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Abstract. These notes give a short introduction to the study of curves on algebraic varieties.
The main emphasis is on families of genus 0 curves. After an elementary proof of the di-
mension formula for the space of curves, we summarize the basic properties of uniruled and
of rationally connected varieties. The last section is devoted to a conjectural characteriza-
tion of rationally connected varieties using symplectic geometry.
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1. Codimension 1 theory. For details, see, for instance [GH78], Chap. 1.

One of the aims of algebraic geometry is to understand all subvarieties of a

given algebraic variety. For simplicity, assume that X is a smooth projective va-

riety over C. We have a very successful—by now classical—theory that describes

codimension 1 subvarieties, that is, hypersurfaces or divisors on X .

Each codimension 1 subvariety ZHX determines a line bundle (equivalently,

a rank 1 locally free sheaf ) L :¼ OX ðZÞ and a section s a H 0ðX ;LÞ; the constant 1
section of OX ðZÞ. (L is determined uniquely, s is determined up to a multiplicative

constant.) It is thus su‰cient to describe the pairs ðL; sÞ. We proceed in three

steps.

(1.1) As a topological line bundle, L is determined by its Chern class c1ðLÞ a
H 2

�
XðCÞ;Z

�
. Furthermore, a cohomology class a a H 2

�
XðCÞ;Z

�
is the Chern

class of a holomorphic/algebraic line bundle i¤ the image of a in H 2
�
XðCÞ;C

�
lies in H 1;1

�
XðCÞ;C

�
.

(1.2) The set of all holomorphic/algebraic line bundles with a given c1ðLÞ a
H 2

�
XðCÞ;Z

�
is parametrized by (more precisely, is a principal homogeneous

space under) an Abelian variety, called the Picard variety, Pic0ðXÞ. It is biholo-

morphic to H 0;1
�
XðCÞ;C

�
=H 1

�
XðCÞ;Z

�
.



(1.3) The sections of a line bundle L form a vector space H 0ðX ;LÞ, and non-

zero sections up to a multiplicative constant are parametrized by the correspond-

ing projective space jLj :¼ P
�
H 0ðX ;LÞ4

�
. In terms of Čech cohomology, com-

puting H 0ðX ;LÞ is essentially a linear algebra problem. On the other hand, the

Hirzebruch–Riemann–Roch theorem and Serre’s vanishing theorem say that, for

su‰ciently ample L, the dimension of H 0ðX ;LÞ can be computed from the Chern

classes, thus from topological data.

Summary: The topology of XðCÞ and Hodge theory determine steps (1.1–2)

and linear algebra governs step (1.3).

Ideally, we would like to have a similar description of higher codimension sub-

varieties, but this goal is very far o¤.

The aim of these notes is to focus on the next simplest case, the study of 1-

dimensional subvarieties, that is, curves in X . Despite Poincaré duality between

divisors and curves, the study of curves turns out to be quite a bit harder than

the theory of divisors. There are still many deep open questions.

Let us start with the analog of (1.1).

1. Homology classes of curves

Given any curve CHX , it has a homology class ½C� a H2

�
XðCÞ;Z

�
. Our first

question is: Which homology classes can be realized by algebraic curves? As

before, this class has Hodge type ð1; 1Þ. We usually think of Hodge theory as liv-

ing on cohomology groups, so we identify H2

�
XðCÞ;C

�
with H 2n�2

�
XðCÞ;C

�
(where n ¼ dimX ), and think of ½C � as an integral cohomology class of type

ðn� 1; n� 1Þ.
The hard Lefschetz theorem [GH78], p. 122, implies that if L is an ample divi-

sor then

Hn�1;n�1
�
XðCÞ;C

�
¼ Ln�2 �H 1;1

�
XðCÞ;C

�
:

In particular, a rational multiple of every curve class can be written as ðLn�2 �DÞ
for some (not necessarily e¤ective) divisor D on X . This gives the complete an-

swer with rational coe‰cients. The problem is, however, more subtle over Z.

To illustrate how little is known, let us discuss two conjectures about homo-

logy classes of curves.

Consider smooth hypersurfaces X n
e HPnþ1 of degree e. By another Lefschetz

theorem [GH78], p. 156, the natural map H2

�
XðCÞ;Z

�
! H2ðCPnþ1;ZÞ is an

isomorphism if nb 3. Thus there is a class l a H2

�
XðCÞ;Z

�
whose image in

H2ðCPnþ1;ZÞ is the homology class of a line and H2

�
XðCÞ;Z

�
¼ Z½l�.

The original form of the Hodge conjecture implies that l is the homology

class of a (Z-linear combination of ) algebraic curves, while the Noether-Lefschetz
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theorem suggests that all curves on X may be complete intersections with sur-

faces.

Conjecture 2 ([GH85]). Let X n HPnþ1 be a very general smooth hypersurface

and CHX an algebraic curve. Assume that degX is large enough (maybe

degX b 2n is su‰cient). Then ½C� a H2

�
XðCÞ;Z

�
¼ Z½l� is a multiple of

degX � ½l�.

A straightforward dimension count shows that every hypersurface X n HPnþ1

contains a line if degX a 2n� 1, but the general hypersurface does not contain a

line if degX b 2n. (This, however, does not exclude the possibility that it contains

a Z-linear combination of algebraic curves whose degree is 1.)

An easy result [Kol92] shows that if ð6; kÞ ¼ 1, X is a very general hypersur-

face of degree 3k2 and CHX is any curve, then ½C� is a multiple of k � ½l�.
By contrast, for every degree there are smooth hypersurfaces that contain a

line. Thus topology and Hodge theory together do not give enough information

to decide which 2-dimensional homology classes are algebraic.

The opposite may hold for smooth projective Fano varieties (that is, varieties

with �KX ample) or more generally for rationally connected varieties (29). In the

Fano case, these conjectures go back to Fano and Iskovskikh; the general case is

proposed in [Voi07].

Question 3. Let X be a smooth projective variety.

(1) Is H2

�
XðCÞ;Z

�
generated by the homology classes of rational curves if X is

Fano or, more generally, if X is rationally connected?

(2) Assume that X is Fano and h a H2

�
XðCÞ;Z

�
such that mh is the homology

class of an e¤ective algebraic curve for some m > 0. Is h the homology class of an

e¤ective algebraic curve, all of whose irreducible components are rational?

Both of these are known with Q-coe‰cients. (3.1) is quite easy [Kol96],

IV.3.13, and (3.2) follows from Mori’s cone theorem [Mor79].

In dimension 3 the positive answer to (3.1) is a special case of [Voi06]. The

original conjecture of Fano and Iskovskikh asks (3.2) in case the second Betti

number of XðCÞ is 1. In dimension 3 this is established as part of the classification

of Fano 3-folds.

If X is rationally connected, the technique of ‘‘deformation of combs’’ (cf.

[Kol96], Sec. II.7) shows that the subgroup of H2

�
XðCÞ;Z

�
generated by homo-

logy classes of curves (resp. rational curves) is invariant under smooth deforma-

tions of X .

Example 4. 1. Let p : X ! Pn be a smooth degree d cover of Pn, given by an

a‰ne equation of the form zd ¼ fdrðx1; . . . ; xnÞ where fdr had degree dr. The

branch locus ZHPn is (the projective closure of ) the hypersurface ð fdr ¼ 0Þ.
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For special choices of fdr, there are lines LHPn that are d-fold tangent to Z at

r-points P1; . . . ;Pr. Then p�1ðLÞ splits as a union of d irreducible curves, each

mapping isomorphically to L. Let Li HX be any of these curves and Pj a X any

of the points. Set Y :¼ BPj
X , the blow-up of X at the point Pj with exceptional

divisor E. Let a a H2

�
YðCÞ;Z

�
denote the homology class of the birational trans-

form L 0
i HY of Li. The class a is characterized by the properties a � E ¼ 1 and

a � p�
YH ¼ 1 where H is the hyperplane class on Pn and pY : Y ! Pn the com-

posite of the blow-down map with p. Note that the class a is well defined for any

BPX , no matter where the point P a X lies.

An easy dimension count as in [Kol96], IV.2.12, shows that if ðd � 1Þrb n

then there is no such line for general P a Z. Moreover, if rb 2, then we can

choose P and Z such that there is a line LP that is d-fold tangent to Z at P, but

every such line has transverse intersection with Z at some other point.

Then p�1ðLPÞ is irreducible and has multiplicity d at P. Hence its birational

transform on BPX represents the homology class da. However, there are no e¤ec-

tive curves in the homology classes a; . . . ; ðd � 1Þa.
If ðd � 1Þr ¼ n then X , and hence BPX , are rationally connected. X is Fano

but BPX is not Fano.

2. By [AM72], there is a smooth, projective, unirational 3-fold X such that

H2

�
XðCÞ;Z

�
contains a 2-torsion element a. One can write a ¼ ½C1� � ½C2� where

the Ci HX are smooth rational curves.

Using [dJ04], one can show that there is a smooth 4-fold p : Y ! X that is

analytically locally a P1-bundle but it has no rational section. Thus every line

bundle on Y is of the form p�LðmKY Þ where L is a line bundle on X .

Let CGP1 be a fiber of p, then
�
C � c1

�
p�LðmKY Þ

��
¼ �2m, hence even.

Since h2ðY ;OY Þ ¼ 0, we see that every class in H 2
�
XðCÞ;Z

�
is algebraic, thus

ðC � LÞ a 2Z for every L a H 2
�
XðCÞ;Z

�
. By Poincaré duality, there is a homo-

logy class b a H2

�
XðCÞ;Z

�
such that ½C� ¼ 2b but b is not the homology class of

an e¤ective algebraic curve. Nonetheless, one can find liftings C 0
i HY of the Ci

such that b ¼ ½C 0
1� � ½C 0

2�. Thus (3.2) does not hold for Y but (3.1) does.

In this example Y is unirational but not Fano. However, I see no reason why

similar Fano examples should not exist. Thus the answer to (3.2) may well be neg-

ative.

Exercise 5 ([FMSS95]). Let X be a proper toric variety. Then H2

�
XðCÞ;Z

�
is

generated by the homology classes of 1-dimensional orbits.

2. The dimension of the space of curves

Here we consider the analogs of (1.2–3) together for curves, since it is not known

how to separate the Abelian part (1.2) from the linear algebra part (1.3). Actually,
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it seems quite unlikely that considering the two parts separately would make sense

for families of curves on varieties of dimensionb 3. Our final results are (14) and

(15); we build up to them through a series of examples.

Example 6 (Maps of rational curves to Pn). Giving a morphism f : P1 ! Pn

whose image has degree d is equivalent to giving nþ 1 homogeneous polynomials

ð f0; . . . ; fnÞ of degree d without common root (up to a multiplicative constant).

Thus the space of all such maps is an open subset of a projective space of dimen-

sion ðnþ 1Þðd þ 1Þ � 1:

MordðP1;PnÞHPðnþ1Þðdþ1Þ�1:

Example 7 (Maps of rational curves to hypersurfaces). Let X n
e HPnþ1 be a

hypersurface of degree e given by an equation Gðx0; . . . ; xnþ1Þ ¼ 0. The image of

a morphism f : P1 ! Pnþ1 as in (6) lies in X i¤ Gð f0; . . . ; fnþ1ÞC 0. The latter is

a homogeneous polynomial of degree de, so its vanishing is equivalent to deþ 1

equations in the coe‰cients of the fi. Thus the space of all degree d maps

P1 ! X is either empty or a closed subset of MordðP1;Pnþ1Þ of codimension

a deþ 1. In particular

dim½ f � MordðP1;X n
e Þb ðnþ 2Þðd þ 1Þ � 1� ðdeþ 1Þ ¼ ðnþ 2� eÞd þ n:

(There is no reason to assume that MordðP1;X n
e Þ is pure dimensional, and dim½ f �

denotes the dimension at the point ½ f � a MordðP1;X n
e Þ corresponding to f . Actu-

ally we proved something stronger: the lower bound holds for every irreducible

component containing ½ f �.)
With hindsight masquerading as prescience, we can write the right-hand side as

dim½ f � MordðP1;X n
e Þb c1ðXÞ � f�½P1� þ dimX : ð7:1Þ

Example 8 (Maps of curves to Pn). Now let us replace P1 by any curve C. To

start, one can think of C as a smooth projective curve, but all the arguments work

if C is a 1-dimensional, smoothable projective scheme over a field k such that

H 0ðC;OCÞG k.

First, let us fix a line bundle L on C. Giving a morphism f : C ! Pn such that

f �OPnð1ÞGL is equivalent to giving nþ 1 sections f0; . . . ; fn a H 0ðC;LÞ without
common root (up to a multiplicative constant). Thus the space of all such maps is

an open subset of a projective space of dimension ðnþ 1Þh0ðC;LÞ � 1, hence

dimMorLðC;PnÞ ¼ ðnþ 1Þh0ðC;LÞ � 1;

where MorL denotes those morphisms for which f �OPnð1ÞGL.
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Example 9 (Maps of curves to hypersurfaces). Now let X n
e HPnþ1 be a hyper-

surface of degree e given by an equation Gðx0; . . . ; xnþ1Þ ¼ 0. Then Gð f0; . . . ; fnþ1Þ
is a section of Le, hence its identical vanishing imposes h0ðC;LeÞ conditions. As

in (7), the space of all such maps C ! X is either empty or a closed subset of

MorLðC;Pnþ1Þ of codimensiona h0ðC;LeÞ. In particular

dim½ f � MorLðC;X n
e Þb ðnþ 2Þh0ðC;LÞ � 1� h0ðC;LeÞ: ð9:1Þ

If degL is large enough, then h0ðC;LÞ ¼ degLþ 1� g and we can rewrite the for-

mula as

dim½ f � MorLðC;X n
e Þb c1ðX n

e Þ � f�½C� þ n � wðOCÞ � gðCÞ: ð9:2Þ

This fits very nicely with (7.1), except for the �gðCÞ term at the end. Remember

now that at the beginning we fixed not just degL but L itself. All line bundles of

degree d are parametrized by the gðCÞ-dimensional JacdðCÞ, which is (non-

canonically) isomorphic to the Jacobian of C (see, for instance, [GH78], Sec. 2.7).

Thus, letting L vary should increase the dimension by gðCÞ and we should get

that

dim½ f � MorðC;XÞb c1ðXÞ � f�½C� þ dimX � wðOCÞ: ð9:3Þ

(Note, however, that our results included a caveat that the spaces may be empty.

Thus, as we vary L in JacdðCÞ, we could get empty spaces for some L where we

expect something positive dimensional. Hence (9.3) is not yet firmly proven.)

Example 10 (Curves on Pn). So far we have been estimating the dimension of

the space of morphisms from a fixed curve to Pn with fixed f �OPnð1Þ. In order

to estimate the dimension of the space of curves on Pn, we need to take three dif-

ferences into account. (If h1ðC;OCÞ ¼ 0 then only the second and third steps are

needed.)

First, we need to work out precisely how to let f �OPnð1Þ vary in JacdðCÞ.
Second, if g ¼ 0 or g ¼ 1, then every curve has many automorphisms. Thus

a single rational curve CHPn gives rise to a whole family of birational maps

P1 ! C parametrized by AutðP1Þ ¼ PGLð2Þ. Similarly, every elliptic curve

CHPn gives rise to a 1-dimensional family of maps.

Third, for gb 1, we can vary the curve C in its moduli space.

To do the first, let JacdðCÞ denote the family of degree d line bundles on C. If

db 2g� 1, the universal H 0 gives a vector bundle Hd ! JacdðCÞ. As before, the

degree d maps from C to Pn are parametrized by an open subset of the projective

space bundle

PJacd ðCÞ
�
ðH4

d

�nþ1Þ ! JacdðCÞ:
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This gives the expected dimension formula

dim½ f � MordðC;PnÞb c1ðPnÞ � f�½C� þ n �
�
1� gðCÞ

�
¼ ðnþ 1Þ degC þ n �

�
1� gðCÞ

�
: ð10:1Þ

For gb 2, consider a ð3g� 3Þ-dimensional family Mg of curves of genus g (in

practice, some finite cover of the moduli space) over which there is a universal

family of curves Cg ! Mg. (If C is singular, we use the local deformation space

of C as in [Kol96], II.1.11.) Let Jd ! Mg denote the universal family of degree d

components of the Jacobians. As before, if db 2g� 1, the universal H 0 gives a

vector bundle

Hd ! Jd ! Mg;

and dimHd ¼ ð3g� 3Þ þ gþ ðd þ 1� gÞ. Thus the degree d maps from genus g

curves to Pn are parametrized by an open subset of the projective space bundle

PJd

�
ðH4

d Þnþ1� ! Jd ! Mg:

Hence, if CHPn is a smooth curve of degreeb 2gðCÞ � 1, then

dimC CurvesðPnÞb c1ðPnÞ � ½C� þ ðn� 3Þ �
�
1� gðCÞ

�
¼ ðnþ 1Þ degC þ ðn� 3Þ �

�
1� gðCÞ

�
; ð10:2Þ

where CurvesðPnÞ denotes either the Chow variety or the Hilbert scheme of curves

on Pn. (These two spaces agree near smooth or normal subvarieties, [Kol96], Cor.

I.6.6.1.) It is easy to check that the formulas also work if gðCÞa 1.

Example 11 (Maps of curves to varieties). Let X n HPN be a smooth pro-

jective subvariety. In general X needs many defining equations Gi ¼ 0. Corre-

spondingly, the image of a morphism f : C ! PN lies in X i¤ Gið f0; . . . ; fNÞC 0

for every i. This implies that MorLðC;XÞ is a closed algebraic subvariety of

MorLðC;PNÞ, but we can not estimate its codimension unless we know the de-

grees of the equations Gi.

If X n HPN is a complete intersection, there is a ‘‘natural’’ choice for the Gi

and everything we said before works out. In particular, (9.2–3) still hold. In gen-

eral, however, we get an estimate that is much worse and depends on the choice of

the equations Gi.

One can, however, easily compute from this presentation the tangent spaces of

MorLðC;XÞ.
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Theorem 12. Let X be a smooth variety, C a proper curve such that H 1ðC;OCÞ
¼ 0 and f : C ! X a morphism. Then

T½ f � MorðC;XÞ ¼ H 0ðC; f �TX Þ:

Proof. Assume that X n HPN is given by the equations Gi ¼ 0 and let f : C ! X

be given by ð f0 : � � � : fNÞ where the fi are sections of f
�OX ð1Þ. Inside MorðC;PNÞ

the tangent directions are given by the deformations ð f0 þ th0 : � � � : fN þ thNÞ
where the hi are also sections of f �OX ð1Þ. The corresponding tangent vector is

in the tangent space of MorðC;XÞ i¤

Gið f0 þ th0; . . . ; fN þ thNÞC 0 modðt2Þ for all i:

Using the Taylor expansion, this is equivalent to

X
j

qGi

qxj
� hj ¼ 0 Ei:

The latter holds if ðh0; . . . ; hNÞ maps to a section of f �TX H f �TPN in the exact

sequence

0 ! f �OPN ! f �OPN ð1ÞNþ1 ! f �TPN ! 0:

Since f �OPN ¼ OC , by taking cohomology we get the exact sequence

H 0
�
C; f �OPN ð1Þ

�Nþ1 ! H 0ðC; f �TPN Þ ! H 1ðC;OCÞ ¼ 0; ð12:1Þ

thus every section of H 0ðC; f �TX Þ is the image of some ðh0; . . . ; hNÞ. The same

argument shows that if gðCÞA 0 then

T½ f � MorLðC;XÞ ¼ ker½H 0ðC; f �TX Þ ! H 1ðC;OCÞ�; ð12:2Þ

where the map on the right comes from the sequence (12.1). r

While we usually think of an algebraic variety as sitting inside a larger dimen-

sional projective space, one can also represent an n-dimensional variety as a finite

branched cover p : X n ! Pn. This was Riemann’s original point of view for

algebraic curves. In higher dimensions it can be obtained by repeatedly projecting

X n HPN from points outside it, until we get a dominant morphism p : X n ! Pn.

This will allow us to prove the expected lower bounds for the spaces of maps.

13. Lifting deformations to branched covers. Let p : X ! Pn be a finite surjec-

tion with ramification divisor RHX and f : C ! X a morphism from a reduced

curve to X . Assume the following genericity conditions.
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Assumptions 13.1.

i) C is smooth and p � f : C ! PN is unramified at every p a f �1ðRÞ,
ii) near f ðCÞBR, R is smooth and the ramification index of p is 2,

iii) R and f ðCÞ intersect transversally.

Equivalently, we can choose local analytic coordinates ðx1; . . . ; xnÞ near p and

ðy1; . . . ; ynÞ near pðpÞ such that p is given by

p : ðx1; . . . ; xnÞ 7! ðx1; . . . ; xn�1; x
2
nÞ;

and C is parametrized as

f : t 7!
�
f1ðtÞ; . . . ; fnðtÞ

�
;

where fið0Þ ¼ 0,
�
f 0
1 ð0Þ; . . . ; f 0

n�1ð0Þ
�
A ð0; . . . ; 0Þ and f 0

n ð0ÞA 0. Thus p � f is

given by

p � f : t 7!
�
f1ðtÞ; . . . ; fn�1ðtÞ; f 2n ðtÞ

�
¼:

�
g1ðtÞ; . . . ; gnðtÞ

�
: ð13:2Þ

Its image is a smooth curve germ (since
�
g 0
1ð0Þ; . . . ; g 0

n�1ð0Þ
�
A ð0; . . . ; 0Þ) which is

simply tangent to the branch locus ðyn ¼ 0Þ (since gnðtÞ ¼ f 2n ðtÞ vanishes with

multiplicity 2 at t ¼ 0).

Let us now consider a complex analytic deformation�
G1ðt; sÞ; . . . ;Gnðt; sÞ

�
of

�
g1ðtÞ; . . . ; gnðtÞ

�
;

where s varies in a polydisc Dr, the Gi are analytic and Giðt; 0Þ ¼ giðtÞ. When can

we lift this local deformation of p � f to a deformation of f ? From (13.2) we see

that our only choice is to take Fiðt; sÞ ¼ Giðt; sÞ for i < n and Fnðt; sÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Gnðt; sÞ

p
.

That is, the lifting is possible i¤ Gnðt; sÞ is a square.

(There are two possible choices of the square root, but only one of these will

agree with fnðt; 0Þ when s ¼ 0. Thus, if a lifting exists, it is unique.)

Lemma 13.3. There is a hypersurface HHDr such that
�
G1ðt; sÞ; . . . ;Gnðt; sÞ

�
lifts

to a deformation
�
F1ðt; sÞ; . . . ;Fnðt; sÞ

�
i¤ s a H.

Proof. By assumption, Gnðt; sÞ contains t2 with nonzero coe‰cient. By the Weier-

strass preparation theorem (cf. [GH78], p. 8) we can write

Gnðt; sÞ ¼ Uðt; sÞ �
�
t2 þ bðsÞtþ cðsÞ

�
where Uð0; 0ÞA 0. Thus Gnðt; sÞ is a square i¤ bðsÞ2 � 4cðsÞ ¼ 0. Thus HHDr is

defined by the equation bðsÞ2 � 4cðsÞ ¼ 0. r
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Corollary 13.4. Composing with p gives

p� : MorðC;XÞ ! MorðC;PnÞ and p� : CurvesðXÞ ! CurvesðPnÞ:

If C satisfies the assumptions (13.1) then both of these are local embeddings near ½C�
and their image has codimensiona ðR � CÞ.

Proof. If p : X ! Pn is a local analytic isomorphism between neighborhoods

ðx a UxÞ and
�
pðxÞ a Vx

�
then everything automatically lifts from Vx to Ux.

Thus the only problem is at the points x a RBC. For every such point, it is one

condition to lift by (13.3). Thus there is a global lifting over the intersection of the

hypersurfaces fHx : x a RBCg. r

We are now ready to prove the main dimension estimates for the spaces of

curves. The formula is very much in the spirit of Riemann’s original version of

the Riemann–Roch theorem: we estimate dimMorðC;XÞ from below in terms

of intersection numbers involving Chern classes. However, it is not known how

to define appropriate analogs of the higher cohomology groups that would make

the inequality into an equality, and thus establish a better parallel with the

Riemann–Roch theorem.

Theorem 14. Let X be a smooth quasi projective variety, C a proper reduced curve

and f : C ! X a morphism. Then

dim½ f � MorðC;XÞb c1ðXÞ � f�½C� þ dimX � wðOCÞ
¼ degC f �TX þ dimX � wðOCÞ

¼ H 0ðC; f �TX Þ �H 1ðC; f �TX Þ:

Proof. Choose a general p : X ! Pn such that the assumptions (13.1) hold and

the degree of p � f is high enough. By (8),

dim½p�f � MorðC;PnÞb c1ðPnÞ � ðp � f Þ�½C� þ dimX � wðOCÞ

and by (13.4) this gives that

dim½ f � MorðC;XÞbp�c1ðPnÞ � f�½C� þ dimX � wðOCÞ � ðR � f�½C�Þ:

By the Hurwitz formula c1ðXÞ ¼ p�c1ðPnÞ � R, giving the inequality in (14).

The first equality in the statement is clear since c1ðXÞ ¼ c1ðdetTX Þ and

degC f �TX ¼ degC f � detTX ¼ c1ðXÞ � f�½C�

by the projection formula. The last equality is just Riemann–Roch for curves.

r
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The same argument also gives the dimension estimate for the space of curves:

Theorem 15. Let X be a smooth projective variety and CHX a smooth curve.

Then

dim½C � CurvesðXÞb c1ðXÞ � ½C� þ ðdimX � 3Þ �
�
1� gðCÞ

�
;

where CurvesðXÞ denotes either the Chow variety or the Hilbert scheme of curves

on X.

It is not hard to modify our arguments to see that (15) also holds if C is a re-

duced curve with locally smoothable singularities, see [Kol96], II.1.14.

16. A philosophical claim and a challenge. The philosophical claim is that the

estimates (14) and (15) are optimal. We will see that in many cases indeed equality

holds, thus in this weak sense they are optimal. More substantively, if we take a

general almost complex perturbation of the complex structure of X , then (14) and

(15) should become equalities at every ‘‘interesting’’ point of the space of pseudo-

holomorphic curves. (The formula frequently miscounts the dimension for curves

f : C ! X for which C ! f ðCÞ is a multiple cover. In some sense, we can ignore

these if we study curves on X . However, if one looks at families of curves on X ,

such multiple covers naturally arise as limits of embedded curves. For definitions

and more details, see Section 5.) One may thus claim that (14) and (15) correctly

compute the dimension of the spaces of curves that persist under small almost

complex perturbations of X , but they fail to take into account the curves that exist

only ‘‘accidentally.’’

For instance, if X 3
e HP4 is a smooth hypersurface of degree e, then we get that

dimC CurvesðX 3
e Þb ð5� eÞ degC;

and the philosophical claim is that equality should hold. In particular, for e ¼
degX 3

e b 6 this predicts that there are no curves at all on X ! Equivalently, every

curve on a smooth, 3-dimensional hypersurface of degreeb 6 is ‘‘accidental.’’

On the other hand, from the point of view of almost complex manifolds, being

an algebraic variety is an ‘‘accident,’’ and on an algebraic variety there are many

curves. One of the biggest challenges of the theory of curves on varieties is to ex-

plain how to correct the formulas (14) and (15) for algebraic varieties. After all,

our aim is to study algebraic varieties, not almost complex manifolds.

Aside 17. In general, from (9.1), we get the more precise formula

dim½ f � MorLðC;XÞb c1ðXÞ � f�½C� þ dimX � wðOCÞ � gðCÞ

þ dimX � h1ðC;LÞ � h1ðC;LeÞ:
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For instance, if CHX n HPnþ1 is embedded by (a subsystem of ) the canonical

system, then

dim½ f � MorKC
ðC;XÞb c1ðXÞ � f�½C� þ dimX � wðOCÞ � gðCÞ þ dimX :

Thus if a hypersurface contains such a curve, it contains a family of such curves

whose dimension is at least ðdimXÞ–larger than one would expect.

3. Free curves and uniruled varieties

As in the Riemann–Roch theorem, the next step is to ask when the inequality in

(14) is an equality. The following result describes essentially the only known gen-

eral case when this holds and the local structure of MorðC;XÞ is fully understood.

Theorem 18. Let X be a smooth quasi projective variety, C a proper reduced curve

and f : C ! X a morphism. If H 1ðC; f �TX Þ ¼ 0 then MorðC;XÞ is smooth at ½ f �
of dimension degC f �TX þ dimX � wðOCÞ.

Proof. Assume first that H 1ðC;OCÞ ¼ 0. If H 1ðC; f �TX Þ ¼ 0 then, by (14),

dim½ f � MorðC;XÞb h0ðC; f �TX Þ. On the other hand, by (12), the tangent space

of MorðC;XÞ at ½ f � is H 0ðC; f �TX Þ. The dimension of the tangent space is al-

ways at least the dimension and equality holds only at smooth points.

The case when H 1ðC;OCÞA 0 is harder since we have not proved that in (12.2)

the map on the right is surjective. For a complete proof, see [Kol96], Sec. I.2.

r

The above is a very useful result if there are many curves on X for which the

condition H 1ðC; f �TX Þ ¼ 0 holds. Our next aim is to get a feeling how frequently

this happens.

Exercise 19. Let A be an Abelian variety. Then TA is trivial, hence h1ðC; f �TAÞ
¼ dimA � h1ðC;OCÞ for every C. Since an Abelian variety does not contain any

rational curves, we see that H 1ðC; f �TAÞ is never zero.
(More precisely, if f : P1 ! A is a constant map, then H 1ðP1; f �TAÞ ¼ 0.

Here MorðP1;AÞ consist only of constant maps, so MorðP1;AÞGA which is

smooth of dimension dimA. While it may seem silly to think about such cases,

it is useful to study maps from reducible curves to a variety that may be constant

on some of the irreducible components. In using induction, we frequently need to

make sure that our formulas work for constant maps as well.)

Exercise 20. Let CHPn be a smooth complete intersection of hypersurfaces of

degrees d1; . . . ; dn�1. Check that H 1ðC; f �TPnÞ ¼ 0 if and only if either gðCÞa 1

or CHPn is canonically embedded.
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Up to permuting the di, the first happens only in the cases

ð1; 1; . . . ; 1Þ; ð2; 1; . . . ; 1Þ; ð3; 1; . . . ; 1Þ; ð2; 2; 1; . . . ; 1Þ:

The second possibility holds only in the cases ð4Þ; ð3; 2Þ; ð2; 2; 2Þ.

Exercise 21. Let f : C ! Pn be a smooth curve such that degCb 2gðCÞ � 1.

Then H 1ðC; f �TPnÞ ¼ 0.

Example 22. Let X be a projective homogeneous space (for instance, Pn, a

smooth quadric, a Grassmannian, . . .). Then TX is generated by global sections,

hence f �TX is also generated by global sections for every f : C ! X . If CGP1,

this implies that H 1ðP1; f �TX Þ ¼ 0.

Thus MorðP1;XÞ is everywhere smooth and of the expected dimension.

This might be the only case where MorðP1;XÞ is everywhere nice:

Conjecture 23 [CP91]. Let X be a smooth projective variety. The following are

equivalent:

(1) H 1ðP1; f �TX Þ ¼ 0 for every f : P1 ! X.

(2) There is a morphism p : X ! Y such that

(a) X ! Y is a locally trivial fiber bundle whose fibers are projective homoge-

neous spaces under a linear algebraic group, and

(b) every map P1 ! Y is constant.

(Here we allow the uninteresting special case when every map P1 ! X is con-

stant and we take Y ¼ X .)

We have basically established above that (23.2) implies (23.1). The converse is

known in low dimension; essentially as a consequence of much stronger classifica-

tion results. The case of complete intersections is proved in [Pan04].

Note also that, at first sight, the blow up BpP
2 of P2 at a point seems

like a counter example. Indeed, AutðBpP
2Þ is transitive away from the excep-

tional curve EHBpP
2, hence H 1ðP1; f �TBpP

2Þ ¼ 0, unless f ðP1ÞHE. The nor-

mal bundle of E itself is OEð�1Þ, thus the tangent bundle restricted to E is

OEð2Þ þ OEð�1Þ and its H 1 is zero.

However, if f : P1 ! E is a degree 2 map, then f �TBpP
2 GOP1ð4Þ þ OP1ð�2Þ,

and its H 1 is nonzero.

Definition 24. A morphism f : P1 ! X is called free if f �TX is generated by

global sections. Equivalently, if H 1
�
P1; f �TX ð�1Þ

�
¼ 0. Informally, these are

the rational curves that can be deformed in every possible direction in X .
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Note also that if f �TX is generated by global sections over a nonempty open

set then it is generated by global sections everywhere.

A morphism f : P1 ! X is called very free if H 1
�
P1; f �TX ð�2Þ

�
¼ 0. Since

every vector bundle on P1 is a direct sum of line bundles, this is equivalent to say-

ing that

f �TX ¼
XdimX

i¼1

OP1ðaiÞ with ai b 1:

Informally, these are the rational curves that can be deformed in every possible

direction in X while keeping a given point fixed.

The following theorem says that, in some sense, every rational curve on a vari-

ety is either free or special.

Theorem 25. Let X be a smooth projective variety. Then there are countably many

proper closed subvarieties Vi HX such that every f : P1 ! X whose image is not

contained in any of the Vi is free.

Proof. There are countably many irreducible components of MorðP1;XÞ. Let us

see how each of them leads to finitely many of the Vis.

To be slightly more general, let U HMorðP1;XÞ be any irreducible subset that

we are interested in. Consider the universal morphism univU : U � P1 ! X . If

univU is not dominant, the closure of univUðU � P1Þ will be one of the Vis.

Thus assume that univU is dominant. Then there is a dense open subset W H
P1 �U such that univU : W ! X is smooth and its derivative dðunivUÞ : TP1�U

! univ�
U TX is surjective over W .

Let p2 : P
1 �U ! U be the second projection and assume that u a p2ðW Þ.

Then

OP1ð2ÞaOdimU
P1 GTP1�U jP1�fug ! f �

u TX

is surjective on the open set W BP1 � fug. Therefore fu is free.

This takes care of the maps corresponding to points in p2ðW Þ. The comple-

ment Unp2ðW Þ is a union of lower dimensional subvarieties. We repeat the above

argument for each, and so on. Eventually, for any irreducible component Ui H
MorðP1;XÞ we get finitely many proper closed subvarieties Vij HX such that for

every ½ f � a Ui, either f ðP1Þ is contained in some Vij or f is free.

Since MorðP1;XÞ has countably many irreducible components, we may need

to exclude countably many subvarieties Vij. (It is very poorly understood when

one actually needs countably many exceptions. Such examples are given by P2

blown up at mb 9 general points and by general K3 surfaces.) r
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This shows that the three conditions in the following definition are equivalent.

Definition 26. A smooth projective variety X over C is uniruled i¤ the following

equivalent conditions hold.

(1) There is a dense open set X 0HX such that for every x a X 0, there is a ratio-

nal curve through x.

(2) There is a variety Y and a dominant and generically finite map Y � P1 dX .

(3) There is a free morphism f : P1 ! X .

Thus, if X is not uniruled, then all rational curves on X lie in the union of at

most countably many subvarieties Vi WX . We think of this as having only ‘‘few’’

rational curves on X .

4. Very free curves and rationally connected varieties

This section is mostly a summary of the basic results. For a general overview, see

[Kol01]. An introduction with proofs is given in [AK03], while those wishing to

go through all the details should consult the original papers or [Kol96].

Being uniruled is not a good structural property, since Y � P1 is uniruled for

any Y . For over a century it has been an open problem to define a good subclass

of uniruled varieties that does not contain any such ‘‘mongrel’’ examples and gen-

eralizes to higher dimensions the following result about surfaces

27. Basic trichotomy of surface theory. Let S be a smooth projective surface.

Then exactly one of the following holds:

(1) S is not uniruled (and hence has at most countably many rational curves),

(2) S is uniruled but maps to a non-uniruled (equivalently, of genusb 1) curve

(and hence all rational curves on S are in the fibers of this map), or

(3) S is birational to P2 (and hence has many rational curves).

By now it is clear that the key property is to require rational curves not just

through any point, but through any pair of points. One can then imagine several

variants of this concept. The next result shows that all of these are equivalent.

For the proofs, see [KMM92c], [Kol96], [AK03], [San07].

Theorem 28. Let X be a smooth projective variety over C. The following are

equivalent.

(1) There is a dense open set X 0 HX such that for every x1; x2 a X 0, there is a ra-

tional curve through x1 and x2.
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(2) For every x1; x2 a X, there is a rational curve through x1 and x2.

(3) For every integer m > 0, and every x1; . . . ; xm a X, there is a rational curve

through x1; . . . ; xm.

(4) For every 0-dimensional subscheme ZHP1, every morphism fZ : Z ! X can

be extended to a morphism f : P1 ! X.

(5) There is a dense open set X 0 HX such that, for every x1; x2 a X 0, there is a

connected curve with rational components through x1 and x2.

(6) There is a very free morphism f : P1 ! X.

(7) Let C be a smooth curve, ZHC be a 0-dimensional subscheme, r > 0 an in-

teger and W HX a subscheme of codimensionb 2. Then every morphism

fZ : Z ! X can be extended to a morphism f : C ! X such that

(a) H 1
�
C; f �TX ð�rÞ

�
¼ 0,

(b) f ðCnZÞ is disjoint from W,

(c) f is an embedding on CnZ if dimX b 3,

(d) f is an embedding on C if dimX b 3 and fZ is an embedding.

Definition 29. Let X be a smooth projective variety over C. We say that X is

rationally connected if it satisfies the equivalent conditions of (28).

There are two additional (partially conjectural) characterizations that are of

interest.

Conjecture 30. Let X be a smooth projective rationally connected variety. Let C

be a smooth curve, DHC a Euclidean open set and fD : D ! X a holomorphic

map. Then there is a sequence of algebraic maps fr : C ! X such that the frjD con-

verge to fD in the compact-open topology.

Moreover, if ZHD is a finite set then we can also assume that frjZ ¼ fDjZ.

31. Loop spaces of rationally connected varieties. [LS07] proves that a variety

X is rationally connected i¤ its loop space WX is rationally connected. By a loop

space we mean the space of all continuous/di¤erentiable maps form the circle S1

to X . (The loop spaces have a natural complex Banach manifold structure, see

[LS07] for detail.) Aside from technicalities, the key result is the following, which

fits very nicely in the sequence of characterizations in (28).

(8) Fix m > 0 continuous/di¤erentiable maps fi : S
1 ! X and distinct points

pi a P1. Then there is a sequence of continuous/di¤erentiable maps

Fr : S
1 � CP1 that are algebraic on each fsg � CP1 such that, as r ! l, the

FrjS 1�fpig converge to fi for every i.
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Conjecturally, one can even achieve that FrjS 1�fpig ¼ fi for every i, but this is

proved only for general fi.

Being rationally connected is stable under various operations:

Theorem 32 [KMM92c]. Let X be a smooth projective rationally connected

variety. Then:

(1) Every smooth projective variety that is birational to X is also rationally con-

nected.

(2) Every smooth projective variety that is the image of X by a rational map is also

rationally connected.

(3) Every smooth projective variety that is a deformation of X is also rationally con-

nected.

It is also useful to know that many varieties are rationally connected:

Theorem 33 ([Nad91], [KMM92b], [KMM92a], [Cam92]). Let X be a smooth,

projective Fano variety, that is, with �KX ample. Then X is rationally connected.

Theorem 34 ([GHS03]). Let X be a smooth, projective variety and f : X ! Y a

morphism. Assume that Y is rationally connected and so are the smooth fibers of f .

Then X is also rationally connected.

We also have the basic trichotomy of algebraic varieties, which is a close ana-

log of (27). The map in (35.2) is called the MRC-fibration or maximal rationally

connected fibration of X .

Theorem 35 ([KMM92c]). Let X be a smooth projective variety. Then exactly

one of the following holds:

(1) X is not uniruled (and hence has ‘‘few’’ rational curves),

(2) there is a map p : X dY onto a non-uniruled variety with 0 < dimY < dimX

whose general fibers are rationally connected (and hence most rational curves on

X are in the fibers of p), or

(3) X is rationally connected (and hence has many rational curves).

5. Connections with symplectic geometry

For general introductions to the topics in this section, see [FP97], [MS98], [MS04]

and for more technical details consult [BF97], [LT98], [LT99].
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36. Symplectic structure of varieties. Any smooth projective variety admits a

symplectic structure. This can be constructed as follows. On Cnþ1 consider the

Fubini–Study 2-form

o 0 :¼
ffiffiffiffiffiffiffi
�1

p

2p

P
dzibdziP
jzij2

� ð
P

zi dziÞbð
P

zi dziÞ
ð
P

jzij2Þ2

" #
:

It is closed, non-degenerate on Cnþ1nf0g and invariant under scalar multiplica-

tion. Thus o 0 descends to a symplectic 2-form o on CPn ¼ ðCnþ1nf0gÞ=C�.
This construction depends on the choice of a basis in Cnþ1 and one can see that

o is invariant under the unitary group Uðnþ 1Þ but not under AutðCPnÞ ¼
PGLðnþ 1Þ. Thus it is better to think of CPn yielding not just one symplectic

manifold ðCPn;oÞ but rather a whole family of symplectic manifolds parame-

trized by the connected space PGLðnþ 1Þ=Uðnþ 1Þ.
Generalizing this, we say that two symplectic manifolds ðM;o0Þ and ðM;o1Þ

are symplectic deformation equivalent if there is a continuous family of symplectic

manifolds ðM;otÞ starting with ðM;o0Þ and ending with ðM;o1Þ.
If X HCPn is any smooth variety, then the restriction ojX makes XðCÞ into

a symplectic manifold. (Note that this ojX has nothing to do with the dualizing

sheaf, commonly denoted by oX .) The resulting symplectic manifold
�
XðCÞ;ojX

�
depends on the choice of o, but the dependence is rather clear. Thus to every

smooth projective variety and the choice of a (very) ample cohomology class, the

above construction associates a symplectic manifold
�
XðCÞ;ojX

�
which is unique

up to symplectic deformation equivalence.

A powerful way to relate properties of the symplectic manifold
�
XðCÞ;ojX

�
to the algebraic geometry of X is through the enumerative properties of stable

curves.

Definition 37. Let X be a variety. A genus g stable stable curve with n marked

points over X is a triple ðC;P; f Þ, where
(1) C is a proper connected curve having only nodes,

(2) P ¼ ðp1; . . . ; pnÞHC is an ordered set of smooth points of C,

(3) f : C ! X is a morphism, and

(4) C has only finitely many automorphisms that fix P and commute with f .

As for any map of a curve to a variety, f�½C� a H2

�
XðCÞ;Z

�
is well defined.

For a given b a H2

�
XðCÞ;Z

�
and subvarieties Zi HX , let

Mg;nðX ; b;Z1; . . . ;ZnÞ
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denote the set of all genus g stable curves with n marked points such that

f�½C� ¼ b and f ðpiÞ a Zi for i ¼ 1; . . . ; n.

38. Gromov–Witten invariants. It is not hard to define families of stable curves,

interpret Mg;nðX ; b;Z1; . . . ;ZnÞ as a moduli functor and define its coarse moduli

space Mg;nðX ; b;Z1; . . . ;ZnÞ. We are mostly interested in the cases when Mg;nðX ;

b;Z1; . . . ;ZnÞ is a finite set with reduced scheme structure. In these cases functo-

rial definitions add nothing interesting to the picture.

An easy generalization of the dimension estimates in Section 2 shows that

dimMg;nðX ; b;Z1; . . . ;ZnÞ

b c1ðXÞ � b þ ðdimX � 3Þ � wðOCÞ �
X
i

ðcodimX Zi � 1Þ; ð38:1Þ

(There are two ways to think about this formula. First, in the third step of (10) we

can use Mg. Then the last term in (38.1) comes from the observation that in a

family of curves on X it is ðcodimX Z � 1Þ conditions to intersect a subvariety

ZHX . Alternatively, we can use Mg;n (which adds an extra n to the formula)

and note that in a family of pointed curves on X it is codimX Z conditions for

the marked point to lie on Z. Since there are n of the Zi, this cancels out the

extra n.)

If the right-hand side of (38.1) is 0, we expect that there are only finitely many

maps in Mg;nðX ; b;Z1; . . . ;ZnÞ and their number, called a Gromov–Witten invari-

ant of X , has enumerative significance.

In fact, one can define a Gromov–Witten invariant

Fg;nðX ; b;Z1; . . . ;ZnÞ ð38:2Þ

whenever the right-hand side of (38.1) is 0, even if Mg;nðX ; b;Z1; . . . ;ZnÞ is posi-
tive dimensional. One advantage of Gromov–Witten invariants is that they de-

pend on the symplectic structure only. That is, although Mg;nðX ; b;Z1; . . . ;ZnÞ
visibly depends on the algebraic variety X and the Zi, the value of the Gromov–

Witten invariants depends only on the symplectic deformation class of ðMX ;oÞ,
the numbers g; n and the homology classes b; ½Zi�:

Fg;nðX ; b;Z1; . . . ;ZnÞ ¼ Fg;n

�
ðMX ;oÞ; b; ½Z1�; . . . ; ½Zn�

�
: ð38:3Þ

In general, Gromov–Witten invariants are rational numbers which can be nega-

tive or zero. (A curve C with automorphisms may count as 1=jAutðCÞj and posi-

tive dimensional components may have negative contribution; see (42) for such an

example.) There are, however, a few cases when the obvious algebraic count gives

the Gromov–Witten invariant.
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Example 38.4. Assume that Mg; rðX ; b;Z1; . . . ;ZrÞ ¼ j. Then, for any homology

classes ½Zrþ1�; . . . ; ½Zn�, the Gromov–Witten invariant Fg;nðMX ;o; b; ½Z1�; . . . ;
½Zn�Þ is zero.

Example 38.5. Assume that for every ðC; f Þ a M0;0ðX ; bÞ we have that CGP1,

f is an immersion and f �TX ¼ Oð2Þ þ Oð�1ÞdimX�1. Then the Gromov–Witten

invariant equals the number of such maps:

F0;0ðX ; bÞ ¼aM0;0ðX ; bÞ:

Example 38.6. The case when the Zi are ‘‘su‰ciently general,’’ can be reduced to

(38.5). First we need to assume that, for every i, f ðpiÞ is a smooth point of Zi and

pi ¼ f �1ðZiÞ scheme theoretically (that is, Zi and f ðCÞ meet only at f ðpiÞ and

transversally).

If this holds, let BZX ! X denote the blow up of 6Zi HX , ~ff : C ! BZX the

lifting of f and bZ :¼ ~ff�½C�. (BZX can be a quite singular space. However, by

our assumptions, 6Zi is smooth in a neighborhood of f ðCÞ, thus the singularities
of BZX will not matter to us.)

Under these assumptions, f 7! ~ff establishes a bijection

Mg;nðX ; b;Z1; . . . ;ZnÞ $ Mg;0ðBZX ; bZÞ:

That is, the blow up removed the subvarieties Zi and the marked points PHC

from the picture.

Now assume further that, for every ðC;P; f Þ a M0;nðX ; b;Z1; . . . ;ZnÞ, the

curve C is isomorphic to P1, f is an embedding and ~ff �TX ¼ Oð2Þ þ
Oð�1ÞdimX�1. Then the Gromov–Witten invariant is just the number of such

maps:

F0;nðX ; b;Z1; . . . ;ZnÞ ¼aM0;nðX ; b;Z1; . . . ;ZnÞ:

Example 38.7. More generally, assume that the expected and the true dimensions

of Mg;nðX ; b;Z1; . . . ;ZnÞ are both zero and the corresponding maps are birational

to their image. Then

Fg;nðX ; b; ½Z1�; . . . ; ½Zn�ÞbaMg;nðX ; b;Z1; . . . ;ZnÞ:

We use these examples to show that being uniruled is a property of the under-

lying symplectic variety.

Theorem 39 ([Kol98], 4.2.10, [Rua99]). Let X1, X2 be smooth projective varieties

and ðMi;oiÞ the corresponding symplectic manifolds. Assume that ðM1;o1Þ is sym-

plectic deformation equivalent to ðM2;o2Þ. Then X1 is uniruled i¤ X2 is.
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Proof. Assume that X1 is uniruled. Fix a very general point x1 a X1 such that the

corresponding point x2 a X2 is also very general. Let H be a very ample divisor

on X1 and f : P1 ! X1 a map such that f ð0Þ ¼ x1 and ðH � f�½P1�Þ is the smallest

possible. Set b :¼ f�½P1� and consider M0;1ðX1; b; x1Þ. Since ðH � f�½P1�Þ is the

smallest possible, every such curve is irreducible. Since x1 a X1 is very general,

every such curve is free (25). Set r :¼ dimM0;1ðX1; b; x1Þ, let H1; . . . ;H2r HX1

be general divisors linearly equivalent to H and consider

M0; rþ1ðX1; b; x1;H1BH2; . . . ;H2r�1BH2rÞ;

that is, stable rational curves in the homology class b that pass through x1 and in-

tersect each of the H2j�1BH2j.

The assumptions of (38.7) are satisfied and therefore

F0; rþ1ðX1; b; x1; ½H1BH2�; . . . ; ½H2r�1BH2r�Þ
baM0; rþ1ðX1; b; x1;H1BH2; . . . ;H2r�1BH2rÞ > 0:

(By [Kol96], II.3.14.4, all our maps are immersions, thus we could have used the

more elementary (38.6).)

Since the Gromov–Witten numbers are symplectic invariants, this implies that

F0; rþ1ðX2; b; x2; ½H1BH2�; . . . ; ½H2r�1BH2r�Þ > 0:

Thus, by (38.4), M0;1ðX2; b; x2Þ is not empty and so X2 also contains a rational

curve through x2. (Note that M0;1ðX2; b; x2Þ may not contain any irreducible

curves, but all the irreducible components of the curves in M0;1ðX2; b; x2Þ are ra-

tional, so we do get an irreducible rational curve through x2 after all.) Thus X2 is

also uniruled. r

This was only a warm-up for the main question, which would be a significant

generalization of (32.3).

Conjecture 40 ([Kol98], 4.2.7). Let X1, X2 be smooth projective varieties and

ðMi;oiÞ the corresponding symplectic manifolds. Assume that ðM1;o1Þ is symplec-

tic deformation equivalent to ðM2;o2Þ. Then X1 is rationally connected i¤ X2 is.

This is still wide open, even for 3-folds, despite significant partial results in

[Voi08].

41. Instead of discussing the positive results, let us illustrate the problem by a

simple example showing why the proof of (39) does not work directly in the ratio-

nally connected case.
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For eb 0 consider the minimal ruled surface p : F2e ! P1. The class of a fiber

is denoted by F and the negative section by E2e. Then H2ðF2e;ZÞ ¼ Z½E2e� þ Z½F �,
ðE2

2eÞ ¼ �2e; ðE2e � F Þ ¼ 1 and ðF 2Þ ¼ 0.

Note that F2e is deformation equivalent to F0 GP1 � P1. Under this equiva-

lence, the fibers correspond to each other but E2e corresponds to E0 � eF .

Given 2 general points p; q a F2e, the smallest degree curve (in any projective

embedding) connecting p and q is a reducible curve, consisting of the two fibers

Fp (resp. Fq) through p (resp. q) and of E2e. Its homology class is ½E2e þ 2F � and
E2e þ Fp þ Fq is the unique curve passing through p; q whose homology class is

½E2e þ 2F �.
We may be tempted to believe that having such a curve is a symplectic

property. However, this fails, even for smooth algebraic deformations. Indeed,

by the above remarks, the homology class ½E2e þ 2F � becomes ½E0 þ ð2� eÞF � on
F0, and there is no e¤ective curve on F0 in the homology class ½E0 þ ð2� eÞF � if
e > 2.

We can try next to work with irreducible curves. The smallest homology

class that contains an irreducible rational curve through p; q is ½E2e þ 2eF �. The

linear system jE2e þ 2eF j has dimension 2eþ 1 and its general member is a

smooth rational curve. Those curves that pass through p; q form a linear subsys-

tem of dimension 2e� 1. At first sight it seems that we can repeat the arguments

of (39).

There is, however, a hitch. We need to consider not the space of curves in

F2e but the space of maps of curves to F2e. For irreducible curves, these two spaces

are essentially the same, but in general problems arise with multiple covers. In our

case, we can have maps whose set-theoretic image is Fp þ Fq þ E2e, but give a de-

gree 2e� 1 cover over Fp. These have a moduli space of dimension 2ð2e� 1Þ � 2

¼ 4e� 4. Thus, for eb 2, this has greater dimension than the ‘‘main component’’

which is birational to the linear system jE2e þ 2eF jð�p� qÞ.
As we see in (42), larger dimensional components may give a negative contri-

bution to a Gromov–Witten invariant which may cancel the positive contribution

given by the irreducible curves.

Actually, in this case, we end up with a correct argument if we follow the

method of (39).

By fixing 2e� 1 other general points r1; . . . ; r2e�1, we see that there is a unique

curve in jE2e þ 2eF j passing through all the points p; q; r1; . . . ; r2e�1. This curve is

smooth and irreducible and gives 1 for the value of the Gromov–Witten invariant.

The larger dimensional components do not contribute anything. This, however,

seems more luck than a general principle.

The following example, based on a suggestion of R. Pandharipande, illustrates

that negative contributions from too large components can cancel out a nice

curve, even for algebraic deformations.
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Example 42. In P3 consider the family of quadrics

Qt :¼ ðx2
0 � x1x2 � t2x2

3 ¼ 0Þ:

For tA 0 we get a smooth quadric, isomorphic to F0 GP1 � P1. Let jLtj denote
one of the two families of lines. For t ¼ 0 we get a singular quadric. We can re-

solve the singularity by blowing up ðx0 � tx3 ¼ x1 ¼ 0Þ. We get a family of

smooth surfaces. For tA 0 we still have F0, but for t ¼ 0 we get F2, the blow-up

of Q0 at the origin. Let E2 H F2 be the exceptional curve and jL0j the birational

transforms of the family of lines on Q0. Note that as t ! 0, the limit of the family

of lines jLtj is the family E2 þ jL0j of reducible curves.
Let jHj be the pull-back of the family of hyperplane sections of Q0 to F2. Its

singular members form the family E0 þ 2jL0j.
Over the pair of lines ðst ¼ 0ÞHC2

s; t consider a family of curves and smooth

surfaces as follows.

(1) Over the t-axis, we have the family Qt degenerating to F2 and curves 2Lt de-

generating to 2E2 þ 2L0.

(2) Over the s-axis, we have the trivial family of F2 with curves E2 þHs degener-

ating to 2E2 þ 2L0.

Set X :¼ F2 � P1, let b be the class of fðpointÞg � P1 and set Zi :¼ ðE2 þHiÞ
� fpig where pi a P1 are two distinct points and Hi a jHj are two smooth hyper-

plane sections intersecting at 2 distinct points q1; q2 a F2.

Consider M0;2ðX ; b;Z1;Z2Þ. It consist of two isolated points corresponding

to the curves fqig � P1 ,! F2 � P1 (each contributing 1 to the Gromov–Witten

invariant) and a 1-dimensional component of curves of the form fðpointÞg � P1

that are contained in E2 � P1. The expected dimension is 0.

If we move over to F0 � P1, the Zi can be represented by curves of the form

Li þ L 0
i where the lines Li;L

0
i are in the same family of lines. Thus we can choose

Z1 and Z2 to be disjoint, showing that M0;2ðX ; b;Z1;Z2Þ ¼ j.
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