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1. Introduction

These notes are concerned with moduli spaces of bundles on a smooth projective

curve. Over them we consider determinant line bundles and their holomorphic

Euler characteristics, the Verlinde numbers. The goal is to give a brief exposition

of the two-dimensional topological quantum field theory that captures the struc-

ture of the GL Verlinde numbers, associated with spaces of bundles with varying

determinant. Our point of view is to emphasize the close connection with another

TQFT, the quantum cohomology of the Grassmannian.

Two di¤erent geometries are related here, the moduli of bundles on a curve C

and the space of maps from C to a suitable Grassmannian. The connection be-

tween them was established in the classic paper [W] where the open and closed

invariants of the GL Verlinde TQFT, in all genera, were exhaustively written in

both geometries. On the mathematical side, it was shown [A] that the underlying

algebras of the two TQFTs are isomorphic, as the genus zero three-point in-

variants match. Importantly however, the metrics of the associated Frobenius

algebras are di¤erent: quantum cohomology uses the Poincaré pairing on the

cohomology of the Grassmannian, while the Verlinde theory uses an intersection

product on a space of higher degree maps from C to the Grassmannian. The

TQFTs therefore turn up di¤erent invariants overall. The higher genus GL Ver-

linde invariants, open or closed, have not been systematically written down in the



mathematics literature although they were shown in [W] to have compelling

closed-form geometric expressions. We found it useful therefore to render the re-

sults of [W] in standard mathematical language, also with a view toward future

studies of q-deformations of ordinary two-dimensional Yang–Mills theory.

The exposition is organized as follows. The central point is presented in the

final Section 5, where the Verlinde TQFT is explicitly written. Prior to this, we

recall briefly the notion of a two-dimensional TQFT in the next section, then we

introduce in our context, on a smooth projective curve C, the two spaces of inter-

est: the Grothendieck Quot scheme, and the moduli space of semistable bundles.

We present the former here primarily as compactifying the space of maps from the

curve to a Grassmannian. Relevant aspects of the geometry and intersection

theory of the two spaces are discussed. The last section studies the relation be-

tween them, in the form of the GL Verlinde TQFT, which we also refer to as the

Grassmann TQFT.
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July 2009. She thanks the organizers Ana Cannas da Silva and Rui Fernandes

for the warm hospitality and fantastic time in Lisbon during the School. The

paper was written while the first author was visiting Harvard in the fall of 2009.

Partial support for both authors was provided by the NSF.

2. Generalities on two-dimensional TQFTs

We remind the reader of the basic structures needed for our discussion. A detailed

study of TQFTs can be found for instance in [K].

We consider the category 2Cob, in which

(i) the objects are one-dimensional compact oriented manifolds, i.e., finite unions

of oriented circles;

(ii) the morphisms are (di¤eomorphism classes of ) oriented cobordisms;

(iii) composition of morphisms is concatenation of cobordisms;

(iv) there is a tensor structure given by taking disjoint unions of objects.

Let VectC be the category of C-vector spaces. A two-dimensional C-valued

TQFT is a symmetric monoidal functor

F : 2Cob ! VectC:

There is a basic vector space H in the theory, representing the value of the functor

F at the oriented circle S1. In addition, F associates to the empty manifold the

vector space C.
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The datum of the functor is equivalent to the structure of a commutative Fro-

benius algebra on H. By definition this comprises

(i) a commutative associative multiplication

HnH !� H

with identity element, and

(ii) a symmetric nondegenerate pairing

ð� ; �Þ : HnH ! C

satisfying the Frobenius property

ða � b; cÞ ¼ ða; b � cÞ:

Indeed, if W t
s ðgÞ is the genus g cobordism with s inputs and t outputs, then

(i) F
�
W 1

2 ð0Þ
�
: HnH ! H is the algebra multiplication,

(ii) F
�
W 1

0 ð0Þ
�
: C ! H is the identity element,

(iii) F
�
W 0

2 ð0Þ
�
gives the pairing ð� ; �Þ.

Viewed as a cobordism from the empty manifold to the empty manifold, a

closed surface of genus g corresponds under F to a homomorphism from C to C,

thus to a number F ðgÞ,

F ðgÞ ¼ F
�
W 0

0 ðgÞ
�
:

Let us assume that H has a preferred basis,

H ¼ 0
l

Cel:

The vector space Hns has a basis el indexed by multi-indices l ¼ ðl1; . . . ; lsÞ:

el ¼ el1 n � � �n els :

We denote by F ðgÞml the matrix entries of the cobordism homomorphism

F
�
W t

s ðgÞ
�
: Hns ! Hnt

in this basis. We thus have

F
�
W t

s ðgÞ
�
: el 7! FðgÞmlem;
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where l, m are multi-indices (with s and t components respectively). The TQFT is

equivalent to the data of the numbers FðgÞml satisfying gluing rules which reflect

the functoriality, X
m

Fðg1Þ
m

lF ðg2Þ
n
m ¼ Fðg1 þ g2 þ t� 1Þnl: ð1Þ

Here t is the number of components of the multi-index m, which is summed over.

3. The Quot scheme QC(G(r, n), d)

Let C be a smooth complex projective curve of genus g. We let QC

�
Gðr; nÞ; d

�
denote the Grothendieck Quot scheme parametrizing rank n� r degree d quo-

tients of the rank n trivial sheaf on C. A point in the Quot scheme is given by a

short exact sequence

0 ! E ! OC nCn ! F ! 0:

While the kernel sheaf E is always locally free, the quotient F is in general a sum

F ¼ F aT ;

with F locally free and T a torsion sheaf supported at finitely many points of the

curve C.

The quotients F which are locally free form an open locus in QC

�
Gðr; nÞ; d

�
,

and can be regarded as degree d maps

f : C ! Gðr; nÞ

from C to the Grassmannian Gðr; nÞ of r planes in Cn. The Quot scheme may be

viewed as compactifying the space Mord
�
C;Gðr; nÞ

�
of degree d maps to Gðr; nÞ:

Mord
�
C;Gðr; nÞ

�
,! QC

�
Gðr; nÞ; d

�
:

3.1. Examples. When C ¼ P1 and r ¼ 1, the Quot scheme QP1ðPn�1; dÞ is the

projectivized space of n homogeneous degree d polynomials in C½x; y�,

QP1ðPn�1; dÞUPnðdþ1Þ�1:

In general, when r ¼ 1 and C has arbitrary genus, QCðPn�1; dÞ parametrizes

exact sequences

0 ! L ! OC nCn ! Q ! 0
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where L is a line bundle of degree �d. Equivalently, dualizing such exact se-

quences, points in the space are degree d line bundles L4 on C together with n

sections, not all zero:

OC nCn4! L4:

Let JacdðCÞ be the Picard variety of degree d line bundles on C, and let

p : JacdðCÞ � C ! JacdðCÞ

be the projection. For d su‰ciently large, db 2g� 1, the push forward p�P of

the Poincaré line bundle

P ! JacdðCÞ � C

is locally free, and its fiber over ½L� a JacdðCÞ is the space H 0ðC;LÞ of sections of
L. In this case,

QCðPn�1; dÞUP
�
ðp�PÞan

�
! JacdðCÞ:

Although for arbitrary r the Quot scheme does not have such a simple descrip-

tion, it remains true that the space is well-behaved in the regime of large degrees d:

Theorem 1 ([BDW]). For dg r; n; g, the space QC

�
Gðr; nÞ; d

�
is irreducible, gener-

ically smooth, and has the expected dimension.

3.2. Structures. As a fine moduli space, the Quot scheme carries a universal

sequence

0 ! S ! OnCn ! Q ! 0 on QC

�
Gðr; nÞ; d

�
� C;

with the universal subsheaf S being locally free. The tangent sheaf to

QC

�
Gðr; nÞ; d

�
is given as

TQC

�
Gðr; nÞ; d

�
UHompðS;QÞ;

where

p : QC

�
Gðr; nÞ; d

�
� C ! QC

�
Gðr; nÞ; d

�
is the projection. The obstruction sheaf is Ext1pðS;QÞ. The expected dimension is

e ¼ nd � rðn� rÞðg� 1Þ

by the Riemann–Roch formula.
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The Chern classes of the universal subsheaf are natural to consider for the

intersection theory of QC

�
Gðr; nÞ; d

�
. Fixing a basis

1; d1; . . . ; d2g;o

for the cohomology of the curve C, we write

ckðS4Þ ¼ ak n 1þ
X2g
i¼1

bi
k n di þ fk no; 1a ka r;

where

ak a H 2k
�
QC

�
Gðr; nÞ; d

�
;C
�
; bi

k a H 2k�1
�
QC

�
Gðr; nÞ; d

�
;C
�
;

fk a H 2k�2
�
QC

�
Gðr; nÞ; d

�
;C
�
:

Note that

fk ¼ p�ckðS4Þ; ð2Þ

while for p a C and

Sp ¼ SjQCðGðr;nÞ;dÞ�fpg;

we have

ak ¼ ckðS4
p Þ: ð3Þ

When d is large so that QC

�
Gðr; nÞ; d

�
is irreducible, top intersections of

the tautological a, b and f classes can be evaluated meaningfully against the

fundamental class. For arbitrary degrees, the Quot scheme may be reducible and

oversized. However, intersection theory can still be pursued in a virtual sense, by

pairing Chern classes against a virtual fundamental cycle of the expected dimen-

sion, which the Quot scheme possesses.

The necessary condition for the existence of the virtual fundamental cycle is

that the tangent-obstruction theory of the Quot scheme admits a resolution

0 ! HompðS;QÞ ! A0 ! A1 ! Ext1pðS;QÞ ! 0; ð4Þ

where the sheaves A0 and A1 are locally free. The virtual fundamental class is

then constructed using the two vector bundles A0, A1. We refer the reader to

[BF] [LT] for details on perfect obstruction theories and virtual fundamental

classes.
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Theorem 2 ([CFK], [MO1]). The Quot scheme QC

�
Gðr; nÞ; d

�
has a two-term

perfect obstruction theory and a virtual fundamental class�
QC

�
Gðr; nÞ; d

��vir
in the Chow group Ae

�
QC

�
Gðr; nÞ; d

��
of the expected dimension.

Proof. The resolution (4) is easily obtained as follows. Let Oð1Þ be a degree 1 line

bundle on the curve C, and denote by SðmÞ, QðmÞ the twists of the tautological

sheaves by the pullback of OðmÞ on C to the product QC

�
Gðr; nÞ; d

�
� C. Let m

be large enough so that

R1p�SðmÞ ¼ R1p�QðmÞ ¼ 0;

and so that the evaluation map

p��R0p�SðmÞ
�
! SðmÞ

is surjective. The pushforward sheaves R0p�SðmÞ, R0p�QðmÞ are then locally

free. Further let K be the kernel

0 ! K ! p��R0p�SðmÞ
�
nOð�mÞ ! S ! 0:

Applying the functor Hompð�;QÞ gives

0 ! HompðS;QÞ !
�
R0p�SðmÞ

�4
nR0p�QðmÞ

! HompðK;QÞ ! Ext1pðS;QÞ ! 0:

Continuing this sequence one more term we get Ext1pðK;QÞ ¼ 0, so the sheaf

A1 ¼def HompðK;QÞ

is locally free. Also,

A0 ¼def

�
R0p�SðmÞ

�4
nR0p�QðmÞ

is locally free. r

3.3. Intersections. In this section, we will consider the (virtual) intersection

theory of Quot schemes.

We start by pointing out the compatibility of the virtual fundamental class

with the natural embedding, for p a C,

ip : QC

�
Gðr; nÞ; d

�
,! QC

�
Gðr; nÞ; d þ r

�
;

187GL Verlinde numbers and the Grassmann TQFT



given by

fE ,! OC nCng 7! fEð�pÞ ! E ! OC nCng:

A degree �d � r subsheaf

E 0 ,! OC nCn

comes from QC

�
Gðr; nÞ; d

�
if the dual map

OC nCn4! E 04

is zero at p. The image of the degree d Quot scheme inside the degree d þ r space

is therefore the zero locus of the dual universal map

OnCn4! S4
p on QC

�
Gðr; nÞ; d þ r

�
:

This relationship is reflected on the level of the virtual fundamental classes for the

two spaces. We recall that ar is the top Chern class of the universal subsheaf S4
p

before noting that

Proposition 1 ([MO1]). The equality

ip�
�
QC

�
Gðr; nÞ; d

��vir ¼ an
r B

�
QC

�
Gðr; nÞ; d þ r

��vir ð5Þ

holds in A�
�
QC

�
Gðr; nÞ; d þ r

��
.

The intersection theory of a-classes is well understood. Top intersections are

given in closed form by the Vafa–Intriligator formula. Furthermore, in the large-

degree regime, the intersection numbers express counts of maps from the curve C

to the Grassmannian Gðr; nÞ, satisfying incidence constraints. More precisely, we

have:

Theorem 3. (i) [Ber], [ST], [MO1] Let Jðx1; . . . ; xrÞ be the symmetric function

Jðx1; . . . ; xrÞ ¼ nr � x�1
1 . . . x�1

r

Y
1ai< jar

ðxi � xjÞ�2:

Let Pða1; . . . ; arÞ be a top degree polynomial in the Chern classes of S4
p . Thenð

½QCðGðr;nÞ;dÞ�vir
Pða1; . . . ; arÞ ¼ u �

X
l1;...;lr

Rðl1; . . . ; lrÞJ g�1ðl1; . . . ; lrÞ; ð6Þ
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where R is the symmetric polynomial obtained by expressing Pða1; . . . arÞ in terms of

the Chern roots of S4
p . The sum is taken over all n

r

� �
tuples

ðl1; . . . ; lrÞ

of distinct n-roots of 1. Here

u ¼ ð�1Þðg�1Þ r
2ð Þþdðr�1Þ:

(ii) [Ber] When QC

�
Gðr; nÞ; d

�
is irreducible of the expected dimension, the above

intersection counts the number of degree d maps from the curve C to Gðr; nÞ sending
fixed distinct points of C to special Schubert subvarieties of the Grassmannian, each

Schubert variety matching an appearance of an a-class in the top monomial P.

The intersection numbers appearing in Theorem 3 were written down in [I].

Mathematical proofs have relied either on degenerations of the Quot scheme

to genus zero, or on equivariant localization. Degeneration arguments use the

enumerativeness of the a-intersections in the large-degree situation.

By contrast, intersections involving f -classes do not give actual counts of

maps, and explicit formulas for them have been relatively little explored. To de-

scribe one such formula, we let

siðxÞ ¼ siðx1; . . . ; xrÞ and si;kðxÞ ¼ si;kðx1; . . . ; xrÞ

be the i th elementary symmetric functions in the variables

x1; . . . ; xr and x1; . . . ; x̂xk; . . . ; xr;

respectively. In the second set of variables, xk is omitted.

Theorem 4 ([MO1]). Letting Dl , 2a la r, be the first-order di¤erential operator

Dl ¼ ðg� 1Þðr� l þ 1Þðn� rþ l � 1Þ � sl�1ðxÞ þ
Xr
k¼1

sl�1;kðxÞxk �
q

qxk
;

we haveð
½QCðGðr;nÞ;dÞ� vir

fl � Pða1; . . . ; arÞ ¼
u

n

X
l1;...;lr

ðDlRÞðl1; . . . ; lrÞ � J g�1ðl1; . . . ; lrÞ:

The sum is over all n
r

� �
tuples ðl1; . . . ; lrÞ of distinct n-roots of 1.
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It would be very interesting to generalize the Vafa–Intriligator formula to

include all intersections of f and a-classes.

We turn now to a discussion of the second geometry of interest.

4. The moduli space of semistable bundles

4.1. Basics. We consider vector bundles of rank r and degree d on the smooth

curve C. We recall briefly the main facts in the moduli theory of semistable vector

bundles on C. The family of all vector bundles of fixed topological type is not

bounded, as one can immediately verify looking at vector bundles on P1. A no-

tion of stability is required to get a bounded problem. For any vector bundle E,

its slope mðEÞ is defined as the ratio

mðEÞ ¼ degreeðEÞ
rankðEÞ :

A vector bundle E is said stable (semistable) if for all subbundles F ,! E,

mðFÞ < mðEÞ
�
mðFÞamðEÞ

�
:

It follows easily that the following holds.

Lemma 1. (i) If E is semistable with mðEÞb 2g� 1, then H 1ðEÞ ¼ 0.

(ii) If E is semistable with mðEÞb 2g, then the evaluation map of sections

H 0ðEÞnOC ! E

is surjective.

Proof. Indeed, by Serre duality, H 1ðEÞUH 0ðE4nKCÞ4, where KC denotes the

canonical bundle. Let L ,! KC be the image of an assumed nonzero homomor-

phism f : E ! KC . E is semistable and L is a quotient of E, so we must have

mðEÞamðLÞ ¼ degðLÞadegðKCÞ ¼ 2g� 2:

This contradicts the assumption, so there are no nonzero such homomorphisms

and H 1ðEÞ ¼ 0. Regarding (ii), for any p a C, taking cohomology for the se-

quence

0 ! Eð�pÞ ! E ! Ep ! 0;

and using the vanishing of (i), it follows that the fiber of E at p is generated by

global sections. r
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Fixing a line bundle Oð1Þ of degree 1 on C, there is therefore an integer m such

that for all semistable rank r and degree d vector bundles E, we have

H 1
�
EðmÞ

�
¼ 0 and H 0

�
EðmÞ

�
nOC ! EðmÞ ! 0:

Any semistable E can be thus realized as a quotient

O
aq
C ð�mÞ ! E ! 0 with q ¼ w

�
EðmÞ

�
;

i.e., as a point in the Quot scheme

Quot r;dC

�
O
aq
C ð�mÞ

�
of quotients of Oaq

C ð�mÞ of rank r and degree d. The group SLðqÞ acts on this

Quot scheme, with a standard linearization. On the locus of vector bundle

quotients E in Quotr;dC

�
O
aq
C ð�mÞ

�
, for which the quotient map induces an iso-

morphism

H 0ðOaq
C ÞUH 0

�
EðmÞ

�
;

stability in the geometric invariant theory sense coincides with slope stability.

Restricting further to semistable quotients, we have an SLðqÞ-invariant open sub-

scheme

Quotss HQuotr;dC

�
O
aq
C ð�mÞ

�
:

The GIT quotient

Quotss==SLðqÞ ¼def UCðr; dÞ

is an irreducible normal projective variety of dimension r2ðg� 1Þ þ 1, the moduli

space of semistable vector bundles of rank r and degree d. The open subset

U s
Cðr; dÞHUCðr; dÞ

parametrizing isomorphism classes of stable vector bundles is smooth and its

complement has codimension at least 2 in UCðr; dÞ. For details on this standard

construction, we refer the reader to [LeP].

4.2. Line bundles on the moduli space and their Euler characteristics. Twist-

ing vector bundles by a line bundle of degree 1 on C gives an isomorphism

UCðr; dÞGUCðr; d þ rÞ;
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so the dependence on degree is only modulo r. We assume further for simplicity

that

d ¼ 0:

All constructions can be easily duplicated in the arbitrary degree situation.

When r ¼ 1, we have

UCð1; 0ÞU JacðCÞ;

the Picard variety of degree 0 line bundles on C. Note that for a fixed line bundle

M on C of degree g� 1,

wðLnMÞ ¼ 0 for L a JacðCÞ:

The classical theta divisor relative to M is defined as

Y1;M ¼ fL a JacðCÞ such that h0ðLnMÞA 0g:

Sections of the tensor powers of the line bundle OðY1;MÞ can be identified with the

classical theta functions on the universal cover. The dimension of the space of

level k theta functions is

h0
�
JacðCÞ;OðkY1;MÞ

�
¼ w
�
JacðCÞ;OðkY1;MÞ

�
¼ kg: ð7Þ

For r > 1, we have similarly, when M is as before a line bundle of degree g� 1

on C,

wðEnMÞ ¼ 0 for E a UCðr; 0Þ;

and we set

Yr;M ¼ fE a UCðr; 0Þ such that h0ðEnMÞA 0g: ð8Þ

As in the r ¼ 1 case, in fact, the divisor Yr;M has a determinantal scheme struc-

ture: for a family

E ! S � C

of semistable rank r degree 0 vector bundles, flat over S, we consider a resolution

0 ! R0p�ðEn p�
CMÞ ! F0 !

j
F1 ! R1p�ðEn p�

CMÞ ! 0

of the direct image complex

Rp�ðEn p�
CMÞ;
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so that F0, F1 are locally free. Here we denoted by p and pC the projections

S � C !p S; S � C !pC C:

The pullback of Yr;M to S is then the degeneracy locus of j. The line bundle

OðYr;MÞ is the descent of the determinant line bundle

detRp�ðEn p�
CMÞ�1

from the Quot scheme Quotr;dC

�
O
aq
C ð�mÞ

�
, with E being the universal quotient.

The Picard group of UCðr; 0Þ, described in [DN], is generated by the theta line

bundles OðYr;MÞ as M varies in Picg�1ðCÞ. To state this precisely, let

det : UCðr; 0Þ ! JacðCÞ

be the morphism sending bundles to their determinants. The following holds.

Theorem 5 ([DN]). (i) Consider

i : SUCðr;OÞ ,! UCðr; 0Þ

the moduli space of bundles with trivial determinant. The restriction

L ¼def i
�OðYr;MÞ;

is independent of the choice of M in Picg�1ðCÞ and

Pic
�
SUCðr;OÞ

�
GZL:

(ii)

Pic
�
UCðr; 0Þ

�
GZOðYr;MÞadet�

�
Pic0

�
JacðCÞ

��
:

As in the classical case, the theta bundles on UCðr; 0Þ and SUCðr;OÞ have

no higher cohomology, so their holomorphic Euler characteristics give also the

dimension of their spaces of sections. Explicit expressions for them, known as

Verlinde formulas, were derived by several methods, and are significantly more

complicated than (7). The formulas are very similar for k powers of L on

SUCðr;OÞ and of OðYr;MÞ on UCðr; 0Þ. A slightly simpler and more convenient

expression arises however for the twist

OðkYrÞn det� OðY1Þ a Pic
�
UCðr; 0Þ

�
:
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Here we suppressed reference degree g� 1 line bundles for the theta bundles, as the

holomorphic Euler characteristic is independent of these choices. Writing also, to

simplify notation, Yr and Y1 for the line bundles OðYrÞ and OðY1Þ, we have

V r;k
g ¼def h

0
�
UCðr; 0Þ;Yk

r n det� Y1

�
¼ w
�
UCðr; 0Þ;Yk

r n det� Y1

�
¼

X
StT¼f1;...; rþkg

jSj¼r

Y
s AS
t AT

2 sin p
s� t

rþ k

���� ����g�1

: ð9Þ

The sum is over the rþk
r

� �
partitions of the first rþ k natural numbers into two dis-

joint subsets S and T of cardinalities r and k. Note that the numbers V r;k
g depend

solely on the genus g of C, the rank r, and the level k.

Formula (9) was written for instance in [Bea1]. We refer the reader to this

article for a history of the derivation of the formula.

4.3. Parabolic counterparts. We would like to formulate degeneration rules for

the Verlinde numbers V r;k
g . To this end, we turn to decorated moduli spaces of

rank r vector bundles on C. In addition to r, we think of the level k as fixed.

We denote by Pr;k the set of Young diagrams with at most r rows and at most

k columns. Enumerating the lengths of the rows, we write a diagram l as

l ¼ ðl1; . . . ; lrÞ; kb l1b � � �b lr
b 0:

Such vectors can also be regarded as highest weights for irreducible representa-

tions of the unitary group UðrÞ, bounded by k. Further, the lengths of columns

in a partition l a Pr;k give a flag type on an r-dimensional vector space. Let Fll
be the corresponding flag variety, with the Borel–Weil line bundle Nl associated

to the highest weight l.

We consider the curve C together with a finite set I of distinct points on it, and

partitions lp a Pr;k labeled by the points p a I . A vector bundle E together with a

choice of a flag in each of its fibers over the points in I ,

0HE1;p HE2;p H � � �HEk;pHEp

with flag type given for each p a I by the partition lp, is referred to as a parabolic

vector bundle of type l ¼ ðlpÞp A I . The lengths of rows in a partition lp add the

datum of a set of weights to the flag type at p, and define a parabolic slope for E,

mparðEÞ ¼
d

r
þ jlj

rk
; ð10Þ
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with jlj being the total number of boxes in all partitions lp, p a I . As in the case

of undecorated bundles, the slope comes with a notion of semistability, and there

is a coarse projective moduli space UCðr; d; lÞ of semistable rank r degree d para-

bolic vector bundles of type l, introduced in [MS].

The construction is similar to that of the undecorated space UCðr; dÞ. Its brief

description here follows [P]. To start, let W be the open locus in the Quot scheme

Quotr;dC

�
O
aq
C ð�mÞ

�
where the universal quotient sheaf

Q ! Quotr;dC

�
O
aq
C ð�mÞ

�
� C

is locally free, and in addition each quotient

O
aq
C ð�mÞ ! E

in W gives an isomorphism

H 0ðOaq
C ÞUH 0

�
EðmÞ

�
:

For each point p a I , consider next the restriction

Qp ¼ QjW�fpg

of the universal quotient bundle, and its associated flag bundle Fllp , where the

flag type is specified by the partition lp. Let R be the product over W of the flag

bundles for each p a I ,

R ¼ Fllp1 �W � � � �W Fllpn :

The moduli space of semistable parabolic vector bundles of type l is the GIT

quotient

UCðr; d; lÞ ¼def R
ss==SLðqÞ;

where Rss is the open semistable locus in R defined in terms of the slope (10).

We describe natural theta bundles over UCðr; d; lÞ. One can consider on W the

level k determinant line bundle �
detRp�ðQÞ

��k
;

where as usual

p : W� C ! W

is the projection. Furthermore each flag bundle Fllp carries a natural line bundle

Np ! Fllp
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restricting fiberwise over W to the Borel–Weil ample line bundle Nlp on the flag

variety Fllp . More precisely, the line bundle Np is the tensor product of the deter-

minants of all universal quotients on the flag bundle Fllp . Under the condition

kd þ jljC 0 mod r; ð11Þ

the tensor product �
detRp�ðQÞ

��k
n ðdetQxÞe 1

p A I

Np ð12Þ

descends to a line bundle

Ll ! UCðr; d; lÞ

on the GIT quotient. Here x is a point on the curve (which will be omitted from

the notation), and

e ¼ kd þ jlj
r

þ kð1� gÞ:

When l consists of empty partitions, and d ¼ 0, we recover the space UCðr; 0Þ and
the line bundle Yk

r;M where M ¼ O
�
ðg� 1Þx

�
.

We set

V r;k
g;d ðlÞ ¼ h0

�
UCðr; d; lÞ;Ll n det� Y1

�
¼ w
�
UCðr; d; lÞ;Ll n det� Y1

�
: ð13Þ

The parabolic Verlinde numbers V r;k
g;d ðlÞ are given by explicit elementary formulas

similar to (9). As they are generally elusive in the literature, we write them down

in detail in the appendix, in the course of describing the relationship between

V
r;k
g;d ðlÞ and intersections on the Quot scheme.

5. The GL Verlinde TQFT at fixed rank and level

5.1. Euler characteristics and intersections on the Quot scheme. The theory of

Euler characteristics of determinant line bundles over the moduli space UCðr; 0Þ is
naturally related to the intersection theory of the space

Mord
�
C;Gðr; k þ rÞ

�
of degree d maps to Gðr; k þ rÞ, where

dC 0 mod r:
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One of the most concrete aspects of this connection is the following remark-

able identity (14) involving the undecorated Verlinde numbers [W]. Recall the top

Chern class ar, defined in (3), on the Quot scheme QC

�
Gðr; k þ rÞ; d

�
compactify-

ing Mord
�
C;Gðr; k þ rÞ

�
. We define the integer

t ¼ d

r
ðk þ rÞ � kðg� 1Þ;

so that the expected dimension of QC

�
Gðr; k þ rÞ; d

�
equals rt. The Verlinde num-

ber V r;k
g can be expressed as a top intersection

V r;k
g ¼

ð
½QCðGðr;kþrÞ;dÞ�vir

at
r : ð14Þ

Note that although d is an arbitrary number divisible by r, Proposition 1 ensures

that (14) gives the same answer for di¤erent values of d.

It can be easily checked in fact that (14) holds: the Vafa–Intriligator sum giv-

ing the right-hand side integral can be immediately written as the elementary for-

mula (9). More satisfyingly, geometric arguments [MO2] relate the intersection

theory of the space UCðr; dÞ with that of the Quot scheme QC

�
Gðr; nÞ; d

�
in the

large n limit. The particular expression of the Todd class appearing in holomor-

phic Euler characteristic calculations then recasts the Verlinde number V r;k
g as the

intersection (14) on the Quot scheme QC

�
Gðr; k þ rÞ; d

�
:

More generally, the decorated degree d Verlinde number

V
r;k
g;d ðlÞ ¼ w

�
Uðr; d; lÞ;Ll n det� Y1

�
can be expressed as an intersection on the space of maps from C to Gðr; k þ rÞ
subject to incidence conditions with suitable Schubert cycles determined by the

multipartition l.

To explain the result, we need more notation. To an individual partition

l a Pr;k we associate the Schur polynomial in the Chern roots x1; . . . ; xr of the

rank r universal sheaf S4
p :

slðx1; . . . ; xrÞ ¼
detðxl jþr�j

i Þ
Vðx1; . . . ; xrÞ

;

where

Vðx1; . . . ; xrÞ ¼ detðxr�j
i Þ

is the Vandermonde determinant. We denote the ensuing class

al ¼ slðS4
p Þ:
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For a multipartition l ¼ ðl1; . . . ; lnÞ, we set

al ¼ al1 . . . aln :

Next, to a partition

l : kb l1b � � �b lrb 0 in Pr;k;

we associate the conjugate partition l� a Pr;k,

l� : kb k � lrb � � �b k � l1b 0:

The definition extends naturally to multipartitions l.

Under the assumption

kd þ jljC 0 mod r; ð15Þ

we have the equality

V
r;k
g;d ðlÞ ¼

ð
½QCðGðr;kþrÞ;dÞ�vir

al� � at
r : ð16Þ

Here t is taken to satisfy the dimension equation

jl�j þ rt ¼ ðk þ rÞd � rkðg� 1Þ;

which is always possible when (15) is satisfied.

In degree 0, formulas related to (16) were explicitly written down in [O] in the

process of establishing a level-rank duality on moduli of parabolic bundles. The

parabolic Verlinde numbers for arbitrary degree d have been less explored, hence

we will give an argument establishing (16) in the appendix.

5.2. The Grassmann TQFT. The Verlinde numbers V r;k
g are the closed invari-

ants

F ðgÞ ¼ V r;k
g

in a TQFT which we now describe. We refer to this theory equally as the GL

Verlinde, or the Grassmann TQFT. The theory was introduced in [W], which we

follow closely, while expressing the main facts in standard mathematical form.

The fundamental vector space of the TQFT, together with a preferred basis, is

H ¼ 0
l APr; k

Cl:
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Considering the Grassmannian Gðr; k þ rÞ and its tautological sequence

0 ! S ! OnCrþk ! Q ! 0;

we think of x1; . . . ; xr as being the Chern roots of the dual tautological bundle S4.

In this case, the Schur polynomials slðx1; . . . ; xrÞ give a basis for the cohomology

of the Grassmannian, and we may view

H ¼ 0
l APr; k

Csl ¼ H ��Gðr; k þ rÞ;C
�
:

The numbers FðgÞ were written in the previous subsection as intersections on a

suitable Quot scheme. The general matrix elements of F
�
Wu

s ðgÞ
�
are integrals on

the Quot scheme as well. We consider the Quot schemes for all degrees at once,

setting

QC; r;k ¼
a
d

QC

�
Gðr; k þ rÞ; d

�
:

As explained in the previous subsection, they come equipped with natural coho-

mology classes al, indexed by multipartitions. To start, for l a multipartition with

s components, we define the matrix elements F ðgÞl of the homomorphism

F
�
W 0

s ðgÞ
�
: Hns ! C

by

FðgÞl ¼
ð
½QC; r; k � vir

al � argþk
r : ð17Þ

We define the matrix elements FðgÞml in full generality by

F ðgÞml ¼
ð
½QC; r; k �vir

al � am � � arðgþuÞþk
r ; ð18Þ

where u is the number of components of the multipartition m. Note that only one

summand contributes to the infinite sum (18), since integration occurs only over

the Quot scheme of degree

d ¼
jlj � jmj
k þ r

þ rðgþ uÞ: ð19Þ

If this expression does not yield an integer, i.e.,

jlj2 jmj mod k þ r ð20Þ
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the matrix element FðgÞml is 0. Letting m in (18) consist of no partitions, we recover

(17).

In the last subsection, 5.4, we show that the numbers F ðgÞml satisfy the requisite

gluing formula (1) of a TQFT.

5.3. Formulation in terms of Verlinde data. The closed invariants F ðgÞ coin-

cide with the undecorated Verlinde numbers V r;k
g . Indeed, when l and m both

consist of no partitions, we obtain

F ðgÞ ¼
ð
½QC; r; k �vir

argþk
r ¼ V r;k

g ;

which is a particular case of equation (14) for d ¼ rg.

More generally, all matrix elements F ðgÞml can be expressed as Verlinde

numbers. Assuming

jljC jmj mod rþ k;

the degree given by (19)

d ¼
jlj � jmj
rþ k

þ rðgþ uÞ

satisfies (15). Hence, by (16), we have

F ðgÞml ¼ w
�
UCðr; d; l�; mÞ;Ll�;m n det� Y1

�
; ð21Þ

In particular,

FðgÞl ¼ w
�
UCðr; d; l�Þ;Ll� n det� Y1

�
: ð22Þ

Remark 1 (Comparison with the quantum cohomology of Gðr; k þ rÞ). There is

a slight asymmetry between the roles of l and m in (18), with only the number of

components of the multi-index m, but not of l, appearing explicitly in the defining

integral. This reflects a twist in the metric F
�
W 0

2 ð0Þ
�
on the Frobenius algebra H.

The metric is given by

ðsl; smÞ ¼ Fð0Þl;m ¼
ð
Q

P1 ; r; k

alam � ak
r ;

which manifestly di¤ers from the usual Poincaré pairingð
Gðr;kþrÞ

alam:
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Turning now to the algebra structure on H, we have

sl � sm ¼
X
n

F ð0Þnl;msn;

where

F ð0Þnl;m ¼
ð
Q

P1 ; r;k

alaman� � akþr
r ¼

ð
Q

P1 ; r;k

alaman� :

The last integral gives precisely the structure constants of the quantum multiplica-

tion on H ��Gðr; k þ rÞ;C
�
in the Schur basis. Therefore, we obtain an algebra

isomorphism with quantum cohomology

HGQH ��Gðr; k þ rÞ
�
:

Being based on the Poincaré metric, the quantum cohomology as a TQFT is dif-

ferent however from the Grassmann TQFT given by the numbers F ðgÞml . This is

accounted for by the disparity between the two metrics.

Remark 2 (Comparison with the SUðrÞ level k fusion algebra). A closely related

theory is the well-studied SL Verlinde TQFT described in [Bea2], [TUY]. The

underlying vector space

~HH ¼ 0
r

Cr

is labeled by heighest weight representations r of SUðrÞ at level k. Most con-

cretely, we think of r as equivalence classes of partitions l a Pr;k, where

lPm

if l and m are obtained from one another by adding or subtracting the same num-

ber of boxes from all rows.

In this basis, the matrix elements ~FFðgÞml of the theory are given as Verlinde

numbers

~FF ðgÞml ¼ wðLl;m �Þ;

where

Ll;m � ! SUCðr; l; m�Þ
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is the level k determinant bundle over the moduli space of parabolic bundles with

trivial determinant. The degeneration formulas, known as factorization rules,

were proved in [TUY] using the connection with conformal blocks.

The underlying algebra of the theory ~FF admits a presentation which is similar,

but not identical, to that of the quantum cohomology of Gðr; k þ rÞ obtained in

[ST]. The precise result is explained in Theorem 1.3 of [KS].

Remark 3 (Level-rank duality). Interchanging the rank r and level k, we obtain a

second TQFT from the enumerative geometry of the Grassmannian Gðk; rþ kÞ.
The vector space ĤH of the theory has a basis indexed by k � r partitions

ĤH ¼ 0
l APk; r

Cl:

The natural map

H ! ĤH; l ! l t;

sending a partition to its transpose is an isomorphism of TQFTs. Indeed, the

equality of the matrix elements

FðgÞml ¼ F̂FðgÞm
t

l t ð23Þ

follows immediately from the explicit formula (32) of the appendix. In particular,

the closed invariants satisfy the symmetry

w
�
UCðr; 0Þ;Yk

r;M n det� Y1;M

�
¼ w
�
UCðk; 0Þ;Yr

k;M n det� Y1;M

�
:

This equality reflects a geometrically induced isomorphism

H 0
�
UCðr; 0Þ;Yk

r;M n det� Y1;M

�4
GH 0

�
UCðk; 0Þ;Yr

k;M n det�ð�1Þ�Y1;M

�
;

proved in [MO3]. The symmetry of the open invariants (23) on parabolic moduli

spaces was similarly explained in [O].

5.4. Degeneration rules. To prove that the matrix elements FðgÞml satisfy (1), we

show the two degeneration formulas

F ðgÞml ¼
X

r APr; k

Fðg� 1Þm;rl;r ; ð24Þ

and

F ðgÞml ¼
X

r APr; k

Fðg1Þ
m
1

l1;r
� F ðg2Þ

m2;r

l2
ð25Þ
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for splittings

g ¼ g1 þ g2; l ¼ l1 þ l2; m ¼ m
1
þ m

2
:

The argument is standard. Suppose first that a smooth curve C of genus g de-

generates to a nodal irreducible curve C0 with one node s, and let ~CC be the smooth

genus g� 1 curve normalizing C0. We write the class of the diagonal

DHGðr; k þ rÞ �Gðr; k þ rÞ

as

½D� ¼
X

r APr; k

srðx1; . . . ; xrÞsr �ðx 0
1; . . . ; x

0
rÞ;

where the primed variables are the Chern roots of the tautological bundle S4 on

the second Grassmannian. For any top polynomial Pða1; . . . ; arÞ and su‰ciently

large degrees d, the arguments of [Ber] show that

ð
QCðGðr;kþrÞ;dÞ

Pða1; . . . ; arÞ ¼
X

r APr; k

ð
Q ~CCðGðr;kþrÞ;dÞ

Pða1; . . . ; arÞarar� : ð26Þ

The equation expresses the fact that the space of maps Mord
�
C0;Gðr; k þ rÞ

�
is

embedded in the larger space Mord
�
~CC;Gðr; k þ rÞ

�
as the locus of maps f with

f ðs1Þ ¼ f ðs2Þ, where the two points s1 and s2 lie over the node of C0. Thus

Mord
�
C0;Gðr; k þ rÞ

�
¼ ev�1

2 ðDÞ;

with ev2 denoting the evaluation map

ev2 : Mord
�
~CC;Gðr; k þ rÞ

�
! Gðr; k þ rÞ �Gðr; k þ rÞ

at s1 and s2. Intersections of a-classes on Quot compactifications of spaces of

maps are moreover enumerative in the large degree regime, yielding (26). Propo-

sition 1 then ensures that (26) holds in arbitrary degree when the integrals are

evaluated against the virtual fundamental class.

If we let C degenerate to a reducible nodal curve with one node and two

smooth irreducible components C1 and C2 of genera g1 and g2 such that

g ¼ g1 þ g2;
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a similar argument showsð
½QCðGðr;kþrÞ;dÞ�vir

P �Qða1; . . . arÞ ¼
X

r APr; k

X
d1þd2¼d

ð
½QC1

ðGðr;kþrÞ;d1Þ�vir
Pða1; . . . ; arÞar

�
ð
½QC2

ðGðr;kþrÞ;d2Þ�vir
Qða1; . . . ; arÞar� : ð27Þ

Equation (27) is also argued geometrically in the large degree regime, where the

intersections involved are enumerative. The passage to arbitrary degree and the

virtual fundamental class is again via Proposition 1.

The degeneration rule (24) follows from (26) taking

Pða1; . . . ; arÞ ¼ al � am � � arðgþuÞþk
r ;

with u the cardinality of the multi-index m. Similarly (25) follows from (27) taking

P ¼ al1 � am1 � � a
rðg1þu1Þþk
r ; Q ¼ al2am2 � � a

rðg2þu2Þ
r ;

with u1, u2 being the number of components of m
1
, m

2
.

Appendix: Parabolic Verlinde numbers in arbitrary degree

In this appendix we check equation (16). Consider a multipartition

l ¼ ðlpÞp A I

labeled by u points p a I on the curve C such that

kd þ jl�jC 0 mod r: ð28Þ

We seek to show that

ð
½QCðGðr;kþrÞ;dÞ�vir

al � at
r ¼ w

�
Uðr; d; l�Þ;Ll� n det� Y1

�
; ð29Þ

where t is chosen so that

rtþ jlj ¼ ðrþ kÞd � rkðg� 1Þ:

On both sides of (29) we may consider the degree mod r, hence we may assume

0a d < r.
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The left-hand side of (29) is immediately computed by the Vafa–Intriligator

formula (6):

ð�1Þdðr�1Þðrþ kÞrðg�1ÞX
sl exp 2pi

~nn

rþ k

� �
exp
�
2pi

t� rðg� 1Þ
rþ k

X
i

ni

	
�
Y
i< j

2 sin
pðni � njÞ
rþ k

� ��2ðg�1Þ
: ð30Þ

The sum is taken over all integer vectors~nn ¼ ðn1; . . . ; nrÞ, where

0a nr < � � � < n1 < rþ k:

We calculate now the right-hand side of (29). Using the degree r2g tensor prod-

uct map

t : SUðr; d; l�Þ � Jac ! Uðr; d; l�Þ;

we observe the splitting

t�Ll � ¼ Ll� n Y rk
1 :

Therefore,

w
�
Uðr; d; l�Þ;Ll� n det� Y1

�
¼ rþ k

r

� �g

w
�
SUðr; d; l�Þ;Ll�

�
:

Write SUðr; d; l�Þ for the moduli stack of parabolic bundles E with determinant

isomorphic to OCðdxÞ, for a fixed x a CnI . According to [BL], the Euler charac-

teristic can be lifted to the stack,

w
�
SUðr; d; l�Þ;Ll�

�
¼ w
�
SUðr; d; l�Þ; q�Ll�

�
;

via the forgetful map

q : SUðr; d; l�Þss ! SUðr; d; l�Þ:

Here SUðr; d; l�Þss HSUðr; d; l�Þ denotes the open substack of semistable para-

bolic bundles.

We write SLrðUÞ for SLr matrices whose entries are regular functions on the

open set U HC. The quotient presentation

SUðr; d; l�Þ ¼ SLrðC � xÞnApar
d
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was observed in [P]. Here, Apar
d is the ‘‘degree d parabolic a‰ne Grassmannian’’,

which splits as a product

A
par
d ¼ Ad � Fll� :

In turn, Ad parametrizes pairs ðE; rÞ of bundles E and trivializations r of E on

Cnfxg which extend to isomorphisms

det r : detE ! OCðdxÞ

on the curve C. Moreover, Fll � is the product of flag varieties of type l�. The

group SLrðC � xÞ naturally acts on Fll� via the morphism

evp : SLrðC � xÞ ! SLr for all p a I :

It was shown in Remark 3.6 of [BL] that

Ad ¼ g�1Ag

for some element g in GLr

�
CðzÞ

�
of order d. Here, we write A ¼ A0 for the degree

0 a‰ne Grassmannian.

The pullback of the line bundle Ll� to Apar splits as a product

Lk
w n 1

p A I
Nl�

p

The line bundle Lk
w over A is explicitly described in Lemma 9.2 of [BL], and Nl�

p

are the Borel–Weil bundles on Fll� . The space of sections of the product of

Borel–Weil bundles is isomorphic to the product

Wl� ¼ 1
p A I

Wl�
p

of representations of slr corresponding to the highest weights l� ¼ ðl�
p Þp A I . We let

Vl denote the representation of bslslr of level k and highest weight l. The sections of

the line bundle Lk
w are shown in Theorem 9.3 [BL] to correspond to V4

ko, where o

is the fundamental weight

o ¼ e1 þ � � � þ er�d ;

expressed in terms of the standard coordinates.
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Write

J ¼ I A fxg; m ¼ lA fkog:

We regard m as a multipartition indexed by J. The SLrðC � xÞ invariants in the

product

V4
ko;k nWl�

are isomorphic to the SLrðC � JÞ invariants in V4
m cf. Proposition 2.3 [Bea2]. The

dimension of the space of invariants is calculated in Corollary 9.8 of [Bea2]:

ðrþ kÞrðg�1Þ r

rþ k

� �g�1X
~nn

Traceko exp 2pi
~nn

rþ k

� �
Tracel exp 2pi

~nn

rþ k

� �

�
Y
i< j

2 sin p
ni � nj

rþ k

� ��2ðg�1Þ
: ð31Þ

Here, TracelðgÞ denotes the trace of g in the SUðrÞ representation of highest

weight l. In the summation, ~nn is an element of the weight lattice of slr whose

standard coordinates satisfy the property

n1 > � � � > nr; ni � nj a Z; n1 � nr < rþ k; and n1 þ � � � þ nr ¼ 0:

The first trace was calculated in Proposition 5 of [MO3]:

ð�1Þdðr�1Þ exp
�
2piðn1 þ � � � þ nr�dÞ

�
:

In fact, we will follow the argument in Proposition 5 of [MO3] from now on, in-

troducing new integer coordinates

ni ¼ ni � nr:

We have

nr ¼ � 1

r

X
ni;

hence the trace in the ko highest weight representation rewrites

ð�1Þdðr�1Þ exp
�
2pi

d

r

X
ni

	
:
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The traces with respect to l in (31) equal

sl exp 2pi
~nn

rþ k

� �
¼ sl exp 2pi

~nn

rþ k

� �
� exp 2pi

nr

rþ k
jlj

� �
;

by the homogeneity of the Schur polynomials.

Therefore, from (31) we conclude that, even in the absence of the selection rule

(28), the Verlinde Euler characteristic on the moduli stack

w
�
SUðr; d; l�Þ;Ll�

�
equals

ð�1Þdðr�1Þðrþ kÞrðg�1Þ r

rþ k

� �g X
0anr<���<n1<rþk

exp

 
2pi

d

r
� jlj
rðrþ kÞ

� �X
ni

!

� sl exp 2pi
~nn

rþ k

� �
�
Y
i< j

2 sin p
ni � nj

rþ k

� ��2ðg�1Þ
: ð32Þ

Furthermore, when (28) is satisfied, we have

d

r
� jlj
rðrþ kÞ ¼

t� rðg� 1Þ
rþ k

þ ðg� 1Þ:

Equation (32) then matches the Vafa–Intriligator expression (30), as claimed.
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