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Abstract. Elements of the tropical vertex group are formal families of symplectomorphisms
of the 2-dimensional algebraic torus. Commutators in the group are related to Euler char-
acteristics of the moduli spaces of quiver representations and the Gromov–Witten theory
of toric surfaces. After a short survey of the subject (based on lectures of Pandharipande
at the 2009 Geometry summer school in Lisbon), we prove new results about the rays
and symmetries of scattering diagrams of commutators (including previous conjectures by
Gross–Siebert and Kontsevich). Where possible, we present both the quiver and Gromov–
Witten perspectives.
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Introduction

In Sections 1–3 of the paper, we survey the recently discovered relationship of

three mathematical structures:

(i) Euler characteristics of the moduli spaces of quiver representations,

(ii) Gromov–Witten counts of rational curves on toric surfaces,

(iii) Ordered product factorizations of commutators in the tropical vertex group.



The tropical vertex group (iii) first arose in the work of Kontsevich and Soibelman

[12] and plays a significant role in the program of [9]. A connection of the tropical

vertex group to (i) has been proven by Reineke [19] using wall-crossing ideas. A

connection to (ii) is proven in [8]. Our aim here is to present the shortest path to

the simplest cases of the results. Lengthier treatments can be found in the original

references.

The definition and basic properties of the tropical vertex group are reviewed in

Section 1. Reineke’s result is Theorem 1 of Section 2. The formula of [8] relating

commutators in the tropical vertex group to rational curve counts is Theorem 2 of

Section 3. Put together, Theorems 1 and 2 yield a surprising equivalence between

curve counts on toric surfaces and Euler characteristics of moduli spaces of quiver

representations. The equivalence is stated in Corollary 3 without any reference to

the tropical vertex group.

In Section 4, we address the question of which slopes occur in the ordered

product factorizations of commutators (iii). In the language of (i), the question

asks which slopes are achieved by semistable representations of particular quivers.

In Theorem 5, we find necessary conditions from the perspective of (ii) using the

classical geometry of curves on surfaces. The result includes all the previous con-

jectures on scattering patterns as special cases.

Symmetries of the commutator factorizations are proven in Theorem 7 of

Section 5. From the point of view of curve counting, the symmetries are obtained

by transformations of blown-up toric surfaces. On the quiver side, the symmetries

are a consequence of well-known reflection functors. Further directions in the

subject are suggested in Section 6.

1. The tropical vertex group

1.1. Automorphisms of the torus. The 2-dimensional complex torus has very

few automorphisms

y : C� � C� ! C� � C�

as an algebraic group. Since y must take each component C� to a 1-dimensional

subtorus,

AutGr
C ðC� � C�Þ ¼P GL2ðZÞ:

As a complex algebraic variety, C� � C� has, in addition, only the automorphisms

obtained by the translation action on itself,1

1 ! C� � C� ! AutCðC� � C�Þ ! AutGr
C ðC� � C�Þ ! 1:

1We leave the elementary proof to the reader. An argument can be found by using the characterization

fðzÞ ¼ l � zk ; l a C�; k a Z;

of all algebraic maps f : C� ! C�.
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A much richer algebraic structure appears if formal 1-parameter families of

automorphisms of C� � C� are considered,

A ¼ AutC½½t��
�
C� � C� � SpecðC½½t��Þ

�
:

Let x and y be the coordinates of the two factors of C� � C�. Then

C� � C� ¼ SpecðC½x; x�1; y; y�1�Þ:

We may alternatively view A as a group of algebra automorphisms,

A ¼ AutC½½t��ðC½x; x�1; y; y�1�½½t��Þ:

Nontrivial elements of A are easily found. Let ða; bÞ a Z2 be a nonzero vector,

and let f a C½x; x�1; y; y�1�½½t�� be a function of the form

f ¼ 1þ txayb � gðxayb; tÞ; gðz; tÞ a C½z�½½t��:

We specify the values of an automorphism on x and y by

yða;bÞ; f ðxÞ ¼ x � f �b; yða;bÞ; f ðyÞ ¼ y � f a: ð1:1Þ

The assignment (1.1) extends uniquely to determine an element yða;bÞ; f a A. The

inverse is obtained by inverting f ,

y�1
ða;bÞ; f ¼ yða;bÞ; f �1 :

1.2. Tropical vertex group. The tropical vertex group HHA is the completion

with respect to the maximal ideal ðtÞHC½½t�� of the subgroup generated by all ele-

ments of the form yða;bÞ; f . In particular, infinite products are well defined in H if

only finitely many terms are nontrivial mod tk (for every k). A more natural char-

acterization of H via the associated Lie algebra may be found in Section 1.1 of [8].

The torus C� � C� has a standard holomorphic symplectic form given by

o ¼ dx

x
b

dy

y
:

Let SHA be the subgroup of automorphisms preserving o,

S ¼ fy a A j y�ðoÞ ¼ og:

Lemma 1.1. HHS.

Proof. The result is obtained from a direct calculation. Let

~xx ¼ xf �b; ~yy ¼ yf a:
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From the equations

d~xx

~xx
¼ dx

x
� bfx

f
dx� bfy

f
dy;

d~yy

~yy
¼ dy

y
þ afy

f
dyþ afx

f
dx;

we conclude y�
ða;bÞ; f ðoÞ ¼ o if

afy

xf
¼ bfx

yf
:

The latter follows from the dependence of f on x and y only through xayb. r

A slight variant of the tropical vertex group H first arose in the study of a‰ne

structures by Kontsevich and Soibelman in [12]. Further development, related to

mirror symmetry and tropical geometry, can be found in [9]. Recently, the tropi-

cal vertex group has played a role in wall-crossing formulas for counting invari-

ants in derived categories [13].

1.3. Commutators. The first question we can ask about the tropical vertex

group is to find a formula for the commutators of the generators. The answer is

related to Euler characteristics of moduli spaces of quiver representations and

to Gromov–Witten counts of rational curves on toric surfaces. The simplest non-

trivial cases to consider are the commutators of the elements

Sl1 ¼ yð1;0Þ; ð1þtxÞl1 and Tl2 ¼ yð0;1Þ; ð1þtyÞl2

where l1; l2 > 0. By an elementary result of [12] reviewed in Section 1.3 of [8],

there exists a unique factorization

T�1
l2

� Sl1 � Tl2 � S�1
l1

¼
Y!

yða;bÞ; fa; b ð1:2Þ

where the product on the right is over all primitive vectors ða; bÞ a Z2 lying strictly

in the first quadrant.2;3 The order is determined by increasing slopes of the vec-

tors ða; bÞ. The product (1.2) is very often infinite, but always has only finitely

many nontrivial terms mod tk (for every k). The question is what are the functions

fa;b associated to the slopes?

1.4. Examples. The easiest example is l1 ¼ l2 ¼ 1. The formula

T�1
1 � S1 � T1 � S�1

1 ¼ yð1;1Þ;1þt2xy

2A vector ða; bÞ is primitive if it is not divisible in Z2. Primitivity implies ða; bÞA ð0; 0Þ. Strict inclu-
sion in the first quadrant is equivalent to a > 0 and b > 0.

3Here and throughout the paper, we drop the dependence of fa; b upon ðl1; l2Þ for notational conve-
nience.

214 M. Gross and R. Pandharipande



can be directly checked by hand. We will display the information by drawing rays

of slope ða; bÞ in the first quadrant for every term appearing on the right-hand

side. Each ray should be thought of as labelled with a function, see Figure 1.1.

For l1 ¼ l2 ¼ 2, we already have a much more complicated expansion,

T�1
2 � S2 � T2 � S�1

2

¼ yð1;2Þ; ð1þt3xy2Þ2 � yð2;3Þ; ð1þt5x2y3Þ2 � yð3;4Þ; ð1þt7x3y4Þ2 � � � � � yð1;1Þ;1=ð1�t2xyÞ4 � � � �

� � � � yð4;3Þ; ð1þt7x4y3Þ2 � yð3;2Þ; ð1þt5x3y2Þ2 � yð2;1Þ; ð1þt3x2yÞ2 :

The values of ða; bÞ which occur are of the form ðk; k þ 1Þ and ð1; 1Þ and ðk þ 1; kÞ
for all kb 1. We depict the slopes occuring by rays in the first quadrant as in

Figure 1.2.

Figure 1.1

Figure 1.2
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Ideally, we would label each ray Rb0ða; bÞ with the function fa;b, however the

diagram would become too di‰cult to draw. Here

f1;1 ¼ 1=ð1� t2xyÞ4;

fk;kþ1 ¼ ð1þ t2kþ1xkykþ1Þ2;

fkþ1;k ¼ ð1þ t2kþ1xkþ1ykÞ2:

The case l1 ¼ l2 ¼ 3 becomes still more complex, illustrated in Figure 1.3. Ex-

trapolating from calculations, we find rays with primitives

ða; bÞ ¼ ð3; 1Þ; ð8; 3Þ; ð21; 8Þ; . . .

converging to the ray of slope ð3�
ffiffiffi
5

p
Þ=2 and rays with primitives

ða; bÞ ¼ ð1; 3Þ; ð3; 8Þ; ð8; 21Þ; . . .

converging to the ray of slope ð3þ
ffiffiffi
5

p
Þ=2. Meanwhile, all rays with rational slope

between ð3�
ffiffiffi
5

p
Þ=2 and ð3þ

ffiffiffi
5

p
Þ=2 appear to occur.

We do not know closed forms for the functions associated to each ray. How-

ever, Gross conjectured the function attached to the line of slope 1 in Figure 1.3 is

 Xl
k¼0

1

3k þ 1

4k

k

� �
t2kxkyk

!9
: ð1:3Þ

Figure 1.3
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Finally, consider the asymmetric case ðl1; l2Þ ¼ ð2; 3Þ. We again appear to

obtain a discrete series of rays and a cone in which all rays occur. We find rays

with primitives

ða; bÞ ¼ ð2; 1Þ; ð5; 2Þ; ð8; 5Þ; ð19; 12Þ; . . .

converging to a ray of slope ð3�
ffiffiffi
3

p
Þ=2 and rays with primitives

ða; bÞ ¼ ð1; 3Þ; ð2; 5Þ; ð5; 12Þ; ð8; 19Þ; . . .

converging to a ray of slope ð3þ
ffiffiffi
3

p
Þ=2. All rays with rational slope in between

these two quadratic irrational slopes seem to appear. The function attached to the

ray of slope 1 appears to be

 Xl
k¼0

1

k þ 1

2k

k

� �
t2kxkyk

!6
:

Inside the exponential is the generating series for Catalan numbers.

Conjecture. For arbitrary ðl1; l2Þ, the function attached to the ray of slope 1 is

 Xl
k¼0

1

ðl1l2 � l1 � l2Þk þ 1

ðl1 � 1Þðl2 � 1Þk
k

� �
t2kxkyk

!l1l2
: ð1:4Þ

The above conjecture specializes to the series (1.3) in the ðl1; l2Þ ¼ ð3; 3Þ case.
The specialization of (1.4) to l1 ¼ l2 was conjectured by Kontsevich (motivated by

(1.3)) and proved by Reineke in [20].

The series (1.4) attached to the ray of slope 1 is not always a rational func-

tional in the variables t, x, y. However, since

Sr ¼
Xl
k¼0

1

ðr� 1Þk þ 1

rk

k

� �
t2kxkyk

satisfies the polynomial equation

t2xyðSrÞr � Sr þ 1 ¼ 0;

the function (1.4) is algebraic over Qðt; x; yÞ. Whether the functions attached to

other slopes are algebraic over Qðt; x; yÞ is an interesting question (asked first by

Kontsevich).
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2. Moduli of quiver representations

2.1. Definitions. A quiver is a directed graph. We will consider here only the

fundamental m-Kronecker quiver Qm consisting of two vertices fv1; v2g and m

edges fe1; . . . ; emg with equal orientations

v1 !
ej

v2:

The m-Kronecker quiver may be depicted with m arrows as

A representation of r ¼ ðV1;V2; t1; . . . ; tmÞ of the quiver Qm consists of the

following linear algebraic data

(i) vector spaces Vi associated to the vertices vi,

(ii) linear transformations tj : V1 ! V2 associated to the edges ej.

While representations over any field may be studied, we will restrict our attention

to finite dimensional representations over C. Associated to r is the dimension

vector

dimðrÞ ¼
�
dimðV1Þ; dimðV2Þ

�
a Z2:

A morphism f ¼ ðf1; f2Þ between two representations r and r 0 of Qm is a pair

of linear tranformations

fi : Vi ! V 0
i

satisfying t 0j � f1 ¼ f2 � tj for all j. Two representations are isomorphic if there

exists a morphism f for which both f1 and f2 are isomorphisms of vector spaces.

The notions of sub and quotient representations are well defined. In fact, the rep-

resentations of Qm are easily seen to form an abelian category.

There are several accessible references for quiver representations. We refer the

reader to papers by King [10] and Reineke [18] where the representation theory of

arbitrary quivers is treated. Algebraic background can be found in [1].
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2.2. Moduli. Consider the moduli space of representations of Qm with fixed

dimension vector ðd1; d2Þ. Let HomðCd1 ;Cd2Þ be the space of d1 � d2 matrices.

Every element of

Pmðd1; d2Þ ¼ 0
m

j¼1

HomðCd1 ;Cd2Þ ð2:1Þ

determines a representation of Qm with dimension vector ðd1; d2Þ. Moreover, the

isomorphism class of every representation of Qm with dimension vector ðd1; d2Þ is
achieved in the parameter space Pmðd1; d2Þ.

Since HomðCd1 ;Cd2Þ carries canonical commuting actions of GLd1 and

GLd2 , we obtain an action of the product GLd1 �GLd2 on the parameter space

Pmðd1; d2Þ. In fact, the scalars

C� HGLd1 �GLd2 ;

included diagonally x 7! ðx; xÞ are easily seen to act trivially. Hence, we actually

have an action of

Gd1;d2 ¼ ðGLd1 �GLd2Þ=C�:

To construct an algebraic moduli space of representations of Qm, we remove

the redundancy in the parameter space (2.1) by taking the algebraic quotient

Pmðd1; d2Þ=Gd1;d2 : ð2:2Þ

While the quotient (2.2) is well defined4, an elementary analysis shows that there

are no nontrivial invariants [18]. Indeed, 0 is the only closed Gd1;d2 -orbit in

Pmðd1; d2Þ. Hence,

Pmðd1; d2Þ=Gd1;d2 ¼ SpecðCÞ: ð2:3Þ

2.3. Stability conditions. The trivial quotient (2.3) is hardly a satisfactory

answer. Representations of Qm with dimension vector ðd1; d2Þ should typically

vary in a

dimPmðd1; d2Þ � dimGd1;d2 ¼ md1d2 � d 2
1 � d 2

2 þ 1 ð2:4Þ

dimensional family. A much richer view of the moduli of quiver representations is

obtained by imposing stability conditions.

4Quotients of reductive groups actions on a‰ne varieties can always be taken.
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A stability condition o on Qm is given by a pair of integers ðw1;w2Þ. With

respect to o, the slope of a representation r of Qm with dimension vector ðd1; d2Þ is

mðrÞ ¼ w1d1 þ w2d2

d1 þ d2
:

A representation r is (semi)stable if, for every proper5 subrepresentation r̂rH r,

mðr̂rÞ ðaÞ < mðrÞ:

A central result of [10] is the construction of moduli spaces of semistable rep-

resentations of quivers. Applied to Qm, we obtain the moduli space Mo
m ðd1; d2Þ of

o-semistable representations with dimension vector ðd1; d2Þ. We present here a

variation of the method of [10].

The two determinants yield two basic characters of the group GLd1 �GLd2 ,

det1ðg1; g2Þ ¼ detðg1Þ; det2ðg1; g2Þ ¼ detðg2Þ:

The stability condition o defines a character

lðg1; g2Þ ¼ det
ðw2�w1Þd2
1 � detðw1�w2Þd1

2 :

Since l is trivial on C� HGLd1 �GLd2 , l descends to a character of Gd1;d2 . Let

Po
m ðd1; d2Þ ¼ lnPmðd1; d2Þa l ð2:5Þ

be the representation of Gd1;d2 obtained by tensoring and adding the 1-dimensional

character l to the parameter space (2.1). Let

P
�
Po

m ðd1; d2Þ
�ss

HP
�
Po

m ðd1; d2Þ
�

denote the semistable locus of the canonically linearized Gd1;d2 -action.

We are not interested in the entire variety P
�
Po

m ðd1; d2Þ
�
. There is a canonical

open embedding of the parameter space (2.1),

Pmðd1; d2ÞHP
�
Po

m ðd1; d2Þ
�
;

as a Gd1;d2 -equivariant open set defined by the sum structure (2.5). The moduli

space of o-semistable representations of Qm with dimension vector ðd1; d2Þ is the
quotient

Mo
m ðd1; d2Þ ¼

�
Pmðd1; d2ÞBP

�
Po

m ðd1; d2Þ
�ss�

=Gd1;d2 :

5Both 0 and the entire representation are excluded.
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Several important properties of the moduli space of o-semistable representa-

tions can be deduced from the construction [10]:

(i) Mo
m ðd1; d2Þ is a projective variety.

(ii) An open set Mo
m ðd1; d2Þstable HMo

m ðd1; d2Þ parameterizes isomorphism classes

of o-stable representations of Qm. If nonempty, Mo
m ðd1; d2Þstable is nonsingu-

lar of dimension (2.4).

(iii) Mo
m ðd1; d2Þ parameterizes isomorphism classes of o-semistable representa-

tions of Qm modulo Jordan-Holder equivalence (often called S-equivalence).

While properties (ii) and (iii) hold for stability conditions on arbitrary quivers,

property (i) is special6 to Qm. By the results of [10], Mo
m ðd1; d2Þ is projective over

the quotient (2.3). Since the quotient (2.3) is SpecðCÞ, the moduli spaceMo
m ðd1; d2Þ

is a projective variety.

If o ¼ ð0; 0Þ, all representations are semistable. Then

Mð0;0Þ
m ðd1; d2Þ ¼ Pmðd1; d2Þ=Gd1;d2 ¼ SpecðCÞ

as before. By the following result of Reineke [18], we will restrict our attention to

the stability conditions ð1; 0Þ and ð0; 1Þ.

Lemma 2.1. o-(semi)stability is equivalent to (semi)stability with respect to either

ð0; 0Þ, ð1; 0Þ, or ð0; 1Þ.

Proof. Let o ¼ ðw1;w2Þ. By the definition of (semi)stability of representations, we

see o-(semi)stability is equivalent to both

(i) ðw1 þ g;w2 þ gÞ-(semi)stability for g a Z and

(ii) ðlw1; lw2Þ-(semi)stability for l a Z > 0.

If w1 ¼ w2, then o-(semi)stability is equivalent to ð0; 0Þ-(semi)stability by (i). If

w1 > w2, then o-(semi)stability is equivalent to ðw1 � w2; 0Þ-(semi)stability by (i)

and then ð1; 0Þ-(semi)stability by (ii). Similarly, the w1 < w2 case leads to ð0; 1Þ-
(semi)stability. r

2.4. Framing. Strictly semistable representations of Qm usually lead to singular-

ities of the moduli space Mo
m ðd1; d2Þ. Following [6], we introduce framing data to

improve the moduli behaviour.

We consider two types of framings for representations of Qm. A back framed

representation of Qm is a pair ðr;L1Þ where r ¼ ðV1;V2; t1; . . . ; tmÞ is a stan-

dard representation of Qm and L1 HV1 is a 1-dimensional subspace. A front

framed representation of Qm is a pair ðr;L2Þ where L2 HV2 is a 1-dimensional

6Projectivity holds for moduli spaces of representations of quivers without oriented cycles.
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subspace. The subspaces Li are the framings. Two framed representations are

isomorphic if the underlying standard representations admit an isomorphism pre-

serving the framing.

A stability condition o for Qm induces a canonical notion of stability for

framed representations. A framed representation ðr;LiÞ is stable if the following

two conditions hold:

(i) r is an o-semistable representation,

(ii) for every proper subrepresentation r̂rH r containing Li,

mðr̂rÞ < mðrÞ:

The moduli of stable framed representations admits a GIT quotient construction

with no strictly semistables. In fact, stable framed representations can be viewed

as stable standard representations for quivers obtained by augmenting Qm by one

vertex (and considering appropriate standard stability conditions). We refer the

reader to [6] for a detailed discussion.

Let Mo;B
m ðd1; d2Þ and Mo;F

m ðd1; d2Þ denote the moduli spaces of back and front

framed representations of Qm. Both are nonsingular, irreducible, projective vari-

eties.

2.5. Examples: stability condition (0, 1). Consider first the stability condition

ð0; 1Þ on the quiver Qm. Suppose that r is a standard representation with dimen-

sion vector ðd1; d2Þ satisfying d1; d2 > 0. There exists a proper subrepresentation

r̂r ¼ ð0; V̂V2; 0; . . . ; 0Þ

where V̂V2 HV2 is any 1-dimensional subspace. We see

mðr̂rÞ ¼ 1

1
>

d2

d1 þ d2
¼ mðrÞ:

Hence, r can not be ð0; 1Þ-semistable.

The dimension vectors of ð0; 1Þ-semistable representations of Qm must be par-

allel to either ð1; 0Þ or ð0; 1Þ. In fact, if framings are placed, only the dimension

vectors ð1; 0Þ and ð0; 1Þ are possible. Elementary considerations yield the follow-

ing result.

Lemma 2.2. The moduli space of stable framed representations of Qm with respect

to the condition ð0; 1Þ is a point in the two cases

Mð0;1Þ;B
m ð1; 0Þ; Mð0;1Þ;F

m ð0; 1Þ;

and empty otherwise.
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2.6. Examples: stability condition (1, 0). The stability condition ð1; 0Þ on the

quiver Qm leads to much more interesting behavior. Unlike the ð0; 1Þ condition,
we will here be only able to undertake a case by case analysis.

For the 1-Kronecker quiver Q1, the moduli spaces of stable framed representa-

tions must have dimension vectors equal to ð1; 0Þ, ð0; 1Þ, or ð1; 1Þ. Again, in all

four cases (for possible back and front framing), the moduli spaces are points.

For the 2-Kronecker quiver, we find a richer set of possibilities of ð1; 0Þ-
semistable representations.

Lemma 2.3. If r is a ð1; 0Þ-semistable representation of Q2, then the dimension

vector must be proportional to one of

ðk; k þ 1Þ; ð1; 1Þ; ðk þ 1; kÞ

for kb 1.

Proof. Suppose that r ¼ ðV1;V2; t1; t2Þ is a representation of Q2. We analyze first

the case where d1 < d2. The case d1 > d2 is obtained by dualizing.7

Since the slope of r is d1
d1þd2

, ð1; 0Þ-semistabiliy is violated if there exists a non-

trivial subspace V̂V1 HV1 satisfying

dimðV̂V1Þ
dimðV̂V1Þ þ dim

�
t1ðV̂V1Þ þ t2ðV̂V1Þ

� > d1

d1 þ d2
: ð2:6Þ

If r is ð1; 0Þ-semistable, the maps t1 and t2 must be injective (by taking V̂V1 to be

kerðtiÞ).
We now assume that r to be ð1; 0Þ-semistable and construct a candidate for V̂V1

by the following method. Let S0 ¼ V1, and let

Si ¼ t�1
1

�
t2ðSi�1Þ

�
for i > 0:

Since Si HSi�1, we obtain a filtration

� � �HS3 HS2 HS1 HS0:

If Si is nonempty, then the inclusion Si HSi�1 must be proper (otherwise V̂V1 ¼ Si

violates (2.6)). Since the codimension of Si HV1 is at most iðd2 � d1Þ, we see

Sbðd1�1Þ=ðd2�d1ÞcA 0:

7The dual of r is r� ¼ ðV �
2 ;V

�
1 ; t

�
1 ; t

�
2 Þ, and r is ð1; 0Þ-semistable if and only if r� is ð1; 0Þ-semistable.
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We can find a sequence of elements ei a SinSiþ1 for 0a ia d1�1
d2�d1

j k
such that

t2ðeiÞ ¼ t1ðeiþ1Þ:

Let V̂V1 be span of e0; . . . ; ebðd1�1Þ=ðd2�d1Þc.
Since the ei are independent, the dimension of V̂V1 is

d1�1
d2�d1

j k
þ 1. The dimension

of t1ðV̂V1Þ þ t2ðV̂V1Þ is at most d1�1
d2�d1

j k
þ 2, so

dimðV̂V1Þ
dimðV̂V1Þ þ dim

�
t1ðV̂V1Þ þ t2ðV̂V1Þ

� b d1�1
d2�d1

j k
þ 1

2 d1�1
d2�d1

j k
þ 3

:

Therefore, since r is ð1; 0Þ-semistable, we must have

d1�1
d2�d1

j k
þ 1

2

d1 � 1

d2 � d1

� �
þ 3a

d1

d1 þ d2

or, equivalently,

ðd2 � d1Þ
d1 � 1

d2 � d1

� �
þ d1 þ d2a 3d1: ð2:7Þ

There are now two cases. If d2 � d1 divides d1 � 1, then the inequality imme-

diately implies d2 ¼ d1 þ 1. If d2 � d1 does not divide d1 � 1, the inequality im-

plies d2 � d1 divides d1. In the second case, the dimension vector is proportional

to
�

d1
d2�d1

; d1
d2�d1

þ 1
	
. r

The construction of ð1; 0Þ-semistable representations of Q2 with dimension vec-

tors in the directions permitted by Lemma 2.3 is an easy exercise. We will discuss

in more detail the directions ð1; 2Þ and ð1; 1Þ.
The moduli spaces of stable back framed representations of Q2 of dimension

vector ðk; 2kÞ are empty for kb 2 and M
ð1;0Þ;B
2 ð1; 2Þ is a point. Front framing is

slightly more complicated,

M
ð1;0Þ;F
2 ð1; 2Þ ¼ P1; M

ð1;0Þ;F
2 ð2; 4Þ ¼ point;

and M
ð1;0Þ;F
2 ðk; 2kÞ is empty for k > 2. These results are obtained by simply un-

ravelling the definitions.

For dimension vector proportional to ð1; 1Þ, the framed moduli spaces are

always nonempty. Their topological Euler characteristics are determined by the

following result.
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Lemma 2.4. For kb 1, we have w
�
M

ð1;0Þ;B
2 ðk; kÞ

�
¼ w
�
M

ð1;0Þ;F
2 ðk; kÞ

�
¼ k þ 1.

Proof. The simplest approach is to count the fixed points of the C� � C�-action
on the framed moduli spaces obtained by scaling t1 and t2,

ðx1; x2Þ �
�
ðCk;Ck; t1; t2Þ;Li

�
¼
�
ðCk;Ck; x1t1; x2t2Þ;Li

�
:

Certainly M
ð1;0Þ;B
2 ð1; 1Þ and M

ð1;0Þ;F
2 ð1; 1Þ are both P1 with fixed points given by

t1 ¼ 1; t2 ¼ 0; and t1 ¼ 0; t2 ¼ 1

and unique choice for the framings.

The moduli spaces with dimension vector ð2; 2Þ are the first nontrivial cases.

Two 2� 2 matrices together with a non-zero vector in C2 specify a back framed

representation of Q2. The three C� � C�-fixed points of M
ð1;0Þ;B
2 ð2; 2Þ are given

by the data

t1 ¼
1 0

0 1

� �
; t2 ¼

0 1

0 0

� �
;L1 ¼

0

1

� �
 �
;

t1 ¼
0 1

0 0

� �
; t2 ¼

1 0

0 1

� �
;L1 ¼

0

1

� �
 �
;

t1 ¼
1 0

0 0

� �
; t2 ¼

0 0

0 1

� �
;L1 ¼

1

1

� �
 �
:

The analysis for M
ð1;0Þ;F
2 ð2; 2Þ is similar. We leave the higher k examples for the

reader to investigate.

A treatment of torus actions on moduli of spaces of representations of quivers

can be found in [21]. In fact, M
ð1;0Þ;B
2 ðk; kÞ ¼P M

ð1;0Þ;F
2 ðk; kÞ ¼P Pk. r

2.7. Reineke’s Theorem. The main result relating commutators in the tropical

vertex group to the Euler characteristics of the moduli spaces of representations

of Qm can now be stated. Consider the elements

Sm ¼ yð1;0Þ; ð1þtxÞm and Tm ¼ yð0;1Þ; ð1þtyÞm

of the tropical vertex group. The unique factorization

T�1
m � Sm � Tm � S�1

m ¼
Y!

yða;bÞ; fa; b ð2:8Þ

associates a function

fa;b a C½xayb�½½t��
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to every primitive vector ða; bÞ a Z2 lying strictly in the first quadrant. Two more

functions are obtained from the topological Euler characteristics of the moduli

spaces of back and front framed representations of Qm,

Ba;b ¼ 1þ
X
kb1

w
�
Mð1;0Þ;B

m ðak; bkÞ
�
� ðtxÞakðtyÞbk;

Fa;b ¼ 1þ
X
kb1

w
�
Mð1;0Þ;F

m ðak; bkÞ
�
� ðtxÞakðtyÞbk:

Theorem 1 (Reineke). The three functions are related by the equations

fa;b ¼ ðBa;bÞm=a ¼ ðFa;bÞm=b:

Theorem 1 is proven in [19]. Reineke calculates the Euler characteristics of the

framed moduli spaces by counting points over finite fields. The connection to the

tropical vertex group is made via a homomorphism from the Hall algebra follow-

ing the wall-crossing philosophy of [13]. The relevant wall-crossing is from the

ð0; 1Þ to ð1; 0Þ stability condition. The ordered product factorization is then ob-

tained from the Harder-Narasimhan filtration in the abelian category of represen-

tations of Qm.

2.8. Examples. For Q1, the moduli spaces of framed representations are empty

for slopes (strictly in the first quadrant) other than 1. Moreover, M
ð1;0Þ;B
1 ðk; kÞ

and M
ð1;0Þ;F
1 ðk; kÞ are points if k ¼ 1 and empty otherwise. Theorem 1 then im-

mediately recovers the commutator calculation of Figure 1.1.

For Q2 and primitive vector ða; bÞ ¼ ð1; 2Þ, the results of Section 2.6 yield

B1;2 ¼ 1þ t3xy2;

F1;2 ¼ 1þ 2t3xy2 þ t6x2y4:

By the commutator results of Section 1.4, we see

f1;2 ¼ ð1þ t3xy2Þ2

verifying Theorem 1. For Q2 and primitive vector ða; bÞ ¼ ð1; 1Þ, we obtain

B1;1 ¼ ð1� t2xyÞ�2;

F1;1 ¼ ð1� t2xyÞ�2:

By the commutator results of Section 1.4, we see

f1;1 ¼ ð1� t2xyÞ�4

again verifying Theorem 1.
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3. Rational curves on toric surfaces

3.1. Toric surfaces. Let ða; bÞ a Z2 be a primitive vector lying strictly in the first

quadrant. The rays generated by ð�1; 0Þ, ð0;�1Þ, and ða; bÞ determine a complete

rational fan8 in R2, see Figure 3.1.

Let Xa;b be the associated toric surface with toric divisors

D1;D2;Dout HXa;b

corresponding to the respective rays. Concretely, Xa;b is the weighted projective

plane obtained by the quotient

Xa;b ¼ ðC3 � f0gÞ=C�;

where the C�-action is given by

x � ðz1; z2; z3Þ ¼ ðxaz1; x
bz2; xz3Þ:

The divisors D1, D2 and Dout correspond respectively to the vanishing loci of z1,

z2, and z3.

Let X o
a;b HXa;b be the open surface obtained by removing the three toric fixed

points

½1; 0; 0�; ½0; 1; 0�; ½0; 0; 1�:

Let Do
1 , D

o
2 , D

o
out be the restrictions of the toric divisors to X o

a;b.

We denote ordered partitions Q of length l by q1 þ � � � þ ql. Ordered parti-

tions di¤er from usual partitions in two basic ways. First, the ordering of the parts

Figure 3.1

8We refer the reader to [7] for background on toric varieties.
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matters. Second, the parts qi are required only to be non-negative integers (0 is

permitted). The size jQj is the sum of the parts.

Let kb 1. Let Pa ¼ p1 þ � � � þ pl1 and Pb ¼ p 0
1 þ � � � þ p 0

l2
be ordered parti-

tions of size ak and bk respectively. Denote the pair by P ¼ ðPa;PbÞ. Let

n : Xa;b½P� ! Xa;b

be the blow-up of Xa;b along l1 and l2 distinct points of D
o
1 and Do

2 . Let

X o
a;b½P� ¼ n�1ðX o

a;bÞ:

Let bk a H2ðXa;b;ZÞ be the unique class with intersection numbers

bk �D1 ¼ ak; bk �D2 ¼ bk; bk �Dout ¼ k:

Let Ei and E 0
j be the i

th and j th exceptional divisors over Do
1 and Do

2 . Let

bk½P� ¼ n�ðbkÞ �
Xl1
i¼1

pi½Ei� �
Xl2
j¼1

p 0
j ½E 0

j � a H2ðXa;b½P�;ZÞ:

3.2. Moduli of maps. Let MðX o
a;b½P�=Do

outÞ denote the moduli space of stable

relative maps9 of genus 0 curves representing the class bk½P� and with full contact

order k at an unspecified point of Do
out. By Proposition 4.2 of [8], the moduli space

MðX o
a;b½P�=Do

outÞ is proper (even though the target geometry is open). We can eas-

ily calculate the virtual dimension,

dimvir MðX o
a;b½P�=Do

outÞ ¼ c1ðX o
a;b½P�Þ � bk½P� � 1� ðk � 1Þ

¼
�
n�c1ðX o

a;bÞ �
Xl1
i¼1

½Ei� �
Xl2
j¼1

½E 0
j �
	
� bk½P� � k

¼ ak þ bk þ k � ak � bk � k

¼ 0;

where the formula for the Chern class of a toric variety,

c1ðX o
a;bÞ ¼ D1 þD2 þDout;

is used in the second line.

Since MðX o
a;b½P�=Do

outÞ is proper of virtual dimension 0, we may define the

associated Gromov–Witten invariant by

Na;b½P� ¼
ð
½MðX o

a; b
½P�=Do

outÞ�
vir
1 a Q:

9We refer the reader to [14] for an introduction to relative stable maps.
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Proposition 4.2 of [8] shows Na;b½P� does not depend upon the locations of the

blow-ups of X 0
a;b.

Naively, Na;b½P� counts rational curves on X 0
a;b with full contact at a single (un-

specified) point of Dout and with specified multiple points of orders given by P on

D0
1 and D0

2 . However, the moduli space MðX o
a;b½P�=Do

outÞ may include multiple

covers and components of excess dimension. In particular, Na;b½P� need not be

integral (nor even positive).

3.3. Formula. The main result relating commutators in the tropical vertex group

to rational curve counts on toric surfaces can now be stated. Consider the ele-

ments

Sl1 ¼ yð1;0Þ; ð1þtxÞl1 and Tl2 ¼ yð0;1Þ; ð1þtyÞl2

of the tropical vertex group. The unique factorization

T�1
l2

� Sl1 � Tl2 � S�1
l1

¼
Y!

yða;bÞ; fa; b ð3:1Þ

associates a function

fa;b a C½xayb�½½t��

to every primitive vector ða; bÞ a Z2 lying strictly in the first quadrant. Since the

series fa;b starts with 1, we may take the logarithm. Homogeneity constraints de-

termine the behavior of the variable t. We define the coe‰cients cka;bðl1; l2Þ a Q

by

log fða;bÞ ¼
X
kb1

kcka;bðl1; l2Þ � ðtxÞ
akðtyÞbk:

The function fa;b is linked to Gromov–Witten theory by the following result

proven in [8].

Theorem 2. We have

cka;bðl1; l2Þ ¼
X

jPaj¼ak

X
jPbj¼bk

Na;b½ðPa;PbÞ�;

where the sums are over all ordered partitions Pa of size ak and length l1 and Pb of

size bk and length l2.

The proof of Theorem 2 starts with the relationship of the tropical vertex

group to tropical curve counts on toric surfaces. A transition to holomorphic
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curve counts with relative constraints is made via [15]. Finally, a degeneration ar-

gument is used to separate the virtual and enumerative geometry of the invariant

Na;b½P�. The virtual aspects are handled by the multiple cover formulas of [3], [4]

and the enumerative aspects by the tropical/holomorphic curve counts.

3.4. Intuition. The intuition behind Theorem 2 is as follows. The commutators

(3.1) first arose in the work of Kontsevich and Soibelman [12] where rigid analytic

K3 surfaces were constructed by gluing together standard charts (akin to ðC�Þ2)
using elements of the tropical vertex group. The failure of the various auto-

morphisms to commute required corrections which arose naturally from the com-

mutator formulas. Roughly speaking, automorphisms are attached to certain

gradient flow lines on an S2. When the gradient flow lines intersect, new gradient

flow lines are added starting at the point of intersection, with new automorphisms

attached to these lines as dictated by the commutator expansion. The procedure

restores compatibility of the gluing data.

The above description of what is really B-model geometry of K3 surfaces

should be mirror to certain A-model geometry. Hence, there should be an enu-

merative interpretation for the commutator formulas.

The general picture suggested by the B-model is as follows. Consider the big

torus orbit ðC�Þ2 HXa;b and the log map

log : ðC�Þ2 ! R2; logðz1; z2Þ ¼ ðlogjz1j; logjz2jÞ:

Imagine that we have pieces of holomorphic curves given by l1 cylinders fibering

via log over rays in R2 generated by ð�1; 0Þ, and l2 cylinders fibering via log over

rays in R2 generated by ð0;�1Þ. We imagine trying to glue these cylinders to-

gether (perhaps after small perturbation) in some combination in such a way that

we end up with a holomorphic curve in ðC�Þ2 with one additional unbounded cyl-

inder heading in the direction of the ray generated by ða; bÞ. We allow ourselves

to use each of the ‘‘incoming’’ cylinders as many times as we want—the number

of times we use the ith cylinder heading in the direction ð�1; 0Þ is pi, and the num-

ber of times we use the jth cylinder headed in the direction ð0;�1Þ is p 0
j . The

number of ways of gluing the copies of these cylinders, after perturbing, should

be Na;b½ðPa;PbÞ�.

3.5. Examples. We consider the examples of §1.4, focusing on the functions

attached to the ray of slope 1. For l1 ¼ l2 ¼ 1,

log f1;1 ¼ logð1þ t2xyÞ ¼
Xl
k¼1

k � ð�1Þkþ1

k2
� ðtxÞkðtyÞk:
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Consider P2 with the three toric divisors D1, D2 and Dout making up the toric

boundary. There is a unique line passing through a point selected on D1 and a

point selected on D2. Hence, N1;1½ð1; 1Þ� ¼ 1. There are no other rational curves

in P2 passing through these two points and maximally tangent to Dout. The result

N1;1½ðk; kÞ� ¼
ð�1Þkþ1

k2

comes from multiple covers of the line totally branched over the intersection with

Dout. The multiple cover contribution is computed in [3].

Next, consider the ray of slope 1 for l1 ¼ l2 ¼ 2. We calculate

log f1;1 ¼ �4 logð1� t2xyÞ ¼ 4
Xl
k¼1

k � 1
k2

� ðtxÞkðtyÞk:

We now must choose two points each on D1 and D2. As above,

Nð1;1Þ½ð1þ 0; 1þ 0Þ� ¼ 1 because there is exactly one line through two points.

Similarly

N1;1½ð1þ 0; 0þ 1Þ� ¼ N1;1½ð0þ 1; 1þ 0Þ� ¼ N1;1½ð0þ 1; 0þ 1Þ� ¼ 1;

giving the desired total for c11;1ð2; 2Þ ¼ 4. The invariant

N1;1½ð2þ 0; 2þ 0Þ� ¼ �1=4

is obtained from the double covers of the line. Hence, double covers of the four

lines contribute �1 to c21;1ð2; 2Þ. On the other hand, there is a pencil of conics

passing through the four chosen points. Being tangent to Dout is a quadratic con-

dition, so

N1;1½ð1þ 1; 1þ 1Þ� ¼ 2:

Putting the calculation together yields

c21;1ð2; 2Þ ¼ ð�1Þ þ 2 ¼ 1:

All remaining contributions to ck1;1ð2; 2Þ for k > 2 come from multiple covers of

either one of the lines or one of the conics.

For the ray of slope 1 for l1 ¼ 2, l2 ¼ 3, we have

log f1;1 ¼ 6ðtxÞðtyÞ þ 2 � 9
2
ðtxÞ2ðtyÞ2 þ 3 � 20

3
ðtxÞ3ðtyÞ3 þ � � � :
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The coe‰cient c11;1ð2; 3Þ ¼ 6 counts the number of lines passing through one of

two points on D1 and one of three points on D2. The coe‰cient

c21;1ð2; 3Þ ¼ 9=2 ¼ 6� 6=4

is obtained as follows. There are six conics passing through the two chosen points

on D1 and two of the three chosen points on D2 and tangent to Dout. The �6=4

accounts for double covers of the lines. It is possible to compute

N1;1½2þ 1; 1þ 1þ 1� ¼ N1;1½1þ 2; 1þ 1þ 1� ¼ 3:

These are the only contributions from non-multiple covers to c31;1ð2; 3Þ—
corresponding to plane cubics with a node at one of the two chosen points on D1

and passing through all chosen points, with Dout being an inflectional tangent. On

the other hand, the triple covers of each line contribute 1=9, for a total of

c31;1ð2; 3Þ ¼ 3þ 3þ 6=9 ¼ 20=3:

For higher k, there continue to be contributions from curves which are not just

multiple covers of curves already found.

3.6. Correspondence. Theorems 1 and 2 together yield an interesting correspon-

dence between the moduli space of rational curves on toric sufaces and the moduli

spaces of quiver representations.

Corollary 3. For every m > 0 and primitive ða; bÞ a Z2 lying strictly in the first

quadrant, we have

exp
�X
kb1

X
jPaj¼ak

X
jPbj¼bk

kNa;b½ðPa;PbÞ� � ðtxÞakðtyÞbk
	

¼
�
1þ

X
kb1

w
�
Mð1;0Þ;B

m ðak; bkÞ
�
� ðtxÞakðtyÞbk

	m=a

¼
�
1þ

X
kb1

w
�
Mð1;0Þ;F

m ðak; bkÞ
�
� ðtxÞakðtyÞbk

	m=b

;

where the sums in the first line are over all ordered partitions Pa of size ak and

length m and Pb of size bk and length m.

Corollary 3 is a correspondence between rational curve counts for the toric

surface Xa;b and Euler characteristics of framed moduli spaces of quiver represen-
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tations of Qm with dimension vectors proportional to ða; bÞ. At the moment, no

direct geometric argument for Corollary 3 is known. Also, while parallels between

Corollary 3 and the correspondences of [16] are apparent (both link Gromov–

Witten invariants to possibly virtual Euler characteristics of moduli spaces of

framed sheaves), again no precise connection is known.

Theorem 2 as stated is more general than Theorem 1 since l1 and l2 are not

required to be equal. Richer versions of Theorem 1 which capture the l1A l2
cases can be obtained from more complicated quiver constructions.10 Finally,

a version of Theorem 2 which casts the commutator calculations in the tropical

vertex group (over many variables instead of just t) as equivalent to the determi-

nation of the invariants Na;b½ðPa;PbÞ� can be found in [8].

4. Scattering patterns

4.1. Directions. Consider the basic elements

Sl1 ¼ yð1;0Þ; ð1þtxÞl1 and Tl2 ¼ yð0;1Þ; ð1þtyÞl2

of the tropical vertex group. The unique factorization

T�1
l2

� Sl1 � Tl2 � S�1
l1

¼
Y!

yða;bÞ; fa; b ð4:1Þ

associates a function

fa;b a C½xayb�½½t��

to every primitive vector ða; bÞ a Z2 lying strictly in the first quadrant.

Question 4. For which directions is fa;bA 1?

The scattering pattern associated to l1 and l2 consists of the directions in the

first quadrant for which fa;bA 1. We have seen several examples of scattering pat-

terns in Section 1.4. Our goal here is to give an answer to Question 4 via Theorem

2 and the the classical geometry of curves on toric surfaces.

4.2. Curves. If fa;bA 1, then there must exist, by Theorem 2, a nonvanishing

invariant

Na;b½ðPa;PbÞ�A 0;

10M. Reineke has explained to us a method using certain bipartite quivers (up to symmetric group
actions). A. King has made a similar proposal.
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where Pa is of size ak and length l1 and Pb of size bk and length l2. The nonvan-

ishing of the invariant implies the nonemptiness of the corresponding moduli

space,

M
�
X o

a;b½ðPa;PbÞ�=Do
out

�
A j:

Recall, following the notation of Section 3.1, that

n : X o
a;b½ðPa;PbÞ� ! X o

a;b

is the blow-up along l1 and l2 distinct points of D
o
1 and Do

2 respectively.

Let ½f� a M
�
X o

a;b½ðPa;PbÞ�=Do
out

�
be a stable relative map,

ðC; pÞ !f Xo
a;b½ðPa;PbÞ� !

p
X o

a;b½ðPa;PbÞ�;

satisfying the following properties:

(i) C is a complete connected curve of arithmetic genus 0 with at worst nodal

singularities,

(ii) Xo
a;b½ðPa;PbÞ� ! X o

a;b½ðPa;PbÞ� is a destabilization11 along the relative divisor

Do
out,

(iii) C has full contact via f with Do
out of order k at p.

For the calculation of intersection numbers, we will often view the composition

p � f : C ! X o
a;b½ðPa;PbÞ�HXa;b½ðPa;PbÞ�

as having image in the complete surface. Let

D strict
i HXa;b½ðPa;PbÞ�

be the strict transformation under n of Di.

Lemma 4.1. Let C 0 HC be an irreducible component on which p � f is not

constant. Then

C 0 �Dstrict
1 ¼ C 0 �Dstrict

2 ¼ 0:

Proof. Since p � fðC 0ÞHX o
a;b½ðPa;PbÞ�, the component C 0 can not dominate

D strict
i . Hence,

C 0 �Dstrict
i b 0:

11A destabilization along a relative divisor is obtained by attaching a finite number of bubbles each of
which is a P1-bundle over the divisor. We refer the reader to Section 1 of [14] for an introduction to the
destabilizations required for stable relative maps. Li uses the term expanded degeneration for our destabi-
lizations.
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The intersection number of C with Dstrict
1 is

C �Dstrict
1 ¼ bk �D1 þ

Xl1
i¼1

piE
2
i ¼ 0;

where Pa ¼ p1 þ � � � þ pl1 and Ei are the exceptional divisors of n over D1. There-

fore, if C 0 �Dstrict
1 > 0, then

CnC 0 �D strict
1 < 0;

which is impossible since no component of C dominates Dstrict
1 . The argument for

D strict
2 is identical. r

Lemma 4.2. Let C 0 HC be an irreducible component on which p � f is not

constant. The set

C 0B ðp � fÞ�1ðDo
outÞ

consists of a single point.

Proof. Let q ¼ p � fðpÞ a Do
out. Since no components of C dominate Dout and

fðCÞ has full contact with the extremal Dout HXo
a;b½ðPa;PbÞ� at a single point, we

conclude p � fðC 0Þ meets Do
out only at q. Since the dual graph of C has no loops

(by the genus 0 condition), the set C 0B ðp � fÞ�1ðDo
outÞ can not contain more than

one point. r

Lemma 4.3. If fa;bA 1, then there exists a non-constant map

P1 ! X o
a;b½ðP 0

a;P
0
bÞ�

which is both

(i) a normalization of a subcurve of X o
a;b½ðP 0

a;P
0
bÞ�, and

(ii) an element of M
�
X o

a;b½ðP 0
a;P

0
bÞ�=Do

out

�
, where P 0

a is of size ak
0 and length l1 and

P 0
b of size bk

0 and length l2.

Proof. Let P1 ¼P C 0 HC be an irreducible component on which p � f is not

constant. By Lemmas 4.1 and 4.2, the map

p � f : C 0 ! X o
a;b½ðPa;PbÞ� ð4:2Þ

lies in the moduli space12 M
�
X o

a;b½ðP 0
a;P

0
bÞ�=Do

out

�
where P 0

a is of size ak 0 and

length l1 and P 0
b of size bk

0 and length l2 for k
0a k.

12Since lengths of the partitions match, the spaces X o
a; b½ðPa;PbÞ� and X o

a; b½ðP
0
a;P

0
bÞ� can be taken to be

the same.
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If (4.2) is birational onto the image p � fðC 0Þ, then we have proven the lemma.

If

p � f : C 0 ! p � fðC 0Þ

is a multiple cover, then, by taking the normalization of p � fðC 0Þ, we obtain the

required map (for k 00 < k 0). r

4.3. Genus inequalities. On the surface Xa;b, the intersection results

D1 �D2 ¼ 1; D1 �Dout ¼
1

b
; D2 �Dout ¼

1

a

are easily obtained since the divisors intersect transversely (at orbifold points).

Since A1ðXa;bÞ is rank 1 over Q, we conclude

bD1 ¼ aD2 ¼ abDout;

D2
1 ¼ a

b
; D2

2 ¼ b

a
; D2

out ¼
1

ab
:

Since bk �Dout ¼ k, we see bk ¼ abkDout.

The arithmetic genus of a complete curve PHX o
a;b½ðPa;PbÞ� of class

bk½ðPa;PbÞ� ¼ n�ðbkÞ �
Xl1
i¼1

piEi �
Xl2
j¼1

p 0
jE

0
j

is given by adjunction,

2gaðPÞ � 2 ¼ ðKX o
a; b

½ðPa;PbÞ� þ PÞ � P

¼ ð�D1 �D2 �Dout þ bkÞ � bk �
Xl1
i¼1

piðpi � 1Þ �
Xl2
j¼1

p 0
j ðp 0

j � 1Þ

¼ �ak � bk � k þ abk2 �
Xl1
i¼1

piðpi � 1Þ �
Xl2
j¼1

p 0
j ðp 0

j � 1Þ

¼ abk2 � k �
Xl1
i¼1

p2i �
Xl2
j¼1

ðp 0
j Þ

2:
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If P is irreducible with normalization of genus 0, then

abk2 � k �
Xl1
i¼1

p2i �
Xl2
j¼1

ðp 0
j Þ

2 þ 2b 0

since the arithmetic genus is bounded from below by the geometric genus.

Suppose that fa;bA 1. By the existence result of Lemma 4.3, there exists an

irreducible curve PHX o
a;b½ðPa;PbÞ� with normalization of genus 0. Hence, there

exists an integer k > 0 and partitions

Pa ¼ p1 þ � � � þ pl1 ; jPaj ¼ ak; Pb ¼ p 0
1 þ � � � þ p 0

l2
; jPbj ¼ bk; ð4:3Þ

for which the inequality

abk2 � k �
Xl1
i¼1

p2i �
Xl2
j¼1

ðp 0
j Þ

2 þ 2b 0 ð4:4Þ

is satisfied.

We define a primitive vector ða; bÞ a Z2 lying strictly in the first quadrant to be

permissible for the pair ðl1; l2Þ if there exist partitions (4.3) with k > 0 satisfying

the inequality (4.4). We have proven the following result.

Proposition 4.4. If fa;bA 1 in the order product factorization of T�1
l2

� Sl1 � Tl2 �
S�1
l1

, then ða; bÞ is permissible for the pair ðl1; l2Þ.

4.4. Case I: Continuous range. Our first result specifies a continuous range of

possible slopes of permissible vectors. Consider the quadratic polynomial

Rl1;l2ðzÞ ¼
1

l2
z2 � zþ 1

l1
:

with discriminant 1� 4
l1l2

. For the list of pairs

ðl1; l2Þ ¼ ð1; 1Þ; ð1; 2Þ; ð2; 1Þ; ð1; 3Þ; ð3; 1Þ;

Rl1;l2ðzÞ > 0 for all real z. For all other pairs of positive integers ðl1; l2Þ, the poly-
nomial Rl1;l2 has two positive real roots

xe ¼ l2

2
1e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

l1l2

s !
:

For slopes x� < b
a
< xþ strictly between the roots, Rl1;l2

�
b
a

�
is negative.

237Quivers, curves, and the tropical vertex



Lemma 4.5. If Rl1;l2

�
b
a

�
< 0, then the vector ða; bÞ is permissible for ðl1; l2Þ.

Proof. If k is chosen to be divisible by both l1 and l2, the balanced partitions

Pa ¼
ak

l1
þ � � � þ ak

l1
; Pb ¼

bk

l2
þ � � � þ bk

l2

can be formed. The inequality (4.4) becomes

ab� a2

l1
� b2

l2

� �
k2 � k þ 2b 0: ð4:5Þ

Since the coe‰cient of k2 is �a2Rl1;l2

�
b
a

�
> 0 by the assumed slope condition, the

inequality (4.5) can certainly be satisfied for large enough (and divisible) k. r

If ðl1; l2Þ a fð1; 4Þ; ð4; 1Þ; ð2; 2Þg, then the polynomial Rl1;l2 has a double root

x� ¼ xþ. Lemma 4.5 does not permit any slopes in the double root case.

Lemma 4.6. If ðl1; l2Þ B fð1; 1Þ; ð1; 2Þ; ð2; 1Þ; ð1; 3Þ; ð3; 1Þ; ð1; 4Þ; ð4; 1Þ; ð2; 2Þg, then
the two roots xe are real, positive, and irrational.

Proof. Only the irrational claim is nontrivial. Let 2s be the largest power of 2

dividing the product l1l2,

l1l2 ¼ 2sn

where n is odd. There are three cases to consider:

(i) If s ¼ 0, then

l1l2 � 4

l1l2
¼ n� 4

n
;

where n� 4 and n are relatively prime. But there are no positive pairs of

squares separated by 4, so
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

l1l2

q
is irrational.

(ii) If s ¼ 1, then

l1l2 � 4

l1l2
¼ n� 2

n
;

and the same argument applies.
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(iii) If sb 2, then

l1l2 � 4

l1l2
¼ 2s�2n� 1

2s�2n
;

and the argument again applies.

The hypotheses in the Lemma are only used to show l1l2 � 4 > 0. r

Lemma 4.7. If Rl1;l2

�
b
a

�
¼ 0, then we must have ðl1; l2Þ a fð1; 4Þ; ð4; 1Þ; ð2; 2Þg.

Moreover, ða; bÞ is permissible for ðl1; l2Þ.

Proof. Since Rl1;l2 has rational roots only in case ðl1; l2Þ a fð1; 4Þ; ð4; 1Þ; ð2; 2Þg,
the first claim is clear. For ðl1; l2Þ ¼ ð1; 4Þ and ð4; 1Þ, we have the double roots

ða; bÞ ¼ ð1; 2Þ and ð2; 1Þ respectively. For ðl1; l2Þ ¼ ð2; 2Þ, we have the double

root ða; bÞ ¼ ð1; 1Þ. Permissibility is established in both cases by taking k ¼ 2

and balanced partitions. r

4.5. Case II: Discrete series

4.5.1. Positive values. Permissibility for Rl1;l2

�
b
a

�
a 0 has been established by

Lemmas 4.5 and 4.7. We now consider the cases where

Rl1;l2

b

a

� �
> 0: ð4:6Þ

Since
Pl1

i¼1 p
2
i b

a2

l1
k2 and similarly for the p 0

j , we see

abk2 � k �
Xl1
i¼1

p2i �
Xl2
j¼1

ðp 0
j Þ

2 þ 2a�a2Rl1;l2

b

a

� �
k2 � k þ 2:

Certainly for all kb 2 the right side is negative. Hence, if ða; bÞ satisfies (4.6) and
is permissible for ðl1; l2Þ, then k ¼ 1 and we must have

ab�
Xl1
i¼1

p2i �
Xl2
j¼1

ðp 0
j Þ

2 þ 1 ¼ 0 ð4:7Þ

for partitions p1 þ � � � þ pl1 ¼ a and p 0
1 þ � � � þ p 0

l2
¼ b.

There are exactly three possibilities for the solution of (4.7) in the presence of

condition (4.6):
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(i) aC 0 mod l1, bC 0 mod l2, and a2Rl1;l2
b
a

� �
¼ 1.

(ii) aCe1 mod l1, bC 0 mod l2, and a2Rl1;l2
b
a

� �
¼ 1

l1
,

(iii) aC 0 mod l1, bCe1 mod l2, and a2Rl1;l2
b
a

� �
¼ 1

l2
.

A straightforward analysis shows that

ab�
Xl1
i¼1

p2i �
Xl2
j¼1

ðp 0
j Þ

2 < �a2Rl1;l2

b

a

� �
� 1 < �1;

unless one of (i)–(iii) are satisfied.

4.5.2. Analysis of (i). If l1 or l2 equals 1, then (i) is special case of (ii) and (iii).

Let Sl1;l2 be the set of solutions to (i) with ða; bÞ a Z2 lying in the closed first

quadrant. We will show Sl1;l2 is empty when l1; l2 > 1.

We now assume that l1; l2 > 1. When specialized to b ¼ 0, the equation of (i),

a2Rl1;l2

b

a

� �
¼ 1; ð4:8Þ

yields a2

l1
¼ 1, which has no solutions satisfying aC 0 mod l1. A similar conclusion

holds when a ¼ 0. We conclude all elements of Sl1;l2 lie strictly in the first quad-

rant.

Crucial to our analysis are the two transformations

T1ða; bÞ ¼ ðl1b� a; bÞ; T2ða; bÞ ¼ ða; l2a� bÞ;

which leave the expression

a2Rl1;l2

b

a

� �
¼ �abþ a2

l1
þ b2

l2

invariant. Both have order two,

T2
1 ¼ T2

2 ¼ Id:

If ða; bÞ a Sl1;l2 is a solution of (i) in the first quadrant, we have seen that a; b > 0.

Let

ða1; b1Þ ¼ T1ða; bÞ; ða2; b2Þ ¼ T2ða; bÞ:

By the invariance, we have

a2i Rl1;l2

bi

ai

� �
¼ 1

240 M. Gross and R. Pandharipande



for i ¼ 1; 2. By the definitions of Ti, the congruence assumptions for a and b hold

also for ai and bi, respectively. Since b1 ¼ b > 0 and

b2

l2
> 1;

we must have a1 > 0. Hence, ða1; b1Þ a Sl1;l2 . Similarly, ða2; b2Þ a Sl1;l2 . We

have proven the following result.

Lemma 4.8. Both T1 and T2 preserve the set Sl1;l2 .

We now apply the transformations twice to obtain two new elements of Sl1;l2 ,

ða21; b21Þ ¼ T2ða1; b1Þ; ða12; b12Þ ¼ T1ða2; b2Þ:

Lemma 4.9. If ða; bÞ a Sl1;l2 and
b
a
> xþ, then

a > a12; b > b12;
b12

a12
>

b

a
:

Proof. Using the formula a12 ¼ l1ðl2a� bÞ � a, we find that a > a12 is equivalent

to

b

a
> l2 �

2

l1
: ð4:9Þ

But since 4
l1l2

a 1, we see that

xþ ¼ l2

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

l1l2

s !

b
l2

2
1þ 1� 4

l1l2

� �

b l2 �
2

l1
:

Hence, inequality (4.9) follows from the slope assumption b
a
> xþ.

Similarly, using the formula b12 ¼ l2a� b, we find that b > b12 is equivalent to

b

a
>

l2

2
;

which also follows form the slope assumption.
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Since ða12; b12Þ a Sl1;l2 , we must have a12 > 0. Using the ratio of the formulas

for b12 and a12, we find

b12

a12
¼

l2 � b
a

l1 l2 � b
a

� �
� 1

:

The third claim of the lemma is

l2 � b
a

l1 l2 � b
a

� �
� 1

>
b

a
;

which is equivalent to

0 > �Rl1;l2

b

a

� �
¼ � 1

a2

since ða; bÞ a Sl1;l2 . r

Lemma 4.10. If ða; bÞ a Sl1;l2 and
b
a
< x�, then

a > a21; b > b21;
b21

a21
<

b

a
:

The proof of Lemma 4.10 is identical to the proof of Lemma 4.9. We are now

prepared to prove the emptiness of Sl1;l2 .

Lemma 4.11. For l1; l2 > 1, we have Sl1;l2 ¼ j.

Proof. Suppose that ða; bÞ a Sl1;l2 exists. Then, since Rl1;l2
b
a

� �
> 0, we must have

either

b

a
> xþ or

b

a
< x�:

In the former case Lemma 4.9 yields a new element ða12; b12Þ a Sl1;l2 with strictly

smaller values a12 < a and b12 < b. In the latter case, we use Lemma 4.10. After

finitely many iterations, we must exit the first quadrant contradicting Lemma

4.8. r

4.5.3. Analysis of (ii). We assume that l1; l2 > 0 and ðl1; l2ÞA ð1; 1Þ. Let Al1;l2

be the set of solutions to (ii) with ða; bÞ a Z2 lying in the closed first quadrant.

When specialized to b ¼ 0, the equation of (ii),

a2Rl1;l2

b

a

� �
¼ 1

l1
;
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yields a2

l1
¼ 1

l1
, which has a single positive solution a ¼ 1. As in Section 4.5.2, no

solutions occur when a ¼ 0 (using ðl1; l2ÞA ð1; 1Þ). We conclude that all elements

of Al1;l2 lie strictly in the first quadrant except for ð1; 0Þ. Let

A�
l1;l2

¼ Al1;l2 � fð1; 0Þg:

The proof of Lemma 4.8 immediately yields the following result.

Lemma 4.12. Both T1 and T2 map A�
l1;l2

to Al1;l2 .

Assume further that ðl1; l2Þ B fð1; 1Þ; ð1; 2Þ; ð2; 1Þ; ð1; 3Þ; ð3; 1Þg. The method

used in Section 4.5.2 to study the solutions in case (i) yields a complete description

of A�
l1;l2

.

Proposition 4.13. The permissible vectors for ðl1; l2Þ obtained from case (ii) are

A�
l1;l2

¼
�
T2ð1; 0Þ;T1

�
T2ð1; 0Þ

�
;T2

�
T1

�
T2ð1; 0Þ

��
;T1

�
T2

�
T1

�
T2ð1; 0Þ

���
; . . .


:

Proof. Start with any solution ða; bÞ a A�
l1;l2

. Depending upon whether b
a
is

greater than xþ or less than x�, apply T1T2 or T2T1. The result is a solution

ða 0; b 0Þ with a 0 < a and b 0 < b. By iterating the process, the solution must eventu-

ally leave the strict first quadrant. By Lemma 4.12, we conclude that some chain

of applications of T1 and T2 to ða; bÞ yields ð1; 0Þ. r

For the cases ðl1; l2Þ a fð1; 1Þ; ð1; 2Þ; ð2; 1Þ; ð1; 3Þ; ð3; 1Þg, the group generated

by T1 and T2 is finite and, in each case, contains elements that move every ða; bÞ
strictly in the first quadrant out of the strict first quadrant. Hence, every element

of A�
l1;l2

can be reached from ð1; 0Þ by a chain of applications of T1 and T2. Since

the sets are finite, we can list all the elements:

A�
1;1 ¼ fð1; 1Þg; A�

1;2 ¼ fð1; 2Þg; A�
2;1 ¼ fð1; 1Þg;

A�
1;3 ¼ fð1; 3Þ; ð2; 3Þg; A�

3;1 ¼ fð1; 1Þ; ð2; 1Þg:

4.5.4. Analysis of (iii). Of course the discussion of (iii) is identical to (ii). Let

B�
l1;l2

be the set of solutions to (iii) with ða; bÞ a Z2 lying strictly in the first

quadrant. For ðl1; l2Þ B fð1; 1Þ; ð1; 2Þ; ð2; 1Þ; ð1; 3Þ; ð3; 1Þg, we have

B�
l1;l2

¼
�
T1ð0; 1Þ;T2

�
T1ð0; 1Þ

�
;T1

�
T2

�
T1ð0; 1Þ

��
;T2

�
T1

�
T2

�
T1ð0; 1Þ

���
; . . .


:

The special cases are:

B�
1;1 ¼ fð1; 1Þg; B�

1;2 ¼ fð1; 1Þg; B�
2;1 ¼ fð2; 1Þg;

B�
1;3 ¼ fð1; 1Þ; ð1; 2Þg; B�

3;1 ¼ fð3; 1Þ; ð3; 2Þg:
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4.6. Results for scattering patterns. Let l1; l2 > 0. Our main result for scatter-

ing patterns determines the set of permissible vectors for ðl1; l2Þ.

Theorem 5. If ðl1; l2Þ B fð1; 1Þ; ð1; 2Þ; ð2; 1Þ; ð1; 3Þ; ð3; 1Þg, then the set Pðl1; l2Þ of
permissible vectors is the disjoint union

Pl1;l2 ¼ A�
l1;l2

AB�
l1;l2

A ða; bÞ a Z2 j x�a
b

a
a xþ


 �
:

Theorem 5 is simply a summary of the result of Sections 4.4–4.5. The sets of

permissible vectors for the special pairs ðl1; l2Þ excluded in Theorem 5 are:

P1;1 ¼ fð1; 1Þg; P1;2 ¼ fð1; 2Þ; ð1; 1Þg; P2;1 ¼ fð1; 1Þ; ð2; 1Þg;
P1;3 ¼ fð1; 3Þ; ð2; 3Þ; ð1; 1Þ; ð1; 2Þg; P3;1 ¼ fð1; 1Þ; ð2; 1Þ; ð3; 1Þ; ð3; 2Þg:

Returning to Question 4, consider the ordered product factorization (4.1) of

the commutator. We have proven in Section 4.3 the implication

fa;bA 1 ¼) ða; bÞ a Pl1;l2 :

In other words, the scattering pattern associated to l1 and l2 is contained in the

directions of Pl1;l2 . Theorem 5 completely determines Pl1;l2 . In the nontrivial

cases ðl1; l2Þ ¼ ð2; 2Þ, ð3; 3Þ and ð2; 3Þ analyzed in §1.4, the behaviour claimed

(via calculations) fits precisely with the results predicted by Theorem 5. For

l1 ¼ l2 ¼ m, the containment of the scattering pattern in Pm;m was conjectured

previously by Gross–Siebert and Kontsevich based on computational data.

While very tempting to believe, we have not proven the reverse implication

ða; bÞ a Pl1;l2 ¼) fa;bA 1: ð4:10Þ

Certainly (4.10) is consistent with all the gathered data. If l1 ¼ l2 ¼ m, the equiv-

alence

ða; bÞ a Pm;m () fa;bA 1

can be proven via the existence of ð1; 0Þ-semistable representations of the quiver

Qm discussed in Section 4.7 below.

4.7. Quivers. If l1 and l2 are both equal to m, then Question 4 is related to the

existence of ð1; 0Þ-semistable representations of Qm by Theorem 1.

Proposition 4.14. For m ¼ l1 ¼ l2 and primitive ða; bÞ a Z2 lying strictly in the

first quadrant, the following are equivalent:
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(i) fa;bA 1,

(ii) there exists a nonzero ð1; 0Þ-semistable representation of Qm with dimension

vector proportional to ða; bÞ,
(iii) there exists a nonzero ð1; 0Þ-stable back framed representation of Qm with

dimension vector proportional to ða; bÞ,
(iv) there exists a nonzero ð1; 0Þ-stable front framed representation of Qm with

dimension vector proportional to ða; bÞ.

Proof. By Theorem 1, (i) implies (iii) and (iv). The moduli spaces Mð1;0Þ;B
m ðd1; d2Þ

and Mð1;0Þ;F
m ðd1; d2Þ are nonsingular projective varieties with no odd cohomology

[11], [17]. For such spaces, nonemptyness implies positive Euler characteristic.13

Hence, again by Theorem 1, (iii) and (iv) are equivalent and imply (i). By the

definition of ð1; 0Þ-stability for framed representions, the underlying standard rep-

resentation is ð1; 0Þ-semistable. So (iii) and (iv) imply (ii).

If (ii) holds, then there exists a ð1; 0Þ-semistable representation r of Qm with

slope

mðrÞ ¼ a

aþ b
:

We will show there exists a subrepresentation r̂rH r of the same slope which is

ð1; 0Þ-stable. If r is ð1; 0Þ-stable, then take r̂r ¼ r. If r is strictly ð1; 0Þ-semistable,

then r must contain a smaller nonzero ð1; 0Þ-semistable representation of slope
a

aþb
, and we repeat. By finiteness of chains, we must eventually find a ð1; 0Þ-stable

r̂r. Since

mðr̂rÞ ¼ a

aþ b
;

the dimension vector of r̂r is proportional to ða; bÞ. For a ð1; 0Þ-stable standard

representation r̂r ¼ ðV̂V1; V̂V2; t1; . . . ; tmÞ, every choice of framing data Li H V̂Vi yields

a ð1; 0Þ-stable framed representation. Hence, (ii) implies (iii) and (iv). r

Reineke has provided us with a proof of the following result about representa-

tions of Qm. Given two dimension vectors d ¼ ðd1; d2Þ and e ¼ ðe1; e2Þ, let

3d; e4 ¼ d1e1 þ d2e2 �md1e2:

The form 3 ; 4 is not symmetric.

13See [21] for better bounds in certain cases.
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Proposition 4.15 (Reineke). Let d a Z2 be a primitive vector lying in the first

quadrant. There exists a ð1; 0Þ-semistable representation of Qm with dimension

vector proportional to d if and only if 3d; d4a 1.

Proof. We start by proving the only if claim. Let r be a ð1; 0Þ-semistable represen-

tation of Qm with dimension vector proportional to d. We can (as before) assume

that r is ð1; 0Þ-stable by passing to a subrepresentation if necessary. We have

3d; d4 ¼ 1� dimPmðd1; d2Þ � dimGd1;d2

� �
: ð4:11Þ

By the stability of r, the moduli space Mð1;0Þ
m ðd1; d2Þ is nonempty and of non-

negative dimension given by the term in the parentheses on the right side of

(4.11). Hence, 3d; d4a 1.

For the claim in the other direction, suppose there does not exist a ð1; 0Þ-
semistable representation with dimension vector d. By Corollary 3.5 of [17], there

exists a proper14 decomposition

d ¼ d1 þ � � � þ ds

into nonzero dimension vectors of ð1; 0Þ-semistable representations of Qm satisfy-

ing

mðd1Þ > � � � > mðdsÞ

and 3d i; d j4 ¼ 0 for all i < j. Let e ¼ d1 and f ¼ d2 þ � � � þ ds. Then

d ¼ eþ f; mðeÞ > mðfÞ; 3e; f4 ¼ 0:

After writing the last two inequalities as

e1

e2
>

f1

f2
; e1 f1 þ e2 f2 �me1 f2 ¼ 0

and elementary manipulation, we obtain both 3e; e4 > 0 and 3f; f4 > 0. More-

over,

3f; e4 ¼ e1 f1 þ e2 f2 �me2 f1 ¼ mðe1 f2 � e2 f1Þ > 0:

Putting the results together, we conclude that

3d; d4 ¼ 3e; e4þ 3f; f4þ 3e; f4þ 3f; e4b 3;

14By properness, s is at least 2.
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since all summands are positive except 3e; f4 ¼ 0. We have contradicted the as-

sumption 3d; d4a 1. r

For primitive ða; bÞ a Z2 lying strictly in the first quadrant, we have

a2Rm;m
b

a

� �
¼ 1

m
3ða; bÞ; ða; bÞ4:

Proposition 4.15 precisely produces ð1; 0Þ-semistable representations of Qm in all

the permissible directions. The proof of the claim

ða; bÞ a Pm;m () fa;bA 1 ð4:12Þ

is complete. We do not know a proof of (4.12) via rational curve counting on toric

surfaces.

4.8. Further commutators. Commutators of more general elements of the trop-

ical vertex group may be similarly considered. Let

p1ðt; xÞ ¼ 1þ c1ðtxÞ1 þ c2ðtxÞ2 þ � � � þ cl1ðtxÞ
l1 ;

p2ðt; yÞ ¼ 1þ c 01ðtyÞ
1 þ c 02ðtyÞ

2 þ � � � þ c 0l2ðtyÞ
l2

be polynomials of degrees l1 and l2 respectively, and let

Sl1 ¼ yð1;0Þ;p1ðt;xÞ; Tl2 ¼ yð0;1Þ;p2ðt;yÞ:

Our proof of Theorem 5 yields the following result.

Corollary 6. The scattering pattern associated to the commutator

T�1
l2

�Sl1 �Tl2 �S�1
l1

¼
Y!

yða;bÞ; fa; b ;

lies in the set Pl1;l2 .

Proof. By factoring p1 and p2 over C, we may instead consider the scattering

pattern associated to the commutator of the elements

Sl1 ¼ yð1;0Þ; ð1þt1xÞð1þt2xÞ...ð1þtl1xÞ; Tl2 ¼ yð0;1Þ; ð1þs1yÞð1þs2yÞ...ð1þsl2yÞ

in the tropical vertex group over the ring C½½t1; . . . ; tl1 ; s1; . . . ; sl2 ��. By using the

full strength of Theorem 5.4 of [8], the scattering pattern is constrained by the

same analysis as in Section 4. r
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For l 0
1 a l1 and l 0

2 a l2, Corollary 6 suggests the inclusion

Pl 0
1 ;l

0
2
HPl1;l2 ;

which can easily be verified directly. Finally, commutators of the elements

yðv1; v2Þ;p1ðt;xv1yv2 Þ and yðw1;w2Þ;p2ðt;xw1yw2 Þ

can be transformed to the case constrained by Corollary 6. We leave the details to

the reader.

5. Symmetry of the scattering diagram

5.1. Transformations T1 and T2. We return to the basic elements

Sl1 ¼ yð1;0Þ; ð1þtxÞl1 and Tl2 ¼ yð0;1Þ; ð1þtyÞl2

of the tropical vertex group and the unique factorization

T�1
l2

� Sl1 � Tl2 � S�1
l1

¼
Y!

yða;bÞ; fa; b : ð5:1Þ

We have seen that fa;b is a series in the variable ðtxÞaðtyÞb,

fa;bðt; x; yÞ ¼ fa;b
�
ðtxÞaðtyÞb

�
;

where fa;bðzÞ a Q½½z��. By the following result, the factorization (5.1) is symmetric

with respect to the transformations

T1ða; bÞ ¼ ðl1b� a; bÞ; T2ða; bÞ ¼ ða; l2a� bÞ:

of Section 4.5.2.

Theorem 7. Let ða; bÞ a Z2 be a primitive vector lying strictly in the first quadrant.

If T1ða; bÞ lies strictly in the first quadrant, then

fa;b ¼ fT1ða;bÞ:

Similarly, if T2ða; bÞ lies strictly in the first quadrant, then fa;b ¼ fT2ða;bÞ.

We will prove Theorem 7 in Section 5.2 via Theorem 2 and symmetries of

Gromov–Witten invariants of toric surfaces.

248 M. Gross and R. Pandharipande



5.2. Curve counting symmetry. Following the notation of Section 3.1, let Pa

and Pb be ordered partitions,

Pa ¼ p1 þ � � � þ pl1 ;

Pb ¼ p 0
1 þ � � � þ p 0

l2
;

of size ak and bk respectively. Define partitions P 0
a and P 0

b by

P 0
a ¼ ðbk � p1Þ þ � � � þ ðbk � pl1Þ;

P 0
b ¼ ðak � p 0

1Þ þ � � � þ ðak � p 0
l2
Þ:

The following symmetry of Gromov–Witten invariants is the main step in the

proof of Theorem 7.

Proposition 5.1. Na;b½ðPa;PbÞ� ¼ Nl1b�a;b½ðP 0
a;PbÞ� ¼ Na;l2a�b½ðPa;P

0
bÞ�.

Proof. We prove the first equality of Proposition 5.1. The argument for

Na;b½ðPa;PbÞ� ¼ Na;l2a�b½ðPa;P
0
bÞ�

is, of course, identical.

Consider the surface Ya;b obtained by subdividing the fan for Xa;b by adding a

ray in the direction ð1; 0Þ, as depicted in Figure 5.1. Denote by

D1;D2;D
0
1;Dout HYa;b

Figure 5.1
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the divisors corresponding to the rays generated by ð�1; 0Þ, ð0;�1Þ, ð1; 0Þ and

ða; bÞ respectively. Projection onto the second coordinate induces a map of toric

varieties

p : Ya;b ! P1:

Both D2 and Dout are fibres of p, but Dout occurs with multiplicity b. Away from

Dout, p is a P1-bundle. The divisors D1 and D 0
1 are sections of p.

Let Y o
a;b HYa;b be the complement of the four torus fixed points, and let

Do
i ¼ Di BY o

a;b:

Choose a set of l1 points on Do
1 and a set of l2 points on Do

2 . Let

nY : Ya;b½P� ! Ya;b; P ¼ ðPa;PbÞ;

be the blow-up along all l1 þ l2 chosen points. We use the same notation D1,

D2, D
0
1, Dout for the proper transforms in Ya;b½P� of the respective divisors. Let

E1; . . . ;El1 , E
0
1; . . . ;E

0
l2
be the exceptional divisors of nY .

We can similarly consider P ¼ ðP 0
a;PbÞ and perform the same construction for

ðl1b� a; bÞ. We obtain

nY : Yl1b�a;b½P� ! Yl1b�a;b:

Let D1;D
0
1;D2;Dout HYl1b�a;b be the toric divisors. We denote their strict trans-

forms with respect to nY by the same symbols. Let E1; . . . ;El1 , E
0
1; . . . ;E

0
l2
be the

exceptional divisors of nY .

Let x1; . . . ; xl1 a Do
1 JYa;b be the points we have chosen on Do

1 . On Ya;b½P�,
the proper transforms of the fibres

p�1
�
pðx1Þ

�
; . . . ; p�1

�
pðxl1Þ

�
ð5:2Þ

are ð�1Þ-curves linearly equivalent to D2 � E1; . . . ;D2 � El1 respectively. Let h

be the blow-down of the l1 curves (5.2) along with E 0
1; . . . ;E

0
l2
,

h : Ya;b½P� ! Za;b:

The rational map p � nY � h�1 from Za;b to P1 extends to a morphism

pZ : Za;b ! P1

with all fibres isomorphic to P1 and reduced (except for the multiple fibre

with support hðDoutÞ).15 Furthermore, hðD1Þ and hðD 0
1Þ are sections of pZ.

15The birational transformation we have described between the P1-bundles p : Ya; b ! P1 and
pZ : Za; b ! P1 is known as an elementary transformation.
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From the above geometry, we easily deduce that Za;b is a toric variety with toric

boundary

hðD1ÞA hðD 0
1ÞA hðD2ÞA hðDoutÞ:

Which toric variety is Za;b? Because the restriction of pZ to Za;bnhðDoutÞ is a
smooth P1-bundle over A1, we see

Za;bnhðDoutÞGP1 �A1

as toric varieties. The latter is given, up to lattice isomorphism, by a fan with

rays generated by ðe1; 0Þ and ð0;�1Þ, so Za;b must be given by a fan with an

additional ray. The fan must look exactly like Figure 5.1, with ða; bÞ replaced by

some ða 0; b 0Þ:

• Since the morphism pZ is induced by projection onto the second coordinate of

the fan and hðDoutÞ is still the support of a fibre of pZ with multiplicity b, we

have b 0 ¼ b.

• On Ya;b, we have D
2
1 ¼ a

b
. Hence, D2

1 ¼ a
b
� l1 on Ya;b½P�. Then, on Za;b,

hðD1Þ2 ¼
a� l1b

b
:

Thus, a 0 ¼ a� l1b.

Using the identification ða 0; b 0Þ ¼ ða� l1b; bÞ, we conclude

Za;b GYa�l1b;b GYl1b�a;b

where the second isomorphism is obtained by the involution ðm1;m2Þ 7! ð�m1;m2Þ
on Z2 identifying the fans for Ya�l1b;b and Yl1b�a;b. The composition

Ya;b½P� !
h
Za;b GYl1b�a;b

is the blow-up of l1 points on Do
1 and l2 points on Do

2 .

We have shown that if the point sets for the l1 þ l2 blow-ups are chosen appro-

priately, there is an isomorphism

j : Ya;b½P� !
P

Yl1b�a;b½P�

compatible with boundary geometry

jðD1Þ ¼ D 0
1; jðD 0

1Þ ¼ D1; jðD2Þ ¼ D2; jðDoutÞ ¼ Dout:
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Let bY
k a H2ðYa;b;ZÞ be the unique class with intersection numbers

bY
k �D1 ¼ ak; bY

k �D 0
1 ¼ 0; bY

k �D2 ¼ bk; bY
k �Dout ¼ k;

and let bY
k a H2ðYl1b�a;b;ZÞ be the unique class with intersection numbers

bY
k �D1 ¼ ðl1b� aÞk; bY

k �D 0
1 ¼ 0; bY

k �D2 ¼ bk; bY
k �Dout ¼ k:

A straightforward analysis of j yields the relation

n�Y ðbY
k Þ �

Xl1
i¼1

pi½Ei� �
Xl2
j¼1

p 0
j ½E 0

j � ¼ j�
�
n�Y ðbY

k Þ �
Xl1
i¼1

ðbk � piÞ½Ei� �
Xl2
j¼1

p 0
j ½E 0

j �
	
:

The equality Na;b½ðPa;PbÞ� ¼ Nl1b�a;b½ðP 0
a;PbÞ� now follows by unravelling the

definitions in Section 3.2 of the Gromov–Witten invariants. The isomorphism j

equates the corresponding moduli spaces of relative stable maps

MðX o
a;b½P�=Do

outÞGMðX o
l1b�a;b½P�=Do

outÞ:

The extra blow-ups (corresponding to divisors D 0
1 and D 0

1) occurring in Ya;b½P�
and Yl1b�a;b½P� do not a¤ect the relevant moduli spaces. r

The symmetry of Proposition 5.1 applied to Theorem 2 immediately yields the

symmetry of Theorem 7. r

If any part of P 0
a is negative, then Nl1b�a;b½ðP 0

a;PbÞ� vanishes since

MðX o
l1b�a;b½P�=Do

outÞ ¼ j:

Proposition 5.1 then asserts the vanishing of Na;b½ðPa;PbÞ�. Similar logic holds if

any part of P 0
b is negative.

Consider the discrete series B�
l1;l2

of the scattering pattern associated to ðl1; l2Þ.
By Theorem 7, all the functions fa;b for ða; bÞ a B�

l1;l2
are equal to fT1ð0;1Þ. If we

apply the transformation T1 to T1ð0; 1Þ, we leave the strict first quadrant, but

Proposition 5.1 still applies. The result is a simple calculation on P1 � P1 which

we leave to the reader.

Lemma 5.2. In the factorization (5.1),

fa;b ¼
�
1þ ðtxÞaðtyÞb

�l2
for all ða; bÞ a B�

l1;l2
.
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Similarly, by switching the roles of x and y, we obtain the parallel conclusion

for the other discrete series.

Lemma 5.3. In the factorization (5.1),

fa;b ¼
�
1þ ðtxÞaðtyÞb

�l1
for all ða; bÞ a A�

l1;l2
.

5.3. Reflection functors for Qm. In case m ¼ l1 ¼ l2, the symmetry of the facto-

rization (5.1) has a very nice interpretation in terms of the moduli spaces of ð1; 0Þ-
semistable representations of Qm.

Let r ¼ ðV1;V2; t1; . . . ; tmÞ be a ð1; 0Þ-semistable representation of Qm with

dimension vector ðd1; d2Þ. Consider the canonically associated sequence

V1 !
t
0
m

i¼1

V2 !
g
cokerðtÞ ! 0; ð5:3Þ

where t ¼ ðt1; . . . ; tmÞ. The ð1; 0Þ-semistability condition implies t is injective,

hence

dimC cokerðtÞ ¼ md2 � d1:

The reflection Rr is defined to be the representation

Rr ¼
�
V2; cokerðtÞ; g � i1; . . . ; g � im

�
;

where ii is the inclusion of V2 as the i th factor of 0m

i¼1V2, see [2]. The following

lemma is a standard result [21].

Lemma 5.4. Rr is ð1; 0Þ-semistable.

Proof. The dimension vector of Rr is ðd2;md2 � d1Þ. Suppose

U1 HV2 and U2 H cokerðtÞ

determine a subrepresentation of Rr with dimension vector ðu1; u2Þ. If ðU1;U2Þ
destabilizes Rr, then

u1

u1 þ u2
>

d2

ðmþ 1Þd2 � d1
: ð5:4Þ
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An associated subrepresentation of r is obtained from the data

t�1
�
0
m

i¼1

U1

	
HV1 and U1HV2: ð5:5Þ

Let u3 be the dimension of t�1ð0m

i¼1
U1Þ. By sequence (5.3), u3bmu1 � u2 and

hence

u3

u3 þ u1
b

mu1 � u2

ðmþ 1Þu1 � u2
: ð5:6Þ

Using (5.4), we conclude the right side of (5.6) is strictly greater than d1
d1þd2

. Hence,

the slope of the subrepresentation (5.5) contradicts the ð1; 0Þ-semistability of r.

r

The inverse to R is defined as follows. From r, we construct the sequence

0 ! kerðt 0Þ !g
0

0
m

i¼1

V1 !
t 0

V2;

where t 0 ¼ t1 � i 01 þ � � � þ tm � i 0m and i 0i is the projection of 0m

i¼1
V1 on the i th

factor. The ð1; 0Þ-semistability of r implies the surjectivity of t 0. Hence,

dimC kerðt 0Þ ¼ md1 � d2:

Define the representation R�1r ¼
�
kerðt 0Þ;V1; i

0
1 � g 0; . . . ; i 0m � g 0

�
. Following the

proof of Lemma 5.4, we obtain the parallel result.

Lemma 5.5. R�1r is ð1; 0Þ-semistable.

A straightforward verification shows R and R�1 are inverse to each other,

R�1Rr ¼P RR�1r ¼P r; ð5:7Þ

for all ð1; 0Þ-semistable representations of r. The transformations R and R�1 act

on dimension vectors by

Rða; bÞ ¼ ðb;mb� aÞ; R�1ða; bÞ ¼ ðma� b; aÞ:

Using (5.7), we find isomorphisms of moduli spaces

Mð1;0Þ
m ðd1; d2Þ ¼P Mð1;0Þ

m

�
Reðd1; d2Þ

�
for ðd1; d2Þ and Reðd1; d2Þ in the first quadrant.
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Next, we consider the role of the framings of Section 2.4. Suppose that r has

a front framing L2 HV2. The subspace L2 HV2 defines a back framing for Rr.

The argument of Lemma 5.4 yields a refined result.

Lemma 5.6. If ðr;L2HV2Þ is a ð1; 0Þ-stable front framed representation of Qm,

then ðRr;L2 HV2Þ is a ð1; 0Þ-stable back framed representation.

Similarly, the back framing L1 HV1 of r determines a front framing of R�1r.

Lemma 5.7. If ðr;L1 HV1Þ is a ð1; 0Þ-stable back framed representation of Qm,

then ðR�1r;L1 HV1Þ is a ð1; 0Þ-stable front framed representation.

We conclude the reflections yield isomorphisms of moduli spaces of framed

representations as well,16

Mð1;0Þ;F
m ðd1; d2Þ ¼P Mð1;0Þ;B

m

�
Rðd1; d2Þ

�
: ð5:8Þ

For primitive ða; bÞ, the generating series of Euler characteristics of Section 2.7

may be written as

Ba;bðt; x; yÞ ¼ Ba;b

�
ðtxÞaðtyÞb

�
; Fa;bðt; x; yÞ ¼ Fa;b

�
ðtxÞaðtyÞb

�
;

where Ba;bðzÞ and Fa;bðzÞ a Q½½z��.

Proposition 5.8. Let ða; bÞ be a primitive vector lying strictly in the first quadrant.

If Rða; bÞ lies in the first quadrant, fa;b ¼ fRða;bÞ.

Proof. By the isomorphisms (5.8) for all dimension vectors ðak; bkÞ, we conclude

Fa;b ¼ BRða;bÞ:

The result then follows from Theorem 1. r

Since m ¼ l1 ¼ l2, there is an additional elementary symmetry given by

fa;b ¼ fb;a: ð5:9Þ

In the presence of (5.9), the symmetry generated by R is equivalent to the symme-

tries generated by T1 and T2 of Theorem 7.

In the context of the ordered product factorization (5.1) of the commutator of

Sm and Tm, the symmetry R was noticed earlier by Kontsevich.

16The spaces Mð1; 0Þ;B
m ðd1; d2Þ and Mð1; 0Þ;F

m

�
Rðd1; d2Þ

�
may fail to be isomorphic.
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5.4. Further commutators. Symmetries of commutators of more general ele-

ments of the tropical vertex group may be similarly considered. Let

p1ðt; xÞ ¼ 1þ c1ðtxÞ1 þ c2ðtxÞ2 þ � � � þ cl1�1ðtxÞl1�1 þ ðtxÞl1 ;

p2ðt; yÞ ¼ 1þ c 01ðtyÞ
1 þ c 02ðtyÞ

2 þ � � � þ c 0l2�1ðtyÞ
l2�1 þ ðtyÞl2

be polynomials of degrees l1 and l2 respectively with highest coe‰cient equal to 1.

Let

p̂p1ðt; xÞ ¼ 1þ cl1�1ðtxÞ1 þ cl1�2ðtxÞ2 þ � � � þ c1ðtxÞl1�1 þ ðtxÞl1 ;

p̂p2ðt; yÞ ¼ 1þ c 0l2�1ðtyÞ
1 þ c 0l2�2ðtyÞ

2 þ � � � þ c 01ðtyÞ
l2�1 þ ðtyÞl2 :

Consider the four elements

Sl1 ¼ yð1;0Þ;p1ðt;xÞ; Tl2 ¼ yð0;1Þ;p2ðt;yÞ;

ŜSl1 ¼ yð1;0Þ; p̂p1ðt;xÞ; T̂Tl2 ¼ yð0;1Þ; p̂p2ðt;yÞ

of the tropical vertex group.

The scattering pattern associated to the commutator

T�1
l2

�Sl1 �Tl2 �S�1
l1

¼
Y!

yða;bÞ; fa; b

is related to the scattering patterns

T�1
l2

� ŜSl1 �Tl2 � ŜS�1
l1

¼
Y!

yða;bÞ;ga; b and

T̂T�1
l2

�Sl1 � T̂Tl2 �S�1
l1

¼
Y!

yða;bÞ;ha; b :

As before, let

fa;bðt; x; yÞ ¼ fa;b
�
ðtxÞaðtyÞb

�
; ga;bðt; x; yÞ ¼ ga;b

�
ðtxÞaðtyÞb

�
;

ha;bðt; x; yÞ ¼ ha;b
�
ðtxÞaðtyÞb

�
:

Corollary 8. Let ða; bÞ a Z2 be a primitive vector lying strictly in the first quadrant.

If T1ða; bÞ lies strictly in the first quadrant, then

fa;b ¼ gT1ða;bÞ:

Similarly, if T2ða; bÞ lies strictly in the first quadrant, then fa;b ¼ hT2ða;bÞ.
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Proof. As in the proof of Corollary 6, we start by factoring p1 and p2 over C,

Sl1 ¼ yð1;0Þ; ð1þt1xÞð1þt2xÞ...ð1þtl1xÞ; Tl2 ¼ yð0;1Þ; ð1þs1yÞð1þs2yÞ...ð1þsl2yÞ:

The result then follows from Proposition 5.1 applied to Theorem 5.4 of [8]. r

6. Further directions

There are several interesting questions in the subject which we have not been able

to discuss here. We end by stating three:

(i) The functions fa;b associated to the commutator (4.1) should satisfy certain

integrality properties. In the l1 ¼ l2 case, the relevant integrality is conjectured by

Kontsevich and Soibelman in [13] and proven by Reineke in [20]. The integrality

of Conjecture 6.2 of [8] constrains all cases ðl1; l2Þ and, more generally, genus 0

relative Gromov–Witten invariants of surfaces (where the curves have full contact

order at a single point with the relative divisor). Conjecture 6.2 of [8] remains

open.

(ii) The curve counting side of Corollary 3 has a very natural higher genus

extension discussed in Section 5.8 of [8] involving the top Chern class lg of the

Hodge bundle on Mg. The quiver side of Corollary 3 has a natural extension by

replacing the Euler characteristic with the Poincaré polynomial. The two exten-

sions do not naively match. What is the meaning of the higher genus Gromov–

Witten theory on the quiver side?

(iii) Let m be fixed. M. Douglas has conjectured the function

1

a
log
�
w
�
Mð1;0Þ

m ða; bÞ
��

asymptotically (for large and primitive ða; bÞ) depends only upon b
a
. Moreover,

the limit function should be continuous. See [21] for a discussion of results toward

the conjecture.

A physical context for studying m-Kronecker quivers is explained in Section 4

of [5]. Prediction (iii) fits naturally in the framework of [5].
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