fact, as we will see, the

associated 3-dimensional moment cones are SLð3;ZÞ equivalent i¤ k ¼ p� 1 and

m ¼ pþ q� 2. Note that in this case

ðk � 1Þn
2

< m < kn () 0 < q < p

and

gcdðmþ n; k þ 1Þ ¼ 1 () gcdðq; pÞ ¼ 1:

Since

Y p;q GS2 � S3 for all 0 < q < p such that gcdðq; pÞ ¼ 1;

we conclude that

N 5
k;m GS2 � S3 for all k;m a N satisfying ð1Þ and ð2Þ ðwith n ¼ 2Þ:

Gauntlett–Martelli–Sparks–Waldram construct in [18] higher dimensional

generalizations of the manifolds Y p;q. They do not describe their exact di¤eomor-

phism type and they do not write down the associated moment cones. The later

should be SLðnþ 1;ZÞ equivalent to the cones Cðk;mÞHRnþ1, with k;m a N sat-

isfying (1) and (2), while the former should be di¤eomorphic to the corresponding

N 2nþ1
k;m HM

2ðnþ1Þ
k;m . The cones Cðk;mÞHRnþ1 can be used to determine the di¤eo-
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morphism type of these manifolds. The following theorem is a particular example

of that.

Theorem 1.2. Given nb 2 and m a N, consider the (toric) complex manifold of

real dimension 2n given by

H 2n
m :¼ P

�
Oð�mÞaC

�
! CPn�1:

When k ¼ 1 and 0 < m < n, the toric symplectic cone M
2ðnþ1Þ
1;m is di¤eomorphic to

the total space of the anti-canonical line bundle of H 2n
m minus its zero section, while

the toric contact manifold N 2nþ1
1;m is di¤eomorphic to the total space of the corre-

sponding circle bundle.

Remark 1.3. Theorems 1.1 and 1.2 give rise to two natural sub-actions of the

torus action on the toric contact manifold N 2nþ1
1;m :

(i) the R-action given by the flow of the Reeb vector field K , determined by the

contact form associated with the Sasaki–Einstein metric given by Theorem

1.1;

(ii) the S1-action coming from the identification between N 2nþ1
1;m and an S1-bundle

over H 2n
m .

Although in other more regular examples, like the basic one given by an odd-

dimensional round sphere, the analogues of these two actions coincide, they can-

not coincide in the present situation. If that were the case, we would have that

H 2n
m could be identified with N 2nþ1

1;m =K and would then admit a Kähler–Einstein

metric. That is well known to be false. In fact, the complex manifolds H 2n
m are

used by Calabi [12] as examples that do not admit any Kähler–Einstein metric

but do admit explicit extremal Kähler metrics.

As we will see, the quotient N 2nþ1
1;m =K can be identified via its moment polytope

as a toric symplectic quasifold, in the sense of Prato [27].

The paper is organized as follows. In Section 2 we give some background on

symplectic toric orbifolds and recall the definition and properties of symplectic po-

tentials for toric compatible complex structures. Section 3 is devoted to symplectic

cones, their relation with co-oriented contact manifolds and the classification of

toric symplectic cones via their moment polyhedral cones. The definition and

basic properties of (toric) Kähler–Sasaki cones is the subject of Section 4, which

includes a brief description of their relation with (toric) Sasaki manifolds. Cone

action-angle coordinates and symplectic potentials are introduced in Section 5,

where we also discuss the behaviour of symplectic potentials and toric Kähler–

Sasaki metrics under symplectic reduction. Section 6 contains the proofs of The-

orems 1.1 and 1.2.
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2. Toric Kähler orbifolds

In this section, after some preliminary background on symplectic toric orbifolds,

we recall the definition and some properties of symplectic potentials for compati-

ble toric complex structures in action-angle coordinates, including a formula for

the scalar curvature of the corresponding toric Kähler metric. For details see [3, 2].

2.1. Preliminaries on toric symplectic orbifolds.

Definition 2.1. A toric symplectic orbifold is a connected 2n-dimensional symplec-

tic orbifold ðB;oÞ equipped with an e¤ective Hamiltonian action t : Tn !
Di¤ðB;oÞ of the standard (real) n-torus Tn ¼ Rn=2pZn. The corresponding mo-

ment map, well defined up to addition by a constant, will be denoted by m : B!
t�GRn.

When B is a compact smooth manifold, the Atiyah-Guillemin-Sternberg con-

vexity theorem states that the image P ¼ mðBÞHRn of the moment map m is the

convex hull of the image of the points in B fixed by Tn, i.e., a convex polytope in

Rn. A theorem of Delzant [14] then says that the convex polytope PHRn com-

pletely determines the toric symplectic manifold, up to equivariant symplectomor-

phisms.

In [25] Lerman and Tolman generalize these two theorems to orbifolds. While

the convexity theorem generalizes word for word, one needs more information

than just the convex polytope P to generalize Delzant’s classification theorem.

Definition 2.2. A convex polytope P in Rn is called simple and rational if:

(1) there are n edges meeting at each vertex p;

(2) the edges meeting at the vertex p are rational, i.e., each edge is of the form

pþ tvi, 0a tal, where vi a Zn;

(3) the v1; . . . ; vn in (2) can be chosen to be a Q-basis of the lattice Zn.

A facet is a face of P of codimension one. Following Lerman–Tolman, we will

say that a labeled polytope is a rational simple convex polytope PHRn, plus a

positive integer (label ) attached to each of its facets.
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Two labeled polytopes are isomorphic if one can be mapped to the other by a

translation, and the corresponding facets have the same integer labels.

Remark 2.3. In Delzant’s classification theorem for compact symplectic toric

manifolds, there are no labels (or equivalently, all labels are equal to 1) and the

polytopes that arise are slightly more restrictive: the ‘‘Q’’ in (3) is replaced by

‘‘Z’’. These are called Delzant polytopes.

Remark 2.4. Each facet F of a rational simple convex polytope PHRn deter-

mines a unique lattice vector nF a Zn HRn: the primitive inward pointing normal

lattice vector. A convenient way of thinking about a positive integer label mF a N

associated to F is by dropping the primitive requirement from this lattice vector:

consider mFnF instead of nF .

In other words, a labeled polytope can be defined as a rational simple polytope

PHRn with an inward pointing normal lattice vector associated to each of its

facets. When dealing with the e¤ect of a‰ne transformations on labeled polytopes

it will also be useful to allow more general inward pointing normal vectors (see the

end of this section).

Theorem 2.5 (Lerman–Tolman). Let ðB;o; tÞ be a compact toric symplectic or-

bifold, with moment map m : B! Rn. Then PCmðBÞ is a rational simple convex

polytope. For every facet F of P, there exists a positive integer mF , the label of F ,

such that the structure group of every p a m�1ð �FFÞ is Z=mFZ (here �FF is the relative

interior of F ).

Two compact toric symplectic orbifolds are equivariant symplectomorphic (with

respect to a fixed torus acting on both) if and only if their associated labeled poly-

topes are isomorphic. Moreover, every labeled polytope arises from some compact

toric symplectic orbifold.

Recall that a Kähler orbifold can be defined as a symplectic orbifold ðB;oÞ
equipped with a compatible complex structure J a IðB;oÞ, i.e., a complex struc-

ture on B such that the bilinear form

gJð� ; �Þ :¼ oð�; J�Þ

defines a Riemannian metric. The proof of Theorem 2.5, in both manifold and

orbifold cases, gives an explicit construction of a canonical model for each toric

symplectic orbifold, i.e., it associates to each labeled polytope P an explicit toric

symplectic orbifold ðBP;oP; tPÞ with moment map mP : BP ! P. Moreover, this

explicit construction consists of a certain symplectic reduction of the standard Cd ,

for d ¼ number of facets of P, to which one can apply the Kähler reduction theo-
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rem of Guillemin and Sternberg [20]. Hence, the standard complex structure on

Cd induces a canonical Tn-invariant complex structure JP on BP, compatible with

oP. In other words, each toric symplectic orbifold is Kähler and to each labeled

polytope PHRn one can associate a canonical toric Kähler orbifold ðBP;oP;

JP; tPÞ with moment map mP : BP ! P.

2.2. Symplectic potentials for toric compatible complex structures. Toric com-

patible complex structures, and corresponding Kähler metrics, can be described

using the following symplectic set up.

Let �PP denote the interior of P, and consider �BBP HBP defined by �BBP ¼ m�1P ð �PPÞ.
One can easily check that �BBP is a smooth open dense subset of BP, consisting of all

the points where the Tn-action is free. It can be described as

�BBP G �PP� Tn ¼ fðx; yÞ j x a �PPHRn; y a Rn=2pZng;

where ðx; yÞ are symplectic or action-angle coordinates for oP, i.e.,

oP ¼ dxbdy ¼
Xn
j¼1

dxjbdyj:

If J is any oP-compatible toric complex structure on BP, the symplectic ðx; yÞ-
coordinates on �BBP can be chosen so that the matrix that represents J in these co-

ordinates has the form

0 ..
.
�S�1

S ..
.

0

2664
3775� � � � � � � � � � � � � � �

where S ¼ SðxÞ ¼ ½sjkðxÞ�n;nj;k¼1 is a symmetric and positive-definite real matrix. A

simple computation shows that the vanishing of the Nijenhuis tensor, i.e., the

integrability condition for the complex structure J, is equivalent to S being the

Hessian of a smooth function s a Clð �PPÞ, i.e.,

S ¼ HessxðsÞ; sjkðxÞ ¼
q2s

qxjqxk
ðxÞ; 1a j; ka n:

Holomorphic coordinates for J are given in this case by

zðx; yÞ ¼ uðx; yÞ þ ivðx; yÞ ¼ qs

qx
ðxÞ þ iy:
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We will call s the symplectic potential of the compatible toric complex structure J.

Note that the Kähler metric gJð� ; �Þ ¼ oPð�; J�Þ is given in these ðx; yÞ-coordinates
by the matrix

S ..
.

0

0 ..
.

S�1

2664
3775: ð3Þ� � � � � � � � � � � �

Remark 2.6. A beautiful proof of this local normal form for toric compatible

complex structures is given by Donaldson in [16] (see also [4]). It illustrates a

small part of his formal general framework for the action of the symplectomor-

phism group of a symplectic manifold on its space of compatible complex struc-

tures (cf. [15]).

We will now characterize the symplectic potentials that correspond to toric

compatible complex structures on a toric symplectic orbifold ðBP;oP; tPÞ. Every

convex rational simple polytope PHRn can be described by a set of inequalities

of the form

3x; nr4þ rrb 0; r ¼ 1; . . . ; d;

where d is the number of facets of P, each nr is a primitive element of the lattice

Zn HRn (the inward-pointing normal to the r-th facet of P), and each rr is a real

number. Following Remark 2.4, the labels mr a N attached to the facets can

be incorporated in the description of P by considering the a‰ne functions

lr : R
n ! R defined by

lrðxÞ ¼ 3x;mrnr4þ lr;

where lr ¼ mrrr and r ¼ 1; . . . ; d. Then x belongs to the r-th facet of P i¤

lrðxÞ ¼ 0, and x a �PP i¤ lrðxÞ > 0 for all r ¼ 1; . . . ; d.
The following two theorems are proved in [2]. The first is a straightforward

generalization to toric orbifolds of a result of Guillemin [19].

Theorem 2.7. Let ðBP;oP; tPÞ be the symplectic toric orbifold associated to a la-

beled polytope PHRn. Then, in suitable action-angle ðx; yÞ-coordinates on �BBP G
�PP� Tn, the symplectic potential sP a Clð �PPÞ of the canonical compatible toric com-

plex structure JP is given by

sPðxÞ ¼
1

2

Xd
r¼1

lrðxÞ log lrðxÞ:
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The second theorem provides the symplectic version of the qq-lemma in this

toric orbifold context.

Theorem 2.8. Let J be any compatible toric complex structure on the symplectic

toric orbifold ðBP;oP; tPÞ. Then, in suitable action-angle ðx; yÞ-coordinates on
�BBP G �PP� Tn, J is given by a symplectic potential s a Clð �PPÞ of the form

sðxÞ ¼ sPðxÞ þ hðxÞ;

where sP is given by Theorem 2.7, h is smooth on the whole P, and the matrix

S ¼ HessðsÞ is positive definite on �PP and has determinant of the form

DetðSÞ ¼
�
d
Yd
r¼1

lr

��1
;

with d being a smooth and strictly positive function on the whole P.

Conversely, any such potential s determines a complex structure on �BBP G
�PP� Tn, that extends uniquely to a well defined compatible toric complex structure

J on the toric symplectic orbifold ðBP;oP; tPÞ.

2.3. Scalar curvature. We now recall from [1] a particular formula for the scalar

curvature in action-angle ðx; yÞ-coordinates. A Kähler metric of the form (3) has

scalar curvature Sc given by

Sc ¼ �
X
j;k

q

qxj
s jk

q logDetðSÞ
qxk

� �
;

which after some algebraic manipulations becomes the more compact

Sc ¼ �
X
j;k

q2s jk

qxjqxk
; ð4Þ

where the s jk; 1a j; ka n, are the entries of the inverse of the matrix S ¼
HessxðsÞ, sC symplectic potential (Donaldson gives in [16] an appropriate inter-

pretation of this formula, by viewing the scalar curvature as the moment map for

the action of the symplectomorphism group on the space of compatible complex

structures).

2.4. Symplectic potentials and a‰ne transformations. The labeled polytope

PHRn of a symplectic toric orbifold is only well defined up to translations, since

the moment map is only well defined up to addition of constants. Moreover, the
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twisting of the action by an automorphism of the torus Tn ¼ Rn=2pZn corre-

sponds to an SLðn;ZÞ transformation of the polytope. Since these operations

have no e¤ect on a toric Kähler metric, symplectic potentials should have a natu-

ral transformation property under these a‰ne maps. While the e¤ect of transla-

tions is trivial to analyse, the e¤ect of SLðn;ZÞ transformations is more interesting.

In fact: symplectic potentials transform quite naturally under any GLðn;RÞ linear
transformation.

Let T a GLðn;RÞ and consider the linear symplectic change of action-angle

coordinates

x :¼ T�1x 0 and y :¼ T ty 0:

Then

P 0 ¼ 7
d

a¼1
fx 0 a Rn j l 0aðx 0Þ :¼ 3x 0; n 0a4þ l 0ab 0g

becomes

P :¼ T�1ðP 0Þ ¼ 7
d

a¼1
fx a Rn j laðxÞ :¼ 3x; na4þ lab 0g

with

na ¼ T tn 0a and la ¼ l 0a;

and symplectic potentials transform by

s ¼ s 0 � T ðin particular; sP ¼ sP 0 � TÞ:

The corresponding Hessians are related by

S ¼ T tðS 0 � TÞT

and

Sc ¼ Sc 0 � T :

For the purposes of this paper, the point of this discussion is the following.

Let PHRn be a labeled polytope and P 0 ¼ TðPÞHRn for some arbitrary T a
GLðn;RÞ. Supose that

s 0 : �PP 0 ! R

131Kähler–Sasaki geometry of toric symplectic cones



is of the form specified in Theorem 2.8 (with sP 0 ¼ sP � T�1). Then

s :¼ s 0 � T : �PP! R

also has the form specified in Theorem 2.8 and, consequently, is the symplectic po-

tential of a well defined toric compatible complex structure on the toric symplectic

orbifold ðBP;oPÞ. Moreover, since Sc ¼ Sc 0 � T , we have that

Sc 0 ¼ constant () Sc ¼ constant:

Example 2.9. Figure 1 illustrates two equivalent descriptions of a toric symplectic

rational ruled 4-manifold or, equivalently, of a Hirzebruch surface

H 2
m :¼ P

�
Oð�mÞaC

�
! CP1; m a N:

The linear map T a GLð2;RÞ relating the two is given by

T ¼ m �1
0 1

� 	
The inward pointing normal that should be considered for each facet is specified.

The right polytope is a standard Delzant polytope for the Hirzebruch surface

H 2
m. The left polytope is very useful for the constructions of Section 6 and was

implicitly used by Calabi in [12].

3. Toric symplectic cones

In this section, after defining symplectic cones and briefly reviewing their direct re-

lation with co-oriented contact manifolds, we consider toric symplectic cones and

their classification via good moment cones.

Figure 1. Hirzebruch surfaces.
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Definition 3.1. A symplectic cone is a triple ðM;o;XÞ, where ðM;oÞ is a con-

nected symplectic manifold, i.e., o a W2ðMÞ is a closed and non-degenerate 2-

form, and X a XðMÞ is a vector field generating a proper R-action rt : M !M,

t a R, such that r�t ðoÞ ¼ e2to. Note that the Liouville vector field X satisfies

LXo ¼ 2o, or equivalently

o ¼ 1

2
d
�
iðXÞo

�
:

A compact symplectic cone is a symplectic cone ðM;o;XÞ for which the quotient

M=R is compact.

Definition 3.2. A co-orientable contact manifold is a pair ðN; xÞ, where N is a con-

nected odd dimensional manifold and xHTN is a maximally non-integrable hy-

perplane distribution globally defined by some contact form a a W1ðNÞ, i.e.,

x ¼ ker a and dajx is non-degenerate:

A co-oriented contact manifold is a triple ðN; x; ½a�Þ, where ðN; xÞ is a co-orientable
contact manifold and ½a� is the conformal class of some contact form a, i.e.,

½a� ¼ feha j h a ClðNÞg:

Given a co-oriented contact manifold ðN; x; ½a�Þ, with contact form a, let

M :¼ N � R; o :¼ dðetaÞ and X :¼ 2
q

qt
;

where t is the R coordinate. Then ðM;o;XÞ is a symplectic cone, usually called

the symplectization of ðN; x; ½a�Þ.
Conversely, given a symplectic cone ðM;o;XÞ let

N :¼M=R; x :¼ p�
�
ker
�
iðXÞo

��
and a :¼ s�

�
iðXÞo

�
;

where p : M ! N is the natural principal R-bundle quotient projection and

s : N !M is any global section (note that such global sections always exist, since

any principal R-bundle is trivial). Then ðN; x; ½a�Þ is a co-oriented contact mani-

fold whose symplectization is the symplectic cone ðM;o;XÞ.
In fact, we have that

co-oriented contact manifolds !1:1 symplectic cones

(see Chapter 2 of [22] for details). Under this bijection, compact toric contact

manifolds, Sasaki manifolds and Sasaki–Einstein metrics correspond respectively
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to the toric symplectic cones, Kähler–Sasaki cones and Ricci-flat Kähler–Sasaki

metrics that are the subject of this paper.

Example 3.3. The most basic example of a symplectic cone is R2ðnþ1Þnf0g with
linear coordinates

ðu1; . . . ; unþ1; v1; . . . ; vnþ1Þ;

symplectic form

ost ¼ dubdv :¼
Xnþ1
j¼1

dujbdvj

and Liouville vector field

Xst ¼ u
q

qu
þ v

q

qv
:¼
Xnþ1
j¼1

uj
q

quj
þ vj

q

qvj

� �
:

The associated co-oriented contact manifold is isomorphic to ðS2nþ1; xstÞ, where
S2nþ1 HCnþ1 is the unit sphere and xst is the hyperplane distribution of complex

tangencies, i.e.,

xst ¼ TS2nþ1B iTS2nþ1:

Example 3.4. Let Q be a manifold and denote by M the cotangent bundle of

Q with the zero section deleted: M :¼ T �Qn0. We have that M is a symplectic

cone since the proper R-action rt : M !M, given by rtðq; pÞ ¼ ðq; e2tpÞ, expands
the canonical symplectic form exponentially. The associated co-oriented contact

manifold is the co-sphere bundle S �Q.

Example 3.5. Let ðB;oÞ be a symplectic manifold such that the cohomology class
1
2p ½o� a H 2ðB;RÞ is integral, i.e., in the image of the natural map H 2ðB;ZÞ !
H 2ðB;RÞ. Suppose that H 2ðB;ZÞ has no torsion, so that the above natural map

is injective and we can consider H 2ðB;ZÞHH 2ðB;RÞ. Denote by p : N ! B the

principle circle bundle with first Chern class

c1ðNÞ ¼
1

2p
½o�:

A theorem of Boothby and Wang [8] asserts that there is a connection 1-form

a on N with da ¼ p�o and, consequently, a is a contact form. We will call�
N; x :¼ kerðaÞ

�
the Boothby–Wang manifold of ðB;oÞ. The associated symplec-
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tic cone is the total space of the corresponding line bundle L! B with the zero

section deleted.

When B ¼ CPn, with its standard Fubini–Study symplectic form, we recover

Example 3.3, i.e., ðN; xÞG ðS2nþ1; xstÞ.

Definition 3.6. A toric symplectic cone is a symplectic cone ðM;o;XÞ of dimen-

sion 2ðnþ 1Þ equipped with an e¤ective X -preserving symplectic Tnþ1-action,
with moment map m : M ! t�GRnþ1 such that m

�
rtðmÞ

�
¼ e2trtðmÞ for all

m a M, t a R. Its moment cone is defined to be the set

C :¼ mðMÞA f0gHRnþ1:

Remark 3.7. On a symplectic cone ðM;o;XÞ, any X -preserving symplectic group

action is Hamiltonian.

Example 3.8. Consider the usual identification R2ðnþ1ÞGCnþ1 given by

zj ¼ uj þ ivj; j ¼ 1; . . . ; nþ 1;

and the standard Tnþ1-action defined by

ðy1; . . . ; ynþ1Þ � ðz1; . . . ; znþ1Þ ¼ ðe�iy1z1; . . . ; e�iynþ1znþ1Þ:

The symplectic cone ðR2ðnþ1Þnf0g;ost;XstÞ of Example 3.3 equipped with this

Tnþ1-action is a toric symplectic cone. The moment map mst : R
2ðnþ1Þnf0g !

Rnþ1 is given by

mstðu1; . . . ; unþ1; v1; . . . ; vnþ1Þ ¼
1

2
ðu21 þ v21 ; . . . ; u

2
nþ1 þ v2nþ1Þ;

and the moment cone is C ¼ ðRþ0 Þ
nþ1 HRnþ1:

In [21] Lerman completed the classification of compact toric symplectic cones,

initiated by Banyaga and Molino [6], [7], [5] and continued by Boyer and Galicki

[9]. The ones that are relevant for toric Kähler–Sasaki geometry are characterized

by having good moment cones.

Definition 3.9 (Lerman). A cone CHRnþ1 is good if there exists a minimal set of

primitive vectors n1; . . . ; nd a Znþ1, with db nþ 1, such that

(i) C ¼7d

a¼1fx a Rnþ1 j laðxÞ :¼ 3x; na4b 0g.
(ii) any codimension-k face F of C, 1a ka n, is the intersection of exactly k fac-

ets whose set of normals can be completed to an integral base of Znþ1.
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Theorem 3.10 (Banyaga–Molino, Boyer–Galicki, Lerman). For each good

cone CHRnþ1 there exists a unique compact toric symplectic cone ðMC ;oC ;XC ;

mCÞ with moment cone C.

Remark 3.11. The compact toric symplectic cones characterized by this theorem

will be called good toric symplectic cones. Like for compact toric symplectic

manifolds, the existence part of the theorem follows from an explicit symplectic

reduction construction starting from a symplectic vector space (see [21]).

Example 3.12. Let PHRn be an integral Delzant polytope, i.e., a Delzant poly-

tope with integral vertices or, equivalently, the moment polytope of a compact

toric symplectic manifold ðBP;oP; mPÞ such that 1
2p ½o� a H 2ðBP;ZÞ. Then its stan-

dard cone

C :¼ fzðx; 1Þ a Rn � R j x a P; zb 0gHRnþ1 ð5Þ

is a good cone. Moreover

(i) the toric symplectic manifold ðBP;oP; mPÞ is the S1 G f1g � S1 HTnþ1 sym-

plectic reduction of the toric symplectic cone ðMC ;oC ;XC ; mCÞ (at level one).
(ii)

�
NC :¼ m�1C ðRn � f1gÞ; aC :¼

�
iðXCÞoC

�
jNC

�
is the Boothby–Wang manifold

of ðBP;oPÞ. The restricted Tnþ1-action makes it a toric contact manifold.

(iii) ðMC ;oC ;XCÞ is the symplectization of ðNC ; aCÞ.

See Lemma 3.7 in [23] for a proof of these facts.

If PHRn is the standard simplex, i.e., BP ¼ CPn, then its standard cone

CHRnþ1 is the moment cone of ðMC ¼ Cnþ1nf0g;ost;XstÞ equipped with the

Tnþ1-action given by

ðy1; . . . ; yn; ynþ1Þ � ðz1; . . . ; zn; znþ1Þ

¼ ðe�iðy1þynþ1Þz1; . . . ; e�iðynþynþ1Þzn; e�iynþ1znþ1Þ:

The moment map mC : Cnþ1nf0g ! Rnþ1 is given by

mCðzÞ ¼
1

2
ðjz1j2; . . . ; jznj2; jz1j2 þ � � � þ jznj2 þ jznþ1j2Þ

and

NC :¼ m�1C ðRn � f1gÞ ¼ fz a Cnþ1 j kzk2 ¼ 2gGS2nþ1:

Remark 3.13. Up to a possible twist of the action by an automorphism of the

torus Tnþ1, any good toric symplectic cone can be obtained via an orbifold version
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of the Boothby–Wang construction of Example 3.5, where the base is a toric sym-

plectic orbifold. In fact, up to an SLðnþ 1;ZÞ transformation, any good moment

cone can be written as the standard cone, given by (5), of a labeled polytope.

4. Toric Kähler–Sasaki cones

In this section we define (toric) Kähler–Sasaki cones, present their basic properties

and briefly describe their relation with (toric) Sasaki manifolds.

Definition 4.1. A Kähler–Sasaki cone is a symplectic cone ðM;o;XÞ equipped
with a compatible complex structure J a IðM;oÞ such that the Reeb vector field

K :¼ JX is Kähler, i.e.,

LKo ¼ 0 and LKJ ¼ 0:

Note that K is then also a Killing vector field for the Riemannian metric gJ .

Any such J will be called a Sasaki complex structure on the symplectic cone

ðM;o;XÞ and the associated metric gJ will be called a Kähler–Sasaki metric.

The space of all Sasaki complex structures will be denoted by ISðM;o;XÞ.

Given a Kähler–Sasaki cone ðM;o;X ; JÞ, define a smooth positive function

r : M ! Rþ by

r :¼ kXk ¼ kJXk ¼ kKk;

where k � k denotes the norm associated with the metric gJ . One easily checks that

(i) K is the Hamiltonian vector field of �r2=2;
(ii) X is the gradient vector field of r2=2.

Define a a W1ðMÞ by

a :¼ iðXÞo=r2:

We then have that

o ¼ dðr2aÞ=2; aðKÞC 1 and LXa ¼ 0:

If we now define

N :¼ fr ¼ 1gHM and x :¼ ker ajN ;

we have that

ðN; x; ajN ; gJ jNÞ is a Sasaki manifold
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(see [10] for the definition of a Sasaki manifold). In fact, one can easily check

from the definitions that

Sasaki manifolds !1:1 Kähler–Sasaki cones.

Given a Kähler–Sasaki cone ðM;o;X ; JÞ, let

B :¼M==K ¼ N=K

be the symplectic reduction of ðM;oÞ by the action of K ¼ JX and denote by

p : N ! B the quotient projection. When B is smooth, we have that p�ðTBÞG x

and Jjx induces an almost complex structure on B which, by the already men-

tioned Kähler reduction theorem of Guillemin and Sternberg [20], is integrable.

Hence,

ðB; dajx; JjxÞ is a K€aahler manifold:

The smoothness of B is related with the regularity of the Kähler–Sasaki cone.

Definition 4.2. A Kähler–Sasaki cone ðM;o;X ; JÞ, with Reeb vector field

K ¼ JX , is said to be

(i) regular if K generates a free S1-action,

(ii) quasi-regular if K generates a locally free S1-action,

(iii) irregular if K generates an e¤ective R-action.

Hence, B is

(i) a smooth Kähler manifold if the Kähler–Sasaki cone is regular,

(ii) a Kähler orbifold if the Kähler–Sasaki cone is quasi-regular,

(iii) only a Kähler quasifold, in the sense of Prato [27], if the Kähler–Sasaki cone

is irregular.

Remark 4.3. Note that the Sasaki manifold determined, as above, by a Kähler–

Sasaki cone is always smooth.

Definition 4.4. A toric Kähler–Sasaki cone is a good toric symplectic cone

ðM;o;X ; mÞ equipped with a toric Sasaki complex structure J a IT
S ðM;oÞ, i.e.,

a Sasaki complex structure invariant under the torus action. The associated met-

ric gJ will be called a toric Kähler–Sasaki metric.

Remark 4.5. (i) It follows from Theorem 3.10 and Remark 3.11 that any good

toric symplectic cone has toric Sasaki complex structures. These will be described

in the next section.
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(ii) On a toric Kähler–Sasaki cone ðM;o;X ; m; JÞ, the Kähler action generated

by the Reeb vector field K ¼ JX corresponds to the action generated by a fixed

vector in the Lie algebra of the torus (see Lemma 5.3 below).

(iii) The Kähler reduction B :¼M==K of a toric Kähler–Sasaki cone is a toric

Kähler space: manifold (regular case), orbifold (quasi-regular case) or quasifold

(irregular case).

Example 4.6. The toric symplectic cone ðR2ðnþ1Þnf0g;ost;Xst; mstÞ of Example

3.8, equipped with the standard linear complex structure J0 : R
2ðnþ1Þ ! R2ðnþ1Þ

given by

J0 ¼
0 ..

.
�I

I ..
.

0

2664
3775� � � � � � � � � � � �

is a toric Kähler–Sasaki cone.

5. Cone action-angle coordinates and symplectic potentials

As described in Section 2, the space IT of toric compatible complex structures on

a compact toric symplectic orbifold can be e¤ectively parametrized, using global

action-angle coordinates, by symplectic potentials, i.e., certain smooth real valued

functions on the corresponding labeled polytope. In this section we present the

analogue of this fact for the space IT
S of toric Sasaki complex structures on a

good toric symplectic cone, due to Burns–Guillemin–Lerman [11] and Martelli–

Sparks–Yau [26]. We will also discuss how symplectic potentials and toric

Kähler–Sasaki metrics behave under symplectic reduction.

Let CHRnþ1 be a good cone and ðM;o;X ; mÞ the corresponding good toric

symplectic cone (we omit the subscript C to simplify the notation). Let �CC denote

the interior of C, and consider �MMHM defined by �MM ¼ m�1ð �CCÞ. One can easily

check that �MM is a smooth open dense subset of M, consisting of all the points

where the Tn-action is free. One can use the explicit model for ðM;o;X ; mÞ, given
by the symplectic reduction construction mentioned in Remark 3.11, to show that
�MM can be described as

�MMG �CC � Tn ¼ fðx; yÞ j x a �CC; y a Tnþ1CRnþ1=2pZnþ1g;

where in these ðx; yÞ coordinates we have

oj �MM ¼ dxbdy; mðx; yÞ ¼ x and X j �MM ¼ 2x
q

qx
¼ 2

Xnþ1
i¼1

xi
q

qxi
:
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Definition 5.1. Any such set of coordinates will be called cone action-angle coor-

dinates.

If J is any o-compatible toric complex structure on M such that LXJ ¼ 0, i.e.,

for which the Liouville vector field X is holomorphic, the cone action-angle ðx; yÞ-
coordinates on �MM can be chosen so that the matrix that represents J in these co-

ordinates has the form

0 ..
.
�S�1

S ..
.

0

2664
3775; ð6Þ� � � � � � � � � � � � � � �

where S ¼ SðxÞ ¼ ½sijðxÞ�nþ1;nþ1i; j¼1 is a symmetric and positive-definite real matrix.

The integrability condition for the complex structure J is again equivalent to S

being the Hessian of a smooth real function s a Clð �CCÞ, i.e.,

S ¼ HessxðsÞ; sijðxÞ ¼
q2s

qxiqxj
ðxÞ; 1a i; ja nþ 1; ð7Þ

and holomorphic coordinates for J are again given by

zðx; yÞ ¼ uðx; yÞ þ ivðx; yÞ ¼ qs

qx
ðxÞ þ iy:

The condition LXJ ¼ 0 is equivalent to

Sðe2txÞ ¼ e�2tSðxÞ for all t a R; x a �CC; ð8Þ

i.e., equivalent to S being homogeneous of degree �1 in x.

Remark 5.2. A proof of these facts can be given by combining Donaldson’s

method of proof in the polytope case (cf. Remark 2.6) with the Sasaki condition

on the complex structure J.

The Reeb vector field K :¼ JX of such a toric complex structure (cf. Definition

4.1) is given by

K ¼
Xnþ1
i¼1

bi
q

qyi
with bi ¼ 2

Xnþ1
j¼1

sijxj:

Lemma 5.3 (Martelli–Sparks–Yau). If SðxÞ ¼ ½sijðxÞ� is homogeneous of degree

�1, then the corresponding Reeb vector field K ¼ ð0;KsÞ, with Ks :¼ ðb1; . . . ; bnþ1Þ,
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is a constant vector. In other words, the action generated by K corresponds to the

action generated by a fixed vector in the Lie algebra of the torus. In particular, K is

Kähler and

regularity of the toric K €aahleraSasaki cone () rationality of Ks a Rnþ1:

The norm of the Reeb vector field is given by

kKk2 ¼ kð0;KsÞk2 ¼ bis
ijbj ¼ bis

ijð2sjkxkÞ ¼ 2bixi ¼ 23x;Ks4:

Hence

kKk > 0 () 3x;Ks4 > 0 and kKk ¼ 1 () 3x;Ks4 ¼ 1=2:

Definition 5.4 (Martelli–Sparks–Yau). The characteristic hyperplane HK and

polytope PK of a toric Kähler–Sasaki cone ðM;o;X ; m; JÞ, with moment cone

CHRnþ1, are defined as

HK :¼ fx a Rnþ1 j 3x;Ks4 ¼ 1=2g and PK :¼ HK BC:

Remark 5.5. Note that N :¼ m�1ðHKÞ is a toric Sasaki manifold and PK is the

moment polytope of B ¼M==K . Moreover, we see that K gives rise to compatible

splitting identifications M ¼ N � R and C ¼ PK � R.

As we have just seen, any toric Sasaki complex structure J a IT
S ð �MM;o;XÞ can

be written in suitable cone action-angle coordinates ðx; yÞ on �MMG �CC � Tnþ1 in

the form (6), with S satisfying (7) and (8).

Definition 5.6. The corresponding smooth real function s a Clð �CCÞ will be called
the symplectic potential of the toric Sasaki complex structure

Example 5.7. Consider the toric Kähler–Sasaki cone of Example 4.6. In cone

action-angle coordinates ðx; yÞ on

�CC � Tnþ1 ¼ ðRþÞnþ1 � Tnþ1;

the symplectic potential

s : �CC ¼ ðRþÞnþ1 ! R

of the toric Sasaki complex structure J0 is given by

sðxÞ ¼ 1

2

Xnþ1
a¼1

xa log xa:
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We will now characterize the space of smooth real functions s a Clð �CCÞ
that are the symplectic potential of some toric Sasaki complex structure J a
IT
S ðM;o;XÞ.
The Kähler reduction theorem of Guillemin and Sternberg can also be applied

to the symplectic reduction construction mentioned in Remark 3.11. Hence, given

a good cone CHRnþ1, defined by

C ¼ 7
d

a¼1
fx a Rnþ1 j laðxÞ :¼ 3x; na4b 0g

as in Definition 3.9, the explicit model for the corresponding good toric sym-

plectic cone ðM;o;X ; mÞ has a canonical toric Sasaki complex structure JC a
IT
S ðM;o;XÞ. Its symplectic potential is given by the following particular case

of a theorem proved by Burns–Guillemin–Lerman in [11].

Theorem 5.8. In appropriate action-angle coordinates ðx; yÞ, the canonical sym-

plectic potential sC : �CC ! R for JC j �CC is given by

sCðxÞ ¼
1

2

Xd
a¼1

laðxÞ log laðxÞ:

One checks easily that HessxðsCÞ is homogeneous of degree �1. The corre-

sponding Reeb vector field K ¼ ð0;KCÞ is given by

KC ¼
Xd
a¼1

na: ð9Þ

Example 5.9. The symplectic potential presented in Example 5.7 is the canonical

symplectic potential of the corresponding good cone C ¼ ðRþ0 Þ
nþ1 HRnþ1 and

KC ¼ ð1; . . . ; 1Þ a Rnþ1:

Example 5.10. The standard cone over the standard simplex, considered in Ex-

ample 3.12, is given by

C ¼ 7
nþ1

a¼1
fx a Rnþ1 j laðxÞ :¼ 3x; na4b 0g;

where

na ¼ ea; a ¼ 1; . . . ; n; and nnþ1 ¼ ð�1; . . . ;�1; 1Þ:
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Hence, defining

r ¼
Xn
a¼1

xa;

we have that

sCðxÞ ¼
1

2

�Xn
a¼1

xa log xa þ ðxnþ1 � rÞ logðxnþ1 � rÞ
�

and

KC ¼
Xnþ1
a¼1

na ¼ ð0; . . . ; 0; 1Þ a Rnþ1:

Remark 5.11. Examples 5.9 and 5.10 are isomorphic to each other under a

SLðnþ 1;ZÞ transformation.

Let s; s 0 : �CC ! R be two symplectic potentials defined on the interior of a cone

CHRnþ1. Then

Ks ¼ Ks 0 () ðs� s 0Þ þ const: is homogeneous of degree 1:

Given b a Rnþ1, define

sbðxÞ :¼
1

2
ð3x; b4 log3x; b4� 3x;KC4 log3x;KC4Þ; ð10Þ

with KC given by (9). Then s :¼ sC þ sb is such that Ks ¼ b. If C is good, this

symplectic potential s defines a smooth Sasaki complex structure on the corre-

sponding good toric symplectic cone ðM;o;X ; mÞ i¤

3x; b4 > 0 for all x a Cnf0g; i:e:; b a �CC �;

where C �HRnþ1 is the dual cone

C � :¼ fx a Rnþ1 j 3v; x4b 0 for all v a Cg:

This dual cone can be equivalently defined as

C � ¼7
a

fx a Rnþ1 j 3ha; x4b 0g;

where ha a Znþ1 are the primitive generating edges of C.
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Theorem 5.12 (Martelli–Sparks–Yau [26]). Any toric Sasaki complex structure

J a IT
S on a good toric symplectic cone ðM;o;X ; mÞ, associated to a good moment

cone C a Rnþ1, is given by a symplectic potential s : �CC ! R of the form

s ¼ sC þ sb þ h;

where sC is the canonical potential, sb is given by (10) with b a �CC �, and h : C ! R is

homogeneous of degree 1 and smooth on Cnf0g.

5.1. Symplectic reduction of symplectic potentials

Proposition 5.13 (Calderbank–David–Gauduchon [13]). Symplectic potentials

restrict naturally under toric symplectic reduction.

More precisely, suppose ðMP;oP; mPÞ is a toric symplectic reduction of

ðMC ;oC ; mCÞ. Then there is an a‰ne inclusion PHC and

any ~JJ a ITðMC ;oCÞ induces a reduced J a ITðMP;oPÞ:

This proposition says that if

~ss : �CC ! R is a symplectic potential for ~JJ

then

s :¼ ~ssj �PP : �PP! R is a symplectic potential for J:

This property can be used to prove Theorems 2.7 and 5.8. It is also particularly

relevant for the following class of symplectic potentials.

Definition 5.14. Let PHRn be a convex polytope and CHRnþ1 its standard

cone given by (5). Given a symplectic potential s : �PP! R, define its Boothby–

Wang symplectic potential ~ss : �CC ! R by

~ssðx; zÞ :¼ zsðx=zÞ þ 1

2
z log z for all x a �PP; z a Rþ: ð11Þ

Note that

K~ss ¼ ð0; . . . ; 0; 1Þ a Rnþ1:
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Example 5.15. In general,

esPsPA sC :

If P ¼7d

a¼1fx a Rn j laðxÞ :¼ 3x; na4þ lab 0g, consider

sðxÞ ¼ sPðxÞ �
1

2
llðxÞ log llðxÞ;

where llðxÞ :¼
P

a laðxÞ ¼ 3x; nl4þ ll. Then

~ssðx; zÞ ¼ sCðx; zÞ þ sbðx; zÞ

where sb is given by (10) with b ¼ ð0; . . . ; 0; 1Þ.

5.2. Toric Kähler–Sasaki–Einstein metrics

Proposition 5.16. Let PHRn be a convex polytope and CHRnþ1 its standard

cone defined by (5). Given a symplectic potential s : �PP! R, let ~ss : �CC ! R be its

Boothby–Wang symplectic potential given by (11). Then

eScScðx; zÞ ¼ Scðx=zÞ � 2nðnþ 1Þ
z

:

In particular,

eScScC 0 () ScC 2nðnþ 1Þ

and, when this happens, the corresponding toric Sasaki metric has constant positive

scalar curvature ¼ nð2nþ 1Þ. Moreover, s defines a toric Kähler–Einstein metric

with ScC 2nðnþ 1Þ if and only if ~ss defines a toric Ricci-flat Kähler metric. If this

happens, the corresponding toric Sasaki metric is Einstein.

Proof. The relation between Sc and eScSc follows by direct application of formula

(4) for the scalar curvature to the symplectic potentials s and ~ss.

The last statement follows from the above symplectic reduction property of

symplectic potentials and a well known fact in Sasaki geometry (see [10]): on a

Sasaki manifold of dimension 2nþ 1 the following are equivalent:

(i) the Sasaki metric is Einstein with scalar curvature equal to nð2nþ 1Þ;
(ii) the transversal Kähler metric is Einstein with scalar curvature equal to

2nðnþ 1Þ;
(iii) the cone Kähler metric is Ricci-flat. r
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6. New Sasaki–Einstein from old Kähler–Einstein

In 1982 Calabi [12] constructed, in local complex coordinates, a general 4-

parameter family of UðnÞ-invariant extremal Kähler metrics, which he used to

put an extremal Kähler metric on

H 2n
m ¼ P

�
Oð�mÞaC

�
! CPn�1;

for all n;m a N and any possible Kähler cohomology class. In particular, when

n ¼ 2, on all Hirzebruch surfaces.

When written in action-angle coordinates, using symplectic potentials, Calabi’s

family can be seen to contain many other interesting cohomogeneity one special

Kähler metrics. Besides the ones discussed in [4] and some of the Bochner-Kähler

orbifold examples presented in [2], it also contains a 1-parameter family of

Kähler–Einstein metrics that are directly related to the Sasaki–Einstein metrics

constructed by Gauntlett–Martelli–Sparks–Waldram [17], [18] in 2004.

Consider symplectic potentials sA : �PPA H ðRþÞn ! R of the form

sAðxÞ ¼
1

2

 Xn
i¼1

xi þ
1

nþ 1

� �
log xi þ

1

nþ 1

� �
þ hAðrÞ

!
;

where

r ¼ x1 þ � � � þ xn;

the polytope �PPA will be determined below and

h 00AðrÞ ¼ �
1

rþ n
nþ1
þ

rþ n
nþ1

� �n�1
pAðrÞ

;

with

pAðrÞ :¼ rþ n

nþ 1

� �n 1

nþ 1
� r

� �
� A and 0 < A <

nn

ðnþ 1Þnþ1
: ð12Þ

One can check (see [4]) that this family of symplectic potentials defines a 1-

parameter family of local Kähler–Einstein metrics with Sc ¼ 2nðnþ 1Þ.
Let �a and b denote the first negative and positive zeros of pA. Then

pAðrÞ ¼ ðrþ aÞðb� rÞqAðrÞ; ð13Þ
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where qA is a polynomial of degree n� 1,

0 < a <
n

nþ 1
; 0 < b <

1

nþ 1
and

n

nþ 1
� a

� �n 1

nþ 1
þ a

� �
¼ A ¼ n

nþ 1
þ b

� �n 1

nþ 1
� b

� �
:

From (12) and (13) we get that

p 0AðrÞ ¼ �ðnþ 1Þr rþ n

nþ 1

� �n�1
¼ ðb� rÞqAðrÞ � ðrþ aÞqAðrÞ þ ðrþ aÞðb� rÞq 0AðrÞ;

which for r ¼ �a and r ¼ b implies that

qAð�aÞ ¼
ðnþ 1Þa
aþ b

n

nþ 1
� a

� �n�1
;

qAðbÞ ¼
ðnþ 1Þb
aþ b

bþ n

nþ 1

� �n�1
:

This means in particular that

rþ n
nþ1

� �n�1
pAðrÞ

¼
rþ n

nþ1

� �n�1
ðrþ aÞðb� rÞqAðrÞ

¼
1

ðnþ1Þa
rþ a

þ
1

ðnþ1Þb
b� r

þ � � �
qAðrÞ

:

Hence, the symplectic potential sA defines a Kähler–Einstein metric with Sc ¼
2nðnþ 1Þ on the toric quasifold determined by the polytope PA HRn defined by

the following inequalities:

xi þ
1

nþ 1
b 0; i ¼ 1; . . . ; n;

1

ðnþ 1Þa ðrþ aÞb 0 and
1

ðnþ 1Þb ðb� rÞb 0:

Since PA is never GLðn;RÞ equivalent to a Delzant polytope, these Kähler–

Einstein quasifolds do not give rise to any interesting Kähler–Einstein smooth

manifolds. However, they do give rise to interesting Sasaki–Einstein smooth
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manifolds. In fact, for suitable values of the parameter A, the polytope PA deter-

mines via (5) a standard cone CA HRnþ1 that is GLðnþ 1;RÞ equivalent to one of

the good cones Cðk;mÞHRnþ1 defined in the Introduction. The Boothby–Wang

symplectic potential

~ssA : CA HRnþ1 ! R;

determined by sA via (11), will then define a Ricci-flat Kähler metric on the toric

‘‘quasicone’’ determined by CA and, for these appropriate values of A, also a

Ricci-flat Kähler metric on the smooth toric symplectic cone determined by the

appropriate Cðk;mÞ and a Sasaki–Einstein metric on the corresponding smooth

toric contact manifold, thus proving Theorem 1.1.

The facets of CA are defined by the set of defining normals

n 0i ¼ ~eei;
1

nþ 1

� �
; i ¼ 1; . . . ; n;

n 0a ¼
~dd

ðnþ 1Þa ;
1

nþ 1

 !
;

n 0b ¼ �
~dd

ðnþ 1Þb ;
1

nþ 1

 !
;

where~eei a Rn, i ¼ 1; . . . ; n, are the canonical basis vectors and ~dd ¼
Pn

i¼1~eei a Rn.

To suitably express the condition implying that the cone CA is GLðnþ 1;RÞ
equivalent to one of the good cones Cðk;mÞHRnþ1, it is convenient to introduce

the auxiliar real parameter

lA :¼ b

a
� n� ðnþ 1Þa
nþ ðnþ 1Þb :

Note that lA assumes all values in the open interval ð0; 1Þ, since A varies in the

open interval 0; nn

ðnþ1Þnþ1

� �
.

Proposition 6.1. If lA a ð0; 1Þ can be written in the form

lA ¼
kn�m

nþm
; ð14Þ

with k;m a N satisfying

ðk � 1Þn
2

< m < kn; ð15Þ
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then CA is GLðnþ 1;RÞ equivalent to the cone Cðk;mÞHRnþ1 defined by the fol-

lowing normals:

ni ¼ ð~eei; 1Þ; i ¼ 1; . . . ; n� 1;

nn ¼
�
ðmþ 1Þ~een �~dd; 1

�
;

n� ¼ ðk~een; 1Þ;
nþ ¼ ð�~een; 1Þ:

ð16Þ

Proof. Consider T a GLðnþ 1;RÞ defined by

T tð~eei; 0Þ ¼ ð~eei � g~een; 0Þ; i ¼ 1; . . . ; n� 1;

T tð~een; 0Þ ¼
�
ðmþ 1� gÞ~een �~dd; 0

�
;

T tð~00; 1Þ ¼
�
ðnþ 1Þg~een; nþ 1

�
;

for some g a R. Then

T tðn 0i Þ ¼ ni; i ¼ 1; . . . ; n;

T tðn 0aÞ ¼ n� i¤ g ¼ kðnþ 1Þa�m

ðnþ 1Þa� n
;

T tðn 0bÞ ¼ nþ i¤ g ¼ m� ðnþ 1Þb
nþ ðnþ 1Þb :

This implies that CA is GLðnþ 1;RÞ equivalent to Cðk;mÞ, provided that

kðnþ 1Þa�m

ðnþ 1Þa� n
¼ m� ðnþ 1Þb

nþ ðnþ 1Þb ;

which is equivalent to (14). r

Remark 6.2. Note that, in the action-angle coordinates associated with the cone

Cðk;mÞ, the Reeb vector field of the Ricci-flat Kähler–Sasaki metric is

K ¼
�
0;T tð~00; 1Þ

�
with T tð~00; 1Þ ¼

�
ðnþ 1Þg~een; nþ 1

�
:

Since

g ¼ kðnþ 1Þa�m

ðnþ 1Þa� n
¼ m� ðnþ 1Þb

nþ ðnþ 1Þb ;

the (ir)regularity of K is determined by the (ir)rationality of the admissible values

of a or, equivalently, b.
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For k ¼ 1 we have 0 < m < n and each cone Cð1;mÞHRnþ1 is the standard

cone over the integral Delzant polytope PðmÞHRn defined by the a‰ne func-

tions

liðxÞ ¼ 3x;~eei4þ 1; i ¼ 1; . . . ; n� 1;

lnðxÞ ¼ 3x; ðmþ 1Þ~een �~dd4þ 1;

l�ðxÞ ¼ 3x;~een4þ 1;

lþðxÞ ¼ 3x;�~een4þ 1:

If n ¼ 2 then m ¼ 1 and Pð1ÞHR2 is well known to be a polytope for the first

Hirzebruch surface

H 4
1 ¼ P

�
Oð�1ÞaC

�
! CP1:

In fact, one easily checks that PðmÞHRn, 0 < m < n, defines a smooth compact

toric symplectic manifold ðH 2n
m ;oÞ, where

H 2n
m ¼ P

�
Oð�mÞaC

�
! CPn�1 and ½o� ¼ 2pc1ðH 2n

m Þ:

Hence the Sasaki–Einstein manifold N 2nþ1
1;m is di¤eomorphic to the corresponding

Boothby–Wang manifold, cf. Example 3.5, which is the circle bundle of the anti-

canonical line bundle of H 2n
m . This proves Theorem 1.2.

Remark 6.3. In general, i.e., when 1 < k a N, the cones Cðk;mÞHRnþ1 are stan-
dard cones over labeled polytopes Pðk;mÞHRn and the corresponding manifolds

N 2nþ1
k;m are given by an orbifold version of the Boothby–Wang construction.

We will now check that, when n ¼ 2, the cones Cðk;mÞHR3, with k;m a N

satisfying (15) and the condition of simply connectedness

gcdðmþ n; k þ 1Þ ¼ 1;

are SLð3;ZÞ equivalent to the cones Cp;q HR3 associated to the Sasaki–Einstein

5-manifolds Y p;q, 0 < q < p, gcdðq; pÞ ¼ 1, constructed by Gauntlett–Martelli–

Sparks–Waldram [17]. The defining normals of the cones Cðk;mÞHR3 are n1,

n2, n� and nþ defined by (16) with n ¼ 2. According to [26], the cones Cp;q HR3

have defining normals given by

m1 ¼ ð1; p� q� 1; p� qÞ; m2 ¼ ð1; 1; 0Þ;
m� ¼ ð1; 0; 0Þ and mþ ¼ ð1; p; pÞ:
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Consider the linear map Tk;m a SLð3;ZÞ defined by the matrix

0 0 1

k �m� 1 �1 k

k �m �1 k

264
375:

When k ¼ p� 1 and m ¼ pþ q� 2 we have that

Tk;mðn1Þ ¼ m1; Tk;mðn2Þ ¼ m2; Tk;mðn�Þ ¼ m� and Tk;mðnþÞ ¼ mþ;

i.e., Tk;m a SLð3;ZÞ provides the required equivalence.
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